summaryrefslogtreecommitdiff
path: root/Build/source/libs/gd/libgd-2.1.0-rc1/src/gd_matrix.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/gd/libgd-2.1.0-rc1/src/gd_matrix.c')
-rw-r--r--Build/source/libs/gd/libgd-2.1.0-rc1/src/gd_matrix.c336
1 files changed, 336 insertions, 0 deletions
diff --git a/Build/source/libs/gd/libgd-2.1.0-rc1/src/gd_matrix.c b/Build/source/libs/gd/libgd-2.1.0-rc1/src/gd_matrix.c
new file mode 100644
index 00000000000..3147dea0fcd
--- /dev/null
+++ b/Build/source/libs/gd/libgd-2.1.0-rc1/src/gd_matrix.c
@@ -0,0 +1,336 @@
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif /* HAVE_CONFIG_H */
+
+#include "gd.h"
+#include <math.h>
+
+#ifndef M_PI
+# define M_PI 3.14159265358979323846
+#endif
+
+/**
+ * Title: Matrix
+ * Group: Affine Matrix
+ */
+
+/**
+ * Function: gdAffineApplyToPointF
+ * Applies an affine transformation to a point (floating point
+ * gdPointF)
+ *
+ *
+ * Parameters:
+ * dst - Where to store the resulting point
+ * affine - Source Point
+ * flip_horz - affine matrix
+ *
+ * Returns:
+ * GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+BGD_DECLARE(int) gdAffineApplyToPointF (gdPointFPtr dst, const gdPointFPtr src,
+ const double affine[6])
+{
+ double x = src->x;
+ double y = src->y;
+ dst->x = x * affine[0] + y * affine[2] + affine[4];
+ dst->y = x * affine[1] + y * affine[3] + affine[5];
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineInvert
+ * Find the inverse of an affine transformation.
+ *
+ * All non-degenerate affine transforms are invertible. Applying the
+ * inverted matrix will restore the original values. Multiplying <src>
+ * by <dst> (commutative) will return the identity affine (rounding
+ * error possible).
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ * src_affine - Original affine matrix
+ * flip_horz - Whether or not to flip horizontally
+ * flip_vert - Whether or not to flip vertically
+ *
+ * See also:
+ * <gdAffineIdentity>
+ *
+ * Returns:
+ * GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+BGD_DECLARE(int) gdAffineInvert (double dst[6], const double src[6])
+{
+ double r_det = (src[0] * src[3] - src[1] * src[2]);
+
+ if (r_det <= 0.0) {
+ return GD_FALSE;
+ }
+
+ r_det = 1.0 / r_det;
+ dst[0] = src[3] * r_det;
+ dst[1] = -src[1] * r_det;
+ dst[2] = -src[2] * r_det;
+ dst[3] = src[0] * r_det;
+ dst[4] = -src[4] * dst[0] - src[5] * dst[2];
+ dst[5] = -src[4] * dst[1] - src[5] * dst[3];
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineFlip
+ * Flip an affine transformation horizontally or vertically.
+ *
+ * Flips the affine transform, giving GD_FALSE for <flip_horz> and
+ * <flip_vert> will clone the affine matrix. GD_TRUE for both will
+ * copy a 180° rotation.
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ * src_affine - Original affine matrix
+ * flip_h - Whether or not to flip horizontally
+ * flip_v - Whether or not to flip vertically
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineFlip (double dst[6], const double src[6], const int flip_h, const int flip_v)
+{
+ dst[0] = flip_h ? - src[0] : src[0];
+ dst[1] = flip_h ? - src[1] : src[1];
+ dst[2] = flip_v ? - src[2] : src[2];
+ dst[3] = flip_v ? - src[3] : src[3];
+ dst[4] = flip_h ? - src[4] : src[4];
+ dst[5] = flip_v ? - src[5] : src[5];
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineConcat
+ * Concat (Multiply) two affine transformation matrices.
+ *
+ * Concats two affine transforms together, i.e. the result
+ * will be the equivalent of doing first the transformation m1 and then
+ * m2. All parameters can be the same matrix (safe to call using
+ * the same array for all three arguments).
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ * m1 - First affine matrix
+ * m2 - Second affine matrix
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineConcat (double dst[6], const double m1[6], const double m2[6])
+{
+ double dst0, dst1, dst2, dst3, dst4, dst5;
+
+ dst0 = m1[0] * m2[0] + m1[1] * m2[2];
+ dst1 = m1[0] * m2[1] + m1[1] * m2[3];
+ dst2 = m1[2] * m2[0] + m1[3] * m2[2];
+ dst3 = m1[2] * m2[1] + m1[3] * m2[3];
+ dst4 = m1[4] * m2[0] + m1[5] * m2[2] + m2[4];
+ dst5 = m1[4] * m2[1] + m1[5] * m2[3] + m2[5];
+ dst[0] = dst0;
+ dst[1] = dst1;
+ dst[2] = dst2;
+ dst[3] = dst3;
+ dst[4] = dst4;
+ dst[5] = dst5;
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineIdentity
+ * Set up the identity matrix.
