summaryrefslogtreecommitdiff
path: root/Build/source/libs/cairo/cairo-src/src/cairo-botor-scan-converter.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/cairo/cairo-src/src/cairo-botor-scan-converter.c')
-rw-r--r--Build/source/libs/cairo/cairo-src/src/cairo-botor-scan-converter.c2164
1 files changed, 2164 insertions, 0 deletions
diff --git a/Build/source/libs/cairo/cairo-src/src/cairo-botor-scan-converter.c b/Build/source/libs/cairo/cairo-src/src/cairo-botor-scan-converter.c
new file mode 100644
index 00000000000..515305bf24e
--- /dev/null
+++ b/Build/source/libs/cairo/cairo-src/src/cairo-botor-scan-converter.c
@@ -0,0 +1,2164 @@
+/*
+ * Copyright © 2004 Carl Worth
+ * Copyright © 2006 Red Hat, Inc.
+ * Copyright © 2007 David Turner
+ * Copyright © 2008 M Joonas Pihlaja
+ * Copyright © 2008 Chris Wilson
+ * Copyright © 2009 Intel Corporation
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ *
+ * The Original Code is the cairo graphics library.
+ *
+ * The Initial Developer of the Original Code is Carl Worth
+ *
+ * Contributor(s):
+ * Carl D. Worth <cworth@cworth.org>
+ * M Joonas Pihlaja <jpihlaja@cc.helsinki.fi>
+ * Chris Wilson <chris@chris-wilson.co.uk>
+ */
+
+/* Provide definitions for standalone compilation */
+#include "cairoint.h"
+
+#include "cairo-error-private.h"
+#include "cairo-list-inline.h"
+#include "cairo-freelist-private.h"
+#include "cairo-combsort-inline.h"
+
+#include <setjmp.h>
+
+#define STEP_X CAIRO_FIXED_ONE
+#define STEP_Y CAIRO_FIXED_ONE
+#define UNROLL3(x) x x x
+
+#define STEP_XY (2*STEP_X*STEP_Y) /* Unit area in the step. */
+#define AREA_TO_ALPHA(c) (((c)*255 + STEP_XY/2) / STEP_XY)
+
+typedef struct _cairo_bo_intersect_ordinate {
+ int32_t ordinate;
+ enum { EXACT, INEXACT } exactness;
+} cairo_bo_intersect_ordinate_t;
+
+typedef struct _cairo_bo_intersect_point {
+ cairo_bo_intersect_ordinate_t x;
+ cairo_bo_intersect_ordinate_t y;
+} cairo_bo_intersect_point_t;
+
+struct quorem {
+ cairo_fixed_t quo;
+ cairo_fixed_t rem;
+};
+
+struct run {
+ struct run *next;
+ int sign;
+ cairo_fixed_t y;
+};
+
+typedef struct edge {
+ cairo_list_t link;
+
+ cairo_edge_t edge;
+
+ /* Current x coordinate and advancement.
+ * Initialised to the x coordinate of the top of the
+ * edge. The quotient is in cairo_fixed_t units and the
+ * remainder is mod dy in cairo_fixed_t units.
+ */
+ cairo_fixed_t dy;
+ struct quorem x;
+ struct quorem dxdy;
+ struct quorem dxdy_full;
+
+ cairo_bool_t vertical;
+ unsigned int flags;
+
+ int current_sign;
+ struct run *runs;
+} edge_t;
+
+enum {
+ START = 0x1,
+ STOP = 0x2,
+};
+
+/* the parent is always given by index/2 */
+#define PQ_PARENT_INDEX(i) ((i) >> 1)
+#define PQ_FIRST_ENTRY 1
+
+/* left and right children are index * 2 and (index * 2) +1 respectively */
+#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
+
+typedef enum {
+ EVENT_TYPE_STOP,
+ EVENT_TYPE_INTERSECTION,
+ EVENT_TYPE_START
+} event_type_t;
+
+typedef struct _event {
+ cairo_fixed_t y;
+ event_type_t type;
+} event_t;
+
+typedef struct _start_event {
+ cairo_fixed_t y;
+ event_type_t type;
+ edge_t *edge;
+} start_event_t;
+
+typedef struct _queue_event {
+ cairo_fixed_t y;
+ event_type_t type;
+ edge_t *e1;
+ edge_t *e2;
+} queue_event_t;
+
+typedef struct _pqueue {
+ int size, max_size;
+
+ event_t **elements;
+ event_t *elements_embedded[1024];
+} pqueue_t;
+
+struct cell {
+ struct cell *prev;
+ struct cell *next;
+ int x;
+ int uncovered_area;
+ int covered_height;
+};
+
+typedef struct _sweep_line {
+ cairo_list_t active;
+ cairo_list_t stopped;
+ cairo_list_t *insert_cursor;
+ cairo_bool_t is_vertical;
+
+ cairo_fixed_t current_row;
+ cairo_fixed_t current_subrow;
+
+ struct coverage {
+ struct cell head;
+ struct cell tail;
+
+ struct cell *cursor;
+ int count;
+
+ cairo_freepool_t pool;
+ } coverage;
+
+ struct event_queue {
+ pqueue_t pq;
+ event_t **start_events;
+
+ cairo_freepool_t pool;
+ } queue;
+
+ cairo_freepool_t runs;
+
+ jmp_buf unwind;
+} sweep_line_t;
+
+cairo_always_inline static struct quorem
+floored_divrem (int a, int b)
+{
+ struct quorem qr;
+ qr.quo = a/b;
+ qr.rem = a%b;
+ if ((a^b)<0 && qr.rem) {
+ qr.quo--;
+ qr.rem += b;
+ }
+ return qr;
+}
+
+static struct quorem
+floored_muldivrem(int x, int a, int b)
+{
+ struct quorem qr;
+ long long xa = (long long)x*a;
+ qr.quo = xa/b;
+ qr.rem = xa%b;
+ if ((xa>=0) != (b>=0) && qr.rem) {
+ qr.quo--;
+ qr.rem += b;
+ }
+ return qr;
+}
+
+static cairo_fixed_t
+line_compute_intersection_x_for_y (const cairo_line_t *line,
+ cairo_fixed_t y)
+{
+ cairo_fixed_t x, dy;
+
+ if (y == line->p1.y)
+ return line->p1.x;
+ if (y == line->p2.y)
+ return line->p2.x;
+
+ x = line->p1.x;
+ dy = line->p2.y - line->p1.y;
+ if (dy != 0) {
+ x += _cairo_fixed_mul_div_floor (y - line->p1.y,
+ line->p2.x - line->p1.x,
+ dy);
+ }
+
+ return x;
+}
+
+/*
+ * We need to compare the x-coordinates of a pair of lines for a particular y,
+ * without loss of precision.
+ *
+ * The x-coordinate along an edge for a given y is:
+ * X = A_x + (Y - A_y) * A_dx / A_dy
+ *
+ * So the inequality we wish to test is:
+ * A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
+ * where ∘ is our inequality operator.
+ *
+ * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
+ * all positive, so we can rearrange it thus without causing a sign change:
+ * A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
+ * - (Y - A_y) * A_dx * B_dy
+ *
+ * Given the assumption that all the deltas fit within 32 bits, we can compute
+ * this comparison directly using 128 bit arithmetic. For certain, but common,
+ * input we can reduce this down to a single 32 bit compare by inspecting the
+ * deltas.
+ *
+ * (And put the burden of the work on developing fast 128 bit ops, which are
+ * required throughout the tessellator.)
+ *
+ * See the similar discussion for _slope_compare().
+ */
+static int
+edges_compare_x_for_y_general (const cairo_edge_t *a,
+ const cairo_edge_t *b,
+ int32_t y)
+{
+ /* XXX: We're assuming here that dx and dy will still fit in 32
+ * bits. That's not true in general as there could be overflow. We
+ * should prevent that before the tessellation algorithm
+ * begins.
