summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Master/texmf-dist/doc/generic/polexpr/README.md (renamed from Master/texmf-dist/doc/latex/polexpr/README.md)95
-rw-r--r--Master/texmf-dist/doc/generic/polexpr/polexpr.html4086
-rw-r--r--Master/texmf-dist/doc/latex/polexpr/polexpr.html2911
-rw-r--r--Master/texmf-dist/doc/latex/polexpr/polexpr.txt2598
-rw-r--r--Master/texmf-dist/tex/generic/polexpr/polexpr.sty1057
-rw-r--r--Master/texmf-dist/tex/generic/polexpr/polexprcore.tex1366
-rw-r--r--Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex179
-rw-r--r--Master/texmf-dist/tex/generic/polexpr/polexprsturm.tex (renamed from Master/texmf-dist/tex/latex/polexpr/polexpr.sty)1813
-rwxr-xr-xMaster/tlpkg/libexec/ctan2tds1
9 files changed, 6959 insertions, 7147 deletions
diff --git a/Master/texmf-dist/doc/latex/polexpr/README.md b/Master/texmf-dist/doc/generic/polexpr/README.md
index a901b56adc7..b32b8f056df 100644
--- a/Master/texmf-dist/doc/latex/polexpr/README.md
+++ b/Master/texmf-dist/doc/generic/polexpr/README.md
@@ -1,46 +1,43 @@
Package polexpr README
======================
-License
--------
+Usage
+-----
-Copyright (C) 2018-2020 Jean-François Burnol
+The package can be used with TeX based formats incorporating the
+e-TeX primitives. The `\expanded` primitive available generally
+since TeXLive 2019 is required.
-See documentation of package [xint](http://www.ctan.org/pkg/xint) for
-contact information.
+ \input polexpr.sty
-This Work may be distributed and/or modified under the conditions of the
-LaTeX Project Public License version 1.3c. This version of this license
-is in
+with Plain or other non-LaTeX macro formats, or:
-> <http://www.latex-project.org/lppl/lppl-1-3c.txt>
+ \usepackage{polexpr}
-and version 1.3 or later is part of all distributions of LaTeX version
-2005/12/01 or later.
+with the LaTeX macro format.
-This Work has the LPPL maintenance status author-maintained.
-
-The Author of this Work is Jean-François Burnol.
-
-This Work consists of the package file polexpr.sty, this README.md and
-the documentation file polexpr.txt.
+The package currently requires xintexpr.sty `1.4d` or later.
Abstract
--------
-The package provides `\poldef`. This a parser of polynomial expressions
-based upon the `\xintdeffunc` mechanism of xintexpr.
+The package provides a parser `\poldef` of algebraic polynomial
+expressions. As it is based on
+[xintexpr](http://www.ctan.org/pkg/xint)
+the coefficients are allowed to be arbitrary rational numbers.
-The parsed expressions use the operations of algebra (inclusive of
-composition of functions) with standard operators, fractional numbers
-(possibly in scientific notation) and previously defined polynomial
-functions or other constructs as recognized by the `\xintexpr` numerical
-parser.
+Once defined, a polynomial is usable by its name either as a numerical
+function in `\xintexpr/\xinteval`, or for additional polynomial
+definitions, or as argument to the package macros. The localization of
+real roots to arbitrary precision as well as the determination of all
+rational roots is implemented via such macros.
-The polynomials are then not only genuine `\xintexpr` (and
-`\xintfloatexpr`) numerical functions but additionally are known to the
-package via their coefficients. This allows dedicated macros to
-implement polynomial algorithmics.
+Since release `0.8`, polexpr extends the
+[xintexpr](http://www.ctan.org/pkg/xint) syntax to recognize
+polynomials as a new variable type (and not only as functions).
+Functionality which previously was implemented via macros such as the
+computation of a greatest common divisor is now available directly in
+`\xintexpr`, `\xinteval` or `\poldef` via infix or functional syntax.
Releases
--------
@@ -62,7 +59,7 @@ Releases
- Main new feature: root localization via [Sturm
Theorem](https://en.wikipedia.org/wiki/Sturm%27s_theorem).
- 0.4.1 (2018/03/01)
- Synced with xint 1.3.
+ Synced with xintexpr 1.3.
- 0.4.2 (2018/03/03)
Documentation fix.
- 0.5 (2018/04/08)
@@ -82,21 +79,45 @@ Releases
Bugfix: 20000000000 is too big for \numexpr, shouldn't I know that?
Thanks to Jürgen Gilg for report.
- 0.7.5 (2020/01/31)
- Synced with xint 1.4. Requires it.
+ Synced with xintexpr 1.4. Requires it.
+- 0.8 (2021/03/29)
+ Complete refactoring of the package core for better integration with
+ and enhancement of xintexpr 1.4.
-Files of 0.7.5 release:
+Files of 0.8 release:
+- polexpr.sty, polexprcore.tex, polexprexpr.tex, polexprsturm.tex,
- README.md,
-- polexpr.sty (package file),
-- polexpr.txt (documentation),
-- polexpr.html (conversion via
- [DocUtils](http://docutils.sourceforge.net/docs/index.html)
- rst2html.py)
+- polexpr.html (documentation)
Acknowledgments
---------------
Thanks to Jürgen Gilg whose question about
-[xint](http://www.ctan.org/pkg/xint) usage for differentiating
+[xintexpr](http://www.ctan.org/pkg/xintexpr) usage for differentiating
polynomials was the initial trigger leading to this package, and to
Jürgen Gilg and Thomas Söll for testing it on some concrete problems.
+
+License
+-------
+
+Copyright (C) 2018-2021 Jean-François Burnol
+
+See documentation of package [xintexpr](http://www.ctan.org/pkg/xint) for
+contact information.
+
+This Work may be distributed and/or modified under the conditions of the
+LaTeX Project Public License version 1.3c. This version of this license
+is in
+
+> <http://www.latex-project.org/lppl/lppl-1-3c.txt>
+
+and version 1.3 or later is part of all distributions of LaTeX version
+2005/12/01 or later.
+
+This Work has the LPPL maintenance status author-maintained.
+
+The Author of this Work is Jean-François Burnol.
+
+This Work consists of the package files polexpr.sty, polexprcore.tex,
+polexprexpr.tex, polexprsturm.tex, this README.md and polexpr.html.
diff --git a/Master/texmf-dist/doc/generic/polexpr/polexpr.html b/Master/texmf-dist/doc/generic/polexpr/polexpr.html
new file mode 100644
index 00000000000..81cd2b4b7c1
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/polexpr/polexpr.html
@@ -0,0 +1,4086 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+<meta charset="utf-8"/>
+<meta name="generator" content="Docutils 0.16: http://docutils.sourceforge.net/" />
+<title>Package polexpr documentation</title>
+<style type="text/css">
+
+/* Minimal style sheet for the HTML output of Docutils. */
+/* */
+/* :Author: Günter Milde, based on html4css1.css by David Goodger */
+/* :Id: $Id: minimal.css 8397 2019-09-20 11:09:34Z milde $ */
+/* :Copyright: © 2015 Günter Milde. */
+/* :License: Released under the terms of the `2-Clause BSD license`_, */
+/* in short: */
+/* */
+/* Copying and distribution of this file, with or without modification, */
+/* are permitted in any medium without royalty provided the copyright */
+/* notice and this notice are preserved. */
+/* */
+/* This file is offered as-is, without any warranty. */
+/* */
+/* .. _2-Clause BSD license: http://www.spdx.org/licenses/BSD-2-Clause */
+
+/* This CSS2.1_ stylesheet defines rules for Docutils elements without */
+/* HTML equivalent. It is required to make the document semantic visible. */
+/* */
+/* .. _CSS2.1: http://www.w3.org/TR/CSS2 */
+/* .. _validates: http://jigsaw.w3.org/css-validator/validator$link */
+
+/* alignment of text and inline objects inside block objects*/
+.align-left { text-align: left; }
+.align-right { text-align: right; }
+.align-center { clear: both; text-align: center; }
+.align-top { vertical-align: top; }
+.align-middle { vertical-align: middle; }
+.align-bottom { vertical-align: bottom; }
+
+/* titles */
+h1.title, p.subtitle {
+ text-align: center;
+}
+p.topic-title,
+p.sidebar-title,
+p.rubric,
+p.admonition-title,
+p.system-message-title {
+ font-weight: bold;
+}
+h1 + p.subtitle,
+h1 + p.section-subtitle {
+ font-size: 1.6em;
+}
+h2 + p.section-subtitle { font-size: 1.28em; }
+p.subtitle,
+p.section-subtitle,
+p.sidebar-subtitle {
+ font-weight: bold;
+ margin-top: -0.5em;
+}
+p.sidebar-title,
+p.rubric {
+ font-size: larger;
+}
+p.rubric { color: maroon; }
+a.toc-backref {
+ color: black;
+ text-decoration: none; }
+
+/* Warnings, Errors */
+div.caution p.admonition-title,
+div.attention p.admonition-title,
+div.danger p.admonition-title,
+div.error p.admonition-title,
+div.warning p.admonition-title,
+div.system-messages h1,
+div.error,
+span.problematic,
+p.system-message-title {
+ color: red;
+}
+
+/* inline literals */
+span.docutils.literal {
+ font-family: monospace;
+ white-space: pre-wrap;
+}
+/* do not wraph at hyphens and similar: */
+.literal > span.pre { white-space: nowrap; }
+
+/* Lists */
+
+/* compact and simple lists: no margin between items */
+.simple li, .compact li,
+.simple ul, .compact ul,
+.simple ol, .compact ol,
+.simple > li p, .compact > li p,
+dl.simple > dd, dl.compact > dd {
+ margin-top: 0;
+ margin-bottom: 0;
+}
+
+/* Table of Contents */
+div.topic.contents { margin: 0.5em 0; }
+div.topic.contents ul {
+ list-style-type: none;
+ padding-left: 1.5em;
+}
+
+/* Enumerated Lists */
+ol.arabic { list-style: decimal }
+ol.loweralpha { list-style: lower-alpha }
+ol.upperalpha { list-style: upper-alpha }
+ol.lowerroman { list-style: lower-roman }
+ol.upperroman { list-style: upper-roman }
+
+dt span.classifier { font-style: italic }
+dt span.classifier:before {
+ font-style: normal;
+ margin: 0.5em;
+ content: ":";
+}
+
+/* Field Lists and drivatives */
+/* bold field name, content starts on the same line */
+dl.field-list > dt,
+dl.option-list > dt,
+dl.docinfo > dt,
+dl.footnote > dt,
+dl.citation > dt {
+ font-weight: bold;
+ clear: left;
+ float: left;
+ margin: 0;
+ padding: 0;
+ padding-right: 0.5em;
+}
+/* Offset for field content (corresponds to the --field-name-limit option) */
+dl.field-list > dd,
+dl.option-list > dd,
+dl.docinfo > dd {
+ margin-left: 9em; /* ca. 14 chars in the test examples */
+}
+/* start field-body on a new line after long field names */
+dl.field-list > dd > *:first-child,
+dl.option-list > dd > *:first-child
+{
+ display: inline-block;
+ width: 100%;
+ margin: 0;
+}
+/* field names followed by a colon */
+dl.field-list > dt:after,
+dl.docinfo > dt:after {
+ content: ":";
+}
+
+/* Bibliographic Fields (docinfo) */
+pre.address { font: inherit; }
+dd.authors > p { margin: 0; }
+
+/* Option Lists */
+dl.option-list { margin-left: 1.5em; }
+dl.option-list > dt { font-weight: normal; }
+span.option { white-space: nowrap; }
+
+/* Footnotes and Citations */
+dl.footnote.superscript > dd {margin-left: 1em; }
+dl.footnote.brackets > dd {margin-left: 2em; }
+dl > dt.label { font-weight: normal; }
+a.footnote-reference.brackets:before,
+dt.label > span.brackets:before { content: "["; }
+a.footnote-reference.brackets:after,
+dt.label > span.brackets:after { content: "]"; }
+a.footnote-reference.superscript,
+dl.footnote.superscript > dt.label {
+ vertical-align: super;
+ font-size: smaller;
+}
+dt.label > span.fn-backref { margin-left: 0.2em; }
+dt.label > span.fn-backref > a { font-style: italic; }
+
+/* Line Blocks */
+div.line-block { display: block; }
+div.line-block div.line-block {
+ margin-top: 0;
+ margin-bottom: 0;
+ margin-left: 40px;
+}
+
+/* Figures, Images, and Tables */
+.figure.align-left,
+figure.align-left,
+img.align-left,
+object.align-left,
+table.align-left {
+ margin-right: auto;
+}
+.figure.align-center,
+figure.align-center,
+img.align-center,
+object.align-center,
+table.align-center {
+ margin-left: auto;
+ margin-right: auto;
+}
+.figure.align-right,
+figure.align-right,
+img.align-right,
+object.align-right,
+table.align-right {
+ margin-left: auto;
+}
+.figure.align-center, .figure.align-right,
+figure.align-center, figure.align-right,
+img.align-center, img.align-right,
+object.align-center, object.align-right {
+ display: block;
+}
+/* reset inner alignment in figures and tables */
+.figure.align-left, .figure.align-right,
+figure.align-left, figure.align-right,
+table.align-left, table.align-center, table.align-right {
+ text-align: inherit;
+}
+
+/* Admonitions and System Messages */
+div.admonition,
+div.system-message,
+div.sidebar,
+aside.sidebar {
+ margin: 1em 1.5em;
+ border: medium outset;
+ padding-top: 0.5em;
+ padding-bottom: 0.5em;
+ padding-right: 1em;
+ padding-left: 1em;
+}
+
+/* Sidebar */
+div.sidebar,
+aside.sidebar {
+ width: 30%;
+ max-width: 26em;
+ float: right;
+ clear: right;
+}
+
+/* Text Blocks */
+blockquote,
+div.topic,
+pre.literal-block,
+pre.doctest-block,
+pre.math,
+pre.code {
+ margin-left: 1.5em;
+ margin-right: 1.5em;
+}
+pre.code .ln { color: gray; } /* line numbers */
+
+/* Tables */
+table { border-collapse: collapse; }
+td, th {
+ border-style: solid;
+ border-color: silver;
+ padding: 0 1ex;
+ border-width: thin;
+}
+td > p:first-child, th > p:first-child { margin-top: 0; }
+td > p, th > p { margin-bottom: 0; }
+
+table > caption {
+ text-align: left;
+ margin-bottom: 0.25em
+}
+
+table.borderless td, table.borderless th {
+ border: 0;
+ padding: 0;
+ padding-right: 0.5em /* separate table cells */
+}
+
+/* Document Header and Footer */
+/* div.header, */
+/* header { border-bottom: 1px solid black; } */
+/* div.footer, */
+/* footer { border-top: 1px solid black; } */
+
+/* new HTML5 block elements: set display for older browsers */
+header, section, footer, aside, nav, main, article, figure {
+ display: block;
+}
+
+</style>
+<style type="text/css">
+
+/* CSS31_ style sheet for the output of Docutils HTML writers. */
+/* Rules for easy reading and pre-defined style variants. */
+/* */
+/* :Author: Günter Milde, based on html4css1.css by David Goodger */
+/* :Id: $Id: plain.css 8397 2019-09-20 11:09:34Z milde $ */
+/* :Copyright: © 2015 Günter Milde. */
+/* :License: Released under the terms of the `2-Clause BSD license`_, */
+/* in short: */
+/* */
+/* Copying and distribution of this file, with or without modification, */
+/* are permitted in any medium without royalty provided the copyright */
+/* notice and this notice are preserved. */
+/* */
+/* This file is offered as-is, without any warranty. */
+/* */
+/* .. _2-Clause BSD license: http://www.spdx.org/licenses/BSD-2-Clause */
+/* .. _CSS3: http://www.w3.org/TR/CSS3 */
+
+
+/* Document Structure */
+/* ****************** */
+
+/* "page layout" */
+body {
+ margin: 0;
+ background-color: #dbdbdb;
+}
+div.document,
+main {
+ line-height:1.3;
+ counter-reset: table;
+ /* counter-reset: figure; */
+ /* avoid long lines --> better reading */
+ /* OTOH: lines should not be too short because of missing hyphenation, */
+ max-width: 50em;
+ padding: 1px 2%; /* 1px on top avoids grey bar above title (mozilla) */
+ margin: auto;
+ background-color: white;
+}
+
+/* Sections */
+
+/* Transitions */
+
+hr.docutils {
+ width: 80%;
+ margin-top: 1em;
+ margin-bottom: 1em;
+ clear: both;
+}
+
+/* Paragraphs */
+/* ========== */
+
+/* vertical space (parskip) */
+p, ol, ul, dl,
+div.line-block,
+div.topic,
+table {
+ margin-top: 0.5em;
+ margin-bottom: 0.5em;
+}
+p:first-child { margin-top: 0; }
+/* (:last-child is new in CSS 3) */
+p:last-child { margin-bottom: 0; }
+
+h1, h2, h3, h4, h5, h6,
+dl > dd {
+ margin-bottom: 0.5em;
+}
+
+/* Lists */
+/* ===== */
+
+/* Definition Lists */
+
+/* lists nested in definition lists */
+/* (:only-child is new in CSS 3) */
+dd > ul:only-child, dd > ol:only-child { padding-left: 1em; }
+
+/* Description Lists */
+/* styled like in most dictionaries, encyclopedias etc. */
+dl.description > dt {
+ font-weight: bold;
+ clear: left;
+ float: left;
+ margin: 0;
+ padding: 0;
+ padding-right: 0.5em;
+}
+
+/* Field Lists */
+
+/* example for custom field-name width */
+dl.field-list.narrow > dd {
+ margin-left: 5em;
+}
+/* run-in: start field-body on same line after long field names */
+dl.field-list.run-in > dd p {
+ display: block;
+}
+
+/* Bibliographic Fields */
+
+/* generally, bibliographic fields use special definition list dl.docinfo */
+/* but dedication and abstract are placed into "topic" divs */
+div.abstract p.topic-title {
+ text-align: center;
+}
+div.dedication {
+ margin: 2em 5em;
+ text-align: center;
+ font-style: italic;
+}
+div.dedication p.topic-title {
+ font-style: normal;
+}
+
+/* Citations */
+dl.citation dt.label {
+ font-weight: bold;
+}
+span.fn-backref {
+ font-weight: normal;
+}
+
+/* Text Blocks */
+/* =========== */
+
+/* Literal Blocks */
+
+pre.literal-block,
+pre.doctest-block,
+pre.math,
+pre.code {
+ font-family: monospace;
+}
+
+/* Block Quotes */
+
+blockquote > table,
+div.topic > table {
+ margin-top: 0;
+ margin-bottom: 0;
+}
+blockquote p.attribution,
+div.topic p.attribution {
+ text-align: right;
+ margin-left: 20%;
+}
+
+/* Tables */
+/* ====== */
+
+/* th { vertical-align: bottom; } */
+
+table tr { text-align: left; }
+
+/* "booktabs" style (no vertical lines) */
+table.booktabs {
+ border: 0;
+ border-top: 2px solid;
+ border-bottom: 2px solid;
+ border-collapse: collapse;
+}
+table.booktabs * {
+ border: 0;
+}
+table.booktabs th {
+ border-bottom: thin solid;
+}
+
+/* numbered tables (counter defined in div.document) */
+table.numbered > caption:before {
+ counter-increment: table;
+ content: "Table " counter(table) ": ";
+ font-weight: bold;
+}
+
+/* Explicit Markup Blocks */
+/* ====================== */
+
+/* Footnotes and Citations */
+/* ----------------------- */
+
+/* line on the left */
+dl.footnote {
+ padding-left: 1ex;
+ border-left: solid;
+ border-left-width: thin;
+}
+
+/* Directives */
+/* ---------- */
+
+/* Body Elements */
+/* ~~~~~~~~~~~~~ */
+
+/* Images and Figures */
+
+/* let content flow to the side of aligned images and figures */
+.figure.align-left,
+figure.align-left,
+img.align-left,
+object.align-left {
+ display: block;
+ clear: left;
+ float: left;
+ margin-right: 1em;
+}
+.figure.align-right,
+figure.align-right,
+img.align-right,
+object.align-right {
+ display: block;
+ clear: right;
+ float: right;
+ margin-left: 1em;
+}
+/* Stop floating sidebars, images and figures at section level 1,2,3 */
+h1, h2, h3 { clear: both; }
+
+/* Sidebar */
+
+/* Move right. In a layout with fixed margins, */
+/* it can be moved into the margin. */
+div.sidebar,
+aside.sidebar {
+ width: 30%;
+ max-width: 26em;
+ margin-left: 1em;
+ margin-right: -2%;
+ background-color: #ffffee;
+}
+
+/* Code */
+
+pre.code { padding: 0.7ex }
+pre.code, code { background-color: #eeeeee }
+pre.code .ln { color: gray; } /* line numbers */
+/* basic highlighting: for a complete scheme, see */
+/* http://docutils.sourceforge.net/sandbox/stylesheets/ */
+pre.code .comment, code .comment { color: #5C6576 }
+pre.code .keyword, code .keyword { color: #3B0D06; font-weight: bold }
+pre.code .literal.string, code .literal.string { color: #0C5404 }
+pre.code .name.builtin, code .name.builtin { color: #352B84 }
+pre.code .deleted, code .deleted { background-color: #DEB0A1}
+pre.code .inserted, code .inserted { background-color: #A3D289}
+
+/* Math */
+/* styled separately (see math.css for math-output=HTML) */
+
+/* Epigraph */
+/* Highlights */
+/* Pull-Quote */
+/* Compound Paragraph */
+/* Container */
+
+/* can be styled in a custom stylesheet */
+
+/* Document Header and Footer */
+
+footer, header,
+div.footer, div.header {
+ font-size: smaller;
+ clear: both;
+ padding: 0.5em 2%;
+ background-color: #ebebee;
+ border: none;
+}
+
+/* Inline Markup */
+/* ============= */
+
+/* Emphasis */
+/* em */
+/* Strong Emphasis */
+/* strong */
+/* Interpreted Text */
+/* span.interpreted */
+/* Title Reference */
+/* cite */
+
+/* Inline Literals */
+/* possible values: normal, nowrap, pre, pre-wrap, pre-line */
+/* span.docutils.literal { white-space: pre-wrap; } */
+
+/* Hyperlink References */
+a { text-decoration: none; }
+
+/* External Targets */
+/* span.target.external */
+/* Internal Targets */
+/* span.target.internal */
+/* Footnote References */
+/* a.footnote-reference */
+/* Citation References */
+/* a.citation-reference */
+
+</style>
+</head>
+<body>
+<div class="document" id="package-polexpr-documentation">
+<h1 class="title">Package polexpr documentation</h1>
+<p class="subtitle" id="id1">0.8 (2021/03/29)</p>
+
+<div class="contents topic" id="contents">
+<p class="topic-title">Contents</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="#usage" id="id41">Usage</a></p></li>
+<li><p><a class="reference internal" href="#abstract" id="id42">Abstract</a></p></li>
+<li><p><a class="reference internal" href="#prerequisites" id="id43">Prerequisites</a></p></li>
+<li><p><a class="reference internal" href="#quick-syntax-overview" id="id44">Quick syntax overview</a></p></li>
+<li><p><a class="reference internal" href="#the-polexpr-0-8-extensions-to-the-xintexpr-syntax" id="id45">The polexpr <span class="docutils literal">0.8</span> extensions to the <span class="docutils literal">\xintexpr</span> syntax</a></p>
+<ul>
+<li><p><a class="reference internal" href="#warning-about-unstability-of-the-new-syntax" id="id46">Warning about unstability of the new syntax</a></p></li>
+<li><p><a class="reference internal" href="#infix-operators" id="id47">Infix operators <span class="docutils literal">+, <span class="pre">-,</span> *, /, **, ^</span></a></p></li>
+<li><p><a class="reference internal" href="#experimental-infix-operators" id="id48">Experimental infix operators <span class="docutils literal">//, /:</span></a></p></li>
+<li><p><a class="reference internal" href="#comparison-operators" id="id49">Comparison operators <span class="docutils literal">&lt;, &gt;, &lt;=, &gt;=, ==, !=</span></a></p></li>
+<li><p><a class="reference internal" href="#pol-nutple-expression" id="id50"><span class="docutils literal"><span class="pre">pol(&lt;nutple</span> expression&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#xinteval-pol-expr" id="id51"><span class="docutils literal"><span class="pre">\xinteval{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#evalp-pol-expr-pol-expr" id="id52"><span class="docutils literal"><span class="pre">evalp(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. expr&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#deg-pol-expr" id="id53"><span class="docutils literal"><span class="pre">deg(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#coeffs-pol-expr" id="id54"><span class="docutils literal"><span class="pre">coeffs(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#coeff-pol-expr-num-expr" id="id55"><span class="docutils literal"><span class="pre">coeff(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;num. <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#lcoeff-pol-expr" id="id56"><span class="docutils literal"><span class="pre">lcoeff(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#monicpart-pol-expr" id="id57"><span class="docutils literal"><span class="pre">monicpart(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#icontent-pol-expr" id="id58"><span class="docutils literal"><span class="pre">icontent(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#primpart-pol-expr" id="id59"><span class="docutils literal"><span class="pre">primpart(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#quorem-pol-expr-pol-expr" id="id60"><span class="docutils literal"><span class="pre">quorem(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#quo-pol-expr-pol-expr" id="id61"><span class="docutils literal"><span class="pre">quo(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#rem-pol-expr-pol-expr" id="id62"><span class="docutils literal"><span class="pre">rem(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#prem-pol-expr-1-pol-expr-2" id="id63"><span class="docutils literal"><span class="pre">prem(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#divmod-pol-expr-1-pol-expr-2" id="id64"><span class="docutils literal"><span class="pre">divmod(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#mod-pol-expr-1-pol-expr-2" id="id65"><span class="docutils literal"><span class="pre">mod(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#polgcd-pol-expr-1-pol-expr-2" id="id66"><span class="docutils literal"><span class="pre">polgcd(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;, <span class="pre">...)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#resultant-pol-expr-1-pol-expr-2" id="id67"><span class="docutils literal"><span class="pre">resultant(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#disc-pol-expr" id="id68"><span class="docutils literal"><span class="pre">disc(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polpowmod-pol-expr-1-num-expr-pol-expr-2" id="id69"><span class="docutils literal"><span class="pre">polpowmod(&lt;pol.</span> expr. 1&gt;, &lt;num. <span class="pre">expr.&gt;,</span> &lt;pol. expr. 2&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#rdcoeffs-pol-expr" id="id70"><span class="docutils literal"><span class="pre">rdcoeffs(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#rdzcoeffs-pol-expr" id="id71"><span class="docutils literal"><span class="pre">rdzcoeffs(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#diff1-pol-expr" id="id72"><span class="docutils literal"><span class="pre">diff1(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#diff2-pol-expr" id="id73"><span class="docutils literal"><span class="pre">diff2(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></p></li>
+<li><p><a class="reference internal" href="#diffn-pol-expr-p-num-expr-n" id="id74"><span class="docutils literal"><span class="pre">diffn(&lt;pol.</span> expr. P&gt;, &lt;num. expr. n&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#antider-pol-expr-p" id="id75"><span class="docutils literal"><span class="pre">antider(&lt;pol.</span> expr. P&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#intfrom-pol-expr-p-pol-expr-c" id="id76"><span class="docutils literal"><span class="pre">intfrom(&lt;pol.</span> expr. P&gt;, &lt;pol. expr. c&gt;)</span></a></p></li>
+<li><p><a class="reference internal" href="#integral-pol-expr-p-pol-expr-a-pol-expr-b" id="id77"><span class="docutils literal"><span class="pre">integral(&lt;pol.</span> expr. P&gt;, [&lt;pol. expr. a&gt;, &lt;pol. expr. <span class="pre">b&gt;])</span></span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#examples-of-localization-of-roots" id="id78">Examples of localization of roots</a></p>
+<ul>
+<li><p><a class="reference internal" href="#a-typical-example" id="id79">A typical example</a></p></li>
+<li><p><a class="reference internal" href="#a-degree-four-polynomial-with-nearby-roots" id="id80">A degree four polynomial with nearby roots</a></p></li>
+<li><p><a class="reference internal" href="#the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots" id="id81">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</a></p></li>
+<li><p><a class="reference internal" href="#a-degree-five-polynomial-with-three-rational-roots" id="id82">A degree five polynomial with three rational roots</a></p></li>
+<li><p><a class="reference internal" href="#a-mignotte-type-polynomial" id="id83">A Mignotte type polynomial</a></p></li>
+<li><p><a class="reference internal" href="#the-wilkinson-polynomial" id="id84">The Wilkinson polynomial</a></p></li>
+<li><p><a class="reference internal" href="#the-second-wilkinson-polynomial" id="id85">The second Wilkinson polynomial</a></p></li>
+<li><p><a class="reference internal" href="#the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots" id="id86">The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots</a></p></li>
+<li><p><a class="reference internal" href="#roots-of-chebyshev-polynomials" id="id87">Roots of Chebyshev polynomials</a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#non-expandable-macros" id="id88">Non-expandable macros</a></p>
+<ul>
+<li><p><a class="reference internal" href="#poldef-polname-letter-expression-using-the-letter-as-indeterminate" id="id89"><span class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression using the letter as indeterminate;</span></a></p></li>
+<li><p><a class="reference internal" href="#poldef-letter-polname-expression-using-the-letter-as-indeterminate" id="id90"><span class="docutils literal"><span class="pre">\PolDef[letter]{polname}{expression</span> using the letter as indeterminate}</span></a></p></li>
+<li><p><a class="reference internal" href="#polgenfloatvariant-polname" id="id91"><span class="docutils literal">\PolGenFloatVariant{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#pollet-polname-2-polname-1" id="id92"><span class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polgloballet-polname-2-polname-1" id="id93"><span class="docutils literal"><span class="pre">\PolGlobalLet{polname_2}={polname_1}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polassign-polname-toarray-macro" id="id94"><span class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polget-polname-fromarray-macro" id="id95"><span class="docutils literal"><span class="pre">\PolGet{polname}\fromarray\macro</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polfromcsv-polname-csv" id="id96"><span class="docutils literal"><span class="pre">\PolFromCSV{polname}{&lt;csv&gt;}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poltypeset-pol-expr" id="id97"><span class="docutils literal"><span class="pre">\PolTypeset{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></p>
+<ul>
+<li><p><a class="reference internal" href="#poltypesetcmd-raw-coeff" id="id98"><span class="docutils literal">\PolTypesetCmd{raw_coeff}</span></a></p></li>
+<li><p><a class="reference internal" href="#poltypesetone-raw-coeff" id="id99"><span class="docutils literal">\PolTypesetOne{raw_coeff}</span></a></p></li>
+<li><p><a class="reference internal" href="#id9" id="id100"><span class="docutils literal">\PolTypesetMonomialCmd</span></a></p></li>
+<li><p><a class="reference internal" href="#poltypesetcmdprefix-raw-coeff" id="id101"><span class="docutils literal">\PolTypesetCmdPrefix{raw_coeff}</span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#id11" id="id102"><span class="docutils literal"><span class="pre">\PolTypeset*{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poldiff-polname-1-polname-2" id="id103"><span class="docutils literal"><span class="pre">\PolDiff{polname_1}{polname_2}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poldiff-n-polname-1-polname-2" id="id104"><span class="docutils literal"><span class="pre">\PolDiff[N]{polname_1}{polname_2}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polantidiff-polname-1-polname-2" id="id105"><span class="docutils literal"><span class="pre">\PolAntiDiff{polname_1}{polname_2}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polantidiff-n-polname-1-polname-2" id="id106"><span class="docutils literal"><span class="pre">\PolAntiDiff[N]{polname_1}{polname_2}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poldivide-polname-1-polname-2-polname-q-polname-r" id="id107"><span class="docutils literal"><span class="pre">\PolDivide{polname_1}{polname_2}{polname_Q}{polname_R}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polquo-polname-1-polname-2-polname-q" id="id108"><span class="docutils literal"><span class="pre">\PolQuo{polname_1}{polname_2}{polname_Q}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polrem-polname-1-polname-2-polname-r" id="id109"><span class="docutils literal"><span class="pre">\PolRem{polname_1}{polname_2}{polname_R}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polgcd-polname-1-polname-2-polname-gcd" id="id110"><span class="docutils literal"><span class="pre">\PolGCD{polname_1}{polname_2}{polname_GCD}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#non-expandable-macros-related-to-the-root-localization-routines" id="id111">Non-expandable macros related to the root localization routines</a></p>
+<ul>
+<li><p><a class="reference internal" href="#poltosturm-polname-sturmname" id="id112"><span class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#id13" id="id113"><span class="docutils literal"><span class="pre">\PolToSturm*{polname}{sturmname}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsettosturmchainsignchangesat-macro-sturmname-fraction" id="id114"><span class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\macro}{sturmname}{fraction}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsettonbofzeroswithin-macro-sturmname-value-a-value-b" id="id115"><span class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\macro}{sturmname}{value_a}{value_b}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatezeros-sturmname" id="id116"><span class="docutils literal">\PolSturmIsolateZeros{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#id15" id="id117"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros*{sturmname}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#id17" id="id118"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{sturmname}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatezerosandgetmultiplicities-sturmname" id="id119"><span class="docutils literal">\PolSturmIsolateZerosAndGetMultiplicities{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname" id="id120"><span class="docutils literal">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatezerosandfindrationalroots-sturmname" id="id121"><span class="docutils literal">\PolSturmIsolateZerosAndFindRationalRoots{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polrefineinterval-sturmname-index" id="id122"><span class="docutils literal"><span class="pre">\PolRefineInterval*{sturmname}{index}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polrefineinterval-n-sturmname-index" id="id123"><span class="docutils literal"><span class="pre">\PolRefineInterval[N]{sturmname}{index}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polensureintervallength-sturmname-index-e" id="id124"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLength{sturmname}{index}{E}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polensureintervallengths-sturmname-e" id="id125"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{sturmname}{E}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervals-varname-sturmname" id="id126"><span class="docutils literal"><span class="pre">\PolPrintIntervals[varname]{sturmname}</span></span></a></p>
+<ul>
+<li><p><a class="reference internal" href="#polprintintervalsnorealroots" id="id127"><span class="docutils literal">\PolPrintIntervalsNoRealRoots</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsbeginenv" id="id128"><span class="docutils literal">\PolPrintIntervalsBeginEnv</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsendenv" id="id129"><span class="docutils literal">\PolPrintIntervalsEndEnv</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsknownroot" id="id130"><span class="docutils literal">\PolPrintIntervalsKnownRoot</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsunknownroot" id="id131"><span class="docutils literal">\PolPrintIntervalsUnknownRoot</span></a></p></li>
+<li><p><a class="reference internal" href="#id18" id="id132"><span class="docutils literal">\PolPrintIntervalsPrintExactZero</span></a></p></li>
+<li><p><a class="reference internal" href="#id19" id="id133"><span class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</span></a></p></li>
+<li><p><a class="reference internal" href="#id20" id="id134"><span class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#id22" id="id135"><span class="docutils literal"><span class="pre">\PolPrintIntervals*[varname]{sturmname}</span></span></a></p>
+<ul>
+<li><p><a class="reference internal" href="#polprintintervalsprintmultiplicity" id="id136"><span class="docutils literal">\PolPrintIntervalsPrintMultiplicity</span></a></p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#polmapcoeffs-macro-polname" id="id137"><span class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{polname}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polreducecoeffs-polname" id="id138"><span class="docutils literal">\PolReduceCoeffs{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#id24" id="id139"><span class="docutils literal"><span class="pre">\PolReduceCoeffs*{polname}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polmakemonic-polname" id="id140"><span class="docutils literal">\PolMakeMonic{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polmakeprimitive-polname" id="id141"><span class="docutils literal">\PolMakePrimitive{polname}</span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#expandable-macros" id="id142">Expandable macros</a></p>
+<ul>
+<li><p><a class="reference internal" href="#poleval-polname-atexpr-numerical-expression" id="id143"><span class="docutils literal"><span class="pre">\PolEval{polname}\AtExpr{numerical</span> expression}</span></a></p></li>
+<li><p><a class="reference internal" href="#poleval-polname-at-fraction" id="id144"><span class="docutils literal"><span class="pre">\PolEval{polname}\At{fraction}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polevalreduced-polname-atexpr-numerical-expression" id="id145"><span class="docutils literal"><span class="pre">\PolEvalReduced{polname}\AtExpr{numerical</span> expression}</span></a></p></li>
+<li><p><a class="reference internal" href="#polevalreduced-polname-at-fraction" id="id146"><span class="docutils literal"><span class="pre">\PolEvalReduced{polname}\At{fraction}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polfloateval-polname-atexpr-numerical-expression" id="id147"><span class="docutils literal"><span class="pre">\PolFloatEval{polname}\AtExpr{numerical</span> expression}</span></a></p></li>
+<li><p><a class="reference internal" href="#polfloateval-polname-at-fraction" id="id148"><span class="docutils literal"><span class="pre">\PolFloatEval{polname}\At{fraction}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polifcoeffisplusorminusone-a-b" id="id149"><span class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{A}{B}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polleadingcoeff-polname" id="id150"><span class="docutils literal">\PolLeadingCoeff{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polnthcoeff-polname-number" id="id151"><span class="docutils literal"><span class="pre">\PolNthCoeff{polname}{number}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poldegree-polname" id="id152"><span class="docutils literal">\PolDegree{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#policontent-polname" id="id153"><span class="docutils literal">\PolIContent{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexpr-pol-expr" id="id154"><span class="docutils literal"><span class="pre">\PolToExpr{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></p>
+<ul>
+<li><p><a class="reference internal" href="#id31" id="id155"><span class="docutils literal">\PolToExprVar</span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexprinvar" id="id156"><span class="docutils literal">\PolToExprInVar</span></a></p></li>
+<li><p><a class="reference internal" href="#id32" id="id157"><span class="docutils literal">\PolToExprTimes</span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexprcaret" id="id158"><span class="docutils literal">\PolToExprCaret</span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexprcmd-raw-coeff" id="id159"><span class="docutils literal">\PolToExprCmd{raw_coeff}</span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexproneterm-raw-coeff-number" id="id160"><span class="docutils literal"><span class="pre">\PolToExprOneTerm{raw_coeff}{number}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexpronetermstylea-raw-coeff-number" id="id161"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{raw_coeff}{number}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexpronetermstyleb-raw-coeff-number" id="id162"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{raw_coeff}{number}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexprtermprefix-raw-coeff" id="id163"><span class="docutils literal">\PolToExprTermPrefix{raw_coeff}</span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#id34" id="id164"><span class="docutils literal"><span class="pre">\PolToExpr*{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poltofloatexpr-pol-expr" id="id165"><span class="docutils literal"><span class="pre">\PolToFloatExpr{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></p>
+<ul>
+<li><p><a class="reference internal" href="#poltofloatexproneterm-raw-coeff-number" id="id166"><span class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{raw_coeff}{number}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poltofloatexprcmd-raw-coeff" id="id167"><span class="docutils literal">\PolToFloatExprCmd{raw_coeff}</span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#id38" id="id168"><span class="docutils literal"><span class="pre">\PolToFloatExpr*{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#poltolist-polname" id="id169"><span class="docutils literal">\PolToList{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#poltocsv-polname" id="id170"><span class="docutils literal">\PolToCSV{polname}</span></a></p></li>
+<li><p><a class="reference internal" href="#expandable-macros-related-to-the-root-localization-routines" id="id171">Expandable macros related to the root localization routines</a></p>
+<ul>
+<li><p><a class="reference internal" href="#polsturmchainlength-sturmname" id="id172"><span class="docutils literal">\PolSturmChainLength{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmifzeroexactlyknown-sturmname-index-a-b" id="id173"><span class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatedzeroleft-sturmname-index" id="id174"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{sturmname}{index}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index" id="id175"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{sturmname}{index}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index" id="id176"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofisolatedzeros-sturmname" id="id177"><span class="docutils literal">\PolSturmNbOfIsolatedZeros{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value" id="id178"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression" id="id179"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value" id="id180"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-expression" id="id181"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofrationalroots-sturmname" id="id182"><span class="docutils literal">\PolSturmNbOfRationalRoots{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofrationalrootswithmultiplicities-sturmname" id="id183"><span class="docutils literal">\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}</span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmrationalroot-sturmname-k" id="id184"><span class="docutils literal"><span class="pre">\PolSturmRationalRoot{sturmname}{k}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmrationalrootindex-sturmname-k" id="id185"><span class="docutils literal"><span class="pre">\PolSturmRationalRootIndex{sturmname}{k}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polsturmrationalrootmultiplicity-sturmname-k" id="id186"><span class="docutils literal"><span class="pre">\PolSturmRationalRootMultiplicity{sturmname}{k}</span></span></a></p></li>
+<li><p><a class="reference internal" href="#polintervalwidth-sturmname-index" id="id187"><span class="docutils literal"><span class="pre">\PolIntervalWidth{sturmname}{index}</span></span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#expandable-macros-for-use-within-execution-of-polprintintervals" id="id188">Expandable macros for use within execution of <span class="docutils literal">\PolPrintIntervals</span></a></p>
+<ul>
+<li><p><a class="reference internal" href="#polprintintervalsthevar" id="id189"><span class="docutils literal">\PolPrintIntervalsTheVar</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalstheindex" id="id190"><span class="docutils literal">\PolPrintIntervalsTheIndex</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsthesturmname" id="id191"><span class="docutils literal">\PolPrintIntervalsTheSturmName</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalstheleftendpoint" id="id192"><span class="docutils literal">\PolPrintIntervalsTheLeftEndPoint</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalstherightendpoint" id="id193"><span class="docutils literal">\PolPrintIntervalsTheRightEndPoint</span></a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsthemultiplicity" id="id194"><span class="docutils literal">\PolPrintIntervalsTheMultiplicity</span></a></p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#booleans-with-default-setting-as-indicated" id="id195">Booleans (with default setting as indicated)</a></p>
+<ul>
+<li><p><a class="reference internal" href="#xintverbosefalse" id="id196"><span class="docutils literal">\xintverbosefalse</span></a></p></li>
+<li><p><a class="reference internal" href="#polnewpolverbosefalse" id="id197"><span class="docutils literal">\polnewpolverbosefalse</span></a></p></li>
+<li><p><a class="reference internal" href="#poltypesetallfalse" id="id198"><span class="docutils literal">\poltypesetallfalse</span></a></p></li>
+<li><p><a class="reference internal" href="#poltoexprallfalse" id="id199"><span class="docutils literal">\poltoexprallfalse</span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#utilies" id="id200">Utilies</a></p>
+<ul>
+<li><p><a class="reference internal" href="#poldectostring-decimal-number" id="id201"><span class="docutils literal">\PolDecToString{decimal number}</span></a></p></li>
+<li><p><a class="reference internal" href="#polexprsetup" id="id202"><span class="docutils literal">\polexprsetup</span></a></p></li>
+</ul>
+</li>
+<li><p><a class="reference internal" href="#technicalities" id="id203">Technicalities</a></p></li>
+<li><p><a class="reference internal" href="#change-log" id="id204">CHANGE LOG</a></p></li>
+<li><p><a class="reference internal" href="#acknowledgments" id="id205">Acknowledgments</a></p></li>
+</ul>
+</div>
+<div class="section" id="usage">
+<h1><a class="toc-backref" href="#id41">Usage</a></h1>
+<p>The package can be used with TeX based formats incorporating the e-TeX
+primitives. The <span class="docutils literal">\expanded</span> primitive available generally since
+TeXLive 2019 is required.</p>
+<pre class="literal-block">\input polexpr.sty</pre>
+<p>with Plain or other non-LaTeX macro formats, or:</p>
+<pre class="literal-block">\usepackage{polexpr}</pre>
+<p>with the LaTeX macro format.</p>
+<p>The package requires <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> <span class="docutils literal">1.4d</span> or later.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>Until <span class="docutils literal">0.8</span> the package only had a LaTeX interface. As a result,
+parts of this documentation may still give examples using LaTeX syntax such
+as <span class="docutils literal">\newcommand</span>. Please convert to the syntax appropriate to the
+TeX macro format used if needed.</p>
+</div>
+</div>
+<div class="section" id="abstract">
+<h1><a class="toc-backref" href="#id42">Abstract</a></h1>
+<p>The package provides a parser <span class="docutils literal">\poldef</span> of algebraic polynomial
+expressions. As it is based on <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>
+the coefficients are allowed to be arbitrary rational numbers.</p>
+<p>Once defined, a polynomial is usable by its name either as a numerical
+function in <span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span>, or for additional polynomial
+definitions, or as argument to the package macros. The localization of
+real roots to arbitrary precision as well as the determination of all
+rational roots is implemented via such macros.</p>
+<p>Since release <span class="docutils literal">0.8</span>, polexpr extends the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>
+syntax to recognize
+polynomials as a new variable type (and not only as functions).