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineIdentity (double dst[6])
+{
+ dst[0] = 1;
+ dst[1] = 0;
+ dst[2] = 0;
+ dst[3] = 1;
+ dst[4] = 0;
+ dst[5] = 0;
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineScale
+ * Set up a scaling matrix.
+ *
+ * Parameters:
+ * scale_x - X scale factor
+ * scale_y - Y scale factor
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineScale (double dst[6], const double scale_x, const double scale_y)
+{
+ dst[0] = scale_x;
+ dst[1] = 0;
+ dst[2] = 0;
+ dst[3] = scale_y;
+ dst[4] = 0;
+ dst[5] = 0;
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineRotate
+ * Set up a rotation affine transform.
+ *
+ * Like the other angle in libGD, in which increasing y moves
+ * downward, this is a counterclockwise rotation.
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ * angle - Rotation angle in degrees
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineRotate (double dst[6], const double angle)
+{
+ const double sin_t = sin (angle * M_PI / 180.0);
+ const double cos_t = cos (angle * M_PI / 180.0);
+
+ dst[0] = cos_t;
+ dst[1] = sin_t;
+ dst[2] = -sin_t;
+ dst[3] = cos_t;
+ dst[4] = 0;
+ dst[5] = 0;
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineShearHorizontal
+ * Set up a horizontal shearing matrix || becomes \\.
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ * angle - Shear angle in degrees
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineShearHorizontal(double dst[6], const double angle)
+{
+ dst[0] = 1;
+ dst[1] = 0;
+ dst[2] = tan(angle * M_PI / 180.0);
+ dst[3] = 1;
+ dst[4] = 0;
+ dst[5] = 0;
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineShearVertical
+ * Set up a vertical shearing matrix, columns are untouched.
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ * angle - Shear angle in degrees
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineShearVertical(double dst[6], const double angle)
+{
+ dst[0] = 1;
+ dst[1] = tan(angle * M_PI / 180.0);;
+ dst[2] = 0;
+ dst[3] = 1;
+ dst[4] = 0;
+ dst[5] = 0;
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdAffineTranslate
+ * Set up a translation matrix.
+ *
+ * Parameters:
+ * dst - Where to store the resulting affine transform
+ * offset_x - Horizontal translation amount
+ * offset_y - Vertical translation amount
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineTranslate (double dst[6], const double offset_x, const double offset_y)
+{
+ dst[0] = 1;
+ dst[1] = 0;
+ dst[2] = 0;
+ dst[3] = 1;
+ dst[4] = offset_x;
+ dst[5] = offset_y;
+ return GD_TRUE;
+}
+
+/**
+ * gdAffineexpansion: Find the affine's expansion factor.
+ * @src: The affine transformation.
+ *
+ * Finds the expansion factor, i.e. the square root of the factor
+ * by which the affine transform affects area. In an affine transform
+ * composed of scaling, rotation, shearing, and translation, returns
+ * the amount of scaling.
+ *
+ * GD_SUCCESS on success or GD_FAILURE
+ **/
+BGD_DECLARE(double) gdAffineExpansion (const double src[6])
+{
+ return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
+}
+
+/**
+ * Function: gdAffineRectilinear
+ * Determines whether the affine transformation is axis aligned. A
+ * tolerance has been implemented using GD_EPSILON.
+ *
+ * Parameters:
+ * m - The affine transformation
+ *
+ * Returns:
+ * GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+BGD_DECLARE(int) gdAffineRectilinear (const double m[6])
+{
+ return ((fabs (m[1]) < GD_EPSILON && fabs (m[2]) < GD_EPSILON) ||
+ (fabs (m[0]) < GD_EPSILON && fabs (m[3]) < GD_EPSILON));
+}
+
+/**
+ * Function: gdAffineEqual
+ * Determines whether two affine transformations are equal. A tolerance
+ * has been implemented using GD_EPSILON.
+ *
+ * Parameters:
+ * m1 - The first affine transformation
+ * m2 - The first affine transformation
+ *
+ * Returns:
+ * GD_SUCCESS on success or GD_FAILURE
+ */
+BGD_DECLARE(int) gdAffineEqual (const double m1[6], const double m2[6])
+{
+ return (fabs (m1[0] - m2[0]) < GD_EPSILON &&
+ fabs (m1[1] - m2[1]) < GD_EPSILON &&
+ fabs (m1[2] - m2[2]) < GD_EPSILON &&
+ fabs (m1[3] - m2[3]) < GD_EPSILON &&
+ fabs (m1[4] - m2[4]) < GD_EPSILON &&
+ fabs (m1[5] - m2[5]) < GD_EPSILON);
+}
+