+ */
+ int32_t dx;
+ int32_t adx, ady;
+ int32_t bdx, bdy;
+ enum {
+ HAVE_NONE = 0x0,
+ HAVE_DX = 0x1,
+ HAVE_ADX = 0x2,
+ HAVE_DX_ADX = HAVE_DX | HAVE_ADX,
+ HAVE_BDX = 0x4,
+ HAVE_DX_BDX = HAVE_DX | HAVE_BDX,
+ HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
+ HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX
+ } have_dx_adx_bdx = HAVE_ALL;
+
+ /* don't bother solving for abscissa if the edges' bounding boxes
+ * can be used to order them. */
+ {
+ int32_t amin, amax;
+ int32_t bmin, bmax;
+ if (a->line.p1.x < a->line.p2.x) {
+ amin = a->line.p1.x;
+ amax = a->line.p2.x;
+ } else {
+ amin = a->line.p2.x;
+ amax = a->line.p1.x;
+ }
+ if (b->line.p1.x < b->line.p2.x) {
+ bmin = b->line.p1.x;
+ bmax = b->line.p2.x;
+ } else {
+ bmin = b->line.p2.x;
+ bmax = b->line.p1.x;
+ }
+ if (amax < bmin) return -1;
+ if (amin > bmax) return +1;
+ }
+
+ ady = a->line.p2.y - a->line.p1.y;
+ adx = a->line.p2.x - a->line.p1.x;
+ if (adx == 0)
+ have_dx_adx_bdx &= ~HAVE_ADX;
+
+ bdy = b->line.p2.y - b->line.p1.y;
+ bdx = b->line.p2.x - b->line.p1.x;
+ if (bdx == 0)
+ have_dx_adx_bdx &= ~HAVE_BDX;
+
+ dx = a->line.p1.x - b->line.p1.x;
+ if (dx == 0)
+ have_dx_adx_bdx &= ~HAVE_DX;
+
+#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
+#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->line.p1.y)
+#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->line.p1.y)
+ switch (have_dx_adx_bdx) {
+ default:
+ case HAVE_NONE:
+ return 0;
+ case HAVE_DX:
+ /* A_dy * B_dy * (A_x - B_x) ∘ 0 */
+ return dx; /* ady * bdy is positive definite */
+ case HAVE_ADX:
+ /* 0 ∘ - (Y - A_y) * A_dx * B_dy */
+ return adx; /* bdy * (y - a->top.y) is positive definite */
+ case HAVE_BDX:
+ /* 0 ∘ (Y - B_y) * B_dx * A_dy */
+ return -bdx; /* ady * (y - b->top.y) is positive definite */
+ case HAVE_ADX_BDX:
+ /* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
+ if ((adx ^ bdx) < 0) {
+ return adx;
+ } else if (a->line.p1.y == b->line.p1.y) { /* common origin */
+ cairo_int64_t adx_bdy, bdx_ady;
+
+ /* ∴ A_dx * B_dy ∘ B_dx * A_dy */
+
+ adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
+ bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
+
+ return _cairo_int64_cmp (adx_bdy, bdx_ady);
+ } else
+ return _cairo_int128_cmp (A, B);
+ case HAVE_DX_ADX:
+ /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
+ if ((-adx ^ dx) < 0) {
+ return dx;
+ } else {
+ cairo_int64_t ady_dx, dy_adx;
+
+ ady_dx = _cairo_int32x32_64_mul (ady, dx);
+ dy_adx = _cairo_int32x32_64_mul (a->line.p1.y - y, adx);
+
+ return _cairo_int64_cmp (ady_dx, dy_adx);
+ }
+ case HAVE_DX_BDX:
+ /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
+ if ((bdx ^ dx) < 0) {
+ return dx;
+ } else {
+ cairo_int64_t bdy_dx, dy_bdx;
+
+ bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
+ dy_bdx = _cairo_int32x32_64_mul (y - b->line.p1.y, bdx);
+
+ return _cairo_int64_cmp (bdy_dx, dy_bdx);
+ }
+ case HAVE_ALL:
+ /* XXX try comparing (a->line.p2.x - b->line.p2.x) et al */
+ return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
+ }
+#undef B
+#undef A
+#undef L
+}
+
+/*
+ * We need to compare the x-coordinate of a line for a particular y wrt to a
+ * given x, without loss of precision.
+ *
+ * The x-coordinate along an edge for a given y is:
+ * X = A_x + (Y - A_y) * A_dx / A_dy
+ *
+ * So the inequality we wish to test is:
+ * A_x + (Y - A_y) * A_dx / A_dy ∘ X
+ * where ∘ is our inequality operator.
+ *
+ * By construction, we know that A_dy (and (Y - A_y)) are
+ * all positive, so we can rearrange it thus without causing a sign change:
+ * (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
+ *
+ * Given the assumption that all the deltas fit within 32 bits, we can compute
+ * this comparison directly using 64 bit arithmetic.
+ *
+ * See the similar discussion for _slope_compare() and
+ * edges_compare_x_for_y_general().
+ */
+static int
+edge_compare_for_y_against_x (const cairo_edge_t *a,
+ int32_t y,
+ int32_t x)
+{
+ int32_t adx, ady;
+ int32_t dx, dy;
+ cairo_int64_t L, R;
+
+ if (a->line.p1.x <= a->line.p2.x) {
+ if (x < a->line.p1.x)
+ return 1;
+ if (x > a->line.p2.x)
+ return -1;
+ } else {
+ if (x < a->line.p2.x)
+ return 1;
+ if (x > a->line.p1.x)
+ return -1;
+ }
+
+ adx = a->line.p2.x - a->line.p1.x;
+ dx = x - a->line.p1.x;
+
+ if (adx == 0)
+ return -dx;
+ if (dx == 0 || (adx ^ dx) < 0)
+ return adx;
+
+ dy = y - a->line.p1.y;
+ ady = a->line.p2.y - a->line.p1.y;
+
+ L = _cairo_int32x32_64_mul (dy, adx);
+ R = _cairo_int32x32_64_mul (dx, ady);
+
+ return _cairo_int64_cmp (L, R);
+}
+
+static int
+edges_compare_x_for_y (const cairo_edge_t *a,
+ const cairo_edge_t *b,
+ int32_t y)
+{
+ /* If the sweep-line is currently on an end-point of a line,
+ * then we know its precise x value (and considering that we often need to
+ * compare events at end-points, this happens frequently enough to warrant
+ * special casing).
+ */
+ enum {
+ HAVE_NEITHER = 0x0,
+ HAVE_AX = 0x1,
+ HAVE_BX = 0x2,
+ HAVE_BOTH = HAVE_AX | HAVE_BX
+ } have_ax_bx = HAVE_BOTH;
+ int32_t ax, bx;
+
+ /* XXX given we have x and dx? */
+
+ if (y == a->line.p1.y)
+ ax = a->line.p1.x;
+ else if (y == a->line.p2.y)
+ ax = a->line.p2.x;
+ else
+ have_ax_bx &= ~HAVE_AX;
+
+ if (y == b->line.p1.y)
+ bx = b->line.p1.x;
+ else if (y == b->line.p2.y)
+ bx = b->line.p2.x;
+ else
+ have_ax_bx &= ~HAVE_BX;
+
+ switch (have_ax_bx) {
+ default:
+ case HAVE_NEITHER:
+ return edges_compare_x_for_y_general (a, b, y);
+ case HAVE_AX:
+ return -edge_compare_for_y_against_x (b, y, ax);
+ case HAVE_BX:
+ return edge_compare_for_y_against_x (a, y, bx);
+ case HAVE_BOTH:
+ return ax - bx;
+ }
+}
+
+static inline int
+slope_compare (const edge_t *a,
+ const edge_t *b)
+{
+ cairo_int64_t L, R;
+ int cmp;
+
+ cmp = a->dxdy.quo - b->dxdy.quo;
+ if (cmp)
+ return cmp;
+
+ if (a->dxdy.rem == 0)
+ return -b->dxdy.rem;
+ if (b->dxdy.rem == 0)
+ return a->dxdy.rem;
+
+ L = _cairo_int32x32_64_mul (b->dy, a->dxdy.rem);
+ R = _cairo_int32x32_64_mul (a->dy, b->dxdy.rem);
+ return _cairo_int64_cmp (L, R);
+}
+
+static inline int
+line_equal (const cairo_line_t *a, const cairo_line_t *b)
+{
+ return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
+ a->p2.x == b->p2.x && a->p2.y == b->p2.y;
+}
+
+static inline int
+sweep_line_compare_edges (const edge_t *a,
+ const edge_t *b,
+ cairo_fixed_t y)
+{
+ int cmp;
+
+ if (line_equal (&a->edge.line, &b->edge.line))
+ return 0;
+
+ cmp = edges_compare_x_for_y (&a->edge, &b->edge, y);
+ if (cmp)
+ return cmp;
+
+ return slope_compare (a, b);
+}
+
+static inline cairo_int64_t
+det32_64 (int32_t a, int32_t b,
+ int32_t c, int32_t d)
+{
+ /* det = a * d - b * c */
+ return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
+ _cairo_int32x32_64_mul (b, c));
+}
+
+static inline cairo_int128_t
+det64x32_128 (cairo_int64_t a, int32_t b,
+ cairo_int64_t c, int32_t d)
+{
+ /* det = a * d - b * c */
+ return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
+ _cairo_int64x32_128_mul (c, b));
+}
+
+/* Compute the intersection of two lines as defined by two edges. The
+ * result is provided as a coordinate pair of 128-bit integers.