+Functionality which previously was implemented via macros such as the
+computation of a greatest common divisor is now available directly in
+<span class="docutils literal">\xintexpr</span>, <span class="docutils literal">\xinteval</span> or <span class="docutils literal">\poldef</span> via infix or functional
+syntax.</p>
+</div>
+<div class="section" id="prerequisites">
+<h1><a class="toc-backref" href="#id43">Prerequisites</a></h1>
+<ul>
+<li><p>The user must have some understanding of TeX as a macro-expansion
+based programming interface, and in particular of how <span class="docutils literal">\edef</span>
+differs from <span class="docutils literal">\def</span>: functionalities of the package as described in
+the <a class="reference internal" href="#expandable-macros">Expandable macros</a> section are suitable for usage in <span class="docutils literal">\edef</span>,
+<span class="docutils literal">\write</span> or <span class="docutils literal">\xinteval</span> context. At <span class="docutils literal">0.8</span> some of these
+macros have an even more convenient functional interface inside
+<span class="docutils literal">\xinteval</span>, as is described in a <a class="reference internal" href="#polexpr08">dedicated section</a>.</p>
+<p>Despite its name <span class="docutils literal">\poldef</span> is more to be seen as an <span class="docutils literal">\edef</span>
+although it does not define a TeX macro (at user level); and of course
+<span class="docutils literal">\edef</span> would do usually nothing on the typical input parsed by
+<span class="docutils literal">\poldef</span> which generally has no backslash in it: but if this input
+does contain macros, they will then be expanded fully and are supposed to
+produce recognizable syntax elements in this expansion only context.</p>
+<p>Note that the <span class="docutils literal">def</span> in <span class="docutils literal">\poldef</span> reminds us that the macro does
+some assignments hence is not usable in expandable only context. Its
+whole point is rather to define entities which, them, can then be used
+in the expandable only <span class="docutils literal">\xinteval</span> (or <span class="docutils literal">\poldef</span>) context.</p>
+</li>
+<li><p>The user must have some familiarity with <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> and in
+particular must know what <span class="docutils literal">\xintexpr</span>, <span class="docutils literal">\xinttheexpr</span>,
+<span class="docutils literal">\xinteval</span> and <span class="docutils literal">\xintfloatexpr</span>, <span class="docutils literal">\xintthefloatexpr</span>,
+<span class="docutils literal">\xintfloateval</span> mean and what are the good practices with them.</p></li>
+<li><p>The user will become quickly aware that exact computations with
+fractions easily lead to very big ones in very few steps; see
+<a class="reference internal" href="#polreducecoeffs-polname">\PolReduceCoeffs{polname}</a> in this context.</p></li>
+<li><p>Finally, it is mandatory to read the entire documentation before
+starting to use the package.</p></li>
+</ul>
+</div>
+<div class="section" id="quick-syntax-overview">
+<h1><a class="toc-backref" href="#id44">Quick syntax overview</a></h1>
+<p>The syntax is:</p>
+<pre class="literal-block">\poldef polname(x):= expression in variable x;</pre>
+<ul>
+<li><p>In place of <span class="docutils literal">x</span> an arbitrary <em>dummy variable</em> is authorized,
+i.e. per default one <span class="docutils literal">a, .., z, A, .., Z</span> (more letters can be declared
+under Unicode engines).</p></li>
+<li><p><span class="docutils literal">polname</span> consists of letters, digits, and the <span class="docutils literal">_</span> and <span class="docutils literal">'</span>
+characters. It <strong>must</strong> start with a letter: do not use the
+underscore <span class="docutils literal">_</span> as <em>first character</em> of a polynomial name (even
+if of catcode letter). No warning is emitted but dire consequences
+will result.</p>
+<div class="admonition hint">
+<p class="admonition-title">Hint</p>
+<p>The <span class="docutils literal">&#64;</span> is usable too, independently of whether it is of catcode
+letter or other. This has always been the case, but was not
+documented by polexpr prior to <span class="docutils literal">0.8</span>, as the author has never
+found the time to provide some official guidelines on how to name
+temporary variables and the <span class="docutils literal">&#64;</span> is used already as such internally
+to package; time has still not yet been found for <span class="docutils literal">0.8</span> to review
+the situation but it seems reasonable to recommend at any rate to
+restrict usage of <span class="docutils literal">&#64;</span> to scratch variables of defined macros and
+to avoid using it to name document variable.</p>
+</div>
+</li>
+<li><p>The colon before the equality sign is optional and its catcode does
+not matter.</p></li>
+<li><p>The semi-colon at the end of the expression is mandatory. Its catcode
+does not matter if <span class="docutils literal">\poldef</span> is not used inside the argument of
+another macro.</p></li>
+</ul>
+<p>There is an alternative syntax</p>
+<pre class="literal-block">\PolDef[optional letter]{polname}{expression in the letter}</pre>
+<p>Its optional first argument defaults to <span class="docutils literal">x</span>.</p>
+<dl>
+<dt><span class="docutils literal">\poldef <span class="pre">f(x):=</span> 1 - x + quo(x^5,1 - x + x^2);</span></dt>
+<dd><p>defines polynomial <span class="docutils literal">f</span>. The indeterminate <span class="docutils literal">x</span> must be
+only submitted to algebraic operations.</p>
+<p>The <span class="docutils literal">quo()</span> function (new at <span class="docutils literal">0.8</span>) computes the euclidean
+division quotient.</p>
+</dd>
+</dl>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>For backwards compatibility one can currently also use:</p>
+<pre class="literal-block">\poldef f(x):= 1 - x + x^5/(1 - x + x^2);</pre>
+<p>Due to precedence rules the first operand is <span class="docutils literal">x^5</span>, not of course
+<span class="docutils literal"><span class="pre">1-x+x^5</span></span>.</p>
+<p>Note that <span class="docutils literal"><span class="pre">(1-x^2)/(1-x)</span></span> produces <span class="docutils literal">1+x</span>
+but <span class="docutils literal"><span class="pre">(1/(1-x))*(1-x^2)</span></span> produces zero! One also has to be aware
+of some precedence rules, for example:</p>
+<pre class="literal-block">\poldef k(x):= (x-1)(x-2)(x-3)(x-4)/(x^2-5x+4);</pre>
+<p>does compute a degree 2 polynomial because the tacit multiplication
+ties more than the division operator.</p>
+<p>In short, it is safer to use the <span class="docutils literal">quo()</span> function which avoids
+surprises.</p>
+</div>
+<div class="admonition attention" id="warningtacit">
+<p class="admonition-title">Attention!</p>
+<p>Tacit multiplication means that
+<span class="docutils literal">1/2 x^2</span> skips the space and is treated like <span class="docutils literal"><span class="pre">1/(2*x^2)</span></span>.
+But then it gives zero!</p>
+<p>Thus one must use <span class="docutils literal">(1/2)x^2</span> or <span class="docutils literal">1/2*x^2</span> or
+<span class="docutils literal"><span class="pre">(1/2)*x^2</span></span> for disambiguation: <span class="docutils literal">x - 1/2*x^2 + <span class="pre">1/3*x^3...</span></span>. It is
+simpler to move the denominator to the right: <span class="docutils literal">x - x^2/2 + x^3/3 - ...</span>.</p>
+<p>It is worth noting that <span class="docutils literal"><span class="pre">1/2(x-1)(x-2)</span></span> suffers the same issue:
+<a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>'s tacit multiplication always &quot;ties more&quot;, hence this
+gets interpreted as <span class="docutils literal"><span class="pre">1/(2*(x-1)*(x-2))</span></span> which gives zero by
+polynomial division. Thus, use in such cases one of
+<span class="docutils literal"><span class="pre">(1/2)(x-1)(x-2)</span></span>, <span class="docutils literal"><span class="pre">1/2*(x-1)(x-2)</span></span> or <span class="docutils literal"><span class="pre">(x-1)(x-2)/2</span></span>.</p>
+</div>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>The package does not currently know rational functions, but in order
+to leave open this as a future possibility, the usage of <span class="docutils literal">/</span> to stand
+for the
+euclidean quotient is <strong>deprecated</strong>.</p>
+<p>Please start using rather the <span class="docutils literal">quo()</span> function. It is possible
+that in a future major relase <span class="docutils literal">A/B</span> with <span class="docutils literal">B</span> a non-scalar will
+raise an error. Or, who knows, rational functions will be
+implemented sometime during the next decades, and then <span class="docutils literal">A/B</span> will
+naturally be the rational function.</p>
+</div>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p><span class="docutils literal">\poldef <span class="pre">P(x):=...;</span></span> defines <span class="docutils literal">P</span> both as a <em>function</em>,
+to be used as:</p>
+<pre class="literal-block">P(..numeric or even polynomial expression..)</pre>
+<p>and as a <em>variable</em> which can used inside polynomial expressions or
+as argument to some polynomial specific functions such as <span class="docutils literal">deg()</span>
+or <span class="docutils literal">polgcd()</span> <a class="footnote-reference brackets" href="#id3" id="id2">1</a>.</p>
+<dl class="footnote brackets">
+<dt class="label" id="id3"><span class="brackets"><a class="fn-backref" href="#id2">1</a></span></dt>
+<dd><p>Functional syntax accepts expressions as arguments; but the
+TeX <strong>macros</strong> described in the documentation, even the
+expandable ones, work only (there are a few exceptions to the
+general rule) with arguments being <em>names of declared
+polynomials</em>.</p>
+</dd>
+</dl>
+<p>One needs to have a clear understanding of the difference between
+<span class="docutils literal">P</span> used a function and <span class="docutils literal">P</span> used as a variable: if <span class="docutils literal">P</span> and
+<span class="docutils literal">Q</span> are both declared polynomials then:</p>
+<pre class="literal-block">(P+Q)(3)% &lt;--- attention!</pre>
+<p>is currently evaluated as <span class="docutils literal"><span class="pre">(P+Q)*3</span></span>, because <span class="docutils literal">P+Q</span> is not known
+as a <em>function</em>, but <em>only as a variable of polynomial type</em>.
+Even worse:</p>
+<pre class="literal-block">(P)(3)% &lt;--- attention!</pre>
+<p>will compute <span class="docutils literal">P*3</span>, because one can not in current <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> syntax
+enclose a function name in parentheses: consequently it is the variable
+which is used here. There is a <em>meager possibility</em> that in future
+some internal changes to <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> would let <span class="docutils literal"><span class="pre">(P)(3)</span></span> actually
+compute <span class="docutils literal">P(3)</span> and <span class="docutils literal"><span class="pre">(P+Q)(3)</span></span> compute <span class="docutils literal">P(3) + Q(3)</span>, but note
+that <span class="docutils literal"><span class="pre">(P)(P)</span></span> will then do <span class="docutils literal">P(P)</span> and not <span class="docutils literal">P*P</span>,
+the latter, current interpretation, looking more
+intuitive. Anyway, do not rely too extensively on tacit <span class="docutils literal">*</span> and use
+explicit <span class="docutils literal"><span class="pre">(P+Q)*(1+2)</span></span> if this is what is intended.</p>
+<p>As an alternative to explicit <span class="docutils literal"><span class="pre">P(3)+Q(3)</span></span> there is <span class="docutils literal">evalp(P+Q,3)</span>.</p>
+</div>
+<dl>
+<dt><span class="docutils literal"><span class="pre">\PolLet{g}={f}</span></span></dt>
+<dd><p>saves a copy of <span class="docutils literal">f</span> under name <span class="docutils literal">g</span>. Also usable without <span class="docutils literal">=</span>.</p>
+<p>Has exactly the same effect as <span class="docutils literal">\poldef <span class="pre">g(x):=f;</span></span> or <span class="docutils literal">\poldef <span class="pre">g(w):=f(w);</span></span>.</p>
+</dd>
+<dt><span class="docutils literal">\poldef <span class="pre">f(z):=</span> f^2;</span></dt>
+<dd><p>redefines <span class="docutils literal">f</span> in terms of itself. Prior to <span class="docutils literal">0.8</span> one needed
+the right hand side to be <span class="docutils literal"><span class="pre">f(z)^2</span></span>. Also, now <span class="docutils literal">sqr(f)</span> is
+possible (also <span class="docutils literal">sqr(f(x))</span> but not <span class="docutils literal"><span class="pre">sqr(f)(x)</span></span>).</p>
+</dd>
+</dl>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>Note that <span class="docutils literal">f^2(z)</span> or <span class="docutils literal"><span class="pre">sqr(f)(z)</span></span> will give a logical but
+perhaps unexpected result: first <span class="docutils literal">f^2</span> is computed, then the
+opening parenthesis is seen which inserts a tacit multiplication
+<span class="docutils literal">*</span>, so in the end it is as if the input had been <span class="docutils literal">f^2 * z</span>.
+Although <span class="docutils literal">f</span> is both a variable and a function, <span class="docutils literal">f^2</span> is
+computed as a polynomial <em>variable</em> and ceases being a function.</p>
+</div>
+<dl>
+<dt><span class="docutils literal">\poldef <span class="pre">f(T):=</span> f(f);</span></dt>
+<dd><p>again modifies <span class="docutils literal">f</span>. Here it is used both as variable and as
+a function. Prior to <span class="docutils literal">0.8</span> it needed to be <span class="docutils literal">f(f(T))</span>.</p>
+</dd>
+<dt><span class="docutils literal">\poldef <span class="pre">k(z):=</span> <span class="pre">f-g(g^2)^2;</span></span></dt>
+<dd><p>if everybody followed, this should now define the zero polynomial...
+And <span class="docutils literal"><span class="pre">f-sqr(g(sqr(g)))</span></span> computes the same thing.</p>
+<p>We can check this in a typeset document like this:</p>
+<pre class="literal-block">\poldef f(x):= 1 - x + quo(x^5,1 - x + x^2);%
+\PolLet{g}={f}%
+\poldef f(z):= f^2;%
+\poldef f(T):= f(f);%
+\poldef k(w):= f-sqr(g(sqr(g)));%
+$$f(x) = \vcenter{\hsize10cm \PolTypeset{f}} $$
+$$g(z) = \PolTypeset{g} $$
+$$k(z) = \PolTypeset{k} $$
+\immediate\write128{f(x)=\PolToExpr{f}}% ah, here we see it also</pre>
+</dd>
+<dt><span class="docutils literal">\poldef <span class="pre">f'(x):=</span> diff1(f);</span></dt>
+<dd><p>(new at <span class="docutils literal">0.8</span>)</p>
+</dd>
+<dt><span class="docutils literal"><span class="pre">\PolDiff{f}{f'}</span></span></dt>
+<dd><p>Both set <span class="docutils literal">f'</span> (or any other chosen name) to the derivative
+of <span class="docutils literal">f</span>.</p>
+</dd>
+</dl>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>This is not done automatically. If some new definition needs to use
+the derivative of some available polynomial, that derivative
+polynomial must have been previously defined: something such as
+<span class="docutils literal"><span class="pre">f'(3)^2</span></span> will not work without a prior definition of <span class="docutils literal">f'</span>.</p>
+<p>But one can now use <span class="docutils literal">diff1(f)</span> for on-the-spot construction with no
+permanent declaration, so here <span class="docutils literal"><span class="pre">evalp(diff1(f),3)^2</span></span>. And
+<span class="docutils literal"><span class="pre">diff1(f)^2</span></span> is same as <span class="docutils literal"><span class="pre">f'^2</span></span>, assuming here <span class="docutils literal">f'</span> was declared
+to be the derived polynomial.</p>
+<p>Notice that the name <span class="docutils literal">diff1()</span> is experimental and may change. Use
+<span class="docutils literal"><span class="pre">\PolDiff{f}{f'}</span></span> as the stable interface.</p>
+</div>
+<dl>
+<dt><span class="docutils literal">\PolTypeset{P}</span></dt>
+<dd><p>Typesets (switching to math mode if in text mode):</p>
+<pre class="literal-block">\poldef f(x):=(3+x)^5;%
+\PolDiff{f}{f'}\PolDiff{f'}{f''}\PolDiff{f''}{f'''}%
+$$f(z) = \PolTypeset[z]{f} $$
+$$f'(z) = \PolTypeset[z]{f'} $$
+$$f''(z) = \PolTypeset[z]{f''} $$
+$$f'''(z)= \PolTypeset[z]{f'''} $$</pre>
+<p>See <a class="reference internal" href="#poltypeset">the documentation</a> for the configurability
+via macros.</p>
+<p>Since <span class="docutils literal">0.8</span> <a class="reference internal" href="#poltypeset">\PolTypeset</a> accepts directly an
+expression, it does not have to be a pre-declared polynomial name:</p>
+<pre class="literal-block">\PolTypeset{mul(x-i,i=1..5)}</pre>
+</dd>
+<dt><span class="docutils literal">\PolToExpr{P}</span></dt>
+<dd><p>Expandably (contrarily to <a class="reference internal" href="#poltypeset">\PolTypeset</a>)
+produces <span class="docutils literal">c_n*x^n + ... + c_0</span> starting from the leading
+coefficient. The <span class="docutils literal">+</span> signs are omitted if followed by negative
+coefficients.</p>
+<p>This is useful for console or file output. This syntax is Maple and
+PSTricks <span class="docutils literal">\psplot[algebraic]</span> compatible; and also it is
+compatible with <span class="docutils literal">\poldef</span> input syntax, of course. See
+<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a> for configuration of the <span class="docutils literal">^</span>, for example to
+use rather <span class="docutils literal">**</span> for Python syntax compliance.</p>
+<p>Changed at <span class="docutils literal">0.8</span>: the <span class="docutils literal">^</span> in output is by default of catcode 12
+so in a draft document one can use <span class="docutils literal">\PolToExpr{P}</span> inside the
+typesetting flow (without requiring math mode, where the <span class="docutils literal">*</span> would
+be funny and <span class="docutils literal">^12</span> would only put the <span class="docutils literal">1</span> as exponent anyhow;
+but arguably in text mode the <span class="docutils literal">+</span> and <span class="docutils literal">-</span> are not satisfactory
+for math, except sometimes in monospace typeface, and anyhow TeX is
+unable to break the expression across lines, barring special help).</p>
+<p>See <a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{&lt;pol. expr.&gt;}</a> and related macros for customization.</p>
+<p>Extended at <span class="docutils literal">0.8</span> to accept as argument not only the name of a
+polynomial variable but more generally any polynomial expression.</p>
+</dd>
+</dl>
+</div>
+<div class="section" id="the-polexpr-0-8-extensions-to-the-xintexpr-syntax">
+<span id="polexpr08"></span><h1><a class="toc-backref" href="#id45">The polexpr <span class="docutils literal">0.8</span> extensions to the <span class="docutils literal">\xintexpr</span> syntax</a></h1>
+<p>All the syntax elements described in this section can be used in the
+<span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span> context (where polynomials can be obtained from
+the <span class="docutils literal"><span class="pre">pol([])</span></span> constructor, once polexpr is loaded): their usage is
+not limited to only <span class="docutils literal">\poldef</span> context.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>If a variable <span class="docutils literal">myPol</span> defined via <span class="docutils literal">\xintdefvar</span> turns out
+to be a polynomial, the difference with those declared via <span class="docutils literal">\poldef</span>
+will be:</p>
+<ol class="arabic">
+<li><p><span class="docutils literal">myPol</span> is not usable as <em>function</em>, but only as a variable.
+Attention that <span class="docutils literal">f(x)</span> if <span class="docutils literal">f</span> is only a variable (even a
+polynomial one) will actually compute <span class="docutils literal">f * x</span>.</p></li>
+<li><p><span class="docutils literal">myPol</span> is not known to the polexpr package, hence for example the
+macros to achieve localization of its roots are unavailable.</p>
+<p>In a parallel universe I perhaps have implemented this expandably
+which means it could then be accessible with syntax such as
+<span class="docutils literal"><span class="pre">rightmostroot(pol([42,1,34,2,-8,1]))</span></span> but...</p>
+</li>
+</ol>
+</div>
+<div class="section" id="warning-about-unstability-of-the-new-syntax">
+<h2><a class="toc-backref" href="#id46">Warning about unstability of the new syntax</a></h2>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>Consider the entirety of this section as <strong>UNSTABLE</strong> and
+<strong>EXPERIMENTAL</strong> (except perhaps regarding <span class="docutils literal">+</span>, <span class="docutils literal">-</span> and <span class="docutils literal">*</span>).</p>
+<p>And this applies even to items not explicitly flagged with one of
+<strong>unstable</strong>, <strong>Unstable</strong>, or <strong>UNSTABLE</strong> which only reflect that
+documentation was written over a period of time exceeding one minute,
+enough for the author mood changes to kick in.</p>
+<p>It is hard to find good names at the start of a life-long extension
+program of functionalities, and perhaps in future it will be
+preferred to rename everything or give to some functions other
+meanings. Such quasi-complete renamings happened already a few times
+during the week devoted to development.</p>
+</div>
+</div>
+<div class="section" id="infix-operators">
+<h2><a class="toc-backref" href="#id47">Infix operators <span class="docutils literal">+, <span class="pre">-,</span> *, /, **, ^</span></a></h2>
+<blockquote>
+<p>As has been explained in the <a class="reference internal" href="#quick-syntax-overview">Quick syntax overview</a> these infix
+operators have been made polynomial aware, not only in the
+<span class="docutils literal">\poldef</span> context, but generally in any <span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span>
+context, inclusive of <span class="docutils literal">\xintdeffunc</span>.</p>
+<p>Conversely functions declared via <span class="docutils literal">\xintdeffunc</span> and making use of
+these operators will automatically be able to accept polynomials
+declared from <span class="docutils literal">\poldef</span> as variables.</p>
+<p>Usage of <span class="docutils literal">/</span> for euclidean division of polynomials is <strong>deprecated</strong>.
+Only in case of a scalar denominator is it to be considered stable.
+Please use rather <span class="docutils literal">quo()</span>.</p>
+</blockquote>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>The <span class="docutils literal">pow(x,a)</span> function of <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> for <span class="docutils literal">x^a</span> with fractional
+<span class="docutils literal">a</span> will not (with current <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> <span class="docutils literal">1.4d</span>) accept a polynomial
+as first variable even if the second argument is an integer.</p>
+<p>It is possible (via <span class="docutils literal">\poormanloghack</span>) to instruct <span class="docutils literal">\xintexpr</span> to
+let <span class="docutils literal"><span class="pre">x**a</span></span> or <span class="docutils literal">x^a</span> be as <span class="docutils literal">pow(x,a)</span>. If this is done <span class="docutils literal">**</span>
+(resp. <span class="docutils literal">^</span>) will become unusable with polynomials (i.e. will create
+a low-level TeX error).</p>
+<p>And vice versa if polexpr gets loaded after the <span class="docutils literal">\poormanloghack</span>
+was used, <span class="docutils literal">**</span> and <span class="docutils literal">^</span> in <span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span> will again only
+accept integer powers.</p>
+<p>Thus employ <span class="docutils literal">\poormanloghack</span> for at most one of <span class="docutils literal">**</span> or <span class="docutils literal">^</span>
+in order to keep one of them available for polynomials and integer
+powers.</p>
+</div>
+</div>
+<div class="section" id="experimental-infix-operators">
+<h2><a class="toc-backref" href="#id48">Experimental infix operators <span class="docutils literal">//, /:</span></a></h2>
+<blockquote>
+<p>Here is the tentative behaviour of <span class="docutils literal"><span class="pre">A//B</span></span> according to types:</p>
+<ul class="simple">
+<li><p><span class="docutils literal">A</span> non scalar and <span class="docutils literal">B</span> non scalar: euclidean quotient,</p></li>
+<li><p><span class="docutils literal">A</span> scalar and <span class="docutils literal">B</span> scalar: floored division,</p></li>
+<li><p><span class="docutils literal">A</span> scalar and <span class="docutils literal">B</span> non scalar: produces zero,</p></li>
+<li><p><span class="docutils literal">A</span> non scalar and <span class="docutils literal">B</span> scalar: coefficient per
+coefficient floored division.</p></li>
+</ul>
+<p>This is an <strong>experimental</strong> overloading of the <span class="docutils literal">//</span> and <span class="docutils literal">/:</span>
+from <span class="docutils literal">\xintexpr</span>.</p>
+<p>The behaviour in the last case, but not only, is to be considerd
+<strong>unstable</strong>. The alternative would be for <span class="docutils literal"><span class="pre">A//B</span></span> with <span class="docutils literal">B</span>
+scalar to act as <span class="docutils literal">quo(A,B)</span>. But, we have currently chosen to let
+<span class="docutils literal">//B</span> for a scalar <span class="docutils literal">B</span> act coefficient-wise on the numerator.
+Beware that it thus means it can be employed with the idea of doing
+euclidean division only by checking that <span class="docutils literal">B</span> is non-scalar.</p>
+<p>The <span class="docutils literal">/:</span> operator provides the associated remainder so always
+<span class="docutils literal">A</span> is reconstructed from <span class="docutils literal"><span class="pre">(A//B)*B</span> + <span class="pre">A/:B</span></span>.</p>
+<p>If <span class="docutils literal">:</span> is active character use <span class="docutils literal">/\string:</span> (it is safer to use
+<span class="docutils literal">/\string :</span> if it is not known if <span class="docutils literal">:</span> has catcode other, letter,
+or is active, but note that <span class="docutils literal">/:</span> is fine and needs no precaution if
+<span class="docutils literal">:</span> has catcode letter, it is only an active <span class="docutils literal">:</span> which is
+problematic, like for all other characters possibly used in an
+expression).</p>
+<blockquote>
+<p><strong>UNSTABLE</strong></p>
+<p>As explained above, there are (among other things) hesitations
+about behaviour with <span class="docutils literal">pol2</span> a scalar.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="comparison-operators">
+<h2><a class="toc-backref" href="#id49">Comparison operators <span class="docutils literal">&lt;, &gt;, &lt;=, &gt;=, ==, !=</span></a></h2>
+<blockquote>
+<p><strong>NOT YET IMPLEMENTED</strong></p>
+<p>As the internal representation by <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> and <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> of
+fractions does not currently require them to be in reduced terms,
+such operations would be a bit costly as they could not benefit from
+the <span class="docutils literal">\pdfstrcmp</span> engine primitive. In fact <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> does not use
+it yet anywhere, even for normalized pure integers, although it could
+speed up signifcantly certain aspects of core arithmetic.</p>
+<p>Equality of polynomials can currently be tested by computing the
+difference, which is a bit costly. And of course the <span class="docutils literal">deg()</span>
+function allows comparing degrees. In this context note the
+following syntax:</p>
+<pre class="literal-block">(deg(Q)) ?? { zero } { non-zero scalar } { non-scalar }</pre>
+<p>for branching.</p>
+</blockquote>
+</div>
+<div class="section" id="pol-nutple-expression">
+<h2><a class="toc-backref" href="#id50"><span class="docutils literal"><span class="pre">pol(&lt;nutple</span> expression&gt;)</span></a></h2>
+<blockquote>
+<p>This converts a nutple <span class="docutils literal"><span class="pre">[c0,c1,...,cN]</span></span> into the polynomial
+variable having these coefficients. Attention that the square
+brackets are <strong>mandatory</strong>, except of course if the argument is
+actually an expression producing such a &quot;nutple&quot;.</p>
+<blockquote>
+<p>Currently, this process will not normalize the coefficients (such
+as reducing to lowest terms), it only trims out the leading zero
+coefficients.</p>
+</blockquote>
+<p>Inside <span class="docutils literal">\xintexpr</span>, this is the only (allowed) way to create ex
+nihilo a polynomial variable; inside <span class="docutils literal">\poldef</span> it is an alternative
+input syntax which is more efficient than typing <span class="docutils literal">c0 + c1 * x + c2 * x^2 + ...</span>.</p>
+</blockquote>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>Whenever an expression with polynomials collapses to a constant, it
+becomes a scalar. There is currently no distinction during the
+parsing of expressions by <span class="docutils literal">\poldef</span>
+or <span class="docutils literal">\xintexpr</span> between constant polynomial variables and scalar
+variables.</p>
+<p>Naturally, <span class="docutils literal">\poldef</span> can be used to declare a constant polynomial
+<span class="docutils literal">P</span>, then <span class="docutils literal">P</span> can also be used as function having a value
+independent of argument, but as a variable, it is non-distinguishable
+from a scalar (of course functions such as <span class="docutils literal">deg()</span> tacitly
+consider scalars to be constant polynomials).</p>
+<p>Notice that we tend to use the vocable &quot;variable&quot; to refer to
+arbitrary expressions used as function arguments, without implying
+that we are actually referring to pre-declared variables in the sense
+of <span class="docutils literal">\xintdefvar</span>.</p>
+</div>
+</div>
+<div class="section" id="xinteval-pol-expr">
+<h2><a class="toc-backref" href="#id51"><span class="docutils literal"><span class="pre">\xinteval{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></h2>
+<blockquote>
+<p>This is documented here for lack of a better place: it evaluates the
+polynomial expression then outputs the &quot;string&quot; <span class="docutils literal"><span class="pre">pol([c0,</span> c1, <span class="pre">...,</span> cN])</span>
+if the degree <span class="docutils literal">N</span> is at least one (and the usual scalar output else).</p>
+<p>The &quot;pol&quot; word uses letter catcodes, which is actually mandatory for
+this output to be usable as input, but it does not make sense to use
+this inside <span class="docutils literal">\poldef</span> or <span class="docutils literal">\xintexpr</span> at it means basically
+executing <span class="docutils literal"><span class="pre">pol(coeffs(..expression..))</span></span> which is but a convoluted
+way to obtain the same result as <span class="docutils literal"><span class="pre">(..expression..)</span></span> (the
+parentheses delimiting the polynomial expression).</p>
+<p>For example, <span class="docutils literal"><span class="pre">\xinteval{(1+pol([0,1]))^10}</span></span> expands (in two steps)
+to:</p>
+<pre class="literal-block">pol([1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1])</pre>
+<p>You do need loading polexpr for this, else of course <span class="docutils literal"><span class="pre">pol([])</span></span>
+remains unknown to <span class="docutils literal">\xinteval{}</span> as well as the polynomial algebra !
+This example can also be done as
+<span class="docutils literal"><span class="pre">\xinteval{subs((1+x)^10,x=pol([0,1]))}</span></span>.</p>
+<p>I hesitated using as output the polynomial notation as produced by
+<a class="reference internal" href="#poltoexpr">\PolToExpr{}</a>, but finally opted for this.</p>
+</blockquote>
+</div>
+<div class="section" id="evalp-pol-expr-pol-expr">
+<h2><a class="toc-backref" href="#id52"><span class="docutils literal"><span class="pre">evalp(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. expr&gt;)</span></a></h2>
+<blockquote>
+<p>Evaluates the first argument as a polynomial function of the
+second. Usually the second argument will be scalar, but this is not
+required:</p>
+<pre class="literal-block">\poldef K(x):= evalp(-3x^3-5x+1,-27x^4+5x-2);</pre>
+<p>If the first argument is an already declared polynomial <span class="docutils literal">P</span>, use
+rather the functional form <span class="docutils literal">P()</span> (which can accept a numerical as
+well as polynomial argument) as it is more efficient.</p>
+<p>One can also use <span class="docutils literal">subs()</span> syntax <a class="footnote-reference brackets" href="#id5" id="id4">2</a> (see <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> documentation):</p>
+<pre class="literal-block">\poldef K(x):= subs(-3y^3-5y+1, y = -27x^4+5x-2);</pre>
+<p>but the <span class="docutils literal">evalp()</span> will use a Horner evaluation scheme which is
+usually more efficient.</p>
+<dl class="footnote brackets">
+<dt class="label" id="id5"><span class="brackets"><a class="fn-backref" href="#id4">2</a></span></dt>
+<dd><p>by the way Maple uses the opposite, hence wrong, order
+<span class="docutils literal"><span class="pre">subs(x=...,</span> P)</span> but was written before computer science
+reached the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> heights. However it makes validating
+Maple results by polexpr sometimes cumbersome, but perhaps
+they will update it at some point.</p>
+</dd>
+</dl>
+<blockquote>
+<p><strong>name unstable</strong></p>
+<p><span class="docutils literal">poleval</span>? <span class="docutils literal">evalpol</span>? <span class="docutils literal">peval</span>? <span class="docutils literal">evalp</span>? <span class="docutils literal">value</span>?