+ *
+ * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
+ * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
+ */
+static cairo_bool_t
+intersect_lines (const edge_t *a, const edge_t *b,
+ cairo_bo_intersect_point_t *intersection)
+{
+ cairo_int64_t a_det, b_det;
+
+ /* XXX: We're assuming here that dx and dy will still fit in 32
+ * bits. That's not true in general as there could be overflow. We
+ * should prevent that before the tessellation algorithm begins.
+ * What we're doing to mitigate this is to perform clamping in
+ * cairo_bo_tessellate_polygon().
+ */
+ int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
+ int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
+
+ int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
+ int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
+
+ cairo_int64_t den_det;
+ cairo_int64_t R;
+ cairo_quorem64_t qr;
+
+ den_det = det32_64 (dx1, dy1, dx2, dy2);
+
+ /* Q: Can we determine that the lines do not intersect (within range)
+ * much more cheaply than computing the intersection point i.e. by
+ * avoiding the division?
+ *
+ * X = ax + t * adx = bx + s * bdx;
+ * Y = ay + t * ady = by + s * bdy;
+ * ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
+ * => t * L = R
+ *
+ * Therefore we can reject any intersection (under the criteria for
+ * valid intersection events) if:
+ * L^R < 0 => t < 0, or
+ * L<R => t > 1
+ *
+ * (where top/bottom must at least extend to the line endpoints).
+ *
+ * A similar substitution can be performed for s, yielding:
+ * s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
+ */
+ R = det32_64 (dx2, dy2,
+ b->edge.line.p1.x - a->edge.line.p1.x,
+ b->edge.line.p1.y - a->edge.line.p1.y);
+ if (_cairo_int64_negative (den_det)) {
+ if (_cairo_int64_ge (den_det, R))
+ return FALSE;
+ } else {
+ if (_cairo_int64_le (den_det, R))
+ return FALSE;
+ }
+
+ R = det32_64 (dy1, dx1,
+ a->edge.line.p1.y - b->edge.line.p1.y,
+ a->edge.line.p1.x - b->edge.line.p1.x);
+ if (_cairo_int64_negative (den_det)) {
+ if (_cairo_int64_ge (den_det, R))
+ return FALSE;
+ } else {
+ if (_cairo_int64_le (den_det, R))
+ return FALSE;
+ }
+
+ /* We now know that the two lines should intersect within range. */
+
+ a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
+ a->edge.line.p2.x, a->edge.line.p2.y);
+ b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
+ b->edge.line.p2.x, b->edge.line.p2.y);
+
+ /* x = det (a_det, dx1, b_det, dx2) / den_det */
+ qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
+ b_det, dx2),
+ den_det);
+ if (_cairo_int64_eq (qr.rem, den_det))
+ return FALSE;
+#if 0
+ intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
+#else
+ intersection->x.exactness = EXACT;
+ if (! _cairo_int64_is_zero (qr.rem)) {
+ if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
+ qr.rem = _cairo_int64_negate (qr.rem);
+ qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
+ if (_cairo_int64_ge (qr.rem, den_det)) {
+ qr.quo = _cairo_int64_add (qr.quo,
+ _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
+ } else
+ intersection->x.exactness = INEXACT;
+ }
+#endif
+ intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
+
+ /* y = det (a_det, dy1, b_det, dy2) / den_det */
+ qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
+ b_det, dy2),
+ den_det);
+ if (_cairo_int64_eq (qr.rem, den_det))
+ return FALSE;
+#if 0
+ intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
+#else
+ intersection->y.exactness = EXACT;
+ if (! _cairo_int64_is_zero (qr.rem)) {
+ /* compute ceiling away from zero */
+ qr.quo = _cairo_int64_add (qr.quo,
+ _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
+ intersection->y.exactness = INEXACT;
+ }
+#endif
+ intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
+
+ return TRUE;
+}
+
+static int
+bo_intersect_ordinate_32_compare (int32_t a, int32_t b, int exactness)
+{
+ int cmp;
+
+ /* First compare the quotient */
+ cmp = a - b;
+ if (cmp)
+ return cmp;
+
+ /* With quotient identical, if remainder is 0 then compare equal */
+ /* Otherwise, the non-zero remainder makes a > b */
+ return -(INEXACT == exactness);
+}
+
+/* Does the given edge contain the given point. The point must already
+ * be known to be contained within the line determined by the edge,
+ * (most likely the point results from an intersection of this edge
+ * with another).
+ *
+ * If we had exact arithmetic, then this function would simply be a
+ * matter of examining whether the y value of the point lies within
+ * the range of y values of the edge. But since intersection points
+ * are not exact due to being rounded to the nearest integer within
+ * the available precision, we must also examine the x value of the
+ * point.
+ *
+ * The definition of "contains" here is that the given intersection
+ * point will be seen by the sweep line after the start event for the
+ * given edge and before the stop event for the edge. See the comments
+ * in the implementation for more details.
+ */
+static cairo_bool_t
+bo_edge_contains_intersect_point (const edge_t *edge,
+ cairo_bo_intersect_point_t *point)
+{
+ int cmp_top, cmp_bottom;
+
+ /* XXX: When running the actual algorithm, we don't actually need to
+ * compare against edge->top at all here, since any intersection above
+ * top is eliminated early via a slope comparison. We're leaving these
+ * here for now only for the sake of the quadratic-time intersection
+ * finder which needs them.
+ */
+
+ cmp_top = bo_intersect_ordinate_32_compare (point->y.ordinate,
+ edge->edge.top,
+ point->y.exactness);
+ if (cmp_top < 0)
+ return FALSE;
+
+ cmp_bottom = bo_intersect_ordinate_32_compare (point->y.ordinate,
+ edge->edge.bottom,
+ point->y.exactness);
+ if (cmp_bottom > 0)
+ return FALSE;
+
+ if (cmp_top > 0 && cmp_bottom < 0)
+ return TRUE;
+
+ /* At this stage, the point lies on the same y value as either
+ * edge->top or edge->bottom, so we have to examine the x value in
+ * order to properly determine containment. */
+
+ /* If the y value of the point is the same as the y value of the
+ * top of the edge, then the x value of the point must be greater
+ * to be considered as inside the edge. Similarly, if the y value
+ * of the point is the same as the y value of the bottom of the
+ * edge, then the x value of the point must be less to be
+ * considered as inside. */
+
+ if (cmp_top == 0) {
+ cairo_fixed_t top_x;
+
+ top_x = line_compute_intersection_x_for_y (&edge->edge.line,
+ edge->edge.top);