+<span class="docutils literal">eval</span>? <span class="docutils literal">evalat</span>? <span class="docutils literal">eval1at2</span>? <span class="docutils literal">evalat2nd</span>?</p>
+<p>Life is so complicated when one asks questions. Not everybody does,
+though, as is amply demonstrated these days.</p>
+<p><strong>syntax unstable</strong></p>
+<p>I am hesitating about permuting the order of the arguments.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="deg-pol-expr">
+<h2><a class="toc-backref" href="#id53"><span class="docutils literal"><span class="pre">deg(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>Computes the degree.</p>
+</blockquote>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>As <span class="docutils literal">\xintexpr</span> does not yet support infinities, the degree of
+the zero polynomial is <span class="docutils literal"><span class="pre">-1</span></span>. Beware that this breaks additivity
+of degrees, but <span class="docutils literal"><span class="pre">deg(P)&lt;0</span></span> correctly detects the zero polynomial,
+and <span class="docutils literal"><span class="pre">deg(P)&lt;=0</span></span> detects scalars.</p>
+</div>
+</div>
+<div class="section" id="coeffs-pol-expr">
+<h2><a class="toc-backref" href="#id54"><span class="docutils literal"><span class="pre">coeffs(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>Produces the nutple <span class="docutils literal"><span class="pre">[c0,c1,...,cN]</span></span> of coefficients. The highest
+degree coefficient is always non zero (except for the zero
+polynomial...).</p>
+<blockquote>
+<p><strong>name unstable</strong></p>
+<p>I am considering in particular using <span class="docutils literal">polcoeffs()</span> to avoid
+having to overload <span class="docutils literal">coeffs()</span> in future when matrix type
+will be added to <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="coeff-pol-expr-num-expr">
+<h2><a class="toc-backref" href="#id55"><span class="docutils literal"><span class="pre">coeff(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;num. <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>As expected. Produces zero if <span class="docutils literal">n</span> is negative or higher than the
+degree.</p>
+<blockquote>
+<p><strong>name and syntax unstable</strong></p>
+<p>I am hesitating with <span class="docutils literal">coeff(n,pol)</span> syntax and also perhaps
+using <span class="docutils literal">polcoeff()</span> in order to avoid having to overload
+<span class="docutils literal">coeff()</span> when matrix type will be added to <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="lcoeff-pol-expr">
+<h2><a class="toc-backref" href="#id56"><span class="docutils literal"><span class="pre">lcoeff(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The leading coefficient.</p>
+</blockquote>
+</div>
+<div class="section" id="monicpart-pol-expr">
+<h2><a class="toc-backref" href="#id57"><span class="docutils literal"><span class="pre">monicpart(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>Divides by the leading coefficient, except that <span class="docutils literal"><span class="pre">monicpart(0)==0</span></span>.</p>
+<blockquote>
+<p><strong>unstable</strong></p>
+<p>Currently the coefficients are reduced to lowest terms (contrarily
+to legacy behaviour of <a class="reference internal" href="#polmakemonic">\PolMakeMonic</a>), and
+additionally the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> <span class="docutils literal">\xintREZ</span> macro is applied which
+extracts powers of ten from numerator or denominator and stores
+them internally separately. This is generally beneficial to
+efficiency of multiplication.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="icontent-pol-expr">
+<h2><a class="toc-backref" href="#id58"><span class="docutils literal"><span class="pre">icontent(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The gcd of the (possibly fractional) polynomial coefficients. It is
+always produced as an irreducible (non-negative) fraction. According
+to Gauss theorem the content of a product is the product of the
+contents.</p>
+<blockquote>
+<p><strong>name unstable</strong></p>
+<p>Some hesitation with using <span class="docutils literal">content()</span> rather.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="primpart-pol-expr">
+<h2><a class="toc-backref" href="#id59"><span class="docutils literal"><span class="pre">primpart(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The quotient (except for the zero polynomial) by
+<span class="docutils literal"><span class="pre">icontent(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span>. This is thus a polynomial with
+integer coefficients having <span class="docutils literal">1</span> as greatest common divisor. The
+sign of the leading coefficient is the same as in the original.</p>
+<p>And <span class="docutils literal"><span class="pre">primpart(0)==0</span></span>.</p>
+<p>The trailing zeros of the integer coefficients are extracted
+into a power of ten exponent part, in the internal representation.</p>
+</blockquote>
+</div>
+<div class="section" id="quorem-pol-expr-pol-expr">
+<h2><a class="toc-backref" href="#id60"><span class="docutils literal"><span class="pre">quorem(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>Produces a nutple <span class="docutils literal">[Q,R]</span> with <span class="docutils literal">Q</span> the euclidean quotient and
+<span class="docutils literal">R</span> the remainder.</p>
+<blockquote>
+<p><strong>name unstable</strong></p>
+<p><span class="docutils literal">poldiv()</span>?</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="quo-pol-expr-pol-expr">
+<h2><a class="toc-backref" href="#id61"><span class="docutils literal"><span class="pre">quo(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The euclidean quotient.</p>
+<p>The deprecated <span class="docutils literal">pol1/pol2</span> syntax computes the same polynomial.</p>
+</blockquote>
+</div>
+<div class="section" id="rem-pol-expr-pol-expr">
+<h2><a class="toc-backref" href="#id62"><span class="docutils literal"><span class="pre">rem(&lt;pol.</span> <span class="pre">expr.&gt;,</span> &lt;pol. <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The euclidean remainder. If <span class="docutils literal">pol2</span> is a (non-zero) scalar, this is
+zero.</p>
+<p>There is no infix operator associated to this, for lack of evident
+notation. Please advise.</p>
+<p><span class="docutils literal">/:</span> can be used if one is certain that <span class="docutils literal">pol2</span> is of
+degree at least one. But read the warning about it being unstable
+even in that case.</p>
+</blockquote>
+</div>
+<div class="section" id="prem-pol-expr-1-pol-expr-2">
+<span id="prem"></span><h2><a class="toc-backref" href="#id63"><span class="docutils literal"><span class="pre">prem(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></h2>
+<blockquote>
+<p>Produces a nutple <span class="docutils literal">[m, spR]</span> where <span class="docutils literal">spR</span> is the (special) pseudo
+Euclidean remainder. Its description is:</p>
+<ul>
+<li><p>the standard euclidean remainder <span class="docutils literal">R</span> is <span class="docutils literal">spR/m</span></p></li>
+<li><p><span class="docutils literal">m = b^f</span> with <span class="docutils literal">b</span> equal to the <strong>absolute value</strong> of the
+leading coefficient of <span class="docutils literal">pol2</span>,</p></li>
+<li><p><span class="docutils literal">f</span> is the number of non-zero coefficients in the euclidean
+quotient, if <span class="docutils literal"><span class="pre">deg(pol2)&gt;0</span></span> (even if the remainder vanishes).</p>
+<p>If <span class="docutils literal">pol2</span> is a scalar however, the function outputs <span class="docutils literal">[1,0]</span>.</p>
+</li>
+</ul>
+<p>With these definitions one can show that if both <span class="docutils literal">pol1</span> and
+<span class="docutils literal">pol2</span> have integer coefficients, then this is also the case of
+<span class="docutils literal">spR</span>, which makes its interest (and also <span class="docutils literal">m*Q</span> has integer
+coefficients, with <span class="docutils literal">Q</span> the euclidean quotient, if <span class="docutils literal"><span class="pre">deg(pol2)&gt;0</span></span>).
+Also, <span class="docutils literal">prem()</span> is computed faster than <span class="docutils literal">rem()</span> for such integer
+coefficients polynomials.</p>
+<div class="admonition hint">
+<p class="admonition-title">Hint</p>
+<p>If you want the euclidean quotient <span class="docutils literal">R</span> evaluated via <span class="docutils literal">spR/m</span>
+(which may be faster, even with non integer coefficients) use
+<span class="docutils literal"><span class="pre">subs(last(x)/first(x),x=prem(P,Q))</span></span> syntax as it avoids
+computing <span class="docutils literal">prem(P,Q)</span> twice. This does the trick both in
+<span class="docutils literal">\poldef</span> or in <span class="docutils literal">\xintdefvar</span>.</p>
+<p>However, as is explained in the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> documentation, using
+such syntax in an <span class="docutils literal">\xintdeffunc</span> is (a.t.t.o.w) illusory, due to
+technicalities of how <span class="docutils literal">subs()</span> gets converted into nested
+expandable macros. One needs an auxiliary function like this:</p>
+<pre class="literal-block">\xintdeffunc lastoverfirst(x):=last(x)/first(x);
+\xintdeffunc myR(x)=lastoverfirst(prem(x));</pre>
+<p>Then, <span class="docutils literal">myR(pol1,pol2)</span> will evaluate <span class="docutils literal">prem(pol1,pol2)</span> only
+once and compute a polynomial identical to the euclidean
+remainder (internal representations of coefficients may differ).</p>
+</div>
+<p>In this case of integer coefficients polynomials, the polexpr
+internal representation of the integer coefficients in the pseudo
+remainder will be with unit denominators only if that was already the
+case for those of <span class="docutils literal">pol1</span> and <span class="docutils literal">pol2</span> (no automatic reduction to
+lowest terms is made prior or after computation).</p>
+<p>Pay attention here that <span class="docutils literal">b</span> is the <strong>absolute value</strong> of the
+leading coefficient of <span class="docutils literal">pol2</span>. Thus the coefficients of the
+pseudo-remainder have the same signs as those of the standard
+remainder. This diverges from Maple's function with the same name.</p>
+</blockquote>
+</div>
+<div class="section" id="divmod-pol-expr-1-pol-expr-2">
+<h2><a class="toc-backref" href="#id64"><span class="docutils literal"><span class="pre">divmod(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></h2>
+<blockquote>
+<p>Overloads the scalar <span class="docutils literal">divmod()</span> and associates it with the
+experimental <span class="docutils literal">//</span> and <span class="docutils literal">/:</span> as extended to the polynomial type.</p>
+<p>In particular when both <span class="docutils literal">pol1</span> and <span class="docutils literal">pol2</span> are scalars, this is
+the usual <span class="docutils literal">divmod()</span> (as in Python) and for <span class="docutils literal">pol1</span> and <span class="docutils literal">pol2</span>
+non constant polynomials, this is the same as <span class="docutils literal">quorem()</span>.</p>
+<blockquote>
+<p><strong>Highly unstable</strong> overloading of <span class="docutils literal">\xinteval</span>'s <span class="docutils literal">divmod()</span>.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="mod-pol-expr-1-pol-expr-2">
+<h2><a class="toc-backref" href="#id65"><span class="docutils literal"><span class="pre">mod(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></h2>
+<blockquote>
+<p>The <span class="docutils literal">R</span> of the <span class="docutils literal">divmod()</span> output. Same as <span class="docutils literal">R</span> of <span class="docutils literal">quorem()</span>
+when the second argument <span class="docutils literal">pol2</span> is of degree at least one.</p>
+<blockquote>
+<p><strong>Highly unstable</strong> overloading of <span class="docutils literal">\xinteval</span>'s <span class="docutils literal">mod()</span>.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="polgcd-pol-expr-1-pol-expr-2">
+<h2><a class="toc-backref" href="#id66"><span class="docutils literal"><span class="pre">polgcd(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;, <span class="pre">...)</span></span></a></h2>
+<blockquote>
+<p>Evaluates to the greatest common polynomial divisor of all the
+polynomial inputs. The output is a <strong>primitive</strong> (in particular,
+with integer coefficients) polynomial. It is zero if and only if all
+inputs vanish.</p>
+<p>Attention, there must be either at least two polynomial variables, or
+alternatively, only one argument which then must be a bracketed list
+or some expression or variable evaluating to such a &quot;nutple&quot; whose
+items are polynomials (see the documentation of the scalar <span class="docutils literal">gcd()</span>
+in <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>).</p>
+<blockquote>
+<p>The two variable case could (and was, during development) have been
+defined at user level like this:</p>
+<pre class="literal-block">\xintdeffunc polgcd_(P,Q):=
+ (deg(Q))??{P}{1}{polgcd_(Q,primpart(last(prem(P,Q))))};
+\xintdeffunc polgcd(P,Q):=polgcd_(primpart(P),primpart(Q));%</pre>
+<p>This is basically what is done internally for two polynomials, up
+to some internal optimizations.</p>
+</blockquote>
+<p><strong>UNSTABLE</strong></p>
+<p>I hesitate between returning a <em>primitive</em> or a <em>monic</em> polynomial.
+Maple returns a primitive polynomial if all inputs <a class="footnote-reference brackets" href="#id7" id="id6">3</a> have integer
+coefficients, else it returns a monic polynomial, but this is
+complicated technically for us to add such a check and would add
+serious overhead.</p>
+<p>Internally, computations are done using primitive
+integer-coefficients polynomials (as can be seen in the function
+template above). So I decided finally to output a primitive
+polynomial, as one can always apply <span class="docutils literal">monicpart()</span> to it.</p>
+<p>Attention that this is at odds with behaviour of the legacy
+<a class="reference internal" href="#polgcd">\PolGCD</a> (non expandable) macro.</p>
+<dl class="footnote brackets">
+<dt class="label" id="id7"><span class="brackets"><a class="fn-backref" href="#id6">3</a></span></dt>
+<dd><p>actually, only two polynomial arguments are allowed by Maple's
+<span class="docutils literal">gcd()</span> as far as I know.</p>
+</dd>
+</dl>
+</blockquote>
+</div>
+<div class="section" id="resultant-pol-expr-1-pol-expr-2">
+<h2><a class="toc-backref" href="#id67"><span class="docutils literal"><span class="pre">resultant(&lt;pol.</span> expr. 1&gt;, &lt;pol. expr. 2&gt;)</span></a></h2>
+<blockquote>
+<p>The resultant.</p>
+<blockquote>
+<p><strong>NOT YET IMPLEMENTED</strong></p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="disc-pol-expr">
+<h2><a class="toc-backref" href="#id68"><span class="docutils literal"><span class="pre">disc(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The discriminant.</p>
+<blockquote>
+<p><strong>NOT YET IMPLEMENTED</strong></p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="polpowmod-pol-expr-1-num-expr-pol-expr-2">
+<h2><a class="toc-backref" href="#id69"><span class="docutils literal"><span class="pre">polpowmod(&lt;pol.</span> expr. 1&gt;, &lt;num. <span class="pre">expr.&gt;,</span> &lt;pol. expr. 2&gt;)</span></a></h2>
+<blockquote>
+<p>Modular exponentiation: <span class="docutils literal">mod(pol1^N, pol2)</span> in a more efficient
+manner than first computing <span class="docutils literal">pol1^N</span> then reducing modulo <span class="docutils literal">pol2</span>.</p>
+<p>Attention that this is using the <span class="docutils literal">mod()</span> operation, whose current
+experimental status is as follows:</p>
+<ul class="simple">
+<li><p>if <span class="docutils literal"><span class="pre">deg(pol2)&gt;0</span></span>, the euclidean remainder operation,</p></li>
+<li><p>if <span class="docutils literal">pol2</span> is a scalar, coefficient-wise reduction modulo <span class="docutils literal">pol2</span>.</p></li>
+</ul>
+<p><strong>UNSTABLE</strong></p>
+<blockquote>
+<p>This is currently implemented at high level via <span class="docutils literal">\xintdeffunc</span> and
+recursive definitions, which were copied over from a scalar example
+in the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> manual:</p>
+<pre class="literal-block">\xintdeffunc polpowmod_(P, m, Q) :=
+ isone(m)?
+ % m=1: return P modulo Q
+ { mod(P,Q) }
+ % m &gt; 1: test if odd or even and do recursive call
+ { odd(m)? { mod(P*sqr(polpowmod_(P, m//2, Q)), Q) }
+ { mod( sqr(polpowmod_(P, m//2, Q)), Q) }
+ }
+ ;%
+\xintdeffunc polpowmod(P, m, Q) := (m)?{polpowmod_(P, m, Q)}{1};%</pre>
+<p>Negative exponents are not currently implemented.</p>
+<p>For example:</p>
+<pre class="literal-block">\xinteval{subs(polpowmod(1+x,100,x^7),x=pol([0,1]))}
+\xinteval{subs(polpowmod(1+x,20,10), x=pol([0,1]))}</pre>
+<p>produce respectively:</p>
+<pre class="literal-block">pol([1, 100, 4950, 161700, 3921225, 75287520, 1192052400])
+pol([1, 0, 0, 0, 5, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4, 5, 0, 0, 0, 1])</pre>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="rdcoeffs-pol-expr">
+<h2><a class="toc-backref" href="#id70"><span class="docutils literal"><span class="pre">rdcoeffs(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>This operates on the internal representation of the coefficients,
+reducing them to lowest terms.</p>
+<blockquote>
+<p><strong>name HIGHLY undecided</strong></p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="rdzcoeffs-pol-expr">
+<h2><a class="toc-backref" href="#id71"><span class="docutils literal"><span class="pre">rdzcoeffs(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>This operates on the internal representation of the coefficients,
+reducing them to lowest terms then extracting from numerator
+or denominator the maximal power of ten to store as a decimal
+exponent.</p>
+<p>This is sometimes favourable to more efficient polynomial algebra
+computations.</p>
+<blockquote>
+<p><strong>name HIGHLY undecided</strong></p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="diff1-pol-expr">
+<h2><a class="toc-backref" href="#id72"><span class="docutils literal"><span class="pre">diff1(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The first derivative.</p>
+<blockquote>
+<p><strong>name UNSTABLE</strong></p>
+<p>This name may be used in future to be the partial derivative with
+respect to a first variable.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="diff2-pol-expr">
+<h2><a class="toc-backref" href="#id73"><span class="docutils literal"><span class="pre">diff2(&lt;pol.</span> <span class="pre">expr.&gt;)</span></span></a></h2>
+<blockquote>
+<p>The second derivative.</p>
+<blockquote>
+<p><strong>name UNSTABLE</strong></p>
+<p>This name may be used in future to be the partial derivative with
+respect to a second variable.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="diffn-pol-expr-p-num-expr-n">
+<h2><a class="toc-backref" href="#id74"><span class="docutils literal"><span class="pre">diffn(&lt;pol.</span> expr. P&gt;, &lt;num. expr. n&gt;)</span></a></h2>
+<blockquote>
+<p>The <span class="docutils literal">n</span>th derivative of <span class="docutils literal">P</span>. For <span class="docutils literal">n&lt;0</span> computes iterated primitives
+vanishing at the origin.</p>
+<p>The coefficients are not reduced to lowest terms.</p>
+<blockquote>
+<p><strong>name and syntax UNSTABLE</strong></p>
+<p>I am also considering reversing the order of the arguments.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="antider-pol-expr-p">
+<h2><a class="toc-backref" href="#id75"><span class="docutils literal"><span class="pre">antider(&lt;pol.</span> expr. P&gt;)</span></a></h2>
+<blockquote>
+<p>The primitive of <span class="docutils literal">P</span> with no constant term. Same as <span class="docutils literal"><span class="pre">diffn(P,-1)</span></span>.</p>
+</blockquote>
+</div>
+<div class="section" id="intfrom-pol-expr-p-pol-expr-c">
+<h2><a class="toc-backref" href="#id76"><span class="docutils literal"><span class="pre">intfrom(&lt;pol.</span> expr. P&gt;, &lt;pol. expr. c&gt;)</span></a></h2>
+<blockquote>
+<p>The primitive of <span class="docutils literal">P</span> vanishing at <span class="docutils literal">c</span>, i.e. <span class="docutils literal">\int_c^x P(t)dt</span>.</p>
+<p>Also <span class="docutils literal">c</span> can be a polynomial... so if <span class="docutils literal">c</span> is monomial <span class="docutils literal">x</span>
+this will give zero!</p>
+<blockquote>
+<p><strong>UNSTABLE</strong></p>
+<p>Allowing general polynomial variable for <span class="docutils literal">c</span> adds a bit of
+overhead to the case of a pure scalar. So I am hesitating
+maintaining this feature whose interest appears dubious.</p>
+</blockquote>
+</blockquote>
+</div>
+<div class="section" id="integral-pol-expr-p-pol-expr-a-pol-expr-b">
+<h2><a class="toc-backref" href="#id77"><span class="docutils literal"><span class="pre">integral(&lt;pol.</span> expr. P&gt;, [&lt;pol. expr. a&gt;, &lt;pol. expr. <span class="pre">b&gt;])</span></span></a></h2>
+<blockquote>
+<p><span class="docutils literal">\int_a^b P(t)dt</span>.</p>
+<p>The brackets here are not denoting an optional argument
+but a <em>mandatory</em> nutple argument <span class="docutils literal">[a, b]</span> with <em>two items</em>.</p>
+<p><span class="docutils literal">a</span> and <span class="docutils literal">b</span> are not restricted to be scalars, they can be
+polynomials.</p>
+<blockquote>
+<p>To compute <span class="docutils literal"><span class="pre">\int_{x-1}^x</span> P(t)dt</span> it is more efficient to use
+<span class="docutils literal"><span class="pre">intfrom(x-1)</span></span>.</p>
+<p>Similary to compute <span class="docutils literal"><span class="pre">\int_x^{x+1}</span> P(t)dt</span>, use <span class="docutils literal"><span class="pre">-intfrom(x+1)</span></span>.</p>
+<p><strong>UNSTABLE</strong></p>
+<p>Am I right to allow general polynomials <span class="docutils literal">a</span> and <span class="docutils literal">b</span> hence add
+overhead to the pure scalar case ?</p>
+</blockquote>
+</blockquote>
+</div>
+</div>
+<div class="section" id="examples-of-localization-of-roots">
+<h1><a class="toc-backref" href="#id78">Examples of localization of roots</a></h1>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>As of <span class="docutils literal">0.8</span>, <span class="docutils literal">polexpr</span> is usable with Plain TeX and not only with
+LaTeX, the examples of this section have been converted to use a
+syntax which (at least at time of writing, March 2021) works in both.</p>
+<p>This is done in order for the examples to be easy to copy-paste to
+documents using either macro format.</p>
+</div>
+<ul>
+<li><p>To make printed decimal numbers more enjoyable than via
+<span class="docutils literal">\xintSignedFrac</span> (or <span class="docutils literal">\xintSignedFwOver</span> with Plain):</p>
+<pre class="literal-block">\def\PolTypesetOne#1{\PolDecToString{\xintREZ{#1}}}%</pre>
+<p><span class="docutils literal">\PolDecToString</span> will use decimal notation to incorporate the power
+of ten part; and the <span class="docutils literal">\xintREZ</span> will have the effect to suppress
+trailing zeros if present in raw numerator (if those digits end up
+after decimal mark.) Notice that the above are expandable macros and
+that one can also do:</p>
+<pre class="literal-block">\def\PolToExprCmd#1{\PolDecToString{\xintREZ{#1}}}%</pre>
+<p>to modify output of <a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{&lt;pol. expr.&gt;}</a>.</p>
+</li>
+<li><p>For extra info in log file use <span class="docutils literal">\xintverbosetrue</span>.</p></li>
+</ul>
+<div class="section" id="a-typical-example">
+<h2><a class="toc-backref" href="#id79">A typical example</a></h2>
+<p>In this example the polynomial is square-free.</p>
+<pre class="literal-block">\poldef f(x) := x^7 - x^6 - 2x + 1;
+
+\PolToSturm{f}{f}
+\PolSturmIsolateZeros{f}
+The \PolTypeset{f} polynomial has \PolSturmNbOfIsolatedZeros{f} distinct real
+roots which are located in the following intervals:
+\PolPrintIntervals{f}
+Here is the second root with ten more decimal digits:
+\PolRefineInterval[10]{f}{2}
+$$\PolSturmIsolatedZeroLeft{f}{2}&lt;Z_2&lt;\PolSturmIsolatedZeroRight{f}{2}$$
+And here is the first root with twenty digits after decimal mark:
+\PolEnsureIntervalLength{f}{1}{-20}
+$$\PolSturmIsolatedZeroLeft{f}{1}&lt;Z_1&lt;\PolSturmIsolatedZeroRight{f}{1}$$
+The first element of the Sturm chain has degree $\PolDegree{f_0}$. As
+this is the original degreee $\PolDegree{f}$ we know that $f$ is square free.
+Its derivative is up to a constant \PolTypeset{f_1} (in this example
+it is identical with it).
+\PolToSturm{f_1}{f_1}\PolSturmIsolateZeros{f_1}%
+The derivative has \PolSturmNbOfIsolatedZeros{f_1} distinct real
+roots:
+\PolPrintIntervals[W]{f_1}
+\PolEnsureIntervalLengths{f_1}{-10}%
+Here they are with ten digits after decimal mark:
+\PolPrintIntervals[W]{f_1}
+\PolDiff{f_1}{f''}
+\PolToSturm{f''}{f''}
+\PolSturmIsolateZeros{f''}
+The second derivative is \PolTypeset{f''}.
+It has \PolSturmNbOfIsolatedZeros{f''} distinct real
+roots:
+\PolPrintIntervals[X]{f''}
+Here is the positive one with 20 digits after decimal mark:
+\PolEnsureIntervalLength{f''}{2}{-20}%
+$$X_2 = \PolSturmIsolatedZeroLeft{f''}{2}\dots$$
+The more mathematically advanced among our dear readers will be able
+to give the exact value for $X_2$!</pre>
+</div>
+<div class="section" id="a-degree-four-polynomial-with-nearby-roots">
+<h2><a class="toc-backref" href="#id80">A degree four polynomial with nearby roots</a></h2>
+<p>Notice that this example is a bit outdated as <span class="docutils literal">0.7</span> release has
+added <span class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{sturmname}</span></span> which would find exactly
+the roots. The steps here retain their interest when one is interested
+in finding isolating intervals for example to prepare some demonstration
+of dichotomy method.</p>
+<pre class="literal-block">\PolDef{Q}{(x-1.050001)(x-1.105001)(x-1.110501)(x-1.111051)}
+\PolTypeset{Q}
+\PolToSturm{Q}{Q} % it is allowed to use same prefix for Sturm chain
+\PolSturmIsolateZeros{Q}
+\PolPrintIntervals{Q}
+% reports 1.0 &lt; Z_1 &lt; 1.1, 1.10 &lt; Z_2 &lt; 1.11, 1.110 &lt; Z_3 &lt; 1.111, and 1.111 &lt; Z_4 &lt; 1.112
+% but the above bounds do not allow minimizing separation between roots
+% so we refine:
+\PolRefineInterval*{Q}{1}
+\PolRefineInterval*{Q}{2}
+\PolRefineInterval*{Q}{3}
+\PolRefineInterval*{Q}{4}
+\PolPrintIntervals{Q}
+% reports 1.05 &lt; Z_1 &lt; 1.06, 1.105 &lt; Z_2 &lt; 1.106, 1.1105 &lt; Z_3 &lt; 1.1106,
+% and 1.11105 &lt; Z_4 &lt; 1.11106.
+\PolEnsureIntervalLengths{Q}{-6}
+\PolPrintIntervals{Q}
+% of course finds here all roots exactly</pre>
+</div>
+<div class="section" id="the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots">
+<h2><a class="toc-backref" href="#id81">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</a></h2>
+<pre class="literal-block">% define a user command (xinttools is loaded automatically by polexpr)
+\def\showmultiplicities#1{% #1 = &quot;sturmname&quot;
+\xintFor* ##1 in {\xintSeq{1}{\PolSturmNbOfIsolatedZeros{#1}}}\do{%
+ The multiplicity is \PolSturmIsolatedZeroMultiplicity{#1}{##1}
+ \PolSturmIfZeroExactlyKnown{#1}{##1}%
+ {at the root $x=\PolSturmIsolatedZeroLeft{#1}{##1}$}
+ {for the root such that
+ $\PolSturmIsolatedZeroLeft{#1}{##1}&lt;x&lt;\PolSturmIsolatedZeroRight{#1}{##1}$}
+ \par
+}}%
+\PolDef{f}{(x-0.99)^3(x-0.999)^3(x-0.9999)^3}
+\def\PolTypesetOne#1{\PolDecToString{\xintREZ{#1}}}
+\PolTypeset{f}\par
+\PolToSturm{f}{f}% it is allowed to use &quot;polname&quot; as &quot;sturmname&quot; too
+\PolSturmIsolateZerosAndGetMultiplicities{f}% use the &quot;sturmname&quot; here
+% or \PolSturmIsolateZeros*{f} which is exactly the same, but shorter..
+
+\showmultiplicities{f}</pre>
+<p>In this example, the output will look like this (but using math mode):</p>
+<pre class="literal-block">x^9 - 8.9667x^8 + 35.73400293x^7 - 83.070418400109x^6 + 124.143648875193123x^5
+- 123.683070924326075877x^4 + 82.149260397553075617891x^3
+- 35.07602992699900159127007x^2 + 8.7364078733314648368671733x
+- 0.967100824643585986488103299
+
+The multiplicity is 3 at the root x = 0.99
+The multiplicity is 3 at the root x = 0.999
+The multiplicity is 3 at the root x = 0.9999</pre>
+<p>On first pass, these rational roots were found (due to their relative
+magnitudes, using <span class="docutils literal">\PolSturmIsolateZeros**</span> was not needed here). But
+multiplicity computation works also with (decimal) roots not yet
+identified or with non-decimal or irrational roots.</p>
+<p>It is fun to modify only a tiny bit the polynomial and see if polexpr
+survives:</p>
+<pre class="literal-block">\PolDef{g}{f(x)+1e-27}
+\PolTypeset{g}\par
+\PolToSturm{g}{g}
+\PolSturmIsolateZeros*{g}
+
+\showmultiplicities{g}</pre>
+<p>This produces:</p>
+<pre class="literal-block">x^9 - 8.9667x^8 + 35.73400293x^7 - 83.070418400109x^6 + 124.143648875193123x^5
+- 123.683070924326075877x^4 + 82.149260397553075617891x^3
+- 35.07602992699900159127007x^2 + 8.7364078733314648368671733x
+- 0.967100824643585986488103298
+
+The multiplicity is 1 for the root such that 0.98 &lt; x &lt; 0.99
+The multiplicity is 1 for the root such that 0.9991 &lt; x &lt; 0.9992
+The multiplicity is 1 for the root such that 0.9997 &lt; x &lt; 0.9998</pre>
+<p>Which means that the multiplicity-3 roots each became a real and a pair of
+complex ones. Let's see them better:</p>
+<pre class="literal-block">\PolEnsureIntervalLengths{g}{-10}
+
+\showmultiplicities{g}</pre>
+<p>which produces:</p>
+<pre class="literal-block">The multiplicity is 1 for the root such that 0.9899888032 &lt; x &lt; 0.9899888033
+The multiplicity is 1 for the root such that 0.9991447980 &lt; x &lt; 0.9991447981
+The multiplicity is 1 for the root such that 0.9997663986 &lt; x &lt; 0.9997663987</pre>
+</div>
+<div class="section" id="a-degree-five-polynomial-with-three-rational-roots">
+<h2><a class="toc-backref" href="#id82">A degree five polynomial with three rational roots</a></h2>
+<pre class="literal-block">\poldef Q(x) := 1581755751184441 x^5
+ -14907697165025339 x^4
+ +48415668972339336 x^3
+ -63952057791306264 x^2
+ +46833913221154895 x
+ -49044360626280925;
+
+\PolToSturm{Q}{Q}
+ \def\PolTypesetCmdPrefix#1{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%
+ $Q_0(x) = \PolTypeset{Q_0}$
+\PolSturmIsolateZeros**{Q}
+\PolPrintIntervals{Q}
+
+$Q_{norr}(x) = \PolTypeset{Q_norr}$</pre>
+<p>Here, all real roots are rational:</p>
+<pre class="literal-block">Z_1 = 833719/265381
+Z_2 = 165707065/52746197
+Z_3 = 355/113
+
+Q_norr(x) = x^2 + 1</pre>
+<p>And let's get their decimal expansion too:</p>
+<pre class="literal-block">% print decimal expansion of the found roots
+\def\PolPrintIntervalsPrintExactZero
+ {\xintTrunc{20}{\PolPrintIntervalsTheLeftEndPoint}\dots}
+\PolPrintIntervals{Q}
+
+Z_1 = 3.14159265358107777120...
+Z_2 = 3.14159265358979340254...
+Z_3 = 3.14159292035398230088...</pre>
+</div>
+<div class="section" id="a-mignotte-type-polynomial">
+<h2><a class="toc-backref" href="#id83">A Mignotte type polynomial</a></h2>
+<pre class="literal-block">\PolDef{P}{x^10 - (10x-1)^2}%
+\PolTypeset{P} % prints it in expanded form
+\PolToSturm{P}{P} % we can use same prefix for Sturm chain
+\PolSturmIsolateZeros{P} % finds 4 real roots
+This polynomial has \PolSturmNbOfIsolatedZeros{P} distinct real roots:
+\PolPrintIntervals{P}%
+% reports -2 &lt; Z_1 &lt; -1, 0.09 &lt; Z_2 &lt; 0.10, 0.1 &lt; Z_3 &lt; 0.2, 1 &lt; Z_4 &lt; 2
+Let us refine the second and third intervals to separate the corresponding
+roots:
+\PolRefineInterval*{P}{2}% will refine to 0.0999990 &lt; Z_2 &lt; 0.0999991
+\PolRefineInterval*{P}{3}% will refine to 0.100001 &lt; Z_3 &lt; 0.100002
+\PolPrintIntervals{P}%
+Let us now get to know all roots with 10 digits after decimal mark:
+\PolEnsureIntervalLengths{P}{-10}%
+\PolPrintIntervals{P}% now all roots are known 10 decimal digits after mark
+Finally, we display 20 digits of the second root:
+\PolEnsureIntervalLength{P}{2}{-20}% makes Z_2 known with 20 digits after mark
+$$\PolSturmIsolatedZeroLeft{P}{2}&lt;Z_2&lt;\PolSturmIsolatedZeroRight{P}{2}$$</pre>
+<p>The last line produces:</p>
+<pre class="literal-block">0.09999900004999650028 &lt; Z_2 &lt; 0.09999900004999650029</pre>
+</div>
+<div class="section" id="the-wilkinson-polynomial">
+<h2><a class="toc-backref" href="#id84">The Wilkinson polynomial</a></h2>
+<p>See <a class="reference external" href="https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial">Wilkinson polynomial</a>.</p>
+<pre class="literal-block">%\xintverbosetrue % for the curious...
+
+\poldef f(x) := mul((x - i), i = 1..20);
+
+\def\PolTypesetCmdPrefix#1{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%
+\def\PolTypesetOne#1{\xintDecToString{#1}}%
+
+\noindent\PolTypeset{f}
+
+\PolToSturm{f}{f}
+\PolSturmIsolateZeros{f}
+\PolPrintIntervals{f}
+
+% \vfill\eject
+
+% This page is commented out because it takes about 30s on a 2GHz CPU
+% \poldef g(x) := f(x) - 2**{-23} x**19;
+
+% \PolToSturm{g}{g}
+% \noindent\PolTypeset{g_0}% integer coefficient primitive polynomial
+
+% \PolSturmIsolateZeros{g}
+% \PolEnsureIntervalLengths{g}{-10}
+
+% \let\PolPrintIntervalsPrintMultiplicity\empty
+% \PolPrintIntervals*{g}</pre>
+<p>The first polynomial:</p>
+<pre class="literal-block">f(x) = x**20
+- 210 x**19
++ 20615 x**18
+- 1256850 x**17
++ 53327946 x**16
+- 1672280820 x**15
++ 40171771630 x**14
+- 756111184500 x**13
++ 11310276995381 x**12
+- 135585182899530 x**11
++ 1307535010540395 x**10
+- 10142299865511450 x**9
++ 63030812099294896 x**8
+- 311333643161390640 x**7
++ 1206647803780373360 x**6
+- 3599979517947607200 x**5
++ 8037811822645051776 x**4
+- 12870931245150988800 x**3
++ 13803759753640704000 x**2
+- 8752948036761600000 x
++ 2432902008176640000</pre>
+<p>is handled fast enough, but the modified one <span class="docutils literal">f(x) - <span class="pre">2**-23</span> <span class="pre">x**19</span></span> takes about 20x longer.</p>
+<p>The Sturm chain polynomials
+have integer coefficients with up to 321 digits, whereas (surprisingly
+perhaps) those of the Sturm chain polynomials derived from <span class="docutils literal">f</span> never
+have more than 21 digits ...</p>
+<p>Once the Sturm chain is computed and the zeros isolated, obtaining their
+decimal digits is relatively faster. Here is for the ten real roots of
+<span class="docutils literal">f(x) - <span class="pre">2**-23</span> <span class="pre">x**19</span></span> as computed by the code above:</p>
+<pre class="literal-block">Z_1 = 0.9999999999...
+Z_2 = 2.0000000000...
+Z_3 = 2.9999999999...
+Z_4 = 4.0000000002...
+Z_5 = 4.9999999275...
+Z_6 = 6.0000069439...
+Z_7 = 6.9996972339...
+Z_8 = 8.0072676034...
+Z_9 = 8.9172502485...
+Z_10 = 20.8469081014...</pre>
+</div>
+<div class="section" id="the-second-wilkinson-polynomial">
+<h2><a class="toc-backref" href="#id85">The second Wilkinson polynomial</a></h2>
+<pre class="literal-block">\poldef f(x) := mul(x - 2^-i, i = 1..20);
+
+%\PolTypeset{f}
+
+\PolToSturm{f}{f}
+\PolSturmIsolateZeros**{f}
+\PolPrintIntervals{f}</pre>
+<p>This takes more time than the polynomial with 1, 2, .., 20 as roots but
+less than the latter modified by the <span class="docutils literal"><span class="pre">2**-23</span></span> tiny change to one of its
+coefficient.</p>
+<p>Here is the output (with release 0.7.2):</p>
+<pre class="literal-block">Z_1 = 0.00000095367431640625
+Z_2 = 0.0000019073486328125
+Z_3 = 0.000003814697265625
+Z_4 = 0.00000762939453125
+Z_5 = 0.0000152587890625
+Z_6 = 0.000030517578125
+Z_7 = 0.00006103515625
+Z_8 = 0.0001220703125
+Z_9 = 1/4096
+Z_10 = 1/2048
+Z_11 = 1/1024
+Z_12 = 1/512
+Z_13 = 1/256
+Z_14 = 1/128
+Z_15 = 0.015625
+Z_16 = 0.03125
+Z_17 = 0.0625
+Z_18 = 0.125
+Z_19 = 0.25
+Z_20 = 0.5</pre>
+<p>There is some incoherence in output format which has its source in the
+fact that some roots are found in branches which can only find decimal
+roots, whereas some are found in branches which could find general
+fractions and they use <span class="docutils literal">\xintIrr</span> before storage of the found root.
+This may evolve in future.</p>
+</div>
+<div class="section" id="the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots">
+<h2><a class="toc-backref" href="#id86">The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots</a></h2>
+<pre class="literal-block">\PolDef{P}{mul((x-i*1e-1), i=-20..20)}% i/10 is same but less efficient</pre>
+<p>In the defining expression we could have used <span class="docutils literal">i/10</span> but this gives
+less efficient internal form for the coefficients (the <span class="docutils literal">10</span>'s end up
+in denominators).</p>
+<p>Using <span class="docutils literal">\PolToExpr{P}</span> after having done</p>
+<pre class="literal-block">\def\PolToExprCmd#1{\PolDecToString{\xintREZ{#1}}}</pre>
+<p>we get this expanded form:</p>
+<pre class="literal-block">x^41
+-28.7*x^39
++375.7117*x^37
+-2975.11006*x^35
++15935.28150578*x^33
+-61167.527674162*x^31
++173944.259366417394*x^29
+-373686.963560544648*x^27
++613012.0665016658846445*x^25
+-771182.31133138163125495*x^23
++743263.86672885754888959569*x^21
+-545609.076599482896371978698*x^19
++301748.325708943677229642930528*x^17
+-123655.8987669450434698869844544*x^15
++36666.1782054884005855608205864192*x^13
+-7607.85821367459445649518380016128*x^11
++1053.15135918687298508885950223794176*x^9
+-90.6380005918141132650786081964032*x^7
++4.33701563847327366842552218288128*x^5
+-0.0944770968420804735498178265088*x^3
++0.00059190121813899276854174416896*x</pre>
+<p>which shows coefficients with up to 36 significant digits...</p>
+<p>Stress test: not a hard challenge to <span class="docutils literal">xint + polexpr</span>, but be a bit
+patient!</p>
+<pre class="literal-block">\PolDef{P}{mul((x-i*1e-1), i=-20..20)}%
+\PolToSturm{P}{S} % dutifully computes S_0, ..., S_{41}
+% the [1] optional argument limits the search to interval (-10,10)
+\PolSturmIsolateZeros[1]{S} % finds *exactly* (but a bit slowly) all 41 roots!
+\PolPrintIntervals{S} % nice, isn't it?</pre>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>Release <span class="docutils literal">0.5</span> has <em>experimental</em> addition of optional argument
+<span class="docutils literal">E</span> to <span class="docutils literal">\PolSturmIsolateZeros</span>. It instructs to search roots only
+in interval <span class="docutils literal"><span class="pre">(-10^E,</span> 10^E)</span>. Important: the extremities are
+<em>assumed to not be roots</em>. In this example, the <span class="docutils literal">[1]</span> in
+<span class="docutils literal"><span class="pre">\PolSturmIsolateZeros[1]{S}</span></span> gives some speed gain; without it, it
+turns out in this case that <span class="docutils literal">polexpr</span> would have started with
+<span class="docutils literal"><span class="pre">(-10^6,</span> 10^6)</span> interval.</p>
+<p>Please note that this will probably get replaced in future by the
+specification of a general interval. Do not rely on meaning of this
+optional argument keeping the same.</p>
+</div>
+</div>
+<div class="section" id="roots-of-chebyshev-polynomials">
+<h2><a class="toc-backref" href="#id87">Roots of Chebyshev polynomials</a></h2>
+<pre class="literal-block">\newcount\mycount
+\poldef T_0(x) := 1;
+\poldef T_1(x) := x;
+\mycount 2
+\xintloop
+ \poldef T_\the\mycount(x) :=
+ 2x*T_\the\numexpr\mycount-1(x)
+ - T_\the\numexpr\mycount-2(x);
+\ifnum\mycount&lt;15
+\advance\mycount 1
+\repeat
+
+$$T_{15} = \PolTypeset[X]{T_15}$$
+\PolToSturm{T_15}{T_15}
+\PolSturmIsolateZeros{T_15}
+\PolEnsureIntervalLengths{T_15}{-10}
+\PolPrintIntervals{T_15}</pre>
+</div>
+</div>
+<div class="section" id="non-expandable-macros">
+<h1><a class="toc-backref" href="#id88">Non-expandable macros</a></h1>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>At <span class="docutils literal">0.8</span> <span class="docutils literal">polexpr</span> is usable with Plain TeX and not only with
+LaTeX. Some examples given in this section may be using LaTeX syntax
+such as <span class="docutils literal">\renewcommand</span>. Convert to TeX primitives as appropriate
+if testing with a non LaTeX macro format.</p>
+</div>
+<div class="section" id="poldef-polname-letter-expression-using-the-letter-as-indeterminate">
+<span id="poldef"></span><h2><a class="toc-backref" href="#id89"><span class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression using the letter as indeterminate;</span></a></h2>
+<blockquote>
+<p>This evaluates the <em>polynomial expression</em> and stores the
+coefficients in a private structure accessible later via other
+package macros, when used with argument the chosen <span class="docutils literal">polname</span>. Of
+course the <em>expression</em> can use other previously defined
+polynomials.</p>
+<p>Polynomial names must start with a letter and are constituted of
+letters, digits, underscores and the right tick <span class="docutils literal">'</span>.</p>
+<p>The whole <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> syntax is authorized:</p>
+<pre class="literal-block">\poldef mypol(z) := add((-1)^i z^(2i+1)/(2i+1)!, i = 0..10);</pre>
+<p>With fractional coefficients, beware the <a class="reference internal" href="#warningtacit">tacit multiplication issue</a>.</p>
+<p>Furthermore:</p>
+<ul class="simple">
+<li><p>a variable <span class="docutils literal">mypol</span> is defined which can be used in <span class="docutils literal">\poldef</span>
+as well as in <span class="docutils literal">\xinteval</span> for algebraic computations or as
+argument to polynomial aware functions,</p></li>
+<li><p>a function <span class="docutils literal">mypol()</span> is defined which can be used in <span class="docutils literal">\poldef</span>
+as well as in <span class="docutils literal">\xinteval</span>. It accepts there as argument scalars
+and also other polynomials (via their names, thanks to previous
+item).</p></li>
+</ul>
+<p>Notice that any function defined via <span class="docutils literal">\xintdeffunc</span> and using
+only algebraic operations (and ople indexing or slicing operations)
+should work fine in <span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span> with such polynomial
+names as argument.</p>
+<p>In the case of a constant polynomial, the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variable (not the
+internal data structure on which the package macros operate)
+associated to it is indistinguishable from a scalar, it is actually
+a scalar and has lost all traces from its origins as a polynomial
+(so for example can be used as argument to the <span class="docutils literal">cos()</span> function).
+<strong>THIS MAY CHANGE</strong></p>
+<p>The <em>function</em> on the other hand remains a one-argument function,
+which simply has a constant value.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p>The function <span class="docutils literal">mypol()</span> is defined <strong>only</strong> for
+<span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span>
+context. It will be unknown to <span class="docutils literal">\xintfloateval</span>.</p>
+<p>Worse, a
+previously existing floating point function of the same name will
+be let undefined again, to avoid hard to debug mismatches between
+exact and floating point polynomials. This also applies when the
+polynomial is produced not via <span class="docutils literal">\poldef</span> or <span class="docutils literal">\PolDef</span> but
+as result of usage of the other package macros.</p>
+<p>See <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a> to generate a <strong>function</strong>
+usable in <span class="docutils literal">\xintfloateval</span>. Such a function can only be
+used with scalar input, see next warning.</p>
+</div>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p>Using the <strong>variable</strong> <span class="docutils literal">mypol</span> inside <span class="docutils literal">\xintfloateval</span> will
+generate low-level errors because the infix operators there are
+not polynomial-aware, and the polynomial specific functions such
+as <span class="docutils literal">deg()</span> are only defined for usage inside <span class="docutils literal">\xintexpr</span>.</p>
+<p>In short, currently polynomials defined via <span class="docutils literal">polexpr</span> can
+be used in floating point context only for numerical evaluations,
+via <strong>functions</strong> obtained from <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>
+usage.</p>
+<p>Changes to the original polynomial via package macros are not
+automatically mapped to the numerical floating point evaluator
+which must be manually updated as necessary when the original
+rational coefficient polynomial is modified.</p>
+<p><strong>THIS MAY CHANGE</strong></p>
+</div>
+<p>The original expression is lost after parsing, and in particular the
+package provides no way to typeset it (of course the package
+provides macros to typeset the computed polynomial). Typesetting
+the original expression has to be done manually, if needed.</p>
+</blockquote>
+</div>
+<div class="section" id="poldef-letter-polname-expression-using-the-letter-as-indeterminate">
+<span id="id8"></span><h2><a class="toc-backref" href="#id90"><span class="docutils literal"><span class="pre">\PolDef[letter]{polname}{expression</span> using the letter as indeterminate}</span></a></h2>
+<blockquote>
+<p>Does the same as <a class="reference internal" href="#poldef">\poldef</a> in an undelimited macro
+format (thus avoiding potential problems with the catcode of the
+semi-colon in presence of some packages.) In absence of the
+<span class="docutils literal">[letter]</span> optional argument, the variable is assumed to be <span class="docutils literal">x</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="polgenfloatvariant-polname">
+<span id="polgenfloatvariant"></span><h2><a class="toc-backref" href="#id91"><span class="docutils literal">\PolGenFloatVariant{polname}</span></a></h2>
+<blockquote>
+<p>Makes the polynomial also usable in the <span class="docutils literal">\xintfloatexpr</span> parser.
+It will therein evaluates via an Horner scheme with coefficients
+already pre-rounded to the float precision.</p>
+<p>See also <a class="reference internal" href="#poltofloatexpr-pol-expr">\PolToFloatExpr{&lt;pol. expr.&gt;}</a>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p>Any operation, for example generating the derivative polynomial,
+or dividing two polynomials or using the <span class="docutils literal">\PolLet</span>, <strong>must</strong> be
+followed by explicit usage of <span class="docutils literal">\PolGenFloatVariant{polname}</span> if
+the new polynomial is to be used in <span class="docutils literal">\xintfloateval</span> <strong>as a
+function</strong>.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="pollet-polname-2-polname-1">
+<span id="pollet"></span><h2><a class="toc-backref" href="#id92"><span class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></span></a></h2>
+<blockquote>
+<p>Makes a copy of the already defined polynomial <span class="docutils literal">polname_1</span> to a
+new one <span class="docutils literal">polname_2</span>. Same effect as
+<span class="docutils literal"><span class="pre">\PolDef{polname_2}{polname_1(x)}</span></span> but with less overhead. The
+<span class="docutils literal">=</span> is optional.</p>
+</blockquote>
+</div>
+<div class="section" id="polgloballet-polname-2-polname-1">
+<span id="polgloballet"></span><h2><a class="toc-backref" href="#id93"><span class="docutils literal"><span class="pre">\PolGlobalLet{polname_2}={polname_1}</span></span></a></h2>
+<blockquote>
+<p>Acts globally.</p>
+</blockquote>
+</div>
+<div class="section" id="polassign-polname-toarray-macro">
+<span id="polassign"></span><h2><a class="toc-backref" href="#id94"><span class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></span></a></h2>
+<blockquote>
+<p>Defines a one-argument expandable macro <span class="docutils literal"><span class="pre">\macro{#1}</span></span> which expands
+to the (raw) #1th polynomial coefficient.</p>
+<ul class="simple">
+<li><p>Attention, coefficients here are indexed starting at 1.</p></li>
+<li><p>With #1=-1, -2, ..., <span class="docutils literal"><span class="pre">\macro{#1}</span></span> returns leading coefficients.</p></li>
+<li><p>With #1=0, returns the number of coefficients, i.e. <span class="docutils literal">1 + deg f</span>
+for non-zero polynomials.</p></li>
+<li><p>Out-of-range #1's return <span class="docutils literal">0/1[0]</span>.</p></li>
+</ul>
+<p>See also <a class="reference internal" href="#polnthcoeff-polname-number">\PolNthCoeff{polname}{number}</a>. The main difference is that
+with <span class="docutils literal">\PolAssign</span>, <span class="docutils literal">\macro</span> is made a prefix to <span class="docutils literal">1 + deg f</span>
+already defined (hidden to user) macros holding individually the
+coefficients but <a class="reference internal" href="#polnthcoeff-polname-number">\PolNthCoeff{polname}{number}</a> does each time the job
+to expandably recover the <span class="docutils literal">Nth</span> coefficient, and due to
+expandability can not store it in a macro for future usage (of course,
+it can be an argument in an <span class="docutils literal">\edef</span>.) The other difference
+is the shift by one in indexing, mentioned above (negative
+indices act the same in both.)</p>
+</blockquote>
+</div>
+<div class="section" id="polget-polname-fromarray-macro">
+<span id="polget"></span><h2><a class="toc-backref" href="#id95"><span class="docutils literal"><span class="pre">\PolGet{polname}\fromarray\macro</span></span></a></h2>
+<blockquote>
+<p>Does the converse operation to
+<span class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></span>. Each individual
+<span class="docutils literal">\macro{number}</span> gets expanded in an <span class="docutils literal">\edef</span> and then normalized
+via <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a>'s macro <span class="docutils literal">\xintRaw</span>.</p>
+<p>The leading zeros are removed from the polynomial.</p>
+<p>(contrived) Example:</p>
+<pre class="literal-block">\xintAssignArray{1}{-2}{5}{-3}\to\foo
+\PolGet{f}\fromarray\foo</pre>
+<p>This will define <span class="docutils literal">f</span> as would have <span class="docutils literal">\poldef <span class="pre">f(x):=1-2x+5x^2-3x^3;</span></span>.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>Prior to <span class="docutils literal">0.5</span>, coefficients were not normalized via
+<span class="docutils literal">\xintRaw</span> for internal storage.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polfromcsv-polname-csv">
+<span id="polfromcsv"></span><h2><a class="toc-backref" href="#id96"><span class="docutils literal"><span class="pre">\PolFromCSV{polname}{&lt;csv&gt;}</span></span></a></h2>
+<blockquote>
+<p>Defines a polynomial directly from the comma separated list of values
+(or a macro expanding to such a list) of its coefficients, the <em>first
+item</em> gives the constant term, the <em>last item</em> gives the leading
+coefficient, except if zero, then it is dropped (iteratively). List
+items are each expanded in an <span class="docutils literal">\edef</span> and then put into normalized
+form via <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a>'s macro <span class="docutils literal">\xintRaw</span>.</p>
+<p>As leading zero coefficients are removed:</p>
+<pre class="literal-block">\PolFromCSV{f}{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}</pre>
+<p>defines the zero polynomial, which holds only one coefficient.</p>
+<p>See also expandable macro <a class="reference internal" href="#poltocsv-polname">\PolToCSV</a>.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>Prior to <span class="docutils literal">0.5</span>, coefficients were not normalized via
+<span class="docutils literal">\xintRaw</span> for internal storage.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="poltypeset-pol-expr">
+<span id="poltypeset"></span><h2><a class="toc-backref" href="#id97"><span class="docutils literal"><span class="pre">\PolTypeset{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></h2>
+<blockquote>
+<p>Typesets in descending powers, switching to math mode if in text
+mode, after evaluating the polynomial expression:</p>
+<pre class="literal-block">\PolTypeset{mul(x-i,i=1..5)}% possible since polexpr 0.8</pre>
+<p>The letter used in the input expression is by default <span class="docutils literal">x</span>,
+but can be modified by a redefinition of <a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a>.</p>
+<p>It uses also by default the letter <span class="docutils literal">x</span> on output but this one can
+be changed via an optional argument:</p>
+<pre class="literal-block">\PolTypeset[z]{polname or polynomial expression}</pre>
+<p>By default zero coefficients are skipped (use <span class="docutils literal">\poltypesetalltrue</span>
+to get all of them in output).</p>
+<p>The following macros (whose meanings will be found in the package code)
+can be re-defined for customization. Their default definitions are
+expandable, but this is not a requirement.</p>
+</blockquote>
+<div class="section" id="poltypesetcmd-raw-coeff">
+<span id="poltypesetcmd"></span><h3><a class="toc-backref" href="#id98"><span class="docutils literal">\PolTypesetCmd{raw_coeff}</span></a></h3>
+<blockquote>
+<p>Checks if the coefficient is <span class="docutils literal">1</span> or <span class="docutils literal"><span class="pre">-1</span></span> and then skips printing
+the <span class="docutils literal">1</span>, except for the constant term. Also it sets conditional
+<a class="reference internal" href="#polifcoeffisplusorminusone-a-b">\PolIfCoeffIsPlusOrMinusOne{A}{B}</a>.</p>
+<p>The actual printing of the coefficients, when not equal to plus or
+minus one is handled by <a class="reference internal" href="#poltypesetone-raw-coeff">\PolTypesetOne{raw_coeff}</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="poltypesetone-raw-coeff">
+<span id="poltypesetone"></span><h3><a class="toc-backref" href="#id99"><span class="docutils literal">\PolTypesetOne{raw_coeff}</span></a></h3>
+<blockquote>
+<p>Defaults to <span class="docutils literal">\xintSignedFrac</span> (LaTeX) or <span class="docutils literal">\xintSignedFwOver</span>
+(else). But these <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> very old legacy macros are a bit
+annoyin as they insist in exhibiting a power of ten rather than
+using simpler decimal notation.</p>
+<p>As alternative one can do things such as:</p>
+<pre class="literal-block">\def\PolTypesetOne#1{\xintDecToString{\xintREZ{#1}}}
+% or with LaTeX+siunitx for example
+\renewcommand\PolTypesetOne[1]{\num{\xintPFloat[5]{#1}}}
+% (as \num of siunitx understands floating point notation)
+\renewcommand\PolTypesetOne[1]{\num{\xintRound{4}{#1}}}</pre>
+</blockquote>
+</div>
+<div class="section" id="id9">
+<span id="poltypesetmonomialcmd"></span><h3><a class="toc-backref" href="#id100"><span class="docutils literal">\PolTypesetMonomialCmd</span></a></h3>
+<blockquote>
+<p>This decides how a monomial (in variable <span class="docutils literal">\PolVar</span> and with
+exponent <span class="docutils literal">\PolIndex</span>) is to be printed. The default does nothing
+for the constant term, <span class="docutils literal">\PolVar</span> for the first degree and
+<span class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></span> for higher degrees monomials. Beware that
+<span class="docutils literal">\PolIndex</span> expands to digit tokens and needs termination in
+<span class="docutils literal">\ifnum</span> tests.</p>
+</blockquote>
+</div>
+<div class="section" id="poltypesetcmdprefix-raw-coeff">
+<span id="poltypesetcmdprefix"></span><h3><a class="toc-backref" href="#id101"><span class="docutils literal">\PolTypesetCmdPrefix{raw_coeff}</span></a></h3>
+<blockquote>
+<p>Expands to a <span class="docutils literal">+</span> if the <span class="docutils literal">raw_coeff</span> is zero or positive, and to
+nothing if <span class="docutils literal">raw_coeff</span> is negative, as in latter case the
+<span class="docutils literal">\xintSignedFrac</span> (or <span class="docutils literal">\xintSignedFwOver</span>) used by
+<a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{raw_coeff}</a> will put the <span class="docutils literal">-</span> sign in front of
+the fraction (if it is a fraction) and this will thus serve as
+separator in the typeset formula. Not used for the first term.</p>
+</blockquote>
+</div>
+</div>
+<div class="section" id="id11">
+<span id="id10"></span><h2><a class="toc-backref" href="#id102"><span class="docutils literal"><span class="pre">\PolTypeset*{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></h2>
+<blockquote>
+<p>Typesets in ascending powers. Use e.g. <span class="docutils literal">[h]</span> optional argument
+(after the <span class="docutils literal">*</span>) to use letter <span class="docutils literal">h</span> rather than <span class="docutils literal">x</span>.</p>
+<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions and not only
+polynomial names. Redefine <a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a> to use in the
+expression another letter than default <span class="docutils literal">x</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="poldiff-polname-1-polname-2">
+<span id="poldiff"></span><h2><a class="toc-backref" href="#id103"><span class="docutils literal"><span class="pre">\PolDiff{polname_1}{polname_2}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_2</span> to the first derivative of <span class="docutils literal">polname_1</span>. It
+is allowed to issue <span class="docutils literal"><span class="pre">\PolDiff{f}{f}</span></span>, effectively replacing <span class="docutils literal">f</span>
+by <span class="docutils literal">f'</span>.</p>
+<p>Coefficients of the result <span class="docutils literal">polname_2</span> are irreducible fractions
+(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
+</blockquote>
+</div>
+<div class="section" id="poldiff-n-polname-1-polname-2">
+<span id="poldiff-n"></span><h2><a class="toc-backref" href="#id104"><span class="docutils literal"><span class="pre">\PolDiff[N]{polname_1}{polname_2}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_2</span> to the <span class="docutils literal">N</span>-th derivative of <span class="docutils literal">polname_1</span>.
+Identical arguments is allowed. With <span class="docutils literal">N=0</span>, same effect as
+<span class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></span>. With negative <span class="docutils literal">N</span>, switches to
+using <span class="docutils literal">\PolAntiDiff</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="polantidiff-polname-1-polname-2">
+<span id="polantidiff"></span><h2><a class="toc-backref" href="#id105"><span class="docutils literal"><span class="pre">\PolAntiDiff{polname_1}{polname_2}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_2</span> to the primitive of <span class="docutils literal">polname_1</span> vanishing
+at zero.</p>
+<p>Coefficients of the result <span class="docutils literal">polname_2</span> are irreducible fractions
+(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
+</blockquote>
+</div>
+<div class="section" id="polantidiff-n-polname-1-polname-2">
+<span id="polantidiff-n"></span><h2><a class="toc-backref" href="#id106"><span class="docutils literal"><span class="pre">\PolAntiDiff[N]{polname_1}{polname_2}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_2</span> to the result of <span class="docutils literal">N</span> successive integrations on
+<span class="docutils literal">polname_1</span>. With negative <span class="docutils literal">N</span>, it switches to using <span class="docutils literal">\PolDiff</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="poldivide-polname-1-polname-2-polname-q-polname-r">
+<span id="poldivide"></span><h2><a class="toc-backref" href="#id107"><span class="docutils literal"><span class="pre">\PolDivide{polname_1}{polname_2}{polname_Q}{polname_R}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_Q</span> and <span class="docutils literal">polname_R</span> to be the quotient and
+remainder in the Euclidean division of <span class="docutils literal">polname_1</span> by
+<span class="docutils literal">polname_2</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="polquo-polname-1-polname-2-polname-q">
+<span id="polquo"></span><h2><a class="toc-backref" href="#id108"><span class="docutils literal"><span class="pre">\PolQuo{polname_1}{polname_2}{polname_Q}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_Q</span> to be the quotient in the Euclidean division
+of <span class="docutils literal">polname_1</span> by <span class="docutils literal">polname_2</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="polrem-polname-1-polname-2-polname-r">
+<span id="polrem"></span><h2><a class="toc-backref" href="#id109"><span class="docutils literal"><span class="pre">\PolRem{polname_1}{polname_2}{polname_R}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_R</span> to be the remainder in the Euclidean division
+of <span class="docutils literal">polname_1</span> by <span class="docutils literal">polname_2</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="polgcd-polname-1-polname-2-polname-gcd">
+<span id="polgcd"></span><h2><a class="toc-backref" href="#id110"><span class="docutils literal"><span class="pre">\PolGCD{polname_1}{polname_2}{polname_GCD}</span></span></a></h2>
+<blockquote>
+<p>This sets <span class="docutils literal">polname_GCD</span> to be the (monic) GCD of the two first
+polynomials. It is a unitary polynomial except if both <span class="docutils literal">polname_1</span>
+and <span class="docutils literal">polname_2</span> vanish, then <span class="docutils literal">polname_GCD</span> is the zero
+polynomial.</p>
+</blockquote>
+</div>
+<div class="section" id="non-expandable-macros-related-to-the-root-localization-routines">
+<h2><a class="toc-backref" href="#id111">Non-expandable macros related to the root localization routines</a></h2>
+<div class="section" id="poltosturm-polname-sturmname">
+<span id="poltosturm"></span><h3><a class="toc-backref" href="#id112"><span class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></span></a></h3>
+<blockquote>
+<p>With <span class="docutils literal">polname</span> being for example <span class="docutils literal">P</span>, the macro starts by
+computing polynomials <span class="docutils literal">P</span> and <span class="docutils literal">P'</span>, then computes the (opposite
+of the) remainder in euclidean division, iteratively.</p>
+<p>The last non-zero remainder <span class="docutils literal">P_N_</span> (where <span class="docutils literal">N</span> is obtainable as
+<a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{sturmname}</a>) is up to a factor
+the GCD of <span class="docutils literal">P</span> and <span class="docutils literal">P'</span> hence it is a constant if and only if
+<span class="docutils literal">P</span> is square-free.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<ul class="simple">
+<li><p>Since <span class="docutils literal">0.5</span> all these polynomials are divided by their rational
+content, so they have integer coefficients with no common factor,
+and the last one if a constant is either <span class="docutils literal">1</span> or <span class="docutils literal"><span class="pre">-1</span></span>.</p></li>
+<li><p>After this normalization to primitive polynomials, they are
+stored internally as <span class="docutils literal">sturmname_k_</span>, <span class="docutils literal">k=0,1, ...</span>.</p></li>
+<li><p>These polynomials are used internally only. To keep them as
+genuine declared polynomials also after the macro call, use the
+starred variant <a class="reference internal" href="#id12">PolToSturm*</a>.</p></li>
+</ul>
+</div>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>It is perfectly allowed to use the polynomial name as Sturm chain name:
+<span class="docutils literal"><span class="pre">\PolToSturm{f}(f}</span></span>.</p>
+</div>
+<p>The macro then declares <span class="docutils literal">sturmname_0</span>, <span class="docutils literal">sturmname_1</span>, ..., which are
+the (non-declared) <span class="docutils literal">sturmname_k_</span> divided by the last one. Division is
+not done if this last one is the constant <span class="docutils literal">1</span> or <span class="docutils literal"><span class="pre">-1</span></span>, i.e. if the
+original polynomial was square-free. These polynomials are primitive
+polynomials too, i.e. with integer coefficients having no common factor.</p>
+<p>Thus <span class="docutils literal">sturmname_0</span> has exactly the same real and complex roots as
+polynomial <span class="docutils literal">polname</span>, but with each root now of multiplicity one:
+i.e. it is the &quot;square-free part&quot; of original polynomial <span class="docutils literal">polname</span>.</p>
+<p>Notice that <span class="docutils literal">sturmname_1</span> isn't necessarily the derivative of
+<span class="docutils literal">sturmname_0</span> due to the various normalizations.</p>
+<p>The polynomials <span class="docutils literal">sturmname_k</span> main utility is for the execution of
+<a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a>. Be careful not to use these
+names <span class="docutils literal">sturmname_0</span>, <span class="docutils literal">sturmname_1</span>, etc... for defining other
+polynomials after having done <span class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></span> and
+before executing <span class="docutils literal">\PolSturmIsolateZeros{sturmname}</span> else the
+latter will behave erroneously.</p>
+<p><a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{sturmname}</a> gives the index of the last
+element of the Sturm chain.</p>
+</blockquote>
+</div>
+<div class="section" id="id13">
+<span id="id12"></span><h3><a class="toc-backref" href="#id113"><span class="docutils literal"><span class="pre">\PolToSturm*{polname}{sturmname}</span></span></a></h3>
+<blockquote>
+<p>Does the same as <a class="reference internal" href="#poltosturm">un-starred version</a> and additionally it
+keeps for user usage the memory of the <em>un-normalized</em> Sturm chain
+polynomials <span class="docutils literal">sturmname_k_</span>, <span class="docutils literal">k=0,1, <span class="pre">...,</span> N</span>, with
+<span class="docutils literal">N</span> being <a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{sturmname}</a>.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>This behaviour was modified at <span class="docutils literal">0.6</span>, anyhow the macro was
+broken at <span class="docutils literal">0.5</span>.</p>
+</div>
+<div class="admonition hint">
+<p class="admonition-title">Hint</p>
+<p>The square-free part of <span class="docutils literal">polname</span> is <span class="docutils literal">sturmname_0</span>, and their
+quotient is the polynomial with name
+<span class="docutils literal">sturname_\PolSturmChainLength{sturmname}_</span>. It thus easy to
+set-up a loop iteratively computing the latter until the last one
+is a constant, thus obtaining the decomposition of an <span class="docutils literal">f</span> as
+a product <span class="docutils literal">c f_1 f_2 f_3 ...</span> of a constant and square-free (primitive)
+polynomials, where each <span class="docutils literal">f_i</span> divides its predecessor.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsettosturmchainsignchangesat-macro-sturmname-fraction">
+<span id="polsettosturmchainsignchangesat"></span><h3><a class="toc-backref" href="#id114"><span class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\macro}{sturmname}{fraction}</span></span></a></h3>
+<blockquote>
+<p>Sets macro <span class="docutils literal">\macro</span> to the number of sign changes in the Sturm
+chain with name prefix <span class="docutils literal">sturmname</span>, at location <span class="docutils literal">fraction</span>
+(which must be in format as acceptable by the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros.)</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The author was lazy and did not provide rather an expandable
+variant, where one would do <span class="docutils literal"><span class="pre">\edef\macro{\PolNbOf...}</span></span>.</p>
+<p>This will presumably get added in a future release.</p>
+<p>After some hesitation it was decided the macro would by default
+act globally. To make the scope of its macro definition local,
+use <span class="docutils literal">[\empty]</span> as extra optional argument.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsettonbofzeroswithin-macro-sturmname-value-a-value-b">
+<span id="polsettonbofzeroswithin"></span><h3><a class="toc-backref" href="#id115"><span class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\macro}{sturmname}{value_a}{value_b}</span></span></a></h3>
+<blockquote>
+<p>Applies the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a> to set <span class="docutils literal">\macro</span> to the exact number
+of <strong>distinct</strong> roots of <span class="docutils literal">sturmname_0</span> in the interval <span class="docutils literal">(value_a, value_b]</span> (the macro first re-orders the value for <span class="docutils literal">value_a &lt;= value_b</span> to hold).</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The author was lazy and did not provide rather an expandable
+variant, where one would do <span class="docutils literal"><span class="pre">\edef\macro{\PolNbOf...}</span></span>.</p>
+<p>This will presumably get added in future.</p>
+<p>After some hesitation it was decided the macro would by default
+act globally. To make the scope of its macro definition local,
+use <span class="docutils literal">[\empty]</span> as extra optional argument.</p>
+</div>
+<p>See also the expandable
+<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a>, from
+which it is immediate (with <span class="docutils literal">\numexpr</span>) to create an expandable
+variant of this macro. However the difference is that this macro
+requires only <a class="reference internal" href="#poltosturm">\PolToSturm</a> to have been executed,
+whereas the expandable variant requires prior execution of
+<a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a>.</p>
+<p>See also the expandable
+<a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a>
+which requires prior execution of
+<a class="reference internal" href="#id14">\PolSturmIsolateZeros*</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmisolatezeros-sturmname">
+<span id="polsturmisolatezeros"></span><h3><a class="toc-backref" href="#id116"><span class="docutils literal">\PolSturmIsolateZeros{sturmname}</span></a></h3>
+<blockquote>
+<p>The macros locates, using <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm theorem</a>, as many disjoint
+intervals as there are (real) roots.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>The Sturm chain must have been produced by an earlier
+<a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</p>
+<p>Why does this macro ask for argument the name of Sturm chain,
+rather than the name of a polynomial? well this is mainly for
+legacy reason, and because it is accompanied by other macros for
+which it is simpler to assume the argument will be the name of an
+already computed Sturm chain.</p>
+<p>Notice that <span class="docutils literal"><span class="pre">\PolToSturm{f}{f}</span></span> is perfectly legal (the
+<span class="docutils literal">sturmname</span> can be same as the <span class="docutils literal">polname</span>): it defines
+polynomials <span class="docutils literal">f_0</span>, <span class="docutils literal">f_1</span>, ... having <span class="docutils literal">f</span> has name prefix.</p>
+<p>Such a prior call
+to <span class="docutils literal">\PolToSturm</span> must have been made at any rate for
+<span class="docutils literal">\PolSturmIsolateZeros</span> to be usable.</p>
+</div>
+<p>After its execution they are two types of such intervals (stored in
+memory and accessible via macros or <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables, see below):</p>
+<ul class="simple">
+<li><p>singleton <span class="docutils literal">{a}</span>: then <span class="docutils literal">a</span> is a root, (necessarily a decimal
+number, but not all such decimal numbers are exactly identified yet).</p></li>
+<li><p>open intervals <span class="docutils literal">(a,b)</span>: then there is exactly one root <span class="docutils literal">z</span>
+such that <span class="docutils literal">a &lt; z &lt; b</span>, and the end points are guaranteed to not
+be roots.</p></li>
+</ul>
+<p>The interval boundaries are decimal numbers, originating
+in iterated decimal subdivision from initial intervals
+<span class="docutils literal"><span class="pre">(-10^E,</span> 0)</span> and <span class="docutils literal">(0, 10^E)</span> with <span class="docutils literal">E</span> chosen initially large
+enough so that all roots are enclosed; if zero is a root it is always
+identified as such. The non-singleton intervals are of the
+type <span class="docutils literal">(a/10^f, <span class="pre">(a+1)/10^f)</span></span> with <span class="docutils literal">a</span> an integer, which is
+neither <span class="docutils literal">0</span> nor <span class="docutils literal"><span class="pre">-1</span></span>. Hence either <span class="docutils literal">a</span> and <span class="docutils literal">a+1</span> are both positive
+or they are both negative.</p>
+<p>One does not <em>a priori</em> know what will be the lengths of these
+intervals (except that they are always powers of ten), they
+vary depending on how many digits two successive roots have in
+common in their respective decimal expansions.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>If some two consecutive intervals share an end-point, no
+information is yet gained about the separation between the two
+roots which could at this stage be arbitrarily small.</p>
+<p>See <a class="reference internal" href="#polrefineinterval-sturmname-index">\PolRefineInterval*{sturmname}{index}</a> which addresses
+this issue.</p>
+</div>
+<p>The interval boundaries (and exactly found roots) are made available
+for future computations in <span class="docutils literal">\xintexpr</span>-essions or polynomial
+definitions as variables <span class="docutils literal">&lt;sturmname&gt;L_1</span>,
+<span class="docutils literal">&lt;sturmname&gt;L_2</span>, etc..., for the left end-points and
+<span class="docutils literal">&lt;sturmname&gt;R_1</span>, <span class="docutils literal">&lt;sturmname&gt;R_2</span>, ..., for the right
+end-points.</p>
+<p>Thus for example, if <span class="docutils literal">sturmname</span> is <span class="docutils literal">f</span>, one can use the
+<a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables <span class="docutils literal">fL_1</span>, <span class="docutils literal">fL_2</span>, ... to refer in expressions
+to the left end-points (or to the exact root, if left and right end
+points coincide). Additionally, <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variable <span class="docutils literal">fZ_1_isknown</span>
+will have value <span class="docutils literal">1</span> if the root in the first interval is known,
+and <span class="docutils literal">0</span> otherwise. And similarly for the other intervals.</p>
+<p>Also, macros <a class="reference internal" href="#polsturmisolatedzeroleft-sturmname-index">\PolSturmIsolatedZeroLeft{sturmname}{index}</a> and
+<a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index">\PolSturmIsolatedZeroRight{sturmname}{index}</a> are provided which
+expand to these same values, written in decimal notation (i.e.
+pre-processed by <a class="reference internal" href="#poldectostring">\PolDecToString</a>.) And there
+is also <a class="reference internal" href="#polsturmifzeroexactlyknown-sturmname-index-a-b">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</a>.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>Trailing zeroes in the stored decimal numbers accessible via the
+macros are significant: they are also present in the decimal
+expansion of the exact root.</p>
+</div>
+<p>These variables and macros are automatically updated when one next
+uses macros such as <a class="reference internal" href="#polrefineinterval-sturmname-index">\PolRefineInterval*{sturmname}{index}</a>.</p>
+<p>The start of decimal expansion of a positive <span class="docutils literal">k</span>-th root is given
+by <a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft{sturmname}{k}</a>, and for a negative root it is given
+by <a class="reference internal" href="#polsturmisolatedzeroright">PolSturmIsolatedZeroRight{sturmname}{k}</a>. These two decimal
+numbers are either both zero or both of the same sign.</p>
+<p>The number of distinct roots is obtainable expandably as
+<a class="reference internal" href="#polsturmnbofisolatedzeros-sturmname">\PolSturmNbOfIsolatedZeros{sturmname}</a>.</p>
+<p>Furthermore
+<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a> and
+<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</a>.
+will expandably compute respectively the number of real roots at
+most equal to <span class="docutils literal">value</span> or <span class="docutils literal">expression</span>, and the same but with
+multiplicities.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The current polexpr implementation defines the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables
+and <a class="reference external" href="http://www.ctan.org/pkg/xint">xinttools</a> arrays described above with <strong>global scpe</strong>. On the
+other hand the Sturm sequence polynomials do obey the current scope.</p>
+</div>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>As all computations are done <em>exactly</em> there can be no errors...