+ return bo_intersect_ordinate_32_compare (top_x, point->x.ordinate, point->x.exactness) < 0;
+ } else { /* cmp_bottom == 0 */
+ cairo_fixed_t bot_x;
+
+ bot_x = line_compute_intersection_x_for_y (&edge->edge.line,
+ edge->edge.bottom);
+ return bo_intersect_ordinate_32_compare (point->x.ordinate, bot_x, point->x.exactness) < 0;
+ }
+}
+
+static cairo_bool_t
+edge_intersect (const edge_t *a,
+ const edge_t *b,
+ cairo_point_t *intersection)
+{
+ cairo_bo_intersect_point_t quorem;
+
+ if (! intersect_lines (a, b, &quorem))
+ return FALSE;
+
+ if (a->edge.top != a->edge.line.p1.y || a->edge.bottom != a->edge.line.p2.y) {
+ if (! bo_edge_contains_intersect_point (a, &quorem))
+ return FALSE;
+ }
+
+ if (b->edge.top != b->edge.line.p1.y || b->edge.bottom != b->edge.line.p2.y) {
+ if (! bo_edge_contains_intersect_point (b, &quorem))
+ return FALSE;
+ }
+
+ /* Now that we've correctly compared the intersection point and
+ * determined that it lies within the edge, then we know that we
+ * no longer need any more bits of storage for the intersection
+ * than we do for our edge coordinates. We also no longer need the
+ * remainder from the division. */
+ intersection->x = quorem.x.ordinate;
+ intersection->y = quorem.y.ordinate;
+
+ return TRUE;
+}
+
+static inline int
+event_compare (const event_t *a, const event_t *b)
+{
+ return a->y - b->y;
+}
+
+static void
+pqueue_init (pqueue_t *pq)
+{
+ pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
+ pq->size = 0;
+
+ pq->elements = pq->elements_embedded;
+}
+
+static void
+pqueue_fini (pqueue_t *pq)
+{
+ if (pq->elements != pq->elements_embedded)
+ free (pq->elements);
+}
+
+static cairo_bool_t
+pqueue_grow (pqueue_t *pq)
+{
+ event_t **new_elements;
+ pq->max_size *= 2;
+
+ if (pq->elements == pq->elements_embedded) {
+ new_elements = _cairo_malloc_ab (pq->max_size,
+ sizeof (event_t *));
+ if (unlikely (new_elements == NULL))
+ return FALSE;
+
+ memcpy (new_elements, pq->elements_embedded,
+ sizeof (pq->elements_embedded));
+ } else {
+ new_elements = _cairo_realloc_ab (pq->elements,
+ pq->max_size,
+ sizeof (event_t *));
+ if (unlikely (new_elements == NULL))
+ return FALSE;
+ }
+
+ pq->elements = new_elements;
+ return TRUE;
+}
+
+static inline void
+pqueue_push (sweep_line_t *sweep_line, event_t *event)
+{
+ event_t **elements;
+ int i, parent;
+
+ if (unlikely (sweep_line->queue.pq.size + 1 == sweep_line->queue.pq.max_size)) {
+ if (unlikely (! pqueue_grow (&sweep_line->queue.pq))) {
+ longjmp (sweep_line->unwind,
+ _cairo_error (CAIRO_STATUS_NO_MEMORY));
+ }
+ }
+
+ elements = sweep_line->queue.pq.elements;
+ for (i = ++sweep_line->queue.pq.size;
+ i != PQ_FIRST_ENTRY &&
+ event_compare (event,
+ elements[parent = PQ_PARENT_INDEX (i)]) < 0;
+ i = parent)
+ {
+ elements[i] = elements[parent];
+ }
+
+ elements[i] = event;
+}
+
+static inline void
+pqueue_pop (pqueue_t *pq)
+{
+ event_t **elements = pq->elements;
+ event_t *tail;
+ int child, i;
+
+ tail = elements[pq->size--];
+ if (pq->size == 0) {
+ elements[PQ_FIRST_ENTRY] = NULL;
+ return;
+ }
+
+ for (i = PQ_FIRST_ENTRY;
+ (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
+ i = child)
+ {
+ if (child != pq->size &&
+ event_compare (elements[child+1],
+ elements[child]) < 0)
+ {
+ child++;
+ }
+
+ if (event_compare (elements[child], tail) >= 0)
+ break;
+
+ elements[i] = elements[child];
+ }
+ elements[i] = tail;
+}
+
+static inline void
+event_insert (sweep_line_t *sweep_line,
+ event_type_t type,
+ edge_t *e1,
+ edge_t *e2,
+ cairo_fixed_t y)
+{
+ queue_event_t *event;
+
+ event = _cairo_freepool_alloc (&sweep_line->queue.pool);
+ if (unlikely (event == NULL)) {
+ longjmp (sweep_line->unwind,
+ _cairo_error (CAIRO_STATUS_NO_MEMORY));
+ }
+
+ event->y = y;
+ event->type = type;
+ event->e1 = e1;
+ event->e2 = e2;
+
+ pqueue_push (sweep_line, (event_t *) event);
+}
+
+static void
+event_delete (sweep_line_t *sweep_line,
+ event_t *event)
+{
+ _cairo_freepool_free (&sweep_line->queue.pool, event);
+}
+
+static inline event_t *
+event_next (sweep_line_t *sweep_line)
+{
+ event_t *event, *cmp;
+
+ event = sweep_line->queue.pq.elements[PQ_FIRST_ENTRY];
+ cmp = *sweep_line->queue.start_events;
+ if (event == NULL ||
+ (cmp != NULL && event_compare (cmp, event) < 0))
+ {
+ event = cmp;
+ sweep_line->queue.start_events++;
+ }
+ else
+ {
+ pqueue_pop (&sweep_line->queue.pq);
+ }
+
+ return event;
+}
+
+CAIRO_COMBSORT_DECLARE (start_event_sort, event_t *, event_compare)
+
+static inline void
+event_insert_stop (sweep_line_t *sweep_line,
+ edge_t *edge)
+{
+ event_insert (sweep_line,
+ EVENT_TYPE_STOP,
+ edge, NULL,
+ edge->edge.bottom);
+}
+
+static inline void
+event_insert_if_intersect_below_current_y (sweep_line_t *sweep_line,
+ edge_t *left,
+ edge_t *right)
+{
+ cairo_point_t intersection;
+
+ /* start points intersect */
+ if (left->edge.line.p1.x == right->edge.line.p1.x &&
+ left->edge.line.p1.y == right->edge.line.p1.y)
+ {
+ return;
+ }
+
+ /* end points intersect, process DELETE events first */
+ if (left->edge.line.p2.x == right->edge.line.p2.x &&
+ left->edge.line.p2.y == right->edge.line.p2.y)
+ {
+ return;
+ }
+
+ if (slope_compare (left, right) <= 0)
+ return;
+
+ if (! edge_intersect (left, right, &intersection))
+ return;
+
+ event_insert (sweep_line,
+ EVENT_TYPE_INTERSECTION,
+ left, right,
+ intersection.y);
+}
+
+static inline edge_t *
+link_to_edge (cairo_list_t *link)
+{
+ return (edge_t *) link;
+}
+
+static void
+sweep_line_insert (sweep_line_t *sweep_line,
+ edge_t *edge)
+{
+ cairo_list_t *pos;
+ cairo_fixed_t y = sweep_line->current_subrow;
+
+ pos = sweep_line->insert_cursor;
+ if (pos == &sweep_line->active)
+ pos = sweep_line->active.next;
+ if (pos != &sweep_line->active) {
+ int cmp;
+
+ cmp = sweep_line_compare_edges (link_to_edge (pos),
+ edge,
+ y);
+ if (cmp < 0) {
+ while (pos->next != &sweep_line->active &&
+ sweep_line_compare_edges (link_to_edge (pos->next),
+ edge,
+ y) < 0)
+ {
+ pos = pos->next;
+ }
+ } else if (cmp > 0) {
+ do {
+ pos = pos->prev;
+ } while (pos != &sweep_line->active &&
+ sweep_line_compare_edges (link_to_edge (pos),
+ edge,
+ y) > 0);
+ }
+ }
+ cairo_list_add (&edge->link, pos);
+ sweep_line->insert_cursor = &edge->link;
+}
+
+inline static void
+coverage_rewind (struct coverage *cells)
+{
+ cells->cursor = &cells->head;
+}
+
+static void
+coverage_init (struct coverage *cells)
+{
+ _cairo_freepool_init (&cells->pool,
+ sizeof (struct cell));
+ cells->head.prev = NULL;
+ cells->head.next = &cells->tail;
+ cells->head.x = INT_MIN;
+ cells->tail.prev = &cells->head;
+ cells->tail.next = NULL;
+ cells->tail.x = INT_MAX;
+ cells->count = 0;
+ coverage_rewind (cells);
+}
+
+static void
+coverage_fini (struct coverage *cells)
+{
+ _cairo_freepool_fini (&cells->pool);
+}
+
+inline static void
+coverage_reset (struct coverage *cells)
+{
+ cells->head.next = &cells->tail;
+ cells->tail.prev = &cells->head;
+ cells->count = 0;
+ _cairo_freepool_reset (&cells->pool);
+ coverage_rewind (cells);
+}
+
+static struct cell *
+coverage_alloc (sweep_line_t *sweep_line,
+ struct cell *tail,
+ int x)
+{
+ struct cell *cell;
+
+ cell = _cairo_freepool_alloc (&sweep_line->coverage.pool);
+ if (unlikely (NULL == cell)) {
+ longjmp (sweep_line->unwind,
+ _cairo_error (CAIRO_STATUS_NO_MEMORY));
+ }
+
+ tail->prev->next = cell;
+ cell->prev = tail->prev;
+ cell->next = tail;
+ tail->prev = cell;
+ cell->x = x;
+ cell->uncovered_area = 0;
+ cell->covered_height = 0;
+ sweep_line->coverage.count++;
+ return cell;
+}
+
+inline static struct cell *
+coverage_find (sweep_line_t *sweep_line, int x)
+{
+ struct cell *cell;
+
+ cell = sweep_line->coverage.cursor;
+ if (unlikely (cell->x > x)) {
+ do {
+ if (cell->prev->x < x)
+ break;
+ cell = cell->prev;
+ } while (TRUE);
+ } else {
+ if (cell->x == x)
+ return cell;
+
+ do {
+ UNROLL3({
+ cell = cell->next;
+ if (cell->x >= x)
+ break;
+ });
+ } while (TRUE);
+ }
+
+ if (cell->x != x)
+ cell = coverage_alloc (sweep_line, cell, x);
+
+ return sweep_line->coverage.cursor = cell;
+}
+
+static void
+coverage_render_cells (sweep_line_t *sweep_line,
+ cairo_fixed_t left, cairo_fixed_t right,
+ cairo_fixed_t y1, cairo_fixed_t y2,
+ int sign)
+{
+ int fx1, fx2;
+ int ix1, ix2;
+ int dx, dy;
+
+ /* Orient the edge left-to-right. */
+ dx = right - left;
+ if (dx >= 0) {
+ ix1 = _cairo_fixed_integer_part (left);
+ fx1 = _cairo_fixed_fractional_part (left);
+
+ ix2 = _cairo_fixed_integer_part (right);
+ fx2 = _cairo_fixed_fractional_part (right);
+
+ dy = y2 - y1;
+ } else {
+ ix1 = _cairo_fixed_integer_part (right);
+ fx1 = _cairo_fixed_fractional_part (right);
+
+ ix2 = _cairo_fixed_integer_part (left);
+ fx2 = _cairo_fixed_fractional_part (left);
+
+ dx = -dx;
+ sign = -sign;
+ dy = y1 - y2;
+ y1 = y2 - dy;
+ y2 = y1 + dy;
+ }
+
+ /* Add coverage for all pixels [ix1,ix2] on this row crossed
+ * by the edge. */
+ {
+ struct quorem y = floored_divrem ((STEP_X - fx1)*dy, dx);
+ struct cell *cell;
+
+ cell = sweep_line->coverage.cursor;
+ if (cell->x != ix1) {
+ if (unlikely (cell->x > ix1)) {
+ do {
+ if (cell->prev->x < ix1)
+ break;
+ cell = cell->prev;
+ } while (TRUE);
+ } else do {
+ UNROLL3({
+ if (cell->x >= ix1)
+ break;
+ cell = cell->next;
+ });
+ } while (TRUE);
+
+ if (cell->x != ix1)
+ cell = coverage_alloc (sweep_line, cell, ix1);
+ }
+
+ cell->uncovered_area += sign * y.quo * (STEP_X + fx1);
+ cell->covered_height += sign * y.quo;
+ y.quo += y1;
+
+ cell = cell->next;
+ if (cell->x != ++ix1)
+ cell = coverage_alloc (sweep_line, cell, ix1);
+ if (ix1 < ix2) {
+ struct quorem dydx_full = floored_divrem (STEP_X*dy, dx);
+
+ do {
+ cairo_fixed_t y_skip = dydx_full.quo;
+ y.rem += dydx_full.rem;
+ if (y.rem >= dx) {
+ ++y_skip;
+ y.rem -= dx;
+ }
+
+ y.quo += y_skip;
+
+ y_skip *= sign;
+ cell->covered_height += y_skip;
+ cell->uncovered_area += y_skip*STEP_X;
+
+ cell = cell->next;
+ if (cell->x != ++ix1)
+ cell = coverage_alloc (sweep_line, cell, ix1);
+ } while (ix1 != ix2);
+ }
+ cell->uncovered_area += sign*(y2 - y.quo)*fx2;
+ cell->covered_height += sign*(y2 - y.quo);
+ sweep_line->coverage.cursor = cell;
+ }
+}
+
+inline static void
+full_inc_edge (edge_t *edge)
+{
+ edge->x.quo += edge->dxdy_full.quo;
+ edge->x.rem += edge->dxdy_full.rem;
+ if (edge->x.rem >= 0) {
+ ++edge->x.quo;
+ edge->x.rem -= edge->dy;
+ }
+}
+
+static void
+full_add_edge (sweep_line_t *sweep_line, edge_t *edge, int sign)
+{
+ struct cell *cell;
+ cairo_fixed_t x1, x2;
+ int ix1, ix2;
+ int frac;
+
+ edge->current_sign = sign;
+
+ ix1 = _cairo_fixed_integer_part (edge->x.quo);
+
+ if (edge->vertical) {
+ frac = _cairo_fixed_fractional_part (edge->x.quo);
+ cell = coverage_find (sweep_line, ix1);
+ cell->covered_height += sign * STEP_Y;
+ cell->uncovered_area += sign * 2 * frac * STEP_Y;
+ return;
+ }
+
+ x1 = edge->x.quo;
+ full_inc_edge (edge);
+ x2 = edge->x.quo;
+
+ ix2 = _cairo_fixed_integer_part (edge->x.quo);
+
+ /* Edge is entirely within a column? */
+ if (likely (ix1 == ix2)) {
+ frac = _cairo_fixed_fractional_part (x1) +
+ _cairo_fixed_fractional_part (x2);
+ cell = coverage_find (sweep_line, ix1);
+ cell->covered_height += sign * STEP_Y;
+ cell->uncovered_area += sign * frac * STEP_Y;
+ return;
+ }
+
+ coverage_render_cells (sweep_line, x1, x2, 0, STEP_Y, sign);
+}
+
+static void
+full_nonzero (sweep_line_t *sweep_line)
+{
+ cairo_list_t *pos;
+
+ sweep_line->is_vertical = TRUE;
+ pos = sweep_line->active.next;
+ do {
+ edge_t *left = link_to_edge (pos), *right;
+ int winding = left->edge.dir;
+
+ sweep_line->is_vertical &= left->vertical;
+
+ pos = left->link.next;
+ do {
+ if (unlikely (pos == &sweep_line->active)) {
+ full_add_edge (sweep_line, left, +1);
+ return;
+ }
+
+ right = link_to_edge (pos);
+ pos = pos->next;
+ sweep_line->is_vertical &= right->vertical;
+
+ winding += right->edge.dir;
+ if (0 == winding) {
+ if (pos == &sweep_line->active ||
+ link_to_edge (pos)->x.quo != right->x.quo)
+ {
+ break;
+ }
+ }
+
+ if (! right->vertical)
+ full_inc_edge (right);
+ } while (TRUE);
+
+ full_add_edge (sweep_line, left, +1);
+ full_add_edge (sweep_line, right, -1);
+ } while (pos != &sweep_line->active);
+}
+
+static void
+full_evenodd (sweep_line_t *sweep_line)
+{
+ cairo_list_t *pos;
+
+ sweep_line->is_vertical = TRUE;
+ pos = sweep_line->active.next;
+ do {
+ edge_t *left = link_to_edge (pos), *right;
+ int winding = 0;
+
+ sweep_line->is_vertical &= left->vertical;
+
+ pos = left->link.next;
+ do {
+ if (pos == &sweep_line->active) {
+ full_add_edge (sweep_line, left, +1);
+ return;
+ }
+
+ right = link_to_edge (pos);
+ pos = pos->next;
+ sweep_line->is_vertical &= right->vertical;
+
+ if (++winding & 1) {
+ if (pos == &sweep_line->active ||
+ link_to_edge (pos)->x.quo != right->x.quo)
+ {
+ break;
+ }
+ }
+
+ if (! right->vertical)
+ full_inc_edge (right);
+ } while (TRUE);
+
+ full_add_edge (sweep_line, left, +1);
+ full_add_edge (sweep_line, right, -1);
+ } while (pos != &sweep_line->active);
+}
+
+static void
+render_rows (cairo_botor_scan_converter_t *self,