+apart those due to bad coding by author. The results are exact
+bounds for the mathematically exact real roots.</p>
+<p>Future releases will perhaps also provide macros based on Newton
+or Regula Falsi methods. Exact computations with such methods
+lead however quickly to very big fractions, and this forces usage
+of some rounding scheme for the abscissas if computation times
+are to remain reasonable. This raises issues of its own, which
+are studied in numerical mathematics.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="id15">
+<span id="id14"></span><h3><a class="toc-backref" href="#id117"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros*{sturmname}</span></span></a></h3>
+<blockquote>
+<p>The macro does the same as <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> and
+then in addition it does the extra work to determine all
+multiplicities (of the real roots):
+after executing this macro,
+<a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</a> will expand
+to the multiplicity of the root located in the <span class="docutils literal">index</span>-th
+interval (intervals are enumerated from left to right, with index
+starting at <span class="docutils literal">1</span>).</p>
+<p>Furthermore, if for example the <span class="docutils literal">sturmname</span> is <span class="docutils literal">f</span>, <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>
+variables <span class="docutils literal">fM_1</span>, <span class="docutils literal">fM_2</span>... hold the multiplicities thus
+computed.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>It is <strong>not</strong> necessary to have executed the <a class="reference internal" href="#id12">PolToSturm*</a> starred
+variant, as the non-starred variant keeps internally the memory of the
+original GCD (and even of the full non-normalized original Sturm
+chain), even though it does not make the declarations as <em>user-level</em>
+genuine polynomials.</p>
+</div>
+<p>See <a class="reference internal" href="#the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
+roots</a> for an example.</p>
+</blockquote>
+</div>
+<div class="section" id="id17">
+<span id="id16"></span><h3><a class="toc-backref" href="#id118"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{sturmname}</span></span></a></h3>
+<blockquote>
+<p>The macro does the same as <a class="reference internal" href="#id15">\PolSturmIsolateZeros*{sturmname}</a> and
+in addition it does the extra work to determine all the <em>rational</em>
+roots.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>After execution of this macro, a root is &quot;known&quot; if and only if
+it is rational.</p>
+</div>
+<p>Furthermore, primitive polynomial <span class="docutils literal">sturmname_sqf_norr</span> is created
+to match the (square-free) <span class="docutils literal">sturmname_0</span> from which all rational
+roots have been removed (see <a class="reference internal" href="#polexprsetup">\polexprsetup</a> for customizing this
+name). The number of distinct rational roots is thus the difference
+between the degrees of these two polynomials (see also
+<a class="reference internal" href="#polsturmnbofrationalroots-sturmname">\PolSturmNbOfRationalRoots{sturmname}</a>).</p>
+<p>And <span class="docutils literal">sturmname_norr</span> is <span class="docutils literal">sturmname_0_</span> from which all rational
+roots have been removed (see <a class="reference internal" href="#polexprsetup">\polexprsetup</a>), i.e. it contains
+the irrational roots of the original polynomial, with the same
+multiplicities.</p>
+<p>See <a class="reference internal" href="#a-degree-five-polynomial-with-three-rational-roots">A degree five polynomial with three rational
+roots</a> for an example.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmisolatezerosandgetmultiplicities-sturmname">
+<span id="polsturmisolatezerosandgetmultiplicities"></span><h3><a class="toc-backref" href="#id119"><span class="docutils literal">\PolSturmIsolateZerosAndGetMultiplicities{sturmname}</span></a></h3>
+<blockquote>
+<p>This is another name for <a class="reference internal" href="#id15">\PolSturmIsolateZeros*{sturmname}</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname">
+<span id="polsturmisolatezerosgetmultiplicitiesandrationalroots"></span><h3><a class="toc-backref" href="#id120"><span class="docutils literal">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}</span></a></h3>
+<blockquote>
+<p>This is another name for <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmisolatezerosandfindrationalroots-sturmname">
+<h3><a class="toc-backref" href="#id121"><span class="docutils literal">\PolSturmIsolateZerosAndFindRationalRoots{sturmname}</span></a></h3>
+<blockquote>
+<p>This works exactly like <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a>
+(inclusive of declaring the polynomials <span class="docutils literal">sturmname_sqf_norr</span> and
+<span class="docutils literal">sturmname_norr</span> with no rational roots) except that it does <em>not</em>
+compute the multiplicities of the <em>non-rational</em> roots.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>There is no macro to find the rational roots but not compute
+their multiplicities at the same time.</p>
+</div>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p>This macro does <em>not</em> define <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables
+<span class="docutils literal">sturmnameM_1</span>, <span class="docutils literal">sturmnameM_2</span>, ... holding the
+multiplicities and it leaves the multiplicity array (whose accessor
+is <a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</a>) into
+a broken state, as all non-rational roots will supposedly have
+multiplicity one. This means that the output of
+<a class="reference internal" href="#id21">\PolPrintIntervals*</a> for example will be
+erroneous for the intervals with irrational roots.</p>
+<p>I decided to document it because finding multiplicities of the
+non rational roots is somewhat costly, and one may be interested
+only into finding the rational roots (of course random
+polynomials with integer coefficients will not have <em>any</em>
+rational root anyhow).</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polrefineinterval-sturmname-index">
+<span id="polrefineinterval"></span><h3><a class="toc-backref" href="#id122"><span class="docutils literal"><span class="pre">\PolRefineInterval*{sturmname}{index}</span></span></a></h3>
+<blockquote>
+<p>The <span class="docutils literal">index</span>-th interval (starting indexing at one) is further
+subdivided as many times as is necessary in order for the newer
+interval to have both its end-points distinct from the end-points of
+the original interval. This means that the <span class="docutils literal">k</span>th root is then
+strictly separated from the other roots.</p>
+</blockquote>
+</div>
+<div class="section" id="polrefineinterval-n-sturmname-index">
+<span id="polrefineinterval-n"></span><h3><a class="toc-backref" href="#id123"><span class="docutils literal"><span class="pre">\PolRefineInterval[N]{sturmname}{index}</span></span></a></h3>
+<blockquote>
+<p>The <span class="docutils literal">index</span>-th interval (starting count at one) is further
+subdivided once, reducing its length by a factor of 10. This is done
+<span class="docutils literal">N</span> times if the optional argument <span class="docutils literal">[N]</span> is present.</p>
+</blockquote>
+</div>
+<div class="section" id="polensureintervallength-sturmname-index-e">
+<span id="polensureintervallength"></span><h3><a class="toc-backref" href="#id124"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLength{sturmname}{index}{E}</span></span></a></h3>
+<blockquote>
+<p>The <span class="docutils literal">index</span>-th interval is subdivided until its length becomes at
+most <span class="docutils literal">10^E</span>. This means (for <span class="docutils literal">E&lt;0</span>) that the first <span class="docutils literal"><span class="pre">-E</span></span> digits
+after decimal mark of the <span class="docutils literal">k</span>th root will then be known exactly.</p>
+</blockquote>
+</div>
+<div class="section" id="polensureintervallengths-sturmname-e">
+<span id="polensureintervallengths"></span><h3><a class="toc-backref" href="#id125"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{sturmname}{E}</span></span></a></h3>
+<blockquote>
+<p>The intervals as obtained from <span class="docutils literal">\PolSturmIsolateZeros</span> are (if
+necessary) subdivided further by (base 10) dichotomy in order for
+each of them to have length at most <span class="docutils literal">10^E</span> (length will be shorter
+than <span class="docutils literal">10^E</span> in output only if it did not change or became zero.)</p>
+<p>This means that decimal expansions of all roots will be known with
+<span class="docutils literal"><span class="pre">-E</span></span> digits (for <span class="docutils literal">E&lt;0</span>) after decimal mark.</p>
+</blockquote>
+</div>
+<div class="section" id="polprintintervals-varname-sturmname">
+<span id="polprintintervals"></span><h3><a class="toc-backref" href="#id126"><span class="docutils literal"><span class="pre">\PolPrintIntervals[varname]{sturmname}</span></span></a></h3>
+<blockquote>
+<p>This is a convenience macro which prints the bounds for the roots
+<span class="docutils literal">Z_1</span>, <span class="docutils literal">Z_2</span>, ... (the optional argument <span class="docutils literal">varname</span> allows to
+specify a replacement for the default <span class="docutils literal">Z</span>). This will be done (by
+default) in a
+math mode <span class="docutils literal">array</span>, one interval per row, and pattern <span class="docutils literal">rcccl</span>,
+where the second and fourth column hold the <span class="docutils literal">&lt;</span> sign, except when
+the interval reduces to a singleton, which means the root is known
+exactly.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The explanations here and in this section are for LaTeX. With
+other TeX macro formats, the LaTeX syntax such as for example
+<span class="docutils literal"><span class="pre">\begin{array}{rcccl}</span></span> which appears in the documentation here
+is actually replaced with quasi-equivalent direct use of TeX
+primitives.</p>
+</div>
+<p>See next macros which govern its output.</p>
+</blockquote>
+<div class="section" id="polprintintervalsnorealroots">
+<h4><a class="toc-backref" href="#id127"><span class="docutils literal">\PolPrintIntervalsNoRealRoots</span></a></h4>
+<blockquote>
+<p>Executed in place of an <span class="docutils literal">array</span> environment, when there are no
+real roots. Default definition:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsNoRealRoots{}</pre>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalsbeginenv">
+<h4><a class="toc-backref" href="#id128"><span class="docutils literal">\PolPrintIntervalsBeginEnv</span></a></h4>
+<blockquote>
+<p>Default definition:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}</pre>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalsendenv">
+<h4><a class="toc-backref" href="#id129"><span class="docutils literal">\PolPrintIntervalsEndEnv</span></a></h4>
+<blockquote>
+<p>Default definition:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsEndEnv{\end{array}\]}</pre>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalsknownroot">
+<h4><a class="toc-backref" href="#id130"><span class="docutils literal">\PolPrintIntervalsKnownRoot</span></a></h4>
+<blockquote>
+<p>Default definition:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsKnownRoot{%
+ &amp;&amp;\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}%
+ &amp;=&amp;\PolPrintIntervalsPrintExactZero
+}</pre>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalsunknownroot">
+<h4><a class="toc-backref" href="#id131"><span class="docutils literal">\PolPrintIntervalsUnknownRoot</span></a></h4>
+<blockquote>
+<p>Default definition:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsUnknownRoot{%
+ \PolPrintIntervalsPrintLeftEndPoint&amp;&lt;&amp;%
+ \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&amp;&lt;&amp;%
+ \PolPrintIntervalsPrintRightEndPoint
+}</pre>
+</blockquote>
+</div>
+<div class="section" id="id18">
+<span id="polprintintervalsprintexactzero"></span><h4><a class="toc-backref" href="#id132"><span class="docutils literal">\PolPrintIntervalsPrintExactZero</span></a></h4>
+<blockquote>
+<p>Default definition:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsPrintExactZero{\PolPrintIntervalsTheLeftEndPoint}</pre>
+</blockquote>
+</div>
+<div class="section" id="id19">
+<span id="polprintintervalsprintleftendpoint"></span><h4><a class="toc-backref" href="#id133"><span class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</span></a></h4>
+<blockquote>
+<p>Default definition:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsPrintLeftEndPoint{\PolPrintIntervalsTheLeftEndPoint}</pre>
+</blockquote>
+</div>
+<div class="section" id="id20">
+<span id="polprintintervalsprintrightendpoint"></span><h4><a class="toc-backref" href="#id134"><span class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</span></a></h4>
+<blockquote>
+<p>Default definition is:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}</pre>
+</blockquote>
+</div>
+</div>
+<div class="section" id="id22">
+<span id="id21"></span><h3><a class="toc-backref" href="#id135"><span class="docutils literal"><span class="pre">\PolPrintIntervals*[varname]{sturmname}</span></span></a></h3>
+<blockquote>
+<p>This starred variant produces an alternative output (which
+displays the root multiplicity), and is provided as an
+example of customization.</p>
+<p>As replacement for <a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a>,
+<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a>,
+<a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a> it uses its own
+<span class="docutils literal"><span class="pre">\POL&#64;&#64;PrintIntervals...</span></span> macros. We only reproduce here one
+definition:</p>
+<pre class="literal-block">\newcommand\POL&#64;&#64;PrintIntervalsPrintExactZero{%
+ \displaystyle
+ \xintSignedFrac{\PolPrintIntervalsTheLeftEndPoint}%
+}%</pre>
+<p>Multiplicities are printed using this auxiliary macro:</p>
+</blockquote>
+<div class="section" id="polprintintervalsprintmultiplicity">
+<h4><a class="toc-backref" href="#id136"><span class="docutils literal">\PolPrintIntervalsPrintMultiplicity</span></a></h4>
+<blockquote>
+<p>whose default definition is:</p>
+<pre class="literal-block">\newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}</pre>
+</blockquote>
+</div>
+</div>
+</div>
+<div class="section" id="polmapcoeffs-macro-polname">
+<span id="polmapcoeffs"></span><h2><a class="toc-backref" href="#id137"><span class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{polname}</span></span></a></h2>
+<blockquote>
+<p>It modifies ('in-place': original coefficients get lost) each
+coefficient of the defined polynomial via the <em>expandable</em> macro
+<span class="docutils literal">\macro</span>. The degree is adjusted as necessary if some leading
+coefficients vanish after the operation. In replacement text of
+<span class="docutils literal">\macro</span>, <span class="docutils literal">\index</span> expands to the coefficient index (which is
+defined to be zero for the constant term).</p>
+<p>Notice that <span class="docutils literal">\macro</span> will have to handle inputs of the shape
+<span class="docutils literal">A/B[N]</span> (<a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> internal notation). This means that it probably
+will have to be expressed in terms of macros from <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> package.</p>
+<p>Example:</p>
+<pre class="literal-block">\def\foo#1{\xintMul{#1}{\the\numexpr\index*\index\relax}}</pre>
+<p>(or with <span class="docutils literal"><span class="pre">\xintSqr{\index}</span></span>) to replace <span class="docutils literal">n</span>-th coefficient
+<span class="docutils literal">f_n</span> by <span class="docutils literal">f_n*n^2</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="polreducecoeffs-polname">
+<span id="polreducecoeffs"></span><h2><a class="toc-backref" href="#id138"><span class="docutils literal">\PolReduceCoeffs{polname}</span></a></h2>
+<blockquote>
+<p>About the same as <span class="docutils literal"><span class="pre">\PolMapCoeffs{\xintIrr}{polname}</span></span> (but
+maintaining a <span class="docutils literal">[0]</span> postfix for speedier <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> parsing when
+polynomial function is used for computations.) This is a
+one-argument macro, working 'in-place'.</p>
+</blockquote>
+</div>
+<div class="section" id="id24">
+<span id="id23"></span><h2><a class="toc-backref" href="#id139"><span class="docutils literal"><span class="pre">\PolReduceCoeffs*{polname}</span></span></a></h2>
+<blockquote>
+<p>This starred variant leaves un-touched the decimal exponent in the
+internal representation of the fractional coefficients, i.e. if a
+coefficient is internally <span class="docutils literal">A/B[N]</span>, then <span class="docutils literal">A/B</span> is reduced to
+smallest terms, but the <span class="docutils literal">10^N</span> part is kept as is. Note: if the
+polynomial is freshly defined directly via <a class="reference internal" href="#polfromcsv">\PolFromCSV</a> its coefficients might still be internally in some
+format like <span class="docutils literal">1.5e7</span>; the macro will anyhow always first do the
+needed conversion to strict format <span class="docutils literal">A/B[N]</span>.</p>
+<p>Evaluations with polynomials treated by this can be much faster than
+with those handled by the non-starred variant
+<a class="reference internal" href="#polreducecoeffs-polname">\PolReduceCoeffs{polname}</a>: as the numerators and denominators
+remain smaller, this proves very beneficial in favorable cases
+(especially when the coefficients are decimal numbers) to the
+expansion speed of the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros used internally by
+<a class="reference internal" href="#polevalat">\PolEval</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polmakemonic-polname">
+<span id="polmakemonic"></span><h2><a class="toc-backref" href="#id140"><span class="docutils literal">\PolMakeMonic{polname}</span></a></h2>
+<blockquote>
+<p>Divides by the leading coefficient. It is recommended to execute
+<a class="reference internal" href="#id24">\PolReduceCoeffs*{polname}</a> immediately afterwards. This is not
+done automatically, due to the case the original polynomial had integer
+coefficients and we want to keep the leading one as common
+denominator.</p>
+</blockquote>
+</div>
+<div class="section" id="polmakeprimitive-polname">
+<span id="polmakeprimitive"></span><h2><a class="toc-backref" href="#id141"><span class="docutils literal">\PolMakePrimitive{polname}</span></a></h2>
+<blockquote>
+<p>Divides by the integer content see (<a class="reference internal" href="#policontent">\PolIContent</a>). This thus produces a polynomial with integer
+coefficients having no common factor. The sign of the leading
+coefficient is not modified.</p>
+</blockquote>
+</div>
+</div>
+<div class="section" id="expandable-macros">
+<h1><a class="toc-backref" href="#id142">Expandable macros</a></h1>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>At <span class="docutils literal">0.8</span> <span class="docutils literal">polexpr</span> is usable with Plain TeX and not only with
+LaTeX. Some examples given in this section may be using LaTeX syntax
+such as <span class="docutils literal">\renewcommand</span>. Convert to TeX primitives as appropriate
+if testing with a non LaTeX macro format.</p>
+</div>
+<p>All these macros expand completely in two steps except <span class="docutils literal">\PolToExpr</span>
+and <span class="docutils literal">\PolToFloatExpr</span> (and their auxiliaries) which need a
+<span class="docutils literal">\write</span>, <span class="docutils literal">\edef</span> or a <span class="docutils literal"><span class="pre">\csname...\endcsname</span></span> context.</p>
+<div class="section" id="poleval-polname-atexpr-numerical-expression">
+<span id="polevalatexpr"></span><h2><a class="toc-backref" href="#id143"><span class="docutils literal"><span class="pre">\PolEval{polname}\AtExpr{numerical</span> expression}</span></a></h2>
+<blockquote>
+<p>It boils down to
+<span class="docutils literal">\xinttheexpr polname(numerical <span class="pre">expression)\relax</span></span>.</p>
+</blockquote>
+</div>
+<div class="section" id="poleval-polname-at-fraction">
+<span id="polevalat"></span><h2><a class="toc-backref" href="#id144"><span class="docutils literal"><span class="pre">\PolEval{polname}\At{fraction}</span></span></a></h2>
+<blockquote>
+<p>Evaluates the polynomial at value <span class="docutils literal">fraction</span> which must be in (or
+expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros.</p>
+</blockquote>
+</div>
+<div class="section" id="polevalreduced-polname-atexpr-numerical-expression">
+<span id="polevalreducedatexpr"></span><h2><a class="toc-backref" href="#id145"><span class="docutils literal"><span class="pre">\PolEvalReduced{polname}\AtExpr{numerical</span> expression}</span></a></h2>
+<blockquote>
+<p>Boils down to <span class="docutils literal">\xinttheexpr reduce(polname(numerical <span class="pre">expression))\relax</span></span>.</p>
+</blockquote>
+</div>
+<div class="section" id="polevalreduced-polname-at-fraction">
+<span id="polevalreducedat"></span><h2><a class="toc-backref" href="#id146"><span class="docutils literal"><span class="pre">\PolEvalReduced{polname}\At{fraction}</span></span></a></h2>
+<blockquote>
+<p>Evaluates the polynomial at value <span class="docutils literal">fraction</span> which must be in (or
+expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros, and produce
+an irreducible fraction.</p>
+</blockquote>
+</div>
+<div class="section" id="polfloateval-polname-atexpr-numerical-expression">
+<span id="polfloatevalatexpr"></span><h2><a class="toc-backref" href="#id147"><span class="docutils literal"><span class="pre">\PolFloatEval{polname}\AtExpr{numerical</span> expression}</span></a></h2>
+<blockquote>
+<p>Boils down to <span class="docutils literal">\xintthefloatexpr polname(numerical <span class="pre">expression)\relax</span></span>.</p>
+<p>This is done via a Horner Scheme (see <a class="reference internal" href="#poldef">\poldef</a> and
+<a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>), with already rounded
+coefficients. <a class="footnote-reference brackets" href="#id27" id="id25">4</a> To use the <em>exact coefficients</em> with <em>exactly
+executed</em> additions and multiplications, just insert it in the float
+expression as in this example: <a class="footnote-reference brackets" href="#id28" id="id26">5</a></p>
+<pre class="literal-block">\xintthefloatexpr 3.27*\xintexpr f(2.53)\relax^2\relax</pre>
+<p>The <span class="docutils literal">f(2.53)</span> is exactly computed then rounded at the time of
+getting raised to the power <span class="docutils literal">2</span>. Moving the <span class="docutils literal">^2</span> inside, that
+operation would also be treated exactly.</p>
+<dl class="footnote brackets">
+<dt class="label" id="id27"><span class="brackets"><a class="fn-backref" href="#id25">4</a></span></dt>
+<dd><p>Anyway each floating point operation starts by rounding its
+operands to the floating point precision.</p>
+</dd>
+<dt class="label" id="id28"><span class="brackets"><a class="fn-backref" href="#id26">5</a></span></dt>
+<dd><p>The <span class="docutils literal">\xintexpr</span> here could be <span class="docutils literal">\xinttheexpr</span> but that
+would be less efficient. Cf. <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> documentation about
+nested expressions.</p>
+</dd>
+</dl>
+</blockquote>
+</div>
+<div class="section" id="polfloateval-polname-at-fraction">
+<span id="polfloatevalat"></span><h2><a class="toc-backref" href="#id148"><span class="docutils literal"><span class="pre">\PolFloatEval{polname}\At{fraction}</span></span></a></h2>
+<blockquote>
+<p>Evaluates the polynomial at value <span class="docutils literal">fraction</span> which must be in (or
+expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros, and produces
+a floating point number.</p>
+</blockquote>
+</div>
+<div class="section" id="polifcoeffisplusorminusone-a-b">
+<span id="polifcoeffisplusorminusone"></span><h2><a class="toc-backref" href="#id149"><span class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{A}{B}</span></span></a></h2>
+<blockquote>
+<p>This macro is a priori undefined.</p>
+<p>It is defined via the default <a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{raw_coeff}</a> to be
+used if needed in the execution of <a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a>,
+e.g. to insert a <span class="docutils literal">\cdot</span> in front of <span class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></span> if
+the coefficient is not plus or minus one.</p>
+<p>The macro will execute <span class="docutils literal">A</span> if the coefficient has been found to be
+plus or minus one, and <span class="docutils literal">B</span> if not.</p>
+</blockquote>
+</div>
+<div class="section" id="polleadingcoeff-polname">
+<span id="polleadingcoeff"></span><h2><a class="toc-backref" href="#id150"><span class="docutils literal">\PolLeadingCoeff{polname}</span></a></h2>
+<blockquote>
+<p>Expands to the leading coefficient.</p>
+</blockquote>
+</div>
+<div class="section" id="polnthcoeff-polname-number">
+<span id="polnthcoeff"></span><h2><a class="toc-backref" href="#id151"><span class="docutils literal"><span class="pre">\PolNthCoeff{polname}{number}</span></span></a></h2>
+<blockquote>
+<p>It expands to the raw <span class="docutils literal">N</span>-th coefficient (<span class="docutils literal">0/1[0]</span> if the index
+number is out of range). With <span class="docutils literal"><span class="pre">N=-1</span></span>, <span class="docutils literal"><span class="pre">-2</span></span>, ... expands to the
+leading coefficients.</p>
+</blockquote>
+</div>
+<div class="section" id="poldegree-polname">
+<span id="poldegree"></span><h2><a class="toc-backref" href="#id152"><span class="docutils literal">\PolDegree{polname}</span></a></h2>
+<blockquote>
+<p>It expands to the degree. This is <span class="docutils literal"><span class="pre">-1</span></span> if zero polynomial but this
+may change in future. Should it then expand to <span class="docutils literal"><span class="pre">-\infty</span></span> ?</p>
+</blockquote>
+</div>
+<div class="section" id="policontent-polname">
+<span id="policontent"></span><h2><a class="toc-backref" href="#id153"><span class="docutils literal">\PolIContent{polname}</span></a></h2>
+<blockquote>
+<p>It expands to the contents of the polynomial, i.e. to the positive
+fraction such that dividing by this fraction produces a polynomial
+with integer coefficients having no common prime divisor.</p>
+<p>See <a class="reference internal" href="#polmakeprimitive">\PolMakePrimitive</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexpr-pol-expr">
+<span id="poltoexpr"></span><h2><a class="toc-backref" href="#id154"><span class="docutils literal"><span class="pre">\PolToExpr{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></h2>
+<blockquote>
+<p>Produces expandably <a class="footnote-reference brackets" href="#id30" id="id29">6</a> the string <span class="docutils literal"><span class="pre">coeff_N*x^N+...</span></span>, i.e. the
+polynomial is using descending powers.</p>
+<dl class="footnote brackets">
+<dt class="label" id="id30"><span class="brackets"><a class="fn-backref" href="#id29">6</a></span></dt>
+<dd><p>requires exhaustive expansion, for example as triggered by
+<span class="docutils literal">\write</span> or <span class="docutils literal">\edef</span>.</p>
+</dd>
+</dl>
+<p>Since <span class="docutils literal">0.8</span> the input is not restricted to be a polynomial name but
+is allowed to be an arbitrary expression (where by default the
+letter <span class="docutils literal">x</span> is recognized as the indeterminate; see
+<a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a>).</p>
+<p>The default output (which also by default uses the letter <span class="docutils literal">x</span> and is
+completely configurable, see in particular <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a>) is
+compatible with both</p>
+<ul class="simple">
+<li><p>the Maple's input format,</p></li>
+<li><p>and the PSTricks <span class="docutils literal">\psplot[algebraic]</span> input format.</p></li>
+</ul>
+<p>Attention that it is not compatible with Python, but see
+<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a> in this regard.</p>
+<p>It has the following characteristics:</p>
+<ul class="simple">
+<li><p>vanishing coefficients are skipped (issue <span class="docutils literal">\poltoexpralltrue</span> to
+override this and produce output such as <span class="docutils literal">x^3+0*x^2+0*x^1+0</span>),</p></li>
+<li><p>negative coefficients are not prefixed by a <span class="docutils literal">+</span> sign (else,
+Maple would not be happy),</p></li>
+<li><p>coefficients numerically equal to <span class="docutils literal">1</span> (or <span class="docutils literal"><span class="pre">-1</span></span>) are present
+only via their sign,</p></li>
+<li><p>the letter <span class="docutils literal">x</span> is used and the degree one monomial is output as
+<span class="docutils literal">x</span>, not as <span class="docutils literal">x^1</span>.</p></li>
+<li><p>(<span class="docutils literal">0.8</span>) the caret <span class="docutils literal">^</span> is of catcode 12. This means that one
+can for convenience typeset in regular text mode, for example
+using <span class="docutils literal">\texttt</span> (in LaTeX). But TeX will not know how to break
+the expression across end-of-lines anyhow. Formerly <span class="docutils literal">^</span> was
+suitable for math mode but as the exponent is not braced this
+worked only for polynomials of degrees at most 9. Anyhow this
+is not supposed to be a typesetting macro.</p></li>
+</ul>
+<p>Complete customization is possible, see the next macros. Any user
+redefinition must maintain the expandability property.</p>
+</blockquote>
+<div class="section" id="id31">
+<span id="poltoexprvar"></span><h3><a class="toc-backref" href="#id155"><span class="docutils literal">\PolToExprVar</span></a></h3>
+<blockquote>
+<p>Defaults to <span class="docutils literal">x</span>. The letter used in input.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexprinvar">
+<h3><a class="toc-backref" href="#id156"><span class="docutils literal">\PolToExprInVar</span></a></h3>
+<blockquote>
+<p>Defaults to <span class="docutils literal">x</span>: the letter used as the polynomial indeterminate.</p>
+<p>Recall that declared polynomials are more efficiently used in
+algebraic expressions without the <span class="docutils literal">(x)</span>, i.e. <span class="docutils literal">P*Q</span> is better
+than <span class="docutils literal"><span class="pre">P(x)*Q(x)</span></span>. Thus the input, even if an expression, does not
+have to contain any <span class="docutils literal">x</span>.</p>
+<p>(new with <span class="docutils literal">0.8</span>)</p>
+</blockquote>
+</div>
+<div class="section" id="id32">
+<span id="poltoexprtimes"></span><h3><a class="toc-backref" href="#id157"><span class="docutils literal">\PolToExprTimes</span></a></h3>
+<blockquote>
+<p>Defaults to <span class="docutils literal">*</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexprcaret">
+<h3><a class="toc-backref" href="#id158"><span class="docutils literal">\PolToExprCaret</span></a></h3>
+<blockquote>
+<p>Defaults to <span class="docutils literal">^</span> of catcode 12. Set it to
+expand to <span class="docutils literal">**</span> for Python compatible output.</p>
+<p>(new with <span class="docutils literal">0.8</span>)</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexprcmd-raw-coeff">
+<span id="poltoexprcmd"></span><h3><a class="toc-backref" href="#id159"><span class="docutils literal">\PolToExprCmd{raw_coeff}</span></a></h3>
+<blockquote>
+<p>Defaults to <span class="docutils literal"><span class="pre">\xintPRaw{\xintRawWithZeros{#1}}</span></span>.</p>
+<p>This means that the coefficient value is printed-out as a fraction
+<span class="docutils literal">a/b</span>, skipping the <span class="docutils literal">/b</span> part if <span class="docutils literal">b</span> turns out to be one.</p>
+<p>Configure it to be <span class="docutils literal"><span class="pre">\xintPRaw{\xintIrr{#1}}</span></span> if the fractions
+must be in irreducible terms.</p>
+<p>An alternative is <span class="docutils literal"><span class="pre">\xintDecToString{\xintREZ{#1}}</span></span> which uses
+integer or decimal fixed point format such as <span class="docutils literal">23.0071</span> if the
+internal representation of the number only has a power of ten as
+denominator (the effect of <span class="docutils literal">\xintREZ</span> here is to remove trailing
+decimal zeros). The behaviour of <span class="docutils literal">\xintDecToString</span> is not yet
+stable for other cases, and for example at time of writing no
+attempt is made to identify inputs having a finite decimal expansion
+so for example <span class="docutils literal">23.007/2</span> or <span class="docutils literal">23.007/25</span> can appear in output
+and not their finite decimal expansion with no denominator.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexproneterm-raw-coeff-number">
+<span id="poltoexproneterm"></span><h3><a class="toc-backref" href="#id160"><span class="docutils literal"><span class="pre">\PolToExprOneTerm{raw_coeff}{number}</span></span></a></h3>
+<blockquote>
+<p>This is the macro which from the coefficient and the exponent
+produces the corresponding term in output, such as <span class="docutils literal">2/3*x^7</span>.</p>
+<p>For its default definition, see the source code. It uses
+<a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a>, <a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>, <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a> and
+<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexpronetermstylea-raw-coeff-number">
+<span id="poltoexpronetermstylea"></span><h3><a class="toc-backref" href="#id161"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{raw_coeff}{number}</span></span></a></h3>
+<blockquote>
+<p>This holds the default package meaning of <span class="docutils literal">\PolToExprOneTerm</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexpronetermstyleb-raw-coeff-number">
+<span id="poltoexpronetermstyleb"></span><h3><a class="toc-backref" href="#id162"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{raw_coeff}{number}</span></span></a></h3>
+<blockquote>
+<p>This holds an alternative meaning, which puts the fractional part of
+a coefficient after the monomial, i.e. like this:</p>
+<pre class="literal-block">2*x^11/3+3*x^8/7-x^5-x^4/4-x^3-x^2/2-2*x+1</pre>
+<p><a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a> isn't used at all in this style. But
+<a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>, <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a> and <a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a> are obeyed.</p>
+<p>To activate it use <span class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleB</span>.
+To revert to the package default behaviour, issue
+<span class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleA</span>.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexprtermprefix-raw-coeff">
+<span id="poltoexprtermprefix"></span><h3><a class="toc-backref" href="#id163"><span class="docutils literal">\PolToExprTermPrefix{raw_coeff}</span></a></h3>
+<blockquote>
+<p>It receives as argument the coefficient. Its default behaviour is
+to produce a <span class="docutils literal">+</span> if the coefficient is positive, which will thus
+serve to separate the monomials in the output. This is to match
+the default for <a class="reference internal" href="#poltoexprcmd-raw-coeff">\PolToExprCmd{raw_coeff}</a> which in case of a
+positive coefficient does not output an explicit <span class="docutils literal">+</span> prefix.</p>
+</blockquote>
+</div>
+</div>
+<div class="section" id="id34">
+<span id="id33"></span><h2><a class="toc-backref" href="#id164"><span class="docutils literal"><span class="pre">\PolToExpr*{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></h2>
+<blockquote>
+<p>Ascending powers: <span class="docutils literal"><span class="pre">coeff_0+coeff_1*x+coeff_2*x^2+...</span></span>.</p>
+<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions as input.</p>
+<p>Customizable with the same macros as for
+<a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{&lt;pol. expr.&gt;}</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="poltofloatexpr-pol-expr">
+<span id="poltofloatexpr"></span><h2><a class="toc-backref" href="#id165"><span class="docutils literal"><span class="pre">\PolToFloatExpr{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></h2>
+<blockquote>
+<p>Similar to <a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{&lt;pol. expr.&gt;}</a> but using <a class="reference external" href="\PolToFloatExprCmd{raw_coeff}">\PolToFloatExprCmd</a> which by default rounds and
+converts the coefficients to floating point format.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>This is unrelated to <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>:
+<a class="reference internal" href="#poltofloatexprcmd-raw-coeff">\PolToFloatExprCmd{raw_coeff}</a> operates on the <em>exact</em>
+coefficients anew (and may thus produce something else than
+the coefficients of the polynomial function acting
+in <span class="docutils literal">\xintfloateval</span> if the floating point precision was changed
+in between).</p>
+</div>
+<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions as input.</p>
+</blockquote>
+<div class="section" id="poltofloatexproneterm-raw-coeff-number">
+<span id="poltofloatexproneterm"></span><h3><a class="toc-backref" href="#id166"><span class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{raw_coeff}{number}</span></span></a></h3>
+<blockquote>
+<p>Similar to <a class="reference external" href="\PolToExprOneTerm{raw_coeff}{number}">\PolToExprOneTerm</a>. But does not treat
+especially coefficients equal to plus or minus one.</p>
+</blockquote>
+</div>
+<div class="section" id="poltofloatexprcmd-raw-coeff">
+<span id="id36"></span><h3><a class="toc-backref" href="#id167"><span class="docutils literal">\PolToFloatExprCmd{raw_coeff}</span></a></h3>
+<blockquote>
+<p>The one-argument macro used by <span class="docutils literal">\PolToFloatExprOneTerm</span>.