+ sweep_line_t *sweep_line,
+ int y, int height,
+ cairo_span_renderer_t *renderer)
+{
+ cairo_half_open_span_t spans_stack[CAIRO_STACK_ARRAY_LENGTH (cairo_half_open_span_t)];
+ cairo_half_open_span_t *spans = spans_stack;
+ struct cell *cell;
+ int prev_x, cover;
+ int num_spans;
+ cairo_status_t status;
+
+ if (unlikely (sweep_line->coverage.count == 0)) {
+ status = renderer->render_rows (renderer, y, height, NULL, 0);
+ if (unlikely (status))
+ longjmp (sweep_line->unwind, status);
+ return;
+ }
+
+ /* Allocate enough spans for the row. */
+
+ num_spans = 2*sweep_line->coverage.count+2;
+ if (unlikely (num_spans > ARRAY_LENGTH (spans_stack))) {
+ spans = _cairo_malloc_ab (num_spans, sizeof (cairo_half_open_span_t));
+ if (unlikely (spans == NULL)) {
+ longjmp (sweep_line->unwind,
+ _cairo_error (CAIRO_STATUS_NO_MEMORY));
+ }
+ }
+
+ /* Form the spans from the coverage and areas. */
+ num_spans = 0;
+ prev_x = self->xmin;
+ cover = 0;
+ cell = sweep_line->coverage.head.next;
+ do {
+ int x = cell->x;
+ int area;
+
+ if (x > prev_x) {
+ spans[num_spans].x = prev_x;
+ spans[num_spans].inverse = 0;
+ spans[num_spans].coverage = AREA_TO_ALPHA (cover);
+ ++num_spans;
+ }
+
+ cover += cell->covered_height*STEP_X*2;
+ area = cover - cell->uncovered_area;
+
+ spans[num_spans].x = x;
+ spans[num_spans].coverage = AREA_TO_ALPHA (area);
+ ++num_spans;
+
+ prev_x = x + 1;
+ } while ((cell = cell->next) != &sweep_line->coverage.tail);
+
+ if (prev_x <= self->xmax) {
+ spans[num_spans].x = prev_x;
+ spans[num_spans].inverse = 0;
+ spans[num_spans].coverage = AREA_TO_ALPHA (cover);
+ ++num_spans;
+ }
+
+ if (cover && prev_x < self->xmax) {
+ spans[num_spans].x = self->xmax;
+ spans[num_spans].inverse = 1;
+ spans[num_spans].coverage = 0;
+ ++num_spans;
+ }
+
+ status = renderer->render_rows (renderer, y, height, spans, num_spans);
+
+ if (unlikely (spans != spans_stack))
+ free (spans);
+
+ coverage_reset (&sweep_line->coverage);
+
+ if (unlikely (status))
+ longjmp (sweep_line->unwind, status);
+}
+
+static void
+full_repeat (sweep_line_t *sweep)
+{
+ edge_t *edge;
+
+ cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
+ if (edge->current_sign)
+ full_add_edge (sweep, edge, edge->current_sign);
+ else if (! edge->vertical)
+ full_inc_edge (edge);
+ }
+}
+
+static void
+full_reset (sweep_line_t *sweep)
+{
+ edge_t *edge;
+
+ cairo_list_foreach_entry (edge, edge_t, &sweep->active, link)
+ edge->current_sign = 0;
+}
+
+static void
+full_step (cairo_botor_scan_converter_t *self,
+ sweep_line_t *sweep_line,
+ cairo_fixed_t row,
+ cairo_span_renderer_t *renderer)
+{
+ int top, bottom;
+
+ top = _cairo_fixed_integer_part (sweep_line->current_row);
+ bottom = _cairo_fixed_integer_part (row);
+ if (cairo_list_is_empty (&sweep_line->active)) {
+ cairo_status_t status;
+
+ status = renderer->render_rows (renderer, top, bottom - top, NULL, 0);
+ if (unlikely (status))
+ longjmp (sweep_line->unwind, status);
+
+ return;
+ }
+
+ if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
+ full_nonzero (sweep_line);
+ else
+ full_evenodd (sweep_line);
+
+ if (sweep_line->is_vertical || bottom == top + 1) {
+ render_rows (self, sweep_line, top, bottom - top, renderer);
+ full_reset (sweep_line);
+ return;
+ }
+
+ render_rows (self, sweep_line, top++, 1, renderer);
+ do {
+ full_repeat (sweep_line);
+ render_rows (self, sweep_line, top, 1, renderer);
+ } while (++top != bottom);
+
+ full_reset (sweep_line);
+}
+
+cairo_always_inline static void
+sub_inc_edge (edge_t *edge,
+ cairo_fixed_t height)
+{
+ if (height == 1) {
+ edge->x.quo += edge->dxdy.quo;
+ edge->x.rem += edge->dxdy.rem;
+ if (edge->x.rem >= 0) {
+ ++edge->x.quo;
+ edge->x.rem -= edge->dy;
+ }
+ } else {
+ edge->x.quo += height * edge->dxdy.quo;
+ edge->x.rem += height * edge->dxdy.rem;
+ if (edge->x.rem >= 0) {
+ int carry = edge->x.rem / edge->dy + 1;
+ edge->x.quo += carry;
+ edge->x.rem -= carry * edge->dy;
+ }
+ }
+}
+
+static void
+sub_add_run (sweep_line_t *sweep_line, edge_t *edge, int y, int sign)
+{
+ struct run *run;
+
+ run = _cairo_freepool_alloc (&sweep_line->runs);
+ if (unlikely (run == NULL))
+ longjmp (sweep_line->unwind, _cairo_error (CAIRO_STATUS_NO_MEMORY));
+
+ run->y = y;
+ run->sign = sign;
+ run->next = edge->runs;
+ edge->runs = run;
+
+ edge->current_sign = sign;
+}
+
+inline static cairo_bool_t
+edges_coincident (edge_t *left, edge_t *right, cairo_fixed_t y)
+{
+ /* XXX is compare_x_for_y() worth executing during sub steps? */
+ return line_equal (&left->edge.line, &right->edge.line);
+ //edges_compare_x_for_y (&left->edge, &right->edge, y) >= 0;
+}
+
+static void
+sub_nonzero (sweep_line_t *sweep_line)
+{
+ cairo_fixed_t y = sweep_line->current_subrow;
+ cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
+ cairo_list_t *pos;
+
+ pos = sweep_line->active.next;
+ do {
+ edge_t *left = link_to_edge (pos), *right;
+ int winding = left->edge.dir;
+
+ pos = left->link.next;
+ do {
+ if (unlikely (pos == &sweep_line->active)) {
+ if (left->current_sign != +1)
+ sub_add_run (sweep_line, left, fy, +1);
+ return;
+ }
+
+ right = link_to_edge (pos);
+ pos = pos->next;
+
+ winding += right->edge.dir;
+ if (0 == winding) {
+ if (pos == &sweep_line->active ||
+ ! edges_coincident (right, link_to_edge (pos), y))
+ {
+ break;
+ }
+ }
+
+ if (right->current_sign)
+ sub_add_run (sweep_line, right, fy, 0);
+ } while (TRUE);
+
+ if (left->current_sign != +1)
+ sub_add_run (sweep_line, left, fy, +1);
+ if (right->current_sign != -1)
+ sub_add_run (sweep_line, right, fy, -1);
+ } while (pos != &sweep_line->active);
+}
+
+static void
+sub_evenodd (sweep_line_t *sweep_line)
+{
+ cairo_fixed_t y = sweep_line->current_subrow;
+ cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
+ cairo_list_t *pos;
+
+ pos = sweep_line->active.next;
+ do {
+ edge_t *left = link_to_edge (pos), *right;
+ int winding = 0;
+
+ pos = left->link.next;
+ do {
+ if (unlikely (pos == &sweep_line->active)) {
+ if (left->current_sign != +1)
+ sub_add_run (sweep_line, left, fy, +1);
+ return;
+ }
+
+ right = link_to_edge (pos);
+ pos = pos->next;
+
+ if (++winding & 1) {
+ if (pos == &sweep_line->active ||
+ ! edges_coincident (right, link_to_edge (pos), y))
+ {
+ break;
+ }
+ }
+
+ if (right->current_sign)
+ sub_add_run (sweep_line, right, fy, 0);
+ } while (TRUE);
+
+ if (left->current_sign != +1)
+ sub_add_run (sweep_line, left, fy, +1);
+ if (right->current_sign != -1)
+ sub_add_run (sweep_line, right, fy, -1);
+ } while (pos != &sweep_line->active);
+}
+
+cairo_always_inline static void
+sub_step (cairo_botor_scan_converter_t *self,
+ sweep_line_t *sweep_line)
+{
+ if (cairo_list_is_empty (&sweep_line->active))
+ return;
+
+ if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
+ sub_nonzero (sweep_line);
+ else
+ sub_evenodd (sweep_line);
+}
+
+static void
+coverage_render_runs (sweep_line_t *sweep, edge_t *edge,
+ cairo_fixed_t y1, cairo_fixed_t y2)
+{
+ struct run tail;
+ struct run *run = &tail;
+
+ tail.next = NULL;
+ tail.y = y2;
+
+ /* Order the runs top->bottom */
+ while (edge->runs) {
+ struct run *r;
+
+ r = edge->runs;
+ edge->runs = r->next;
+ r->next = run;
+ run = r;
+ }
+
+ if (run->y > y1)
+ sub_inc_edge (edge, run->y - y1);
+
+ do {
+ cairo_fixed_t x1, x2;
+
+ y1 = run->y;
+ y2 = run->next->y;
+
+ x1 = edge->x.quo;
+ if (y2 - y1 == STEP_Y)
+ full_inc_edge (edge);
+ else
+ sub_inc_edge (edge, y2 - y1);
+ x2 = edge->x.quo;
+
+ if (run->sign) {
+ int ix1, ix2;
+
+ ix1 = _cairo_fixed_integer_part (x1);
+ ix2 = _cairo_fixed_integer_part (x2);
+
+ /* Edge is entirely within a column? */
+ if (likely (ix1 == ix2)) {
+ struct cell *cell;
+ int frac;
+
+ frac = _cairo_fixed_fractional_part (x1) +
+ _cairo_fixed_fractional_part (x2);
+ cell = coverage_find (sweep, ix1);
+ cell->covered_height += run->sign * (y2 - y1);
+ cell->uncovered_area += run->sign * (y2 - y1) * frac;
+ } else {
+ coverage_render_cells (sweep, x1, x2, y1, y2, run->sign);
+ }
+ }
+
+ run = run->next;
+ } while (run->next != NULL);
+}
+
+static void
+coverage_render_vertical_runs (sweep_line_t *sweep, edge_t *edge, cairo_fixed_t y2)
+{
+ struct cell *cell;
+ struct run *run;
+ int height = 0;
+
+ for (run = edge->runs; run != NULL; run = run->next) {
+ if (run->sign)
+ height += run->sign * (y2 - run->y);
+ y2 = run->y;
+ }
+
+ cell = coverage_find (sweep, _cairo_fixed_integer_part (edge->x.quo));
+ cell->covered_height += height;
+ cell->uncovered_area += 2 * _cairo_fixed_fractional_part (edge->x.quo) * height;
+}
+
+cairo_always_inline static void
+sub_emit (cairo_botor_scan_converter_t *self,
+ sweep_line_t *sweep,
+ cairo_span_renderer_t *renderer)
+{
+ edge_t *edge;
+
+ sub_step (self, sweep);
+
+ /* convert the runs into coverages */
+
+ cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
+ if (edge->runs == NULL) {
+ if (! edge->vertical) {
+ if (edge->flags & START) {
+ sub_inc_edge (edge,
+ STEP_Y - _cairo_fixed_fractional_part (edge->edge.top));
+ edge->flags &= ~START;
+ } else
+ full_inc_edge (edge);
+ }
+ } else {
+ if (edge->vertical) {
+ coverage_render_vertical_runs (sweep, edge, STEP_Y);
+ } else {
+ int y1 = 0;
+ if (edge->flags & START) {
+ y1 = _cairo_fixed_fractional_part (edge->edge.top);
+ edge->flags &= ~START;
+ }
+ coverage_render_runs (sweep, edge, y1, STEP_Y);
+ }
+ }
+ edge->current_sign = 0;
+ edge->runs = NULL;
+ }
+
+ cairo_list_foreach_entry (edge, edge_t, &sweep->stopped, link) {
+ int y2 = _cairo_fixed_fractional_part (edge->edge.bottom);
+ if (edge->vertical) {
+ coverage_render_vertical_runs (sweep, edge, y2);
+ } else {
+ int y1 = 0;
+ if (edge->flags & START)
+ y1 = _cairo_fixed_fractional_part (edge->edge.top);
+ coverage_render_runs (sweep, edge, y1, y2);
+ }
+ }
+ cairo_list_init (&sweep->stopped);
+
+ _cairo_freepool_reset (&sweep->runs);
+
+ render_rows (self, sweep,
+ _cairo_fixed_integer_part (sweep->current_row), 1,
+ renderer);
+}
+
+static void
+sweep_line_init (sweep_line_t *sweep_line,
+ event_t **start_events,
+ int num_events)
+{
+ cairo_list_init (&sweep_line->active);
+ cairo_list_init (&sweep_line->stopped);
+ sweep_line->insert_cursor = &sweep_line->active;
+
+ sweep_line->current_row = INT32_MIN;
+ sweep_line->current_subrow = INT32_MIN;
+
+ coverage_init (&sweep_line->coverage);
+ _cairo_freepool_init (&sweep_line->runs, sizeof (struct run));
+
+ start_event_sort (start_events, num_events);
+ start_events[num_events] = NULL;
+
+ sweep_line->queue.start_events = start_events;
+
+ _cairo_freepool_init (&sweep_line->queue.pool,
+ sizeof (queue_event_t));
+ pqueue_init (&sweep_line->queue.pq);
+ sweep_line->queue.pq.elements[PQ_FIRST_ENTRY] = NULL;
+}
+
+static void
+sweep_line_delete (sweep_line_t *sweep_line,
+ edge_t *edge)
+{
+ if (sweep_line->insert_cursor == &edge->link)
+ sweep_line->insert_cursor = edge->link.prev;
+
+ cairo_list_del (&edge->link);
+ if (edge->runs)
+ cairo_list_add_tail (&edge->link, &sweep_line->stopped);
+ edge->flags |= STOP;
+}
+
+static void
+sweep_line_swap (sweep_line_t *sweep_line,
+ edge_t *left,
+ edge_t *right)
+{
+ right->link.prev = left->link.prev;
+ left->link.next = right->link.next;
+ right->link.next = &left->link;
+ left->link.prev = &right->link;
+ left->link.next->prev = &left->link;
+ right->link.prev->next = &right->link;
+}
+
+static void
+sweep_line_fini (sweep_line_t *sweep_line)
+{
+ pqueue_fini (&sweep_line->queue.pq);
+ _cairo_freepool_fini (&sweep_line->queue.pool);
+ coverage_fini (&sweep_line->coverage);
+ _cairo_freepool_fini (&sweep_line->runs);
+}
+
+static cairo_status_t
+botor_generate (cairo_botor_scan_converter_t *self,
+ event_t **start_events,
+ cairo_span_renderer_t *renderer)
+{
+ cairo_status_t status;
+ sweep_line_t sweep_line;
+ cairo_fixed_t ybot;
+ event_t *event;
+ cairo_list_t *left, *right;
+ edge_t *e1, *e2;
+ int bottom;
+
+ sweep_line_init (&sweep_line, start_events, self->num_edges);
+ if ((status = setjmp (sweep_line.unwind)))
+ goto unwind;
+
+ ybot = self->extents.p2.y;
+ sweep_line.current_subrow = self->extents.p1.y;
+ sweep_line.current_row = _cairo_fixed_floor (self->extents.p1.y);
+ event = *sweep_line.queue.start_events++;
+ do {
+ /* Can we process a full step in one go? */
+ if (event->y >= sweep_line.current_row + STEP_Y) {
+ bottom = _cairo_fixed_floor (event->y);
+ full_step (self, &sweep_line, bottom, renderer);
+ sweep_line.current_row = bottom;
+ sweep_line.current_subrow = bottom;
+ }
+
+ do {
+ if (event->y > sweep_line.current_subrow) {
+ sub_step (self, &sweep_line);
+ sweep_line.current_subrow = event->y;
+ }
+
+ do {
+ /* Update the active list using Bentley-Ottmann */
+ switch (event->type) {
+ case EVENT_TYPE_START:
+ e1 = ((start_event_t *) event)->edge;
+
+ sweep_line_insert (&sweep_line, e1);
+ event_insert_stop (&sweep_line, e1);
+
+ left = e1->link.prev;
+ right = e1->link.next;
+
+ if (left != &sweep_line.active) {
+ event_insert_if_intersect_below_current_y (&sweep_line,
+ link_to_edge (left), e1);
+ }
+
+ if (right != &sweep_line.active) {