+It defaults to <span class="docutils literal"><span class="pre">\xintFloat{#1}</span></span>.</p>
+<div class="admonition caution">
+<p class="admonition-title">Caution!</p>
+<p>Currently <span class="docutils literal">\xintFloat{0}</span> outputs <span class="docutils literal">0.e0</span>
+which is perfectly acceptable input for Python, but not for
+Maple. Thus, one should better leave the <span class="docutils literal">\\ifpoltoexprall</span> TeX
+Boolean to its default <a class="reference internal" href="#poltoexprallfalse">\poltoexprallfalse</a>, if one intends to use
+the output in a Maple worksheet.</p>
+<p>But even then the zero polynomial will cause a problem. Workaround:</p>
+<pre class="literal-block">\renewcommand\PolToFloatExprCmd[1]{\xintiiifZero{#1}{0.0}{\xintFloat{#1}}}</pre>
+<p>Usage of <span class="docutils literal">\xintiiifZero</span> and not <span class="docutils literal">\xintifZero</span> is only for
+optimization (I can't help it) because <span class="docutils literal">#1</span> is known to be
+in <span class="docutils literal">xintfrac</span> raw format.</p>
+</div>
+</blockquote>
+</div>
+</div>
+<div class="section" id="id38">
+<span id="id37"></span><h2><a class="toc-backref" href="#id168"><span class="docutils literal"><span class="pre">\PolToFloatExpr*{&lt;pol.</span> <span class="pre">expr.&gt;}</span></span></a></h2>
+<blockquote>
+<p>Ascending powers.</p>
+<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions as input.</p>
+</blockquote>
+</div>
+<div class="section" id="poltolist-polname">
+<span id="poltolist"></span><h2><a class="toc-backref" href="#id169"><span class="docutils literal">\PolToList{polname}</span></a></h2>
+<blockquote>
+<p>Expands to <span class="docutils literal"><span class="pre">{coeff_0}{coeff_1}...{coeff_N}</span></span> with <span class="docutils literal">N</span> = degree, and
+<span class="docutils literal">coeff_N</span> the leading coefficient
+(the zero polynomial does give <span class="docutils literal">{0/1[0]}</span> and not an
+empty output.)</p>
+</blockquote>
+</div>
+<div class="section" id="poltocsv-polname">
+<span id="poltocsv"></span><h2><a class="toc-backref" href="#id170"><span class="docutils literal">\PolToCSV{polname}</span></a></h2>
+<blockquote>
+<p>Expands to <span class="docutils literal">coeff_0, coeff_1, coeff_2, <span class="pre">.....,</span> coeff_N</span>, starting
+with constant term and ending with leading coefficient. Converse
+to <a class="reference internal" href="#polfromcsv-polname-csv">\PolFromCSV</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="expandable-macros-related-to-the-root-localization-routines">
+<h2><a class="toc-backref" href="#id171">Expandable macros related to the root localization routines</a></h2>
+<div class="section" id="polsturmchainlength-sturmname">
+<span id="polsturmchainlength"></span><h3><a class="toc-backref" href="#id172"><span class="docutils literal">\PolSturmChainLength{sturmname}</span></a></h3>
+<blockquote>
+<p>Returns the integer <span class="docutils literal">N</span> such that <span class="docutils literal">sturmname_N</span> is the last one
+in the Sturm chain <span class="docutils literal">sturmname_0</span>, <span class="docutils literal">sturmname_1</span>, ...</p>
+<p>See <a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmifzeroexactlyknown-sturmname-index-a-b">
+<span id="polsturmifzeroexactlyknown"></span><h3><a class="toc-backref" href="#id173"><span class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</span></span></a></h3>
+<blockquote>
+<p>Executes <span class="docutils literal">A</span> if the <span class="docutils literal">index</span>-th interval reduces to a singleton,
+i.e. the root is known exactly, else <span class="docutils literal">B</span>.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p><span class="docutils literal">index</span> is allowed to be something like <span class="docutils literal">1+2*3</span> as it is fed
+to <span class="docutils literal"><span class="pre">\the\numexpr...\relax</span></span>.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmisolatedzeroleft-sturmname-index">
+<span id="polsturmisolatedzeroleft"></span><h3><a class="toc-backref" href="#id174"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{sturmname}{index}</span></span></a></h3>
+<blockquote>
+<p>Expands to the left end-point for the <span class="docutils literal">index</span>-th interval, as
+computed by some earlier <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a>.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>Of course, this is kept updated by macros such as
+<a class="reference internal" href="#polrefineinterval-n">\PolRefineInterval{sturmname}{index}</a>.</p>
+</div>
+<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmisolatedzeroright-sturmname-index">
+<span id="polsturmisolatedzeroright"></span><h3><a class="toc-backref" href="#id175"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{sturmname}{index}</span></span></a></h3>
+<blockquote>
+<p>Expands to the right end-point for the <span class="docutils literal">index</span>-th interval as
+computed by some earlier <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> and
+possibly refined afterwards.</p>
+<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmisolatedzeromultiplicity-sturmname-index">
+<span id="polsturmisolatedzeromultiplicity"></span><h3><a class="toc-backref" href="#id176"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</span></span></a></h3>
+<blockquote>
+<p>Expands to the multiplicity of the unique root contained in the
+<span class="docutils literal">index</span>-th interval.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p>A prior execution of <a class="reference internal" href="#id15">\PolSturmIsolateZeros*{sturmname}</a> is mandatory.</p>
+</div>
+<p>See <a class="reference internal" href="#the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
+roots</a> for an example of use.</p>
+</blockquote>
+</div>
+<div class="section" id="polsturmnbofisolatedzeros-sturmname">
+<span id="polsturmnbofisolatedzeros"></span><h3><a class="toc-backref" href="#id177"><span class="docutils literal">\PolSturmNbOfIsolatedZeros{sturmname}</span></a></h3>
+<blockquote>
+<p>Expands to the number of real roots of the polynomial
+<span class="docutils literal">&lt;sturmname&gt;_0</span>, i.e. the number of distinct real roots of the
+polynomial originally used to create the Sturm chain via
+<a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</p>
+</blockquote>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>The next few macros counting roots, with or without multiplicities,
+less than or equal to some value, are under evaluation and may be
+removed from the package if their utility is judged to be not high
+enough. They can be re-coded at user level on the basis of the other
+documented package macros anyway.</p>
+</div>
+</div>
+<div class="section" id="polsturmnbofrootsof-sturmname-lessthanorequalto-value">
+<h3><a class="toc-backref" href="#id178"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></span></a></h3>
+<blockquote>
+<p>Expands to the number of distinct roots (of the polynomial used to
+create the Sturm chain) less than or equal to the <span class="docutils literal">value</span> (i.e. a
+number of fraction recognizable by the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> must have been executed
+beforehand.</p>
+<p>And the argument is a <span class="docutils literal">sturmname</span>, not a <span class="docutils literal">polname</span> (this is
+why the macro contains Sturm in its name), simply to be reminded
+of the above constraint.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression">
+<h3><a class="toc-backref" href="#id179"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></span></a></h3>
+<blockquote>
+<p>Expands to the number of distinct roots (of the polynomial
+used to create the Sturm chain) which are less than or equal to the
+given <span class="docutils literal">expression</span>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> must have been executed
+beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">
+<h3><a class="toc-backref" href="#id180"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></span></a></h3>
+<blockquote>
+<p>Expands to the number counted with multiplicities of the roots (of
+the polynomial used to create the Sturm chain) which are less than
+or equal to the given <span class="docutils literal">value</span>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#id15">\PolSturmIsolateZeros*{sturmname}</a> (or the double starred
+variant) must have been executed beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-expression">
+<h3><a class="toc-backref" href="#id181"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></span></a></h3>
+<blockquote>
+<p>Expands to the total number of roots (counted with multiplicities)
+which are less than or equal to the given <span class="docutils literal">expression</span>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#id15">\PolSturmIsolateZeros*{sturmname}</a> (or the double starred
+variant) must have been executed beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmnbofrationalroots-sturmname">
+<h3><a class="toc-backref" href="#id182"><span class="docutils literal">\PolSturmNbOfRationalRoots{sturmname}</span></a></h3>
+<blockquote>
+<p>Expands to the number of rational roots (without multiplicities).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
+beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmnbofrationalrootswithmultiplicities-sturmname">
+<h3><a class="toc-backref" href="#id183"><span class="docutils literal">\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}</span></a></h3>
+<blockquote>
+<p>Expands to the number of rational roots (counted with multiplicities).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
+beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmrationalroot-sturmname-k">
+<h3><a class="toc-backref" href="#id184"><span class="docutils literal"><span class="pre">\PolSturmRationalRoot{sturmname}{k}</span></span></a></h3>
+<blockquote>
+<p>Expands to the <span class="docutils literal">k</span>th rational root (they are ordered and indexed
+starting at 1 for the most negative).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
+beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmrationalrootindex-sturmname-k">
+<h3><a class="toc-backref" href="#id185"><span class="docutils literal"><span class="pre">\PolSturmRationalRootIndex{sturmname}{k}</span></span></a></h3>
+<blockquote>
+<p>Expands to <span class="docutils literal">index</span> of the <span class="docutils literal">k</span>th rational root as part of the
+ordered real roots (without multiplicities). I.e., above macro
+<a class="reference internal" href="#polsturmrationalroot-sturmname-k">\PolSturmRationalRoot{sturmname}{k}</a> is equivalent to this
+nested call:</p>
+<pre class="literal-block">\PolSturmIsolatedZeroLeft{sturmname}{\PolSturmRationalRootIndex{sturmname}{k}}</pre>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
+beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polsturmrationalrootmultiplicity-sturmname-k">
+<h3><a class="toc-backref" href="#id186"><span class="docutils literal"><span class="pre">\PolSturmRationalRootMultiplicity{sturmname}{k}</span></span></a></h3>
+<blockquote>
+<p>Expands to the multiplicity of the <span class="docutils literal">k</span>th rational root.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
+beforehand.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polintervalwidth-sturmname-index">
+<span id="polintervalwidth"></span><h3><a class="toc-backref" href="#id187"><span class="docutils literal"><span class="pre">\PolIntervalWidth{sturmname}{index}</span></span></a></h3>
+<blockquote>
+<p>The <span class="docutils literal">10^E</span> width of the current <span class="docutils literal">index</span>-th root localization
+interval. Output is in <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> raw <span class="docutils literal">1/1[E]</span> format (if not zero).</p>
+</blockquote>
+</div>
+</div>
+<div class="section" id="expandable-macros-for-use-within-execution-of-polprintintervals">
+<h2><a class="toc-backref" href="#id188">Expandable macros for use within execution of <span class="docutils literal">\PolPrintIntervals</span></a></h2>
+<p>These macros are for usage within custom user redefinitions of
+<a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a>, <a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a>, or
+in redefinitions of <a class="reference internal" href="#polprintintervalsprintexactzero">PolPrintIntervalsPrintExactZero</a> (used in the
+default for the former) and of <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>,
+<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a> (used in the default for the
+latter).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention!</p>
+<p>Some macros formerly mentioned here got removed at 0.7:
+<span class="docutils literal">\PolPrintIntervalsTheEndPoint</span>,
+<span class="docutils literal"><span class="pre">\PolIfEndPointIsPositive{A}{B}</span></span>,
+<span class="docutils literal"><span class="pre">\PolIfEndPointIsNegative{A}{B}</span></span>,
+<span class="docutils literal"><span class="pre">\PolIfEndPointIsZero{A}{B}</span></span>.</p>
+</div>
+<div class="section" id="polprintintervalsthevar">
+<h3><a class="toc-backref" href="#id189"><span class="docutils literal">\PolPrintIntervalsTheVar</span></a></h3>
+<blockquote>
+<p>Expands to the name (default <span class="docutils literal">Z</span>) used for representing the roots,
+which was passed as optional argument <span class="docutils literal">varname</span> to
+<a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[varname]{sturmname}</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalstheindex">
+<h3><a class="toc-backref" href="#id190"><span class="docutils literal">\PolPrintIntervalsTheIndex</span></a></h3>
+<blockquote>
+<p>Expands to the index of the considered interval (indexing starting
+at 1 for the leftmost interval).</p>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalsthesturmname">
+<h3><a class="toc-backref" href="#id191"><span class="docutils literal">\PolPrintIntervalsTheSturmName</span></a></h3>
+<blockquote>
+<p>Expands to the argument which was passed as <span class="docutils literal">sturmname</span> to
+<a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[varname]{sturmname}</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalstheleftendpoint">
+<h3><a class="toc-backref" href="#id192"><span class="docutils literal">\PolPrintIntervalsTheLeftEndPoint</span></a></h3>
+<blockquote>
+<p>The left end point of the interval, as would be produced by
+<a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a> if it was
+used with arguments the Sturm chain name and interval index returned
+by <a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a> and
+<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalstherightendpoint">
+<h3><a class="toc-backref" href="#id193"><span class="docutils literal">\PolPrintIntervalsTheRightEndPoint</span></a></h3>
+<blockquote>
+<p>The right end point of the interval, as would be produced by
+<a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a> for
+this Sturm chain name and index.</p>
+</blockquote>
+</div>
+<div class="section" id="polprintintervalsthemultiplicity">
+<h3><a class="toc-backref" href="#id194"><span class="docutils literal">\PolPrintIntervalsTheMultiplicity</span></a></h3>
+<blockquote>
+<p>The multiplicity of the unique root within the interval of index
+<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>. Makes sense only if the starred (or
+double-starred) variant of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> was used earlier.</p>
+</blockquote>
+</div>
+</div>
+</div>
+<div class="section" id="booleans-with-default-setting-as-indicated">
+<h1><a class="toc-backref" href="#id195">Booleans (with default setting as indicated)</a></h1>
+<div class="section" id="xintverbosefalse">
+<h2><a class="toc-backref" href="#id196"><span class="docutils literal">\xintverbosefalse</span></a></h2>
+<blockquote>
+<p>This is actually an <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> configuration. Setting it to
+<span class="docutils literal">true</span> triggers the writing of information to the log when new
+polynomial or scalar variables are defined.</p>
+<div class="admonition caution">
+<p class="admonition-title">Caution!</p>
+<p>The macro and variable meanings as written to the log are to be
+considered unstable and undocumented internal structures.</p>
+</div>
+</blockquote>
+</div>
+<div class="section" id="polnewpolverbosefalse">
+<h2><a class="toc-backref" href="#id197"><span class="docutils literal">\polnewpolverbosefalse</span></a></h2>
+<blockquote>
+<p>When <span class="docutils literal">\poldef</span> is used, both a variable and a function are
+defined. The default <span class="docutils literal">\polnewpolverbosefalse</span> setting suppresses
+the print-out to the log and terminal of the function macro meaning,
+as it only duplicates the information contained in the variable
+which is already printed out to the log and terminal.</p>
+<p>However <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a> does still print out the
+information relative to the polynomial function it defines for use in
+<span class="docutils literal">\xintfloateval{}</span> as there is no float polynomial variable, only the
+function, and it is the only way to see its rounded coefficients
+(<span class="docutils literal">\xintverbosefalse</span> suppresses also that info).</p>
+<p>If set to <span class="docutils literal">true</span>, it overrides in both cases
+<span class="docutils literal">\xintverbosefalse</span>. The setting only affects polynomial
+declarations. Scalar variables such as those holding information on
+roots obey only the <span class="docutils literal"><span class="pre">\xintverbose...</span></span> setting.</p>
+<p>(new with <span class="docutils literal">0.8</span>)</p>
+</blockquote>
+</div>
+<div class="section" id="poltypesetallfalse">
+<h2><a class="toc-backref" href="#id198"><span class="docutils literal">\poltypesetallfalse</span></a></h2>
+<blockquote>
+<p>If <span class="docutils literal">true</span>, <a class="reference internal" href="#poltypeset">\PolTypeset</a> will also typeset the vanishing
+coefficients.</p>
+</blockquote>
+</div>
+<div class="section" id="poltoexprallfalse">
+<h2><a class="toc-backref" href="#id199"><span class="docutils literal">\poltoexprallfalse</span></a></h2>
+<blockquote>
+<p>If <span class="docutils literal">true</span>, <a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{&lt;pol. expr.&gt;}</a> and <a class="reference internal" href="#poltofloatexpr-pol-expr">\PolToFloatExpr{&lt;pol. expr.&gt;}</a> will
+also include the vanishing coefficients in their outputs.</p>
+</blockquote>
+</div>
+</div>
+<div class="section" id="utilies">
+<h1><a class="toc-backref" href="#id200">Utilies</a></h1>
+<div class="section" id="poldectostring-decimal-number">
+<span id="poldectostring"></span><h2><a class="toc-backref" href="#id201"><span class="docutils literal">\PolDecToString{decimal number}</span></a></h2>
+<blockquote>
+<p>This is a utility macro to print decimal numbers. It has been
+backported to <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> (release <span class="docutils literal">1.3</span> of <span class="docutils literal">2018/03/01</span>) under
+the name <span class="docutils literal">\xintDecToString</span>, and the <span class="docutils literal">polexpr</span> macro is simply
+now an alias to it.</p>
+<p>For example
+<span class="docutils literal"><span class="pre">\PolDecToString{123.456e-8}</span></span> will expand to <span class="docutils literal">0.00000123456</span>
+and <span class="docutils literal"><span class="pre">\PolDecToString{123.450e-8}</span></span> to <span class="docutils literal">0.00000123450</span> which
+illustrates that trailing zeros are not trimmed. To trim trailing
+zeroes, one can use <span class="docutils literal"><span class="pre">\PolDecToString{\xintREZ{#1}}</span></span>.</p>
+<p>The precise behaviour of this macro may evolve in future releases of
+<a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>.</p>
+</blockquote>
+</div>
+<div class="section" id="polexprsetup">
+<h2><a class="toc-backref" href="#id202"><span class="docutils literal">\polexprsetup</span></a></h2>
+<blockquote>
+<p>Serves to customize the package. Currently only two keys are
+recognized:</p>
+<ul class="simple">
+<li><p><span class="docutils literal">norr</span>: the postfix that <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a>
+should append to <span class="docutils literal">sturmname</span> to declare the primitive polynomial
+obtained from original one after removal of all rational roots.
+The default value is <span class="docutils literal">_norr</span> (standing for “no rational roots”).</p></li>
+<li><p><span class="docutils literal">sqfnorr</span>: the postfix that <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a>
+should append to <span class="docutils literal">sturmname</span> to declare the primitive polynomial
+obtained from original one after removal of all rational roots and
+suppression of all multiplicities.
+The default value is <span class="docutils literal">_sqf_norr</span> (standing for “square-free with
+no rational roots”).</p></li>
+</ul>
+<p>The package executes <span class="docutils literal">\polexprsetup{norr=_norr, sqfnorr=_sqf_norr}</span> as default.</p>
+</blockquote>
+</div>
+</div>
+<div class="section" id="technicalities">
+<h1><a class="toc-backref" href="#id203">Technicalities</a></h1>
+<ul>
+<li><p>The catcode of the semi-colon is reset temporarily by <a class="reference internal" href="#poldef">\poldef</a> macro in case some other package (for example the French
+babel module) may have made it active. This will fail though if the
+whole thing was already part of a macro argument, in such cases one
+can use <a class="reference internal" href="#id8">\PolDef{f}{P(x)}</a>
+rather. The colon in <span class="docutils literal">:=</span> may be active with no consequences.</p></li>
+<li><p>As a consequence of <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> addition and subtraction always using
+least common multiples for the denominators <a class="footnote-reference brackets" href="#id40" id="id39">7</a>, user-chosen common
+denominators survive additions and multiplications. For example, this:</p>
+<pre class="literal-block">\poldef P(x):= 1/2 + 2/2*x + 3/2*x^3 + 4/2*x^4;
+\poldef Q(x):= 1/3 + (2/3)x + (3/3)x^3 + (4/3)x^4;
+\poldef PQ(x):= P*Q;</pre>
+<p>gives internally the polynomial:</p>
+<pre class="literal-block">1/6+4/6*x^1+4/6*x^2+6/6*x^3+20/6*x^4+16/6*x^5+9/6*x^6+24/6*x^7+16/6*x^8</pre>
+<p>where all coefficients have the same denominator 6. Notice though that
+<span class="docutils literal">\PolToExpr{PQ}</span> outputs the <span class="docutils literal">6/6*x^3</span> as <span class="docutils literal">x^3</span> because (by
+default) it recognizes and filters out coefficients equal to one or
+minus one (since release <span class="docutils literal">0.3</span>). One can use for example
+<span class="docutils literal">\PolToCSV{PQ}</span> to see the internally stored coefficients.</p>
+<dl class="footnote brackets">
+<dt class="label" id="id40"><span class="brackets"><a class="fn-backref" href="#id39">7</a></span></dt>
+<dd><p>prior to <span class="docutils literal">0.4.1</span>, <span class="docutils literal">polexpr</span> used to temporarily patch
+during the parsing of polynomials the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros. This
+patch was backported to <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> at release <span class="docutils literal">1.3</span>.</p>
+</dd>
+</dl>
+</li>
+<li><p><a class="reference internal" href="#poldiff-polname-1-polname-2">\PolDiff{polname_1}{polname_2}</a> always applies <span class="docutils literal">\xintIrr</span> to the
+resulting coefficients, except that the <em>power of ten</em> part <span class="docutils literal">[N]</span>
+(for example an input in scientific notation such as <span class="docutils literal">1.23e5</span> gives
+<span class="docutils literal">123/1[3]</span> internally in xintfrac) is not taken into account in the
+reduction of the fraction. This is tentative and may change.</p>
+<p>Same remark for <a class="reference internal" href="#polantidiff-polname-1-polname-2">\PolAntiDiff{polname_1}{polname_2}</a>.</p>
+</li>
+<li><p>Currently, the package stores all coefficients from index <span class="docutils literal">0</span> to
+index equal to the polynomial degree inside a single macro, as a list.
+This data structure is obviously very inefficient for polynomials of
+high degree and few coefficients (as an example with <span class="docutils literal">\poldef <span class="pre">f(x):=x^1000</span> + x^500;</span> the subsequent definition <span class="docutils literal">\poldef <span class="pre">g(x):=</span> <span class="pre">f(x)^2;</span></span> will do of the order of 1,000,000 multiplications and
+additions involvings only zeroes... which does take time). This
+may change in the future.</p></li>
+<li><p>As is to be expected internal structures of the package are barely
+documented and unstable. Don't use them.</p></li>
+</ul>
+</div>
+<div class="section" id="change-log">
+<h1><a class="toc-backref" href="#id204">CHANGE LOG</a></h1>
+<ul>
+<li><p>v0.1 (2018/01/11): initial release. Features:</p>
+<ul class="simple">
+<li><p>The <a class="reference internal" href="#poldef">\poldef</a> parser itself,</p></li>
+<li><p>Differentiation and anti-differentiation,</p></li>
+<li><p>Euclidean division and GCDs,</p></li>
+<li><p>Various utilities such as <a class="reference internal" href="#polfromcsv">\PolFromCSV</a>,
+<a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>,
+<a class="reference internal" href="#poltocsv">\PolToCSV</a>, <a class="reference internal" href="#poltoexpr">\PolToExpr</a>, ...</p></li>
+</ul>
+<p>Only one-variable polynomials so far.</p>
+</li>
+<li><p>v0.2 (2018/01/14)</p>
+<ul class="simple">
+<li><p>Fix: <span class="docutils literal">&quot;README thinks \numexpr recognizes ^ operator&quot;</span>.</p></li>
+<li><p>Convert README to reStructuredText markup.</p></li>
+<li><p>Move main documentation from README to separate <span class="docutils literal">polexpr.txt</span> file.</p></li>
+<li><p>Provide <span class="docutils literal">polexpr.html</span> as obtained via <a class="reference external" href="http://docutils.sourceforge.net/docs/index.html">DocUtils</a> <span class="docutils literal">rst2html.py</span>.</p></li>
+<li><p>Convert README to (CTAN compatible) Markdown markup.</p></li>
+</ul>
+<p>Due to lack of available time the test suite might not be extensive
+enough. Bug reports are very welcome!</p>
+</li>
+<li><p>v0.3 (2018/01/17)</p>
+<ul>
+<li><p>bug fixes:</p>
+<ul>
+<li><p>the <span class="docutils literal">0.1</span> <a class="reference internal" href="#polevalat">\PolEval</a> accepted expressions for its second
+argument, but this was removed by mistake at <span class="docutils literal">0.2</span>. Restored.</p>
+<p><strong>Attention</strong>: at <span class="docutils literal">0.4</span> this has been reverted again, and
+<a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> syntax is needed for
+using expressions in the second argument.</p>
+</li>
+</ul>
+</li>
+<li><p>incompatible or breaking changes:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="#poltoexpr">\PolToExpr</a> now by default uses <em>descending</em>
+powers (it also treats differently coefficients equal to 1 or -1.)
+Use <a class="reference internal" href="#id33">\PolToExpr*</a> for <em>ascending</em> powers.</p></li>
+<li><p><a class="reference internal" href="#polevalat">\PolEval</a> reduced the output to smallest terms,
+but as this is costly with big fractions and not needed if e.g.
+wrapped in an <span class="docutils literal">\xintRound</span> or <span class="docutils literal">\xintFloat</span>, this step has been
+removed; the former meaning is available as <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>.</p></li>
+</ul>
+</li>
+<li><p>new (or newly documented) macros:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="#poltypesetcmd">\PolTypesetCmd</a></p></li>
+<li><p><a class="reference internal" href="#poltypesetcmdprefix">\PolTypesetCmdPrefix</a></p></li>
+<li><p><a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a></p></li>
+<li><p><a class="reference internal" href="#polevalreducedat">\PolEvalReducedAt</a></p></li>
+<li><p><a class="reference internal" href="#poltofloatexpr">\PolToFloatExpr</a></p></li>
+<li><p><a class="reference internal" href="#poltoexproneterm">\PolToExprOneTerm</a></p></li>
+<li><p><a class="reference internal" href="#poltofloatexproneterm">\PolToFloatExprOneTerm</a></p></li>
+<li><p><a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a></p></li>
+<li><p><a class="reference internal" href="#id36">\PolToFloatExprCmd</a></p></li>
+<li><p><a class="reference internal" href="#poltoexprtermprefix">\PolToExprTermPrefix</a></p></li>
+<li><p><a class="reference internal" href="#poltoexprvar">\PolToExprVar</a></p></li>
+<li><p><a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a></p></li>
+</ul>
+</li>
+<li><p>improvements:</p>
+<ul>
+<li><p>documentation has a table of contents, internal hyperlinks,
+standardized signature notations and added explanations.</p></li>
+<li><p>one can do <span class="docutils literal"><span class="pre">\PolLet{g}={f}</span></span> or <span class="docutils literal"><span class="pre">\PolLet{g}{f}</span></span>.</p></li>
+<li><p><span class="docutils literal">\PolToExpr{f}</span> is highly customizable.</p></li>
+<li><p><a class="reference internal" href="#poldef">\poldef</a> and other defining macros prepare the polynomial
+functions for usage within <span class="docutils literal">\xintthefloatexpr</span> (or
+<span class="docutils literal">\xintdeffloatvar</span>). Coefficients are pre-rounded to the
+floating point precision. Indispensible for numerical algorithms,
+as exact fractions, even reduced, quickly become very big. See the
+documentation about how to use the exact polynomials also in
+floating point context.</p>
+<p><strong>Attention</strong>: this has been reverted at <span class="docutils literal">0.4</span>. The macro
+<a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must be used for
+generation floating point polynomial functions.</p>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>v0.3.1 (2018/01/18)</p>
+<p>Fixes two typos in example code included in the documentation.</p>
+</li>
+<li><p>v0.4 (2018/02/16)</p>
+<ul>
+<li><p>bug fixes:</p>
+<ul class="simple">
+<li><p>when Euclidean division gave a zero remainder, the internal
+representation of this zero polynomial could be faulty; this
+could cause mysterious bugs in conjunction with other package
+macros such as <a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>.</p></li>
+<li><p><a class="reference internal" href="#polgcd">\PolGCD</a> was buggy in case of first polynomial being
+of lesser degree than the second one.</p></li>
+</ul>
+</li>
+<li><p>breaking changes:</p>
+<ul>
+<li><p>formerly <a class="reference internal" href="#polevalat">\PolEval{P}\At{foo}</a> allowed <span class="docutils literal">foo</span> to
+be an expression, which was transparently handled via
+<span class="docutils literal">\xinttheexpr</span>. Now, <span class="docutils literal">foo</span> must be a fraction (or a macro
+expanding to such) in the format acceptable by <span class="docutils literal">xintfrac.sty</span>
+macros. Use <a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> for more
+general arguments using expression syntax. E.g., if <span class="docutils literal">foo</span> is the
+name of a variable known to <span class="docutils literal">\xintexpr</span>.</p>
+<p>The same holds for <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>
+and <a class="reference internal" href="#polfloatevalat">\PolFloatEval</a>.</p>
+</li>
+<li><p>the <span class="docutils literal">3.0</span> automatic generation of floating point variants has
+been reverted. Not only do <em>not</em> the package macros automatically
+generate floating point variants of newly created polynomials,
+they actually make pre-existing such variant undefined.</p>
+<p>See <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a>.</p>
+</li>
+</ul>
+</li>
+<li><p>new non-expandable macros:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a></p></li>
+<li><p><a class="reference internal" href="#polgloballet">\PolGlobalLet</a></p></li>
+<li><p><a class="reference internal" href="#poltypesetone">\PolTypesetOne</a></p></li>
+<li><p><a class="reference internal" href="#polquo">\PolQuo</a></p></li>
+<li><p><a class="reference internal" href="#polrem">\PolRem</a></p></li>
+<li><p><a class="reference internal" href="#poltosturm">\PolToSturm</a></p></li>
+<li><p><a class="reference internal" href="#id12">\PolToSturm*</a></p></li>
+<li><p><a class="reference internal" href="#polsettosturmchainsignchangesat">\PolSetToSturmChainSignChangesAt</a></p></li>
+<li><p><a class="reference internal" href="#polsettonbofzeroswithin">\PolSetToNbOfZerosWithin</a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a></p></li>
+<li><p><a class="reference internal" href="#polrefineinterval">\PolRefineInterval*</a></p></li>
+<li><p><a class="reference internal" href="#polrefineinterval-n">\PolRefineInterval[N]</a></p></li>
+<li><p><a class="reference internal" href="#polensureintervallength">\PolEnsureIntervalLength</a></p></li>
+<li><p><a class="reference internal" href="#polensureintervallengths">\PolEnsureIntervalLengths</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervals">\PolPrintIntervals</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a></p></li>
+<li><p><a class="reference internal" href="#id23">\PolReduceCoeffs*</a></p></li>
+<li><p><a class="reference internal" href="#polmakemonic">\PolMakeMonic</a></p></li>
+</ul>
+</li>
+<li><p>new expandable macros:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="#poltoexpronetermstylea">\PolToExprOneTermStyleA</a></p></li>
+<li><p><a class="reference internal" href="#polifcoeffisplusorminusone">\PolIfCoeffIsPlusOrMinusOne</a></p></li>
+<li><p><a class="reference internal" href="#polleadingcoeff">\PolLeadingCoeff</a></p></li>
+<li><p><a class="reference internal" href="#polsturmchainlength">\PolSturmChainLength</a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofisolatedzeros">\PolSturmNbOfIsolatedZeros</a></p></li>
+<li><p><a class="reference internal" href="#polsturmifzeroexactlyknown">\PolSturmIfZeroExactlyKnown</a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a></p></li>
+<li><p><span class="docutils literal">\PolPrintIntervalsTheEndPoint</span> (removed at 0.7)</p></li>
+<li><p><a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a></p></li>
+<li><p><span class="docutils literal">\PolIfEndPointIsPositive</span> (removed at 0.7)</p></li>
+<li><p><span class="docutils literal">\PolIfEndPointIsNegative</span> (removed at 0.7)</p></li>
+<li><p><span class="docutils literal">\PolIfEndPointIsZero</span> (removed at 0.7)</p></li>
+<li><p><a class="reference internal" href="#polintervalwidth">\PolIntervalWidth</a></p></li>
+<li><p><a class="reference internal" href="#poldectostring">\PolDecToString</a></p></li>
+</ul>
+</li>
+<li><p>improvements:</p>
+<p>The main new feature is implementation of the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm algorithm</a>
+for localization of the real roots of polynomials.</p>
+</li>
+</ul>
+</li>
+<li><p>v0.4.1 (2018/03/01)</p>
+<p>Synced with xint 1.3.</p>
+</li>
+<li><p>v0.4.2 (2018/03/03)</p>
+<p>Documentation fix.</p>
+</li>
+<li><p>v0.5 (2018/04/08)</p>
+<ul class="simple">
+<li><p>bug fixes:</p>
+<ul>
+<li><p><a class="reference internal" href="#polget-polname-fromarray-macro">\PolGet{polname}\fromarray\macro</a> crashed when <span class="docutils literal">\macro</span> was
+an <a class="reference external" href="http://www.ctan.org/pkg/xint">xinttools</a> array macro with no items. It now produces the zero
+polynomial.</p></li>
+</ul>
+</li>
+<li><p>breaking changes:</p>
+<ul>
+<li><p><a class="reference internal" href="#poltosturm">\PolToSturm</a> creates primitive integer coefficients polynomials.
+This speeds up localization of roots via
+<a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a>. In case of user protests the author
+will make available again the code producing the bona fide Sturm
+polynomials as used formerly.</p></li>
+<li><p>polynomials created from <a class="reference internal" href="#polfromcsv">\PolFromCSV</a> or <a class="reference internal" href="#polget">\PolGet</a>
+get their coefficients normalized via <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a>'s <span class="docutils literal">\xintRaw</span>.</p></li>
+</ul>
+</li>
+<li><p>experimental change:</p>
+<ul>
+<li><p>optional argument to <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> (see <a class="reference internal" href="#the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots">The
+degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2
+as roots</a> for usage). It will presumably be replaced in future by
+an interval specification.</p></li>
+</ul>
+</li>
+<li><p>new non-expandable macro:</p>
+<ul>
+<li><p><a class="reference internal" href="#polmakeprimitive">\PolMakePrimitive</a></p></li>
+</ul>
+</li>
+<li><p>new expandable macro:</p>
+<ul>
+<li><p><a class="reference internal" href="#policontent">\PolIContent</a></p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>v0.5.1 (2018/04/22)</p>
+<ul class="simple">
+<li><p>new feature:</p>
+<ul>
+<li><p>the character <span class="docutils literal">'</span> can be used in polynomial names.</p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>v0.6 (2018/11/20)</p>
+<ul class="simple">
+<li><p>bugfix:</p>
+<ul>
+<li><p>the starred variant <a class="reference internal" href="#id13">\PolToSturm*{polname}{sturmname}</a> was
+broken. On the occasion of the fix, its meaning has been modified,
+see its documentation.</p></li>
+<li><p>using <a class="reference internal" href="#poltosturm">\PolToSturm</a> with a constant polynomial
+caused a division by zero error.</p></li>
+</ul>
+</li>
+<li><p>new macro:</p>
+<ul>
+<li><p><a class="reference internal" href="#id14">\PolSturmIsolateZeros*</a>
+acts like the <a class="reference internal" href="#polsturmisolatezeros">non-starred variant</a> then computes all the multiplicities.</p></li>
+</ul>
+</li>
+<li><p>new expandable macros:</p>
+<ul>
+<li><p><a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-expression">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</a></p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>v0.7 (2018/12/08), v0.7.1 (bugfix), v0.7.2 (2nd bugfix) (2018/12/09)</p>
+<ul class="simple">
+<li><p>breaking changes:</p>
+<ul>
+<li><p>although <a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[varname]{sturmname}</a> default output
+remains the same, some auxiliary macros for user-customization
+have been removed: <span class="docutils literal">\PolPrintIntervalsTheEndPoint</span>,
+<span class="docutils literal"><span class="pre">\PolIfEndPointIsPositive{A}{B}</span></span>,
+<span class="docutils literal"><span class="pre">\PolIfEndPointIsNegative{A}{B}</span></span>, and
+<span class="docutils literal"><span class="pre">\PolIfEndPointIsZero{A}{B}</span></span>.</p></li>
+</ul>
+</li>
+<li><p>bugfix:</p>
+<ul>
+<li><p>it could happen that, contrarily to documentation, an interval
+computed by <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> had zero as an
+endpoint,</p></li>
+<li><p><a class="reference internal" href="#polensureintervallength-sturmname-index-e">\PolEnsureIntervalLength{sturmname}{index}{E}</a> could under
+certain circumstances erroneously replace a non-zero root by
+zero,</p></li>
+<li><p><a class="reference internal" href="#polensureintervallengths-sturmname-e">\PolEnsureIntervalLengths{sturmname}{E}</a> crashed when used with
+a polynomial with no real roots, hence for which no isolation intervals
+existed (thanks to Thomas Söll for report).</p></li>
+</ul>
+</li>
+<li><p>new macros:</p>
+<ul>
+<li><p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{sturmname}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmisolatezerosandfindrationalroots-sturmname">\PolSturmIsolateZerosAndFindRationalRoots{sturmname}</a></p></li>
+<li><p><a class="reference internal" href="#polexprsetup">\polexprsetup</a></p></li>
+<li><p><a class="reference internal" href="#id21">\PolPrintIntervals*</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsnorealroots">\PolPrintIntervalsNoRealRoots</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsbeginenv">\PolPrintIntervalsBeginEnv</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsendenv">\PolPrintIntervalsEndEnv</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsprintmultiplicity">\PolPrintIntervalsPrintMultiplicity</a></p></li>
+</ul>
+</li>
+<li><p>new expandable macros:</p>
+<ul>
+<li><p><a class="reference internal" href="#polsturmnbofrationalroots-sturmname">\PolSturmNbOfRationalRoots{sturmname}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmnbofrationalrootswithmultiplicities-sturmname">\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmrationalroot-sturmname-k">\PolSturmRationalRoot{sturmname}{k}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmrationalrootindex-sturmname-k">\PolSturmRationalRootIndex{sturmname}{k}</a></p></li>
+<li><p><a class="reference internal" href="#polsturmrationalrootmultiplicity-sturmname-k">\PolSturmRationalRootMultiplicity{sturmname}{k}</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsthevar">\PolPrintIntervalsTheVar</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a></p></li>
+<li><p><a class="reference internal" href="#polprintintervalsthemultiplicity">\PolPrintIntervalsTheMultiplicity</a></p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>v0.7.3 (2019/02/04)</p>
+<ul class="simple">
+<li><p>bugfix:</p>
+<ul>
+<li><p>Debugging information not destined to user showed in log if root
+finding was done under <span class="docutils literal">\xintverbosetrue</span> regime.</p></li>
+<li><p><a class="reference internal" href="#polprintintervalsthevar">\PolPrintIntervalsTheVar</a> remained defined after
+<a class="reference internal" href="#polprintintervals">\PolPrintIntervals</a> but was left undefined after
+<a class="reference internal" href="#id21">\PolPrintIntervals*</a> (reported by Jürgen Gilg). Now remains
+defined in both cases, and <a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a>
+also.</p></li>
+<li><p>Polynomial names ending in digits caused errors (reported by Thomas
+Söll).</p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>v0.7.4 (2019/02/12)</p>
+<ul class="simple">
+<li><p>bugfix:</p>
+<ul>
+<li><p>20000000000 is too big for <span class="docutils literal">\numexpr</span>, shouldn't I know that?
+Thanks to Jürgen Gilg for report.</p></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>v0.7.5 (2020/01/31)</p>
+<p>Synced with xintexpr 1.4. Requires it.</p>
+</li>
+<li><p>v0.8 (2021/03/29)</p>
+<p>Synced with xintexpr 1.4d. Requires it.</p>
+<ul class="simple">
+<li><p>breaking changes:</p>
+<ul>
+<li><p>As the usability of character <span class="docutils literal">'</span> in names has been extended
+from <span class="docutils literal">\poldef</span> to also generally <span class="docutils literal">\xintexpr</span>, <span class="docutils literal">\xintdefvar</span>,
+and <span class="docutils literal">\xintdeffunc</span>, it breaks there the infix operators
+<span class="docutils literal">'and'</span>, <span class="docutils literal">'or'</span>, <span class="docutils literal">'xor'</span> and <span class="docutils literal">'mod'</span>. See the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>
+documentation for the <span class="docutils literal">&amp;&amp;</span>, <span class="docutils literal">||</span>, <span class="docutils literal">xor()</span> and <span class="docutils literal">/:</span>
+alternatives.</p></li>
+<li><p><a class="reference internal" href="#poltoexpr">\PolToExpr</a> by default uses a catcode 12
+<span class="docutils literal">^</span>. See its documentation and the new configuration
+<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a>.</p></li>
+</ul>
+</li>
+<li><p>deprecated:</p>
+<ul>
+<li><p>Usage of <span class="docutils literal">P/Q</span> for the euclidean quotient of two polynomials is
+deprecated. Start using <span class="docutils literal">quo(P,Q)</span> in its place.</p></li>
+</ul>
+</li>
+<li><p>bugfix:</p>
+<ul>
+<li><p>The <span class="docutils literal">\xintglobaldefstrue</span> setting was obeyed only partially
+by the polexpr macros defining polynomials.</p></li>
+<li><p>The <span class="docutils literal">\xintexpr</span> variables storing the values of the extremities
+of the intervals as found by <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> were not updated at 0.7.5 to the
+xintexpr 1.4 format and thus caused low-level TeX errors if used.</p></li>
+<li><p>Attempting to use in <span class="docutils literal">\poldef</span> a function previously declared
+via <span class="docutils literal">\xintdeffunc</span> which made usage of the indexing or slicing
+&quot;ople&quot; syntax typically caused <span class="docutils literal">TeX capacity exceeded</span> error.
+Indeed 0.7.5 only partially made polexpr able to cope with the
+extended possibilities for xintexpr 1.4 user-declared functions.
+Hopefully <span class="docutils literal">0.8</span> achieves full functionality in this context.</p></li>
+</ul>
+</li>
+<li><p>new macros:</p>
+<ul>
+<li><p><a class="reference internal" href="#polnewpolverbosefalse">\polnewpolverbosefalse</a></p></li>
+<li><p><a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a></p></li>
+<li><p><a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a></p></li>
+<li><p>alongside the major new functionalities described in the next item
+<a class="reference internal" href="#poltypeset">\PolTypeset</a> and <a class="reference internal" href="#poltoexpr">\PolToExpr</a> have
+been enhanced to accept as argument a general expression and not
+only a pre-declared polynomial name.</p></li>
+</ul>
+</li>
+<li><p>new features:</p>
+<ul>
+<li><p>The package is usable under Plain and probably most any TeX format,
+and not only under LaTeX.</p></li>
+<li><p>The core of the package has been rewritten entirely in order to
+start letting <span class="docutils literal">\xintexpr</span> recognize a polynomial type as a genuine
+variable. This has allowed:</p>
+<ul>
+<li><p>to solve the reduced inter-operability problems between polexpr
+and <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> which arose as consequences to the deep <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> <span class="docutils literal">1.4</span>
+evolution,</p></li>
+<li><p>to make available most of the functionality associated to
+expandable macros directly in the <span class="docutils literal">\xinteval</span> syntax as
+operators or functions,</p></li>
+<li><p>to provide (expandable) functional interface in <span class="docutils literal">\xinteval</span> to
+features previously available only via (for some, non-expandable)
+macro interface such as gcd computations.</p></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+<p>See the updated <a class="reference internal" href="#quick-syntax-overview">Quick syntax overview</a> and then <a class="reference internal" href="#polexpr08">the extended syntax
+description</a>.</p>
+</li>
+</ul>
+</div>
+<div class="section" id="acknowledgments">
+<h1><a class="toc-backref" href="#id205">Acknowledgments</a></h1>
+<p>Thanks to Jürgen Gilg whose question about <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> usage for
+differentiating polynomials was the initial trigger leading to this
+package, and to Jürgen Gilg and Thomas Söll for testing it on some
+concrete problems.</p>
+<p>Renewed thanks to them on occasion of the <span class="docutils literal">0.6</span>, <span class="docutils literal">0.7</span>, and <span class="docutils literal">0.8</span>
+releases for their continued interest.</p>
+<p>See README.md for the License.</p>
+</div>
+</div>
+</body>
+</html>
diff --git a/Master/texmf-dist/doc/latex/polexpr/polexpr.html b/Master/texmf-dist/doc/latex/polexpr/polexpr.html
deleted file mode 100644
index 74963329764..00000000000
--- a/Master/texmf-dist/doc/latex/polexpr/polexpr.html
+++ /dev/null
@@ -1,2911 +0,0 @@
-<?xml version="1.0" encoding="utf-8" ?>
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
-<head>
-<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
-<meta name="generator" content="Docutils 0.14: http://docutils.sourceforge.net/" />
-<title>Package polexpr documentation</title>
-<style type="text/css">
-
-/*
-:Author: David Goodger (goodger@python.org)
-:Id: $Id: html4css1.css 7952 2016-07-26 18:15:59Z milde $
-:Copyright: This stylesheet has been placed in the public domain.
-
-Default cascading style sheet for the HTML output of Docutils.
-
-See http://docutils.sf.net/docs/howto/html-stylesheets.html for how to
-customize this style sheet.
-*/
-
-/* used to remove borders from tables and images */
-.borderless, table.borderless td, table.borderless th {
- border: 0 }
-
-table.borderless td, table.borderless th {
- /* Override padding for "table.docutils td" with "! important".
- The right padding separates the table cells. */
- padding: 0 0.5em 0 0 ! important }
-
-.first {
- /* Override more specific margin styles with "! important". */
- margin-top: 0 ! important }
-
-.last, .with-subtitle {
- margin-bottom: 0 ! important }
-
-.hidden {
- display: none }
-
-.subscript {
- vertical-align: sub;
- font-size: smaller }
-
-.superscript {
- vertical-align: super;
- font-size: smaller }
-
-a.toc-backref {
- text-decoration: none ;
- color: black }
-
-blockquote.epigraph {
- margin: 2em 5em ; }
-
-dl.docutils dd {
- margin-bottom: 0.5em }
-
-object[type="image/svg+xml"], object[type="application/x-shockwave-flash"] {
- overflow: hidden;
-}
-
-/* Uncomment (and remove this text!) to get bold-faced definition list terms
-dl.docutils dt {
- font-weight: bold }
-*/
-
-div.abstract {
- margin: 2em 5em }
-
-div.abstract p.topic-title {
- font-weight: bold ;
- text-align: center }
-
-div.admonition, div.attention, div.caution, div.danger, div.error,
-div.hint, div.important, div.note, div.tip, div.warning {
- margin: 2em ;
- border: medium outset ;
- padding: 1em }
-
-div.admonition p.admonition-title, div.hint p.admonition-title,
-div.important p.admonition-title, div.note p.admonition-title,
-div.tip p.admonition-title {
- font-weight: bold ;
- font-family: sans-serif }
-
-div.attention p.admonition-title, div.caution p.admonition-title,
-div.danger p.admonition-title, div.error p.admonition-title,
-div.warning p.admonition-title, .code .error {
- color: red ;
- font-weight: bold ;
- font-family: sans-serif }
-
-/* Uncomment (and remove this text!) to get reduced vertical space in
- compound paragraphs.