+ event_insert_if_intersect_below_current_y (&sweep_line,
+ e1, link_to_edge (right));
+ }
+
+ break;
+
+ case EVENT_TYPE_STOP:
+ e1 = ((queue_event_t *) event)->e1;
+ event_delete (&sweep_line, event);
+
+ left = e1->link.prev;
+ right = e1->link.next;
+
+ sweep_line_delete (&sweep_line, e1);
+
+ if (left != &sweep_line.active &&
+ right != &sweep_line.active)
+ {
+ event_insert_if_intersect_below_current_y (&sweep_line,
+ link_to_edge (left),
+ link_to_edge (right));
+ }
+
+ break;
+
+ case EVENT_TYPE_INTERSECTION:
+ e1 = ((queue_event_t *) event)->e1;
+ e2 = ((queue_event_t *) event)->e2;
+
+ event_delete (&sweep_line, event);
+ if (e1->flags & STOP)
+ break;
+ if (e2->flags & STOP)
+ break;
+
+ /* skip this intersection if its edges are not adjacent */
+ if (&e2->link != e1->link.next)
+ break;
+
+ left = e1->link.prev;
+ right = e2->link.next;
+
+ sweep_line_swap (&sweep_line, e1, e2);
+
+ /* after the swap e2 is left of e1 */
+ if (left != &sweep_line.active) {
+ event_insert_if_intersect_below_current_y (&sweep_line,
+ link_to_edge (left), e2);
+ }
+
+ if (right != &sweep_line.active) {
+ event_insert_if_intersect_below_current_y (&sweep_line,
+ e1, link_to_edge (right));
+ }
+
+ break;
+ }
+
+ event = event_next (&sweep_line);
+ if (event == NULL)
+ goto end;
+ } while (event->y == sweep_line.current_subrow);
+ } while (event->y < sweep_line.current_row + STEP_Y);
+
+ bottom = sweep_line.current_row + STEP_Y;
+ sub_emit (self, &sweep_line, renderer);
+ sweep_line.current_subrow = bottom;
+ sweep_line.current_row = sweep_line.current_subrow;
+ } while (TRUE);
+
+ end:
+ /* flush any partial spans */
+ if (sweep_line.current_subrow != sweep_line.current_row) {
+ sub_emit (self, &sweep_line, renderer);
+ sweep_line.current_row += STEP_Y;
+ sweep_line.current_subrow = sweep_line.current_row;
+ }
+ /* clear the rest */
+ if (sweep_line.current_subrow < ybot) {
+ bottom = _cairo_fixed_integer_part (sweep_line.current_row);
+ status = renderer->render_rows (renderer,
+ bottom, _cairo_fixed_integer_ceil (ybot) - bottom,
+ NULL, 0);
+ }
+
+ unwind:
+ sweep_line_fini (&sweep_line);
+
+ return status;
+}
+
+static cairo_status_t
+_cairo_botor_scan_converter_generate (void *converter,
+ cairo_span_renderer_t *renderer)
+{
+ cairo_botor_scan_converter_t *self = converter;
+ start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (start_event_t)];
+ start_event_t *events;
+ event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
+ event_t **event_ptrs;
+ struct _cairo_botor_scan_converter_chunk *chunk;
+ cairo_status_t status;
+ int num_events;
+ int i, j;
+
+ num_events = self->num_edges;
+ if (unlikely (0 == num_events)) {
+ return renderer->render_rows (renderer,
+ _cairo_fixed_integer_floor (self->extents.p1.y),
+ _cairo_fixed_integer_ceil (self->extents.p2.y) -
+ _cairo_fixed_integer_floor (self->extents.p1.y),
+ NULL, 0);
+ }
+
+ events = stack_events;
+ event_ptrs = stack_event_ptrs;
+ if (unlikely (num_events >= ARRAY_LENGTH (stack_events))) {
+ events = _cairo_malloc_ab_plus_c (num_events,
+ sizeof (start_event_t) + sizeof (event_t *),
+ sizeof (event_t *));
+ if (unlikely (events == NULL))
+ return _cairo_error (CAIRO_STATUS_NO_MEMORY);
+
+ event_ptrs = (event_t **) (events + num_events);
+ }
+
+ j = 0;
+ for (chunk = &self->chunks; chunk != NULL; chunk = chunk->next) {
+ edge_t *edge;
+
+ edge = chunk->base;
+ for (i = 0; i < chunk->count; i++) {
+ event_ptrs[j] = (event_t *) &events[j];
+
+ events[j].y = edge->edge.top;
+ events[j].type = EVENT_TYPE_START;
+ events[j].edge = edge;
+
+ edge++, j++;
+ }
+ }
+
+ status = botor_generate (self, event_ptrs, renderer);
+
+ if (events != stack_events)
+ free (events);
+
+ return status;
+}
+
+static edge_t *
+botor_allocate_edge (cairo_botor_scan_converter_t *self)
+{
+ struct _cairo_botor_scan_converter_chunk *chunk;
+
+ chunk = self->tail;
+ if (chunk->count == chunk->size) {
+ int size;
+
+ size = chunk->size * 2;
+ chunk->next = _cairo_malloc_ab_plus_c (size,
+ sizeof (edge_t),
+ sizeof (struct _cairo_botor_scan_converter_chunk));
+ if (unlikely (chunk->next == NULL))
+ return NULL;
+
+ chunk = chunk->next;
+ chunk->next = NULL;
+ chunk->count = 0;
+ chunk->size = size;
+ chunk->base = chunk + 1;
+ self->tail = chunk;
+ }
+
+ return (edge_t *) chunk->base + chunk->count++;
+}
+
+static cairo_status_t
+botor_add_edge (cairo_botor_scan_converter_t *self,
+ const cairo_edge_t *edge)
+{
+ edge_t *e;
+ cairo_fixed_t dx, dy;
+
+ e = botor_allocate_edge (self);
+ if (unlikely (e == NULL))
+ return _cairo_error (CAIRO_STATUS_NO_MEMORY);
+
+ cairo_list_init (&e->link);
+ e->edge = *edge;
+
+ dx = edge->line.p2.x - edge->line.p1.x;
+ dy = edge->line.p2.y - edge->line.p1.y;
+ e->dy = dy;
+
+ if (dx == 0) {
+ e->vertical = TRUE;
+ e->x.quo = edge->line.p1.x;
+ e->x.rem = 0;
+ e->dxdy.quo = 0;
+ e->dxdy.rem = 0;
+ e->dxdy_full.quo = 0;
+ e->dxdy_full.rem = 0;
+ } else {
+ e->vertical = FALSE;
+ e->dxdy = floored_divrem (dx, dy);
+ if (edge->top == edge->line.p1.y) {
+ e->x.quo = edge->line.p1.x;
+ e->x.rem = 0;
+ } else {
+ e->x = floored_muldivrem (edge->top - edge->line.p1.y,
+ dx, dy);
+ e->x.quo += edge->line.p1.x;
+ }
+
+ if (_cairo_fixed_integer_part (edge->bottom) - _cairo_fixed_integer_part (edge->top) > 1) {
+ e->dxdy_full = floored_muldivrem (STEP_Y, dx, dy);
+ } else {
+ e->dxdy_full.quo = 0;
+ e->dxdy_full.rem = 0;
+ }
+ }
+
+ e->x.rem = -e->dy;
+ e->current_sign = 0;
+ e->runs = NULL;
+ e->flags = START;
+
+ self->num_edges++;
+
+ return CAIRO_STATUS_SUCCESS;
+}
+
+static void
+_cairo_botor_scan_converter_destroy (void *converter)
+{
+ cairo_botor_scan_converter_t *self = converter;
+ struct _cairo_botor_scan_converter_chunk *chunk, *next;
+
+ for (chunk = self->chunks.next; chunk != NULL; chunk = next) {
+ next = chunk->next;
+ free (chunk);
+ }
+}
+
+void
+_cairo_botor_scan_converter_init (cairo_botor_scan_converter_t *self,
+ const cairo_box_t *extents,
+ cairo_fill_rule_t fill_rule)
+{
+ self->base.destroy = _cairo_botor_scan_converter_destroy;
+ self->base.generate = _cairo_botor_scan_converter_generate;
+
+ self->extents = *extents;
+ self->fill_rule = fill_rule;
+
+ self->xmin = _cairo_fixed_integer_floor (extents->p1.x);
+ self->xmax = _cairo_fixed_integer_ceil (extents->p2.x);
+
+ self->chunks.base = self->buf;
+ self->chunks.next = NULL;
+ self->chunks.count = 0;
+ self->chunks.size = sizeof (self->buf) / sizeof (edge_t);
+ self->tail = &self->chunks;
+
+ self->num_edges = 0;
+}