-div.compound .compound-first, div.compound .compound-middle {
- margin-bottom: 0.5em }
-
-div.compound .compound-last, div.compound .compound-middle {
- margin-top: 0.5em }
-*/
-
-div.dedication {
- margin: 2em 5em ;
- text-align: center ;
- font-style: italic }
-
-div.dedication p.topic-title {
- font-weight: bold ;
- font-style: normal }
-
-div.figure {
- margin-left: 2em ;
- margin-right: 2em }
-
-div.footer, div.header {
- clear: both;
- font-size: smaller }
-
-div.line-block {
- display: block ;
- margin-top: 1em ;
- margin-bottom: 1em }
-
-div.line-block div.line-block {
- margin-top: 0 ;
- margin-bottom: 0 ;
- margin-left: 1.5em }
-
-div.sidebar {
- margin: 0 0 0.5em 1em ;
- border: medium outset ;
- padding: 1em ;
- background-color: #ffffee ;
- width: 40% ;
- float: right ;
- clear: right }
-
-div.sidebar p.rubric {
- font-family: sans-serif ;
- font-size: medium }
-
-div.system-messages {
- margin: 5em }
-
-div.system-messages h1 {
- color: red }
-
-div.system-message {
- border: medium outset ;
- padding: 1em }
-
-div.system-message p.system-message-title {
- color: red ;
- font-weight: bold }
-
-div.topic {
- margin: 2em }
-
-h1.section-subtitle, h2.section-subtitle, h3.section-subtitle,
-h4.section-subtitle, h5.section-subtitle, h6.section-subtitle {
- margin-top: 0.4em }
-
-h1.title {
- text-align: center }
-
-h2.subtitle {
- text-align: center }
-
-hr.docutils {
- width: 75% }
-
-img.align-left, .figure.align-left, object.align-left, table.align-left {
- clear: left ;
- float: left ;
- margin-right: 1em }
-
-img.align-right, .figure.align-right, object.align-right, table.align-right {
- clear: right ;
- float: right ;
- margin-left: 1em }
-
-img.align-center, .figure.align-center, object.align-center {
- display: block;
- margin-left: auto;
- margin-right: auto;
-}
-
-table.align-center {
- margin-left: auto;
- margin-right: auto;
-}
-
-.align-left {
- text-align: left }
-
-.align-center {
- clear: both ;
- text-align: center }
-
-.align-right {
- text-align: right }
-
-/* reset inner alignment in figures */
-div.align-right {
- text-align: inherit }
-
-/* div.align-center * { */
-/* text-align: left } */
-
-.align-top {
- vertical-align: top }
-
-.align-middle {
- vertical-align: middle }
-
-.align-bottom {
- vertical-align: bottom }
-
-ol.simple, ul.simple {
- margin-bottom: 1em }
-
-ol.arabic {
- list-style: decimal }
-
-ol.loweralpha {
- list-style: lower-alpha }
-
-ol.upperalpha {
- list-style: upper-alpha }
-
-ol.lowerroman {
- list-style: lower-roman }
-
-ol.upperroman {
- list-style: upper-roman }
-
-p.attribution {
- text-align: right ;
- margin-left: 50% }
-
-p.caption {
- font-style: italic }
-
-p.credits {
- font-style: italic ;
- font-size: smaller }
-
-p.label {
- white-space: nowrap }
-
-p.rubric {
- font-weight: bold ;
- font-size: larger ;
- color: maroon ;
- text-align: center }
-
-p.sidebar-title {
- font-family: sans-serif ;
- font-weight: bold ;
- font-size: larger }
-
-p.sidebar-subtitle {
- font-family: sans-serif ;
- font-weight: bold }
-
-p.topic-title {
- font-weight: bold }
-
-pre.address {
- margin-bottom: 0 ;
- margin-top: 0 ;
- font: inherit }
-
-pre.literal-block, pre.doctest-block, pre.math, pre.code {
- margin-left: 2em ;
- margin-right: 2em }
-
-pre.code .ln { color: grey; } /* line numbers */
-pre.code, code { background-color: #eeeeee }
-pre.code .comment, code .comment { color: #5C6576 }
-pre.code .keyword, code .keyword { color: #3B0D06; font-weight: bold }
-pre.code .literal.string, code .literal.string { color: #0C5404 }
-pre.code .name.builtin, code .name.builtin { color: #352B84 }
-pre.code .deleted, code .deleted { background-color: #DEB0A1}
-pre.code .inserted, code .inserted { background-color: #A3D289}
-
-span.classifier {
- font-family: sans-serif ;
- font-style: oblique }
-
-span.classifier-delimiter {
- font-family: sans-serif ;
- font-weight: bold }
-
-span.interpreted {
- font-family: sans-serif }
-
-span.option {
- white-space: nowrap }
-
-span.pre {
- white-space: pre }
-
-span.problematic {
- color: red }
-
-span.section-subtitle {
- /* font-size relative to parent (h1..h6 element) */
- font-size: 80% }
-
-table.citation {
- border-left: solid 1px gray;
- margin-left: 1px }
-
-table.docinfo {
- margin: 2em 4em }
-
-table.docutils {
- margin-top: 0.5em ;
- margin-bottom: 0.5em }
-
-table.footnote {
- border-left: solid 1px black;
- margin-left: 1px }
-
-table.docutils td, table.docutils th,
-table.docinfo td, table.docinfo th {
- padding-left: 0.5em ;
- padding-right: 0.5em ;
- vertical-align: top }
-
-table.docutils th.field-name, table.docinfo th.docinfo-name {
- font-weight: bold ;
- text-align: left ;
- white-space: nowrap ;
- padding-left: 0 }
-
-/* "booktabs" style (no vertical lines) */
-table.docutils.booktabs {
- border: 0px;
- border-top: 2px solid;
- border-bottom: 2px solid;
- border-collapse: collapse;
-}
-table.docutils.booktabs * {
- border: 0px;
-}
-table.docutils.booktabs th {
- border-bottom: thin solid;
- text-align: left;
-}
-
-h1 tt.docutils, h2 tt.docutils, h3 tt.docutils,
-h4 tt.docutils, h5 tt.docutils, h6 tt.docutils {
- font-size: 100% }
-
-ul.auto-toc {
- list-style-type: none }
-
-</style>
-</head>
-<body>
-<div class="document" id="package-polexpr-documentation">
-<h1 class="title">Package polexpr documentation</h1>
-<h2 class="subtitle" id="id1">0.7.5 (2020/01/31)</h2>
-
-<!-- comment: -*- fill-column: 72; mode: rst; -*- -->
-<div class="contents topic" id="contents">
-<p class="topic-title first">Contents</p>
-<ul class="simple">
-<li><a class="reference internal" href="#basic-syntax" id="id38">Basic syntax</a></li>
-<li><a class="reference internal" href="#examples-of-localization-of-roots" id="id39">Examples of localization of roots</a><ul>
-<li><a class="reference internal" href="#a-typical-example" id="id40">A typical example</a></li>
-<li><a class="reference internal" href="#a-degree-four-polynomial-with-nearby-roots" id="id41">A degree four polynomial with nearby roots</a></li>
-<li><a class="reference internal" href="#the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots" id="id42">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</a></li>
-<li><a class="reference internal" href="#a-degree-five-polynomial-with-three-rational-roots" id="id43">A degree five polynomial with three rational roots</a></li>
-<li><a class="reference internal" href="#a-mignotte-type-polynomial" id="id44">A Mignotte type polynomial</a></li>
-<li><a class="reference internal" href="#the-wilkinson-polynomial" id="id45">The Wilkinson polynomial</a></li>
-<li><a class="reference internal" href="#the-second-wilkinson-polynomial" id="id46">The second Wilkinson polynomial</a></li>
-<li><a class="reference internal" href="#the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots" id="id47">The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots</a></li>
-<li><a class="reference internal" href="#roots-of-chebyshev-polynomials" id="id48">Roots of Chebyshev polynomials</a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#non-expandable-macros" id="id49">Non-expandable macros</a><ul>
-<li><a class="reference internal" href="#poldef-polname-letter-expression-in-letter" id="id50"><tt class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression in letter;</tt></a></li>
-<li><a class="reference internal" href="#poldef-letter-polname-expression-in-letter" id="id51"><tt class="docutils literal"><span class="pre">\PolDef[letter]{polname}{expression</span> in letter}</tt></a></li>
-<li><a class="reference internal" href="#polgenfloatvariant-polname" id="id52"><tt class="docutils literal">\PolGenFloatVariant{polname}</tt></a></li>
-<li><a class="reference internal" href="#pollet-polname-2-polname-1" id="id53"><tt class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></tt></a></li>
-<li><a class="reference internal" href="#polgloballet-polname-2-polname-1" id="id54"><tt class="docutils literal"><span class="pre">\PolGlobalLet{polname_2}={polname_1}</span></tt></a></li>
-<li><a class="reference internal" href="#polassign-polname-toarray-macro" id="id55"><tt class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></tt></a></li>
-<li><a class="reference internal" href="#polget-polname-fromarray-macro" id="id56"><tt class="docutils literal"><span class="pre">\PolGet{polname}\fromarray\macro</span></tt></a></li>
-<li><a class="reference internal" href="#polfromcsv-polname-csv" id="id57"><tt class="docutils literal"><span class="pre">\PolFromCSV{polname}{&lt;csv&gt;}</span></tt></a></li>
-<li><a class="reference internal" href="#poltypeset-polname" id="id58"><tt class="docutils literal">\PolTypeset{polname}</tt></a><ul>
-<li><a class="reference internal" href="#poltypesetcmd-raw-coeff" id="id59"><tt class="docutils literal">\PolTypesetCmd{raw_coeff}</tt></a></li>
-<li><a class="reference internal" href="#poltypesetone-raw-coeff" id="id60"><tt class="docutils literal">\PolTypesetOne{raw_coeff}</tt></a></li>
-<li><a class="reference internal" href="#id6" id="id61"><tt class="docutils literal">\PolTypesetMonomialCmd</tt></a></li>
-<li><a class="reference internal" href="#poltypesetcmdprefix-raw-coeff" id="id62"><tt class="docutils literal">\PolTypesetCmdPrefix{raw_coeff}</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#id8" id="id63"><tt class="docutils literal"><span class="pre">\PolTypeset*{polname}</span></tt></a></li>
-<li><a class="reference internal" href="#poldiff-polname-1-polname-2" id="id64"><tt class="docutils literal"><span class="pre">\PolDiff{polname_1}{polname_2}</span></tt></a></li>
-<li><a class="reference internal" href="#poldiff-n-polname-1-polname-2" id="id65"><tt class="docutils literal"><span class="pre">\PolDiff[N]{polname_1}{polname_2}</span></tt></a></li>
-<li><a class="reference internal" href="#polantidiff-polname-1-polname-2" id="id66"><tt class="docutils literal"><span class="pre">\PolAntiDiff{polname_1}{polname_2}</span></tt></a></li>
-<li><a class="reference internal" href="#polantidiff-n-polname-1-polname-2" id="id67"><tt class="docutils literal"><span class="pre">\PolAntiDiff[N]{polname_1}{polname_2}</span></tt></a></li>
-<li><a class="reference internal" href="#poldivide-polname-1-polname-2-polname-q-polname-r" id="id68"><tt class="docutils literal"><span class="pre">\PolDivide{polname_1}{polname_2}{polname_Q}{polname_R}</span></tt></a></li>
-<li><a class="reference internal" href="#polquo-polname-1-polname-2-polname-q" id="id69"><tt class="docutils literal"><span class="pre">\PolQuo{polname_1}{polname_2}{polname_Q}</span></tt></a></li>
-<li><a class="reference internal" href="#polrem-polname-1-polname-2-polname-r" id="id70"><tt class="docutils literal"><span class="pre">\PolRem{polname_1}{polname_2}{polname_R}</span></tt></a></li>
-<li><a class="reference internal" href="#polgcd-polname-1-polname-2-polname-gcd" id="id71"><tt class="docutils literal"><span class="pre">\PolGCD{polname_1}{polname_2}{polname_GCD}</span></tt></a></li>
-<li><a class="reference internal" href="#poltosturm-polname-sturmname" id="id72"><tt class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></tt></a></li>
-<li><a class="reference internal" href="#id10" id="id73"><tt class="docutils literal"><span class="pre">\PolToSturm*{polname}{sturmname}</span></tt></a></li>
-<li><a class="reference internal" href="#polsettosturmchainsignchangesat-macro-sturmname-fraction" id="id74"><tt class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\macro}{sturmname}{fraction}</span></tt></a></li>
-<li><a class="reference internal" href="#polsettonbofzeroswithin-macro-sturmname-value-a-value-b" id="id75"><tt class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\macro}{sturmname}{value_a}{value_b}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmisolatezeros-sturmname" id="id76"><tt class="docutils literal">\PolSturmIsolateZeros{sturmname}</tt></a></li>
-<li><a class="reference internal" href="#id12" id="id77"><tt class="docutils literal"><span class="pre">\PolSturmIsolateZeros*{sturmname}</span></tt></a></li>
-<li><a class="reference internal" href="#id14" id="id78"><tt class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{sturmname}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmisolatezerosandgetmultiplicities-sturmname" id="id79"><tt class="docutils literal">\PolSturmIsolateZerosAndGetMultiplicities{sturmname}</tt></a></li>
-<li><a class="reference internal" href="#polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname" id="id80"><tt class="docutils literal">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}</tt></a></li>
-<li><a class="reference internal" href="#polsturmisolatezerosandfindrationalroots-sturmname" id="id81"><tt class="docutils literal">\PolSturmIsolateZerosAndFindRationalRoots{sturmname}</tt></a></li>
-<li><a class="reference internal" href="#polrefineinterval-sturmname-index" id="id82"><tt class="docutils literal"><span class="pre">\PolRefineInterval*{sturmname}{index}</span></tt></a></li>
-<li><a class="reference internal" href="#polrefineinterval-n-sturmname-index" id="id83"><tt class="docutils literal"><span class="pre">\PolRefineInterval[N]{sturmname}{index}</span></tt></a></li>
-<li><a class="reference internal" href="#polensureintervallength-sturmname-index-e" id="id84"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLength{sturmname}{index}{E}</span></tt></a></li>
-<li><a class="reference internal" href="#polensureintervallengths-sturmname-e" id="id85"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{sturmname}{E}</span></tt></a></li>
-<li><a class="reference internal" href="#polprintintervals-varname-sturmname" id="id86"><tt class="docutils literal"><span class="pre">\PolPrintIntervals[varname]{sturmname}</span></tt></a><ul>
-<li><a class="reference internal" href="#polprintintervalsnorealroots" id="id87"><tt class="docutils literal">\PolPrintIntervalsNoRealRoots</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalsbeginenv" id="id88"><tt class="docutils literal">\PolPrintIntervalsBeginEnv</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalsendenv" id="id89"><tt class="docutils literal">\PolPrintIntervalsEndEnv</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalsknownroot" id="id90"><tt class="docutils literal">\PolPrintIntervalsKnownRoot</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalsunknownroot" id="id91"><tt class="docutils literal">\PolPrintIntervalsUnknownRoot</tt></a></li>
-<li><a class="reference internal" href="#id15" id="id92"><tt class="docutils literal">\PolPrintIntervalsPrintExactZero</tt></a></li>
-<li><a class="reference internal" href="#id16" id="id93"><tt class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</tt></a></li>
-<li><a class="reference internal" href="#id17" id="id94"><tt class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#id19" id="id95"><tt class="docutils literal"><span class="pre">\PolPrintIntervals*[varname]{sturmname}</span></tt></a><ul>
-<li><a class="reference internal" href="#polprintintervalsprintmultiplicity" id="id96"><tt class="docutils literal">\PolPrintIntervalsPrintMultiplicity</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#polmapcoeffs-macro-polname" id="id97"><tt class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{polname}</span></tt></a></li>
-<li><a class="reference internal" href="#polreducecoeffs-polname" id="id98"><tt class="docutils literal">\PolReduceCoeffs{polname}</tt></a></li>
-<li><a class="reference internal" href="#id21" id="id99"><tt class="docutils literal"><span class="pre">\PolReduceCoeffs*{polname}</span></tt></a></li>
-<li><a class="reference internal" href="#polmakemonic-polname" id="id100"><tt class="docutils literal">\PolMakeMonic{polname}</tt></a></li>
-<li><a class="reference internal" href="#polmakeprimitive-polname" id="id101"><tt class="docutils literal">\PolMakePrimitive{polname}</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#expandable-macros" id="id102">Expandable macros</a><ul>
-<li><a class="reference internal" href="#poleval-polname-atexpr-numerical-expression" id="id103"><tt class="docutils literal"><span class="pre">\PolEval{polname}\AtExpr{numerical</span> expression}</tt></a></li>
-<li><a class="reference internal" href="#poleval-polname-at-fraction" id="id104"><tt class="docutils literal"><span class="pre">\PolEval{polname}\At{fraction}</span></tt></a></li>
-<li><a class="reference internal" href="#polevalreduced-polname-atexpr-numerical-expression" id="id105"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\AtExpr{numerical</span> expression}</tt></a></li>
-<li><a class="reference internal" href="#polevalreduced-polname-at-fraction" id="id106"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\At{fraction}</span></tt></a></li>
-<li><a class="reference internal" href="#polfloateval-polname-atexpr-numerical-expression" id="id107"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\AtExpr{numerical</span> expression}</tt></a></li>
-<li><a class="reference internal" href="#polfloateval-polname-at-fraction" id="id108"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\At{fraction}</span></tt></a></li>
-<li><a class="reference internal" href="#polifcoeffisplusorminusone-a-b" id="id109"><tt class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{A}{B}</span></tt></a></li>
-<li><a class="reference internal" href="#polleadingcoeff-polname" id="id110"><tt class="docutils literal">\PolLeadingCoeff{polname}</tt></a></li>
-<li><a class="reference internal" href="#polnthcoeff-polname-number" id="id111"><tt class="docutils literal"><span class="pre">\PolNthCoeff{polname}{number}</span></tt></a></li>
-<li><a class="reference internal" href="#poldegree-polname" id="id112"><tt class="docutils literal">\PolDegree{polname}</tt></a></li>
-<li><a class="reference internal" href="#policontent-polname" id="id113"><tt class="docutils literal">\PolIContent{polname}</tt></a></li>
-<li><a class="reference internal" href="#poltoexpr-polname" id="id114"><tt class="docutils literal">\PolToExpr{polname}</tt></a><ul>
-<li><a class="reference internal" href="#poltoexproneterm-raw-coeff-number" id="id115"><tt class="docutils literal"><span class="pre">\PolToExprOneTerm{raw_coeff}{number}</span></tt></a></li>
-<li><a class="reference internal" href="#poltoexpronetermstylea-raw-coeff-number" id="id116"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{raw_coeff}{number}</span></tt></a></li>
-<li><a class="reference internal" href="#poltoexpronetermstyleb-raw-coeff-number" id="id117"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{raw_coeff}{number}</span></tt></a></li>
-<li><a class="reference internal" href="#poltoexprcmd-raw-coeff" id="id118"><tt class="docutils literal">\PolToExprCmd{raw_coeff}</tt></a></li>
-<li><a class="reference internal" href="#poltoexprtermprefix-raw-coeff" id="id119"><tt class="docutils literal">\PolToExprTermPrefix{raw_coeff}</tt></a></li>
-<li><a class="reference internal" href="#id28" id="id120"><tt class="docutils literal">\PolToExprVar</tt></a></li>
-<li><a class="reference internal" href="#id29" id="id121"><tt class="docutils literal">\PolToExprTimes</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#id31" id="id122"><tt class="docutils literal"><span class="pre">\PolToExpr*{polname}</span></tt></a></li>
-<li><a class="reference internal" href="#poltofloatexpr-polname" id="id123"><tt class="docutils literal">\PolToFloatExpr{polname}</tt></a><ul>
-<li><a class="reference internal" href="#poltofloatexproneterm-raw-coeff-number" id="id124"><tt class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{raw_coeff}{number}</span></tt></a></li>
-<li><a class="reference internal" href="#poltofloatexprcmd-raw-coeff" id="id125"><tt class="docutils literal">\PolToFloatExprCmd{raw_coeff}</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#id35" id="id126"><tt class="docutils literal"><span class="pre">\PolToFloatExpr*{polname}</span></tt></a></li>
-<li><a class="reference internal" href="#poltolist-polname" id="id127"><tt class="docutils literal">\PolToList{polname}</tt></a></li>
-<li><a class="reference internal" href="#poltocsv-polname" id="id128"><tt class="docutils literal">\PolToCSV{polname}</tt></a></li>
-<li><a class="reference internal" href="#polsturmchainlength-sturmname" id="id129"><tt class="docutils literal">\PolSturmChainLength{sturmname}</tt></a></li>
-<li><a class="reference internal" href="#polsturmifzeroexactlyknown-sturmname-index-a-b" id="id130"><tt class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmisolatedzeroleft-sturmname-index" id="id131"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{sturmname}{index}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index" id="id132"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{sturmname}{index}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index" id="id133"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmnbofisolatedzeros-sturmname" id="id134"><tt class="docutils literal">\PolSturmNbOfIsolatedZeros{sturmname}</tt></a><ul>
-<li><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value" id="id135"><tt class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression" id="id136"><tt class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value" id="id137"><tt class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-expression" id="id138"><tt class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#polsturmnbofrationalroots-sturmname" id="id139"><tt class="docutils literal">\PolSturmNbOfRationalRoots{sturmname}</tt></a></li>
-<li><a class="reference internal" href="#polsturmnbofrationalrootswithmultiplicities-sturmname" id="id140"><tt class="docutils literal">\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}</tt></a></li>
-<li><a class="reference internal" href="#polsturmrationalroot-sturmname-k" id="id141"><tt class="docutils literal"><span class="pre">\PolSturmRationalRoot{sturmname}{k}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmrationalrootindex-sturmname-k" id="id142"><tt class="docutils literal"><span class="pre">\PolSturmRationalRootIndex{sturmname}{k}</span></tt></a></li>
-<li><a class="reference internal" href="#polsturmrationalrootmultiplicity-sturmname-k" id="id143"><tt class="docutils literal"><span class="pre">\PolSturmRationalRootMultiplicity{sturmname}{k}</span></tt></a></li>
-<li><a class="reference internal" href="#polintervalwidth-sturmname-index" id="id144"><tt class="docutils literal"><span class="pre">\PolIntervalWidth{sturmname}{index}</span></tt></a></li>
-<li><a class="reference internal" href="#expandable-macros-for-use-within-execution-of-polprintintervals" id="id145">Expandable macros for use within execution of <tt class="docutils literal">\PolPrintIntervals</tt></a><ul>
-<li><a class="reference internal" href="#polprintintervalsthevar" id="id146"><tt class="docutils literal">\PolPrintIntervalsTheVar</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalstheindex" id="id147"><tt class="docutils literal">\PolPrintIntervalsTheIndex</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalsthesturmname" id="id148"><tt class="docutils literal">\PolPrintIntervalsTheSturmName</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalstheleftendpoint" id="id149"><tt class="docutils literal">\PolPrintIntervalsTheLeftEndPoint</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalstherightendpoint" id="id150"><tt class="docutils literal">\PolPrintIntervalsTheRightEndPoint</tt></a></li>
-<li><a class="reference internal" href="#polprintintervalsthemultiplicity" id="id151"><tt class="docutils literal">\PolPrintIntervalsTheMultiplicity</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#poldectostring-decimal-number" id="id152"><tt class="docutils literal">\PolDecToString{decimal number}</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#booleans-with-default-setting-as-indicated" id="id153">Booleans (with default setting as indicated)</a><ul>
-<li><a class="reference internal" href="#xintverbosefalse" id="id154"><tt class="docutils literal">\xintverbosefalse</tt></a></li>
-<li><a class="reference internal" href="#poltypesetallfalse" id="id155"><tt class="docutils literal">\poltypesetallfalse</tt></a></li>
-<li><a class="reference internal" href="#poltoexprallfalse" id="id156"><tt class="docutils literal">\poltoexprallfalse</tt></a></li>
-</ul>
-</li>
-<li><a class="reference internal" href="#polexprsetup" id="id157"><tt class="docutils literal">\polexprsetup</tt></a></li>
-<li><a class="reference internal" href="#technicalities" id="id158">Technicalities</a></li>
-<li><a class="reference internal" href="#change-log" id="id159">CHANGE LOG</a></li>
-<li><a class="reference internal" href="#acknowledgments" id="id160">Acknowledgments</a></li>
-</ul>
-</div>
-<div class="section" id="basic-syntax">
-<h1><a class="toc-backref" href="#id38">Basic syntax</a></h1>
-<p>The syntax is:</p>
-<pre class="literal-block">
-\poldef polname(x):= expression in variable x;
-</pre>
-<p>where:</p>
-<ul class="simple">
-<li>in place of <tt class="docutils literal">x</tt> an arbitrary <em>dummy variable</em> is authorized,
-i.e. per default any of <tt class="docutils literal"><span class="pre">[a-z|A-Z]</span></tt> (more letters can be declared
-under Unicode engines.)</li>
-<li><tt class="docutils literal">polname</tt> consists of letters, digits, and the <tt class="docutils literal">_</tt> and
-<tt class="docutils literal">'</tt> characters. It must start with a letter.</li>
-</ul>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last">The <tt class="docutils literal">'</tt> is authorized since <tt class="docutils literal">0.5.1</tt>. As a result some constructs
-recognized by the <tt class="docutils literal">\xintexpr</tt> parser, such as <tt class="docutils literal">var1 'and' var2</tt>
-will get misinterpreted and cause errors. However these constructs
-are unlikely to be frequently needed in polynomial expressions, and
-the <tt class="docutils literal">\xintexpr</tt> syntax offers alternatives, so it was deemed a
-small evil. Of course the <tt class="docutils literal">\xintexpr</tt> parser is modified only
-temporarily during execution of <tt class="docutils literal">\poldef</tt>.</p>
-</div>
-<p>One can also issue:</p>
-<pre class="literal-block">
-\PolDef{polname}{expression in variable x}
-</pre>
-<p>which admits an optional first argument to modify the variable letter
-from its default <tt class="docutils literal">x</tt>.</p>
-<dl class="docutils">
-<dt><tt class="docutils literal">\poldef <span class="pre">f(x):=</span> <span class="pre">1-x+x^2;</span></tt></dt>
-<dd>defines polynomial <tt class="docutils literal">f</tt>. Polynomial names must start with a
-letter and may contain letters, digits, underscores and the right
-tick character. The
-variable must be a single letter. The colon character is optional.
-The semi-colon at end of expression is mandatory.</dd>
-<dt><tt class="docutils literal"><span class="pre">\PolDef{f}{1-x+x^2}</span></tt></dt>
-<dd>does the same as <tt class="docutils literal">\poldef <span class="pre">f(x):=</span> <span class="pre">1-x+x^2;</span></tt> To use another letter
-than <tt class="docutils literal">x</tt> in the expression, one must pass it as an extra optional
-argument to <tt class="docutils literal">\PolDef</tt>. Useful if the semi-colon has been assigned
-some non-standard catcode by some package.</dd>
-<dt><tt class="docutils literal"><span class="pre">\PolLet{g}={f}</span></tt></dt>
-<dd>saves a copy of <tt class="docutils literal">f</tt> under name <tt class="docutils literal">g</tt>. Also usable without <tt class="docutils literal">=</tt>.</dd>
-<dt><tt class="docutils literal">\poldef <span class="pre">f(z):=</span> <span class="pre">f(z)^2;</span></tt></dt>
-<dd>redefines <tt class="docutils literal">f</tt> in terms of itself.</dd>
-<dt><tt class="docutils literal">\poldef <span class="pre">f(T):=</span> <span class="pre">f(f(T));</span></tt></dt>
-<dd>again redefines <tt class="docutils literal">f</tt> in terms of its (new) self.</dd>
-<dt><tt class="docutils literal">\poldef <span class="pre">k(z):=</span> <span class="pre">f(z)-g(g(z)^2)^2;</span></tt></dt>
-<dd>should now define the zero polynomial... Let's check:
-<tt class="docutils literal">\[ k(z) = <span class="pre">\PolTypeset[z]{k}</span> \]</tt></dd>
-<dt><tt class="docutils literal"><span class="pre">\PolDiff{f}{f'}</span></tt></dt>
-<dd>sets <tt class="docutils literal">f'</tt> to the derivative of <tt class="docutils literal">f</tt>. The name doesn't have to be
-<tt class="docutils literal">f'</tt> (in fact the <tt class="docutils literal">'</tt> is licit only since <tt class="docutils literal">0.5.1</tt>).</dd>
-</dl>
-<div class="admonition important">
-<p class="first admonition-title">Important</p>
-<p class="last">This is not done automatically. If some new definition needs to use
-the derivative of some available polynomial, that derivative
-polynomial must have been defined via <tt class="docutils literal">\PolDiff</tt>: something like
-<tt class="docutils literal"><span class="pre">T'(x)^2</span></tt> will not work without a prior <tt class="docutils literal"><span class="pre">\PolDiff{T}{T'}</span></tt>.</p>
-</div>
-<dl class="docutils">
-<dt><tt class="docutils literal"><span class="pre">\PolDiff{f'}{f''}</span></tt></dt>
-<dd>obtains second derivative.</dd>
-<dt><tt class="docutils literal"><span class="pre">\PolDiff[3]{f}{f'''}</span></tt></dt>
-<dd>computes the third derivative.</dd>
-</dl>
-<pre class="literal-block">
-$f(z) = \PolTypeset[z]{f} $\newline
-$f'(z) = \PolTypeset[z]{f'} $\newline
-$f''(z) = \PolTypeset[z]{f''} $\newline
-$f'''(z)= \PolTypeset[z]{f'''} $\par
-</pre>
-<div class="admonition important">
-<p class="first admonition-title">Important</p>
-<p>The package does not currently know rational functions: <tt class="docutils literal">/</tt> in
-a parsed polynomial expression does the Euclidean quotient:</p>
-<pre class="literal-block">
-(1-x^2)/(1-x)
-</pre>
-<p>does give <tt class="docutils literal">1+x</tt> but</p>
-<pre class="literal-block">
-(1/(1-x))*(1-x^2)
-</pre>
-<p>evaluates to zero. This will work as expected:</p>
-<pre class="last literal-block">
-\poldef k(x):= (x-1)(x-2)(x-3)(x-4)/(x^2-5x+4);
-</pre>
-</div>
-<div class="admonition attention" id="warningtacit">
-<p class="first admonition-title">Attention!</p>
-<p><tt class="docutils literal">1/2 x^2</tt> skips the space and is treated like <tt class="docutils literal"><span class="pre">1/(2*x^2)</span></tt> because
-of the tacit multiplication rules of xintexpr. But this means it
-gives zero! Thus one must use <tt class="docutils literal">(1/2)x^2</tt> or <tt class="docutils literal">1/2*x^2</tt> or
-<tt class="docutils literal"><span class="pre">(1/2)*x^2</span></tt> for disambiguation: <tt class="docutils literal">x - 1/2*x^2 + <span class="pre">1/3*x^3...</span></tt>. It is
-even simpler to move the denominator to the right: <tt class="docutils literal">x - x^2/2 +
-x^3/3 - ...</tt>.</p>
-<p class="last">It is worth noting that <tt class="docutils literal"><span class="pre">1/2(x-1)(x-2)</span></tt> suffers the same issue:
-<a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a> tacit multiplication always &quot;ties more&quot;, hence this gets
-interpreted as <tt class="docutils literal"><span class="pre">1/(2*(x-1)*(x-2))</span></tt> which gives zero by polynomial
-division. Thus, use one of <tt class="docutils literal"><span class="pre">(1/2)(x-1)(x-2)</span></tt>, <tt class="docutils literal"><span class="pre">1/2*(x-1)(x-2)</span></tt> or
-<tt class="docutils literal"><span class="pre">(x-1)(x-2)/2</span></tt>.</p>
-</div>
-<p>After:</p>
-<pre class="literal-block">
-\poldef f_1(x):= 25(x-1)(x^2-2)(x-3)(x-4)(x-5);%
-\poldef f_2(x):= 37(x-1)(x^2-2)(x-6)(x-7)(x-8);%
-</pre>
-<p>the macro call <tt class="docutils literal"><span class="pre">\PolGCD{f_1}{f_2}{k}</span></tt> sets <tt class="docutils literal">k</tt> to the (unitary) GCD of
-<tt class="docutils literal">f_1</tt> and <tt class="docutils literal">f_2</tt> (hence to the expansion of <tt class="docutils literal"><span class="pre">(x-1)(x^2-2)</span></tt>.)</p>
-<dl class="docutils">
-<dt><tt class="docutils literal">\PolToExpr{k}</tt></dt>
-<dd>will (expandably) give in this case <tt class="docutils literal"><span class="pre">x^3-x^2-2*x+2</span></tt>. This is
-useful for console or file output (the syntax is Maple- and
-PSTricks-compatible; the letter used in output can be
-(non-expandably) changed via a redefinition of <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a>.)</dd>
-<dt><tt class="docutils literal"><span class="pre">\PolToExpr*{k}</span></tt></dt>
-<dd>gives ascending powers: <tt class="docutils literal"><span class="pre">2-2*x-x^2+x^3</span></tt>.</dd>
-</dl>
-</div>
-<div class="section" id="examples-of-localization-of-roots">
-<h1><a class="toc-backref" href="#id39">Examples of localization of roots</a></h1>
-<ul>
-<li><p class="first">To make printed decimal numbers more enjoyable than via
-<tt class="docutils literal">\xintSignedFrac</tt>:</p>
-<pre class="literal-block">
-\renewcommand\PolTypesetOne[1]{\PolDecToString{\xintREZ{#1}}}%
-</pre>
-<p><tt class="docutils literal">\PolDecToString</tt> will use decimal notation to incorporate the power
-of ten part; and the <tt class="docutils literal">\xintREZ</tt> will have the effect to suppress
-trailing zeros if present in raw numerator (if those digits end up
-after decimal mark.) Notice that the above are expandable macros and
-that one can also do:</p>
-<pre class="literal-block">
-\renewcommand\PolToExprCmd[1]{\PolDecToString{\xintREZ{#1}}}%
-</pre>
-<p>to modify output of <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a>.</p>
-</li>
-<li><p class="first">For extra info in log file use <tt class="docutils literal">\xintverbosetrue</tt>.</p>
-</li>
-<li><p class="first">Only for some of these examples is the output included here.</p>
-</li>
-</ul>
-<div class="section" id="a-typical-example">
-<h2><a class="toc-backref" href="#id40">A typical example</a></h2>
-<p>In this example the polynomial is square-free.</p>
-<pre class="literal-block">
-\poldef f(x) := x^7 - x^6 - 2x + 1;
-
-\PolToSturm{f}{f}
-\PolSturmIsolateZeros{f}
-The \PolTypeset{f} polynomial has \PolSturmNbOfIsolatedZeros{f} distinct real
-roots which are located in the following intervals:
-\PolPrintIntervals{f}
-Here is the second root with ten more decimal digits:
-\PolRefineInterval[10]{f}{2}
-\[\PolSturmIsolatedZeroLeft{f}{2}&lt;Z_2&lt;\PolSturmIsolatedZeroRight{f}{2}\]
-And here is the first root with twenty digits after decimal mark:
-\PolEnsureIntervalLength{f}{1}{-20}
-\[\PolSturmIsolatedZeroLeft{f}{1}&lt;Z_1&lt;\PolSturmIsolatedZeroRight{f}{1}\]
-The first element of the Sturm chain has degree $\PolDegree{f_0}$. As
-this is the original degreee $\PolDegree{f}$ we know that $f$ is square free.
-Its derivative is up to a constant \PolTypeset{f_1} (in this example
-it is identical with it).
-\PolToSturm{f_1}{f_1}\PolSturmIsolateZeros{f_1}%
-The derivative has \PolSturmNbOfIsolatedZeros{f_1} distinct real
-roots:
-\PolPrintIntervals[W]{f_1}
-\PolEnsureIntervalLengths{f_1}{-10}%
-Here they are with ten digits after decimal mark:
-\PolPrintIntervals[W]{f_1}
-\PolDiff{f_1}{f''}
-\PolToSturm{f''}{f''}
-\PolSturmIsolateZeros{f''}
-The second derivative is \PolTypeset{f''}.
-It has \PolSturmNbOfIsolatedZeros{f''} distinct real
-roots:
-\PolPrintIntervals[X]{f''}
-Here is the positive one with 20 digits after decimal mark:
-\PolEnsureIntervalLength{f''}{2}{-20}%
-\[X_2 = \PolSturmIsolatedZeroLeft{f''}{2}\dots\]
-The more mathematically advanced among our dear readers will be able
-to give the exact value for $X_2$!
-</pre>
-</div>
-<div class="section" id="a-degree-four-polynomial-with-nearby-roots">
-<h2><a class="toc-backref" href="#id41">A degree four polynomial with nearby roots</a></h2>
-<p>Notice that this example is a bit outdated as <tt class="docutils literal">0.7</tt> release has
-added <tt class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{sturmname}</span></tt> which would find exactly
-the roots. The steps here retain their interest when one is interested
-in finding isolating intervals for example to prepare some demonstration
-of dichotomy method.</p>
-<pre class="literal-block">
-\PolDef{Q}{(x-1.050001)(x-1.105001)(x-1.110501)(x-1.111051)}
-\PolTypeset{Q}
-\PolToSturm{Q}{Q} % it is allowed to use same prefix for Sturm chain
-\PolSturmIsolateZeros{Q}
-\PolPrintIntervals{Q}
-% reports 1.0 &lt; Z_1 &lt; 1.1, 1.10 &lt; Z_2 &lt; 1.11, 1.110 &lt; Z_3 &lt; 1.111, and 1.111 &lt; Z_4 &lt; 1.112
-% but the above bounds do not allow minimizing separation between roots
-% so we refine:
-\PolRefineInterval*{Q}{1}
-\PolRefineInterval*{Q}{2}
-\PolRefineInterval*{Q}{3}
-\PolRefineInterval*{Q}{4}
-\PolPrintIntervals{Q}
-% reports 1.05 &lt; Z_1 &lt; 1.06, 1.105 &lt; Z_2 &lt; 1.106, 1.1105 &lt; Z_3 &lt; 1.1106,
-% and 1.11105 &lt; Z_4 &lt; 1.11106.
-\PolEnsureIntervalLengths{Q}{-6}
-\PolPrintIntervals{Q}
-% of course finds here all roots exactly
-</pre>
-</div>
-<div class="section" id="the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots">
-<h2><a class="toc-backref" href="#id42">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</a></h2>
-<pre class="literal-block">
-% define a user command (xinttools is loaded automatically by polexpr)
-\newcommand\showmultiplicities[1]{% #1 = &quot;sturmname&quot;
-\xintFor* ##1 in {\xintSeq{1}{\PolSturmNbOfIsolatedZeros{#1}}}\do{%
- The multiplicity is \PolSturmIsolatedZeroMultiplicity{#1}{##1}
- \PolSturmIfZeroExactlyKnown{#1}{##1}%
- {at the root $x=\PolSturmIsolatedZeroLeft{#1}{##1}$}
- {for the root such that
- $\PolSturmIsolatedZeroLeft{#1}{##1}&lt;x&lt;\PolSturmIsolatedZeroRight{#1}{##1}$}
- \par
-}}%
-\PolDef{f}{(x-0.99)^3(x-0.999)^3(x-0.9999)^3}
-\renewcommand\PolTypesetOne[1]{\PolDecToString{\xintREZ{#1}}}
-\PolTypeset{f}\par
-\PolToSturm{f}{f}% it is allowed to use &quot;polname&quot; as &quot;sturmname&quot; too
-\PolSturmIsolateZerosAndGetMultiplicities{f}% use the &quot;sturmname&quot; here
-% or \PolSturmIsolateZeros*{f} which is exactly the same, but shorter..
-
-\showmultiplicities{f}
-</pre>
-<p>In this example, the output will look like this (but using math mode):</p>
-<pre class="literal-block">
-x^9 - 8.9667x^8 + 35.73400293x^7 - 83.070418400109x^6 + 124.143648875193123x^5
-- 123.683070924326075877x^4 + 82.149260397553075617891x^3
-- 35.07602992699900159127007x^2 + 8.7364078733314648368671733x
-- 0.967100824643585986488103299
-
-The multiplicity is 3 at the root x = 0.99
-The multiplicity is 3 at the root x = 0.999
-The multiplicity is 3 at the root x = 0.9999
-</pre>
-<p>On first pass, these rational roots were found (due to their relative
-magnitudes, using <tt class="docutils literal">\PolSturmIsolateZeros**</tt> was not needed here). But
-multiplicity computation works also with (decimal) roots not yet
-identified or with non-decimal or irrational roots.</p>
-<p>It is fun to modify only a tiny bit the polynomial and see if polexpr
-survives:</p>
-<pre class="literal-block">
-\PolDef{g}{f(x)+1e-27}
-\PolTypeset{g}\par
-\PolToSturm{g}{g}
-\PolSturmIsolateZeros*{g}
-
-\showmultiplicities{g}
-</pre>
-<p>This produces:</p>
-<pre class="literal-block">
-x^9 - 8.9667x^8 + 35.73400293x^7 - 83.070418400109x^6 + 124.143648875193123x^5
-- 123.683070924326075877x^4 + 82.149260397553075617891x^3
-- 35.07602992699900159127007x^2 + 8.7364078733314648368671733x
-- 0.967100824643585986488103298
-
-The multiplicity is 1 for the root such that 0.98 &lt; x &lt; 0.99
-The multiplicity is 1 for the root such that 0.9991 &lt; x &lt; 0.9992
-The multiplicity is 1 for the root such that 0.9997 &lt; x &lt; 0.9998
-</pre>
-<p>Which means that the multiplicity-3 roots each became a real and a pair of
-complex ones. Let's see them better:</p>
-<pre class="literal-block">
-\PolEnsureIntervalLengths{g}{-10}
-
-\showmultiplicities{g}
-</pre>
-<p>which produces:</p>
-<pre class="literal-block">
-The multiplicity is 1 for the root such that 0.9899888032 &lt; x &lt; 0.9899888033
-The multiplicity is 1 for the root such that 0.9991447980 &lt; x &lt; 0.9991447981
-The multiplicity is 1 for the root such that 0.9997663986 &lt; x &lt; 0.9997663987
-</pre>
-</div>
-<div class="section" id="a-degree-five-polynomial-with-three-rational-roots">
-<h2><a class="toc-backref" href="#id43">A degree five polynomial with three rational roots</a></h2>
-<pre class="literal-block">
-\poldef Q(x) := 1581755751184441 x^5
- -14907697165025339 x^4
- +48415668972339336 x^3
- -63952057791306264 x^2
- +46833913221154895 x
- -49044360626280925;
-
-\PolToSturm{Q}{Q}
-%\begin{flushleft}
- \renewcommand\PolTypesetCmdPrefix[1]{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%
- $Q_0(x) = \PolTypeset{Q_0}$
-%\end{flushleft}
-\PolSturmIsolateZeros**{Q}
-\PolPrintIntervals{Q}
-
-$Q_{norr}(x) = \PolTypeset{Q_norr}$
-</pre>
-<p>Here, all real roots are rational:</p>
-<pre class="literal-block">
-Z_1 = 833719/265381
-Z_2 = 165707065/52746197
-Z_3 = 355/113
-
-Q_norr(x) = x^2 + 1
-</pre>
-<p>And let's get their decimal expansion too:</p>
-<pre class="literal-block">
-% print decimal expansion of the found roots
-\renewcommand\PolPrintIntervalsPrintExactZero
- {\xintTrunc{20}{\PolPrintIntervalsTheLeftEndPoint}\dots}
-\PolPrintIntervals{Q}
-
-Z_1 = 3.14159265358107777120...
-Z_2 = 3.14159265358979340254...
-Z_3 = 3.14159292035398230088...
-</pre>
-</div>
-<div class="section" id="a-mignotte-type-polynomial">
-<h2><a class="toc-backref" href="#id44">A Mignotte type polynomial</a></h2>
-<pre class="literal-block">
-\PolDef{P}{x^10 - (10x-1)^2}%
-\PolTypeset{P} % prints it in expanded form
-\PolToSturm{P}{P} % we can use same prefix for Sturm chain
-\PolSturmIsolateZeros{P} % finds 4 real roots
-This polynomial has \PolSturmNbOfIsolatedZeros{P} distinct real roots:
-\PolPrintIntervals{P}%
-% reports -2 &lt; Z_1 &lt; -1, 0.09 &lt; Z_2 &lt; 0.10, 0.1 &lt; Z_3 &lt; 0.2, 1 &lt; Z_4 &lt; 2
-Let us refine the second and third intervals to separate the corresponding
-roots:
-\PolRefineInterval*{P}{2}% will refine to 0.0999990 &lt; Z_2 &lt; 0.0999991
-\PolRefineInterval*{P}{3}% will refine to 0.100001 &lt; Z_3 &lt; 0.100002
-\PolPrintIntervals{P}%
-Let us now get to know all roots with 10 digits after decimal mark:
-\PolEnsureIntervalLengths{P}{-10}%
-\PolPrintIntervals{P}% now all roots are known 10 decimal digits after mark
-Finally, we display 20 digits of the second root:
-\PolEnsureIntervalLength{P}{2}{-20}% makes Z_2 known with 20 digits after mark
-\[\PolSturmIsolatedZeroLeft{P}{2}&lt;Z_2&lt;\PolSturmIsolatedZeroRight{P}{2}\]
-</pre>
-<p>The last line produces:</p>
-<pre class="literal-block">
-0.09999900004999650028 &lt; Z_2 &lt; 0.09999900004999650029
-</pre>
-</div>
-<div class="section" id="the-wilkinson-polynomial">
-<h2><a class="toc-backref" href="#id45">The Wilkinson polynomial</a></h2>
-<p>See <a class="reference external" href="https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial">Wilkinson polynomial</a>.</p>
-<pre class="literal-block">
-\documentclass{article}
-\usepackage{polexpr}
-\begin{document}
-%\xintverbosetrue % for the curious...
-
-\poldef f(x) := mul((x - i), i = 1..20);
-
-\renewcommand\PolTypesetCmdPrefix[1]{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%
-\renewcommand\PolTypesetOne[1]{\xintDecToString{#1}}%
-
-\noindent\PolTypeset{f}
-
-\PolToSturm{f}{f}
-\PolSturmIsolateZeros{f}
-\PolPrintIntervals{f}
-
-\clearpage
-
-\poldef g(x) := f(x) - 2**{-23} x**19;
-
-% be patient!
-\PolToSturm{g}{g}
-\noindent\PolTypeset{g_0}% integer coefficient primitive polynomial
-
-\PolSturmIsolateZeros{g}
-\PolEnsureIntervalLengths{g}{-10}
-
-\renewcommand\PolPrintIntervalsPrintMultiplicity{}
-\PolPrintIntervals*{g}
-
-\end{document}
-</pre>
-<p>The first polynomial:</p>
-<pre class="literal-block">
-f(x) = x**20
-- 210 x**19
-+ 20615 x**18
-- 1256850 x**17
-+ 53327946 x**16
-- 1672280820 x**15
-+ 40171771630 x**14
-- 756111184500 x**13
-+ 11310276995381 x**12
-- 135585182899530 x**11
-+ 1307535010540395 x**10
-- 10142299865511450 x**9
-+ 63030812099294896 x**8
-- 311333643161390640 x**7
-+ 1206647803780373360 x**6
-- 3599979517947607200 x**5
-+ 8037811822645051776 x**4
-- 12870931245150988800 x**3
-+ 13803759753640704000 x**2
-- 8752948036761600000 x
-+ 2432902008176640000
-</pre>
-<p>is handled fast enough (a few seconds), but the modified one <tt class="docutils literal">f(x) -
-<span class="pre">2**-23</span> <span class="pre">x**19</span></tt> takes about 20x longer (the Sturm chain polynomials
-have integer coefficients with up to 321 digits, whereas (surprisingly
-perhaps) those of the Sturm chain polynomials derived from <tt class="docutils literal">f</tt> never
-have more than 21 digits ...).</p>
-<p>Once the Sturm chain is computed and the zeros isolated, obtaining their
-decimal digits is relatively faster. Here is for the ten real roots of
-<tt class="docutils literal">f(x) - <span class="pre">2**-23</span> <span class="pre">x**19</span></tt> as computed by the code above:</p>
-<pre class="literal-block">
-Z_1 = 0.9999999999...
-Z_2 = 2.0000000000...
-Z_3 = 2.9999999999...
-Z_4 = 4.0000000002...
-Z_5 = 4.9999999275...
-Z_6 = 6.0000069439...
-Z_7 = 6.9996972339...
-Z_8 = 8.0072676034...
-Z_9 = 8.9172502485...
-Z_10 = 20.8469081014...
-</pre>
-</div>
-<div class="section" id="the-second-wilkinson-polynomial">
-<h2><a class="toc-backref" href="#id46">The second Wilkinson polynomial</a></h2>
-<pre class="literal-block">
-\documentclass{article}
-\usepackage{polexpr}
-\begin{document}
-\poldef f(x) := mul(x - 2^-i, i = 1..20);
-
-%\PolTypeset{f}
-
-\PolToSturm{f}{f}
-\PolSturmIsolateZeros**{f}
-\PolPrintIntervals{f}
-\end{document}
-</pre>
-<p>This takes more time than the polynomial with 1, 2, .., 20 as roots but
-less than the latter modified by the <tt class="docutils literal"><span class="pre">2**-23</span></tt> change in one
-coefficient.</p>
-<p>Here is the output (with release 0.7.2):</p>
-<pre class="literal-block">
-Z_1 = 0.00000095367431640625
-Z_2 = 0.0000019073486328125
-Z_3 = 0.000003814697265625
-Z_4 = 0.00000762939453125
-Z_5 = 0.0000152587890625
-Z_6 = 0.000030517578125
-Z_7 = 0.00006103515625
-Z_8 = 0.0001220703125
-Z_9 = 1/4096
-Z_10 = 1/2048
-Z_11 = 1/1024
-Z_12 = 1/512
-Z_13 = 1/256
-Z_14 = 1/128
-Z_15 = 0.015625
-Z_16 = 0.03125
-Z_17 = 0.0625
-Z_18 = 0.125
-Z_19 = 0.25
-Z_20 = 0.5
-</pre>
-<p>There is some incoherence in output format which has its source in the
-fact that some roots are found in branches which can only find decimal
-roots, whereas some are found in branches which could find general
-fractions and they use <tt class="docutils literal">\xintIrr</tt> before storage of the found root.
-This may evolve in future.</p>
-</div>
-<div class="section" id="the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots">
-<h2><a class="toc-backref" href="#id47">The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots</a></h2>
-<pre class="literal-block">
-\PolDef{P}{mul((x-i*1e-1), i=-20..20)}% i/10 is same but less efficient
-</pre>
-<p>In the defining expression we could have used <tt class="docutils literal">i/10</tt> but this gives
-less efficient internal form for the coefficients (the <tt class="docutils literal">10</tt>'s end up
-in denominators). Using <tt class="docutils literal">\PolToExpr{P}</tt> after having done</p>
-<pre class="literal-block">
-\renewcommand\PolToExprCmd[1]{\PolDecToString{\xintREZ{#1}}}
-</pre>
-<p>we get this expanded form:</p>
-<pre class="literal-block">
-x^41
--28.7*x^39
-+375.7117*x^37
--2975.11006*x^35
-+15935.28150578*x^33
--61167.527674162*x^31
-+173944.259366417394*x^29
--373686.963560544648*x^27
-+613012.0665016658846445*x^25
--771182.31133138163125495*x^23
-+743263.86672885754888959569*x^21
--545609.076599482896371978698*x^19
-+301748.325708943677229642930528*x^17
--123655.8987669450434698869844544*x^15
-+36666.1782054884005855608205864192*x^13
--7607.85821367459445649518380016128*x^11
-+1053.15135918687298508885950223794176*x^9
--90.6380005918141132650786081964032*x^7
-+4.33701563847327366842552218288128*x^5
--0.0944770968420804735498178265088*x^3
-+0.00059190121813899276854174416896*x
-</pre>
-<p>which shows coefficients with up to 36 significant digits...</p>
-<p>Stress test: not a hard challenge to <tt class="docutils literal">xint + polexpr</tt>, but be a bit patient!</p>
-<pre class="literal-block">
-\PolDef{P}{mul((x-i*1e-1), i=-20..20)}%
-\PolToSturm{P}{S} % dutifully computes S_0, ..., S_{41}
-% the [1] optional argument limits the search to interval (-10,10)
-\PolSturmIsolateZeros[1]{S} % finds *exactly* (but a bit slowly) all 41 roots!
-\PolPrintIntervals{S} % nice, isn't it?
-</pre>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p>Release <tt class="docutils literal">0.5</tt> has <em>experimental</em> addition of optional argument
-<tt class="docutils literal">E</tt> to <tt class="docutils literal">\PolSturmIsolateZeros</tt>. It instructs to search roots only
-in interval <tt class="docutils literal"><span class="pre">(-10^E,</span> 10^E)</tt>. Important: the extremities are
-<em>assumed to not be roots</em>. In this example, the <tt class="docutils literal">[1]</tt> in
-<tt class="docutils literal"><span class="pre">\PolSturmIsolateZeros[1]{S}</span></tt> gives some speed gain; without it, it
-turns out in this case that <tt class="docutils literal">polexpr</tt> would have started with
-<tt class="docutils literal"><span class="pre">(-10^6,</span> 10^6)</tt> interval.</p>
-<p class="last">Please note that this will probably get replaced in future by the
-specification of a general interval. Do not rely on meaning of this
-optional argument keeping the same.</p>
-</div>
-</div>
-<div class="section" id="roots-of-chebyshev-polynomials">
-<h2><a class="toc-backref" href="#id48">Roots of Chebyshev polynomials</a></h2>
-<pre class="literal-block">
-\newcount\mycount
-\poldef T_0(x) := 1;
-\poldef T_1(x) := x;
-\mycount 2
-\xintloop
- \poldef T_\the\mycount(x) :=
- 2x*T_\the\numexpr\mycount-1(x)
- - T_\the\numexpr\mycount-2(x);
-\ifnum\mycount&lt;15
-\advance\mycount 1
-\repeat
-
-\[T_{15} = \PolTypeset[X]{T_15}\]
-\PolToSturm{T_15}{T_15}
-\PolSturmIsolateZeros{T_15}
-\PolEnsureIntervalLengths{T_15}{-10}
-\PolPrintIntervals{T_15}
-</pre>
-</div>
-</div>
-<div class="section" id="non-expandable-macros">
-<h1><a class="toc-backref" href="#id49">Non-expandable macros</a></h1>
-<div class="section" id="poldef-polname-letter-expression-in-letter">
-<span id="poldef"></span><h2><a class="toc-backref" href="#id50"><tt class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression in letter;</tt></a></h2>
-<blockquote>
-<p>This evaluates the <em>polynomial expression</em> and stores the coefficients
-in a private structure accessible later via other package macros,
-under the user-chosen <tt class="docutils literal">polname</tt>. Of course the <em>expression</em> can
-use other previously defined polynomials. Names must start with a
-letter and are constituted of letters, digits, underscores and
-(since <tt class="docutils literal">0.5.1</tt>) the right tick <tt class="docutils literal">'</tt>.
-The whole <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> syntax is authorized:</p>
-<pre class="literal-block">
-\poldef sin(z) := add((-1)^i z^(2i+1)/(2i+1)!, i = 0..10);
-</pre>
-<p>With fractional coefficients, beware the <a class="reference internal" href="#warningtacit">tacit multiplication issue</a>.</p>
-<p>As a side effect the function <tt class="docutils literal">polname()</tt> is recognized as a
-genuine <tt class="docutils literal"><span class="pre">\xintexpr...\relax</span></tt> function for (exact) numerical
-evaluation (or within an <tt class="docutils literal">\xintdefvar</tt> assignment.) It computes
-values not according to the original expression but via the Horner
-scheme corresponding to the polynomial coefficients.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p>Release <tt class="docutils literal">0.3</tt> also did the necessary set-up to let the
-polynomial be known to the <tt class="docutils literal">\xintfloatexpr</tt> (or
-<tt class="docutils literal">\xintdeffloatvar</tt>) parser.</p>
-<p>Since <tt class="docutils literal">0.4</tt> this isn't done automatically. Even more, a
-previously existing floating point variant of the same name will
-be let undefined again, to avoid hard to debug mismatches between
-exact and floating point polynomials. This also applies when the
-polynomial is produced not via <tt class="docutils literal">\poldef</tt> or <tt class="docutils literal">\PolDef</tt> but as
-a product of the other package macros.</p>
-<p class="last">See <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>.</p>
-</div>
-<p>The original expression is lost after parsing, and in particular
-the package provides no way to typeset it. This has to be done
-manually, if needed.</p>
-</blockquote>
-</div>
-<div class="section" id="poldef-letter-polname-expression-in-letter">
-<span id="id2"></span><h2><a class="toc-backref" href="#id51"><tt class="docutils literal"><span class="pre">\PolDef[letter]{polname}{expression</span> in letter}</tt></a></h2>
-<blockquote>
-Does the same as <a class="reference external" href="poldef;">\poldef</a> in an undelimited macro
-format (thus avoiding potential problems with the catcode of the
-semi-colon in presence of some packages.) In absence of the
-<tt class="docutils literal">[letter]</tt> optional argument, the variable is assumed to be <tt class="docutils literal">x</tt>.</blockquote>
-</div>
-<div class="section" id="polgenfloatvariant-polname">
-<span id="polgenfloatvariant"></span><h2><a class="toc-backref" href="#id52"><tt class="docutils literal">\PolGenFloatVariant{polname}</tt></a></h2>
-<blockquote>
-<p>Makes the polynomial also usable in the <tt class="docutils literal">\xintfloatexpr</tt> parser.
-It will therein evaluates via an Horner scheme with coefficients
-already pre-rounded to the float precision.</p>
-<p>See also <a class="reference internal" href="#poltofloatexpr-polname">\PolToFloatExpr{polname}</a>.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p>Release <tt class="docutils literal">0.3</tt> did this automatically on <tt class="docutils literal">\PolDef</tt> and
-<tt class="docutils literal">\poldef</tt> but this was removed at <tt class="docutils literal">0.4</tt> for optimization.</p>
-<p class="last">Any operation, for example generating the derivative polynomial,
-or dividing two polynomials or using the <tt class="docutils literal">\PolLet</tt>, <strong>must</strong> be
-followed by explicit usage of <tt class="docutils literal">\PolGenFloatVariant{polname}</tt> if
-the new polynomial is to be used in <tt class="docutils literal">\xintfloatexpr</tt> or alike
-context.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="pollet-polname-2-polname-1">
-<span id="pollet"></span><h2><a class="toc-backref" href="#id53"><tt class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></tt></a></h2>
-<blockquote>
-Makes a copy of the already defined polynomial <tt class="docutils literal">polname_1</tt> to a
-new one <tt class="docutils literal">polname_2</tt>. Same effect as
-<tt class="docutils literal"><span class="pre">\PolDef{polname_2}{polname_1(x)}</span></tt> but with less overhead. The
-<tt class="docutils literal">=</tt> is optional.</blockquote>
-</div>
-<div class="section" id="polgloballet-polname-2-polname-1">
-<span id="polgloballet"></span><h2><a class="toc-backref" href="#id54"><tt class="docutils literal"><span class="pre">\PolGlobalLet{polname_2}={polname_1}</span></tt></a></h2>
-<blockquote>
-Acts globally.</blockquote>
-</div>
-<div class="section" id="polassign-polname-toarray-macro">
-<span id="polassign"></span><h2><a class="toc-backref" href="#id55"><tt class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></tt></a></h2>
-<blockquote>
-<p>Defines a one-argument expandable macro <tt class="docutils literal"><span class="pre">\macro{#1}</span></tt> which expands
-to the (raw) #1th polynomial coefficient.</p>
-<ul class="simple">
-<li>Attention, coefficients here are indexed starting at 1.</li>
-<li>With #1=-1, -2, ..., <tt class="docutils literal"><span class="pre">\macro{#1}</span></tt> returns leading coefficients.</li>
-<li>With #1=0, returns the number of coefficients, i.e. <tt class="docutils literal">1 + deg f</tt>
-for non-zero polynomials.</li>
-<li>Out-of-range #1's return <tt class="docutils literal">0/1[0]</tt>.</li>
-</ul>
-<p>See also <a class="reference internal" href="#polnthcoeff-polname-number">\PolNthCoeff{polname}{number}</a>. The main difference is that
-with <tt class="docutils literal">\PolAssign</tt>, <tt class="docutils literal">\macro</tt> is made a prefix to <tt class="docutils literal">1 + deg f</tt>
-already defined (hidden to user) macros holding individually the
-coefficients but <a class="reference internal" href="#polnthcoeff-polname-number">\PolNthCoeff{polname}{number}</a> does each time the job
-to expandably recover the <tt class="docutils literal">Nth</tt> coefficient, and due to
-expandability can not store it in a macro for future usage (of course,
-it can be an argument in an <tt class="docutils literal">\edef</tt>.) The other difference
-is the shift by one in indexing, mentioned above (negative
-indices act the same in both.)</p>
-</blockquote>
-</div>
-<div class="section" id="polget-polname-fromarray-macro">
-<span id="polget"></span><h2><a class="toc-backref" href="#id56"><tt class="docutils literal"><span class="pre">\PolGet{polname}\fromarray\macro</span></tt></a></h2>
-<blockquote>
-<p>Does the converse operation to
-<tt class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></tt>. Each individual
-<tt class="docutils literal">\macro{number}</tt> gets expanded in an <tt class="docutils literal">\edef</tt> and then normalized
-via <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a>'s macro <tt class="docutils literal">\xintRaw</tt>.</p>
-<p>The leading zeros are removed from the polynomial.</p>
-<p>(contrived) Example:</p>
-<pre class="literal-block">
-\xintAssignArray{1}{-2}{5}{-3}\to\foo
-\PolGet{f}\fromarray\foo
-</pre>
-<p>This will define <tt class="docutils literal">f</tt> as would have <tt class="docutils literal">\poldef <span class="pre">f(x):=1-2x+5x^2-3x^3;</span></tt>.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">Prior to <tt class="docutils literal">0.5</tt>, coefficients were not normalized via
-<tt class="docutils literal">\xintRaw</tt> for internal storage.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polfromcsv-polname-csv">
-<span id="polfromcsv"></span><h2><a class="toc-backref" href="#id57"><tt class="docutils literal"><span class="pre">\PolFromCSV{polname}{&lt;csv&gt;}</span></tt></a></h2>
-<blockquote>
-<p>Defines a polynomial directly from the comma separated list of values
-(or a macro expanding to such a list) of its coefficients, the <em>first
-item</em> gives the constant term, the <em>last item</em> gives the leading
-coefficient, except if zero, then it is dropped (iteratively). List
-items are each expanded in an <tt class="docutils literal">\edef</tt> and then put into normalized
-form via <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a>'s macro <tt class="docutils literal">\xintRaw</tt>.</p>
-<p>As leading zero coefficients are removed:</p>
-<pre class="literal-block">
-\PolFromCSV{f}{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
-</pre>
-<p>defines the zero polynomial, which holds only one coefficient.</p>
-<p>See also expandable macro <a class="reference internal" href="#poltocsv-polname">\PolToCSV</a>.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">Prior to <tt class="docutils literal">0.5</tt>, coefficients were not normalized via
-<tt class="docutils literal">\xintRaw</tt> for internal storage.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="poltypeset-polname">
-<span id="poltypeset"></span><h2><a class="toc-backref" href="#id58"><tt class="docutils literal">\PolTypeset{polname}</tt></a></h2>
-<blockquote>
-<p>Typesets in descending powers in math mode. It uses letter <tt class="docutils literal">x</tt> but
-this can be changed via an optional argument:</p>
-<pre class="literal-block">
-\PolTypeset[z]{polname}
-</pre>
-<p>By default zero coefficients are skipped (issue <tt class="docutils literal">\poltypesetalltrue</tt>
-to get all of them in output).</p>
-<p>These commands (whose meanings will be found in the package code)
-can be re-defined for customization. Their default definitions are
-expandable, but this is not a requirement.</p>
-</blockquote>
-<div class="section" id="poltypesetcmd-raw-coeff">
-<span id="poltypesetcmd"></span><h3><a class="toc-backref" href="#id59"><tt class="docutils literal">\PolTypesetCmd{raw_coeff}</tt></a></h3>
-<blockquote>
-<p>Checks if the coefficient is <tt class="docutils literal">1</tt> or <tt class="docutils literal"><span class="pre">-1</span></tt> and then skips printing
-the <tt class="docutils literal">1</tt>, except for the constant term. Also it sets conditional
-<a class="reference internal" href="#polifcoeffisplusorminusone-a-b">\PolIfCoeffIsPlusOrMinusOne{A}{B}</a>.</p>
-<p>The actual printing of the coefficients, when not equal to plus or
-minus one is handled by <a class="reference internal" href="#poltypesetone-raw-coeff">\PolTypesetOne{raw_coeff}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltypesetone-raw-coeff">
-<span id="poltypesetone"></span><h3><a class="toc-backref" href="#id60"><tt class="docutils literal">\PolTypesetOne{raw_coeff}</tt></a></h3>
-<blockquote>
-<p>The default is <tt class="docutils literal">\xintSignedFrac</tt> but this macro is annoying as it
-insists to use a power of ten, and not decimal notation.</p>
-<p>One can do things such as for example: <a class="footnote-reference" href="#id5" id="id4">[1]</a></p>
-<pre class="literal-block">
-\renewcommand\PolTypesetOne[1]{\num{\xintPFloat[5]{#1}}}
-\renewcommand\PolTypesetOne[1]{\num{\xintRound{4}{#1}}}
-</pre>
-<p>where e.g. we used the <tt class="docutils literal">\num</tt> macro of <tt class="docutils literal">siunitx</tt> as it
-understands floating point notation.</p>
-<table class="docutils footnote" frame="void" id="id5" rules="none">
-<colgroup><col class="label" /><col /></colgroup>
-<tbody valign="top">
-<tr><td class="label"><a class="fn-backref" href="#id4">[1]</a></td><td>the difference in the syntaxes of <tt class="docutils literal">\xintPFloat</tt> and
-<tt class="docutils literal">\xintRound</tt> is explained from the fact that
-<tt class="docutils literal">\xintPFloat</tt> by default uses the prevailing precision
-hence the extra argument like here <tt class="docutils literal">5</tt> is an optional one.</td></tr>
-</tbody>
-</table>
-<p>One can also give a try to using <a class="reference internal" href="#poldectostring-decimal-number">\PolDecToString{decimal number}</a>
-which uses decimal notation (at least for the numerator part).</p>
-</blockquote>
-</div>
-<div class="section" id="id6">
-<span id="poltypesetmonomialcmd"></span><h3><a class="toc-backref" href="#id61"><tt class="docutils literal">\PolTypesetMonomialCmd</tt></a></h3>
-<blockquote>
-This decides how a monomial (in variable <tt class="docutils literal">\PolVar</tt> and with
-exponent <tt class="docutils literal">\PolIndex</tt>) is to be printed. The default does nothing
-for the constant term, <tt class="docutils literal">\PolVar</tt> for the first degree and
-<tt class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></tt> for higher degrees monomials. Beware that
-<tt class="docutils literal">\PolIndex</tt> expands to digit tokens and needs termination in
-<tt class="docutils literal">\ifnum</tt> tests.</blockquote>
-</div>
-<div class="section" id="poltypesetcmdprefix-raw-coeff">
-<span id="poltypesetcmdprefix"></span><h3><a class="toc-backref" href="#id62"><tt class="docutils literal">\PolTypesetCmdPrefix{raw_coeff}</tt></a></h3>
-<blockquote>
-Expands to a <tt class="docutils literal">+</tt> if the <tt class="docutils literal">raw_coeff</tt> is zero or positive, and to
-nothing if <tt class="docutils literal">raw_coeff</tt> is negative, as in latter case the
-<tt class="docutils literal">\xintSignedFrac</tt> used by <a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{raw_coeff}</a> will put
-the <tt class="docutils literal">-</tt> sign in front of the fraction (if it is a fraction) and
-this will thus serve as separator in the typeset formula. Not used
-for the first term.</blockquote>
-</div>
-</div>
-<div class="section" id="id8">
-<span id="id7"></span><h2><a class="toc-backref" href="#id63"><tt class="docutils literal"><span class="pre">\PolTypeset*{polname}</span></tt></a></h2>
-<blockquote>
-Typesets in ascending powers. Use e.g. <tt class="docutils literal">[h]</tt> optional argument
-(after the <tt class="docutils literal">*</tt>) to use letter <tt class="docutils literal">h</tt> rather than <tt class="docutils literal">x</tt>.</blockquote>
-</div>
-<div class="section" id="poldiff-polname-1-polname-2">
-<span id="poldiff"></span><h2><a class="toc-backref" href="#id64"><tt class="docutils literal"><span class="pre">\PolDiff{polname_1}{polname_2}</span></tt></a></h2>
-<blockquote>
-<p>This sets <tt class="docutils literal">polname_2</tt> to the first derivative of <tt class="docutils literal">polname_1</tt>. It
-is allowed to issue <tt class="docutils literal"><span class="pre">\PolDiff{f}{f}</span></tt>, effectively replacing <tt class="docutils literal">f</tt>
-by <tt class="docutils literal">f'</tt>.</p>
-<p>Coefficients of the result <tt class="docutils literal">polname_2</tt> are irreducible fractions
-(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
-</blockquote>
-</div>
-<div class="section" id="poldiff-n-polname-1-polname-2">
-<span id="poldiff-n"></span><h2><a class="toc-backref" href="#id65"><tt class="docutils literal"><span class="pre">\PolDiff[N]{polname_1}{polname_2}</span></tt></a></h2>
-<blockquote>
-This sets <tt class="docutils literal">polname_2</tt> to the <tt class="docutils literal">N</tt>-th derivative of <tt class="docutils literal">polname_1</tt>.
-Identical arguments is allowed. With <tt class="docutils literal">N=0</tt>, same effect as
-<tt class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></tt>. With negative <tt class="docutils literal">N</tt>, switches to
-using <tt class="docutils literal">\PolAntiDiff</tt>.</blockquote>
-</div>
-<div class="section" id="polantidiff-polname-1-polname-2">
-<span id="polantidiff"></span><h2><a class="toc-backref" href="#id66"><tt class="docutils literal"><span class="pre">\PolAntiDiff{polname_1}{polname_2}</span></tt></a></h2>
-<blockquote>
-<p>This sets <tt class="docutils literal">polname_2</tt> to the primitive of <tt class="docutils literal">polname_1</tt> vanishing
-at zero.</p>
-<p>Coefficients of the result <tt class="docutils literal">polname_2</tt> are irreducible fractions
-(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
-</blockquote>
-</div>
-<div class="section" id="polantidiff-n-polname-1-polname-2">
-<span id="polantidiff-n"></span><h2><a class="toc-backref" href="#id67"><tt class="docutils literal"><span class="pre">\PolAntiDiff[N]{polname_1}{polname_2}</span></tt></a></h2>
-<blockquote>
-This sets <tt class="docutils literal">polname_2</tt> to the result of <tt class="docutils literal">N</tt> successive integrations on
-<tt class="docutils literal">polname_1</tt>. With negative <tt class="docutils literal">N</tt>, it switches to using <tt class="docutils literal">\PolDiff</tt>.</blockquote>
-</div>
-<div class="section" id="poldivide-polname-1-polname-2-polname-q-polname-r">
-<span id="poldivide"></span><h2><a class="toc-backref" href="#id68"><tt class="docutils literal"><span class="pre">\PolDivide{polname_1}{polname_2}{polname_Q}{polname_R}</span></tt></a></h2>
-<blockquote>
-This sets <tt class="docutils literal">polname_Q</tt> and <tt class="docutils literal">polname_R</tt> to be the quotient and
-remainder in the Euclidean division of <tt class="docutils literal">polname_1</tt> by
-<tt class="docutils literal">polname_2</tt>.</blockquote>
-</div>
-<div class="section" id="polquo-polname-1-polname-2-polname-q">
-<span id="polquo"></span><h2><a class="toc-backref" href="#id69"><tt class="docutils literal"><span class="pre">\PolQuo{polname_1}{polname_2}{polname_Q}</span></tt></a></h2>
-<blockquote>
-This sets <tt class="docutils literal">polname_Q</tt> to be the quotient in the Euclidean division
-of <tt class="docutils literal">polname_1</tt> by <tt class="docutils literal">polname_2</tt>.</blockquote>
-</div>
-<div class="section" id="polrem-polname-1-polname-2-polname-r">
-<span id="polrem"></span><h2><a class="toc-backref" href="#id70"><tt class="docutils literal"><span class="pre">\PolRem{polname_1}{polname_2}{polname_R}</span></tt></a></h2>
-<blockquote>
-This sets <tt class="docutils literal">polname_R</tt> to be the remainder in the Euclidean division
-of <tt class="docutils literal">polname_1</tt> by <tt class="docutils literal">polname_2</tt>.</blockquote>
-</div>
-<div class="section" id="polgcd-polname-1-polname-2-polname-gcd">
-<span id="polgcd"></span><h2><a class="toc-backref" href="#id71"><tt class="docutils literal"><span class="pre">\PolGCD{polname_1}{polname_2}{polname_GCD}</span></tt></a></h2>
-<blockquote>
-This sets <tt class="docutils literal">polname_GCD</tt> to be the (monic) GCD of the two first
-polynomials. It is a unitary polynomial except if both <tt class="docutils literal">polname_1</tt>
-and <tt class="docutils literal">polname_2</tt> vanish, then <tt class="docutils literal">polname_GCD</tt> is the zero
-polynomial.</blockquote>
-<!-- ``\PolIGCD{polname_1}{polname_2}{polname_iGCD}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- **NOT YET**
-
- This **assumes** that the two polynomials have integer coefficients.
- It then computes the greatest common divisor in the integer
- polynomial ring, normalized to have a positive leading coefficient
- (if the inputs are not both zero).
-
-``\PolIContent{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
- **NOT YET**
-
- This computes a positive rational number such that dividing the
- polynomial with it returns an integer coefficients polynomial with
- no common factor among the coefficients. -->
-</div>
-<div class="section" id="poltosturm-polname-sturmname">
-<span id="poltosturm"></span><h2><a class="toc-backref" href="#id72"><tt class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></tt></a></h2>
-<blockquote>
-<p>With <tt class="docutils literal">polname</tt> being for example <tt class="docutils literal">P</tt>, the macro starts by
-computing polynomials <tt class="docutils literal">P</tt> and <tt class="docutils literal">P'</tt>, then computes the (opposite
-of the) remainder in euclidean division, iteratively.</p>
-<p>The last non-zero remainder <tt class="docutils literal">P_N_</tt> (where <tt class="docutils literal">N</tt> is obtainable as
-<a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{sturmname}</a>) is up to a factor
-the GCD of <tt class="docutils literal">P</tt> and <tt class="docutils literal">P'</tt> hence it is a constant if and only if
-<tt class="docutils literal">P</tt> is square-free.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<ul class="last simple">
-<li>Since <tt class="docutils literal">0.5</tt> all these polynomials are divided by their rational
-content, so they have integer coefficients with no common factor,
-and the last one if a constant is either <tt class="docutils literal">1</tt> or <tt class="docutils literal"><span class="pre">-1</span></tt>.</li>
-<li>After this normalization to primitive polynomials, they are
-stored internally as <tt class="docutils literal">sturmname_k_</tt>, <tt class="docutils literal">k=0,1, ...</tt>.</li>
-<li>These polynomials are used internally only. To keep them as
-genuine declared polynomials also after the macro call, use the
-starred variant <a class="reference internal" href="#id9">PolToSturm*</a>.</li>
-</ul>
-</div>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">It is perfectly allowed to use the polynomial name as Sturm chain name:
-<tt class="docutils literal"><span class="pre">\PolToSturm{f}(f}</span></tt>.</p>
-</div>
-<p>The macro then declares <tt class="docutils literal">sturmname_0</tt>, <tt class="docutils literal">sturmname_1</tt>, ..., which are
-the (non-declared) <tt class="docutils literal">sturmname_k_</tt> divided by the last one. Division is
-not done if this last one is the constant <tt class="docutils literal">1</tt> or <tt class="docutils literal"><span class="pre">-1</span></tt>, i.e. if the
-original polynomial was square-free. These polynomials are primitive
-polynomials too, i.e. with integer coefficients having no common factor.</p>
-<p>Thus <tt class="docutils literal">sturmname_0</tt> has exactly the same real and complex roots as
-polynomial <tt class="docutils literal">polname</tt>, but with each root now of multiplicity one:
-i.e. it is the &quot;square-free part&quot; of original polynomial <tt class="docutils literal">polname</tt>.</p>
-<p>Notice that <tt class="docutils literal">sturmname_1</tt> isn't necessarily the derivative of
-<tt class="docutils literal">sturmname_0</tt> due to the various normalizations.</p>
-<p>The polynomials <tt class="docutils literal">sturmname_k</tt> main utility is for the execution of
-<a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a>. Be careful not to use these
-names <tt class="docutils literal">sturmname_0</tt>, <tt class="docutils literal">sturmname_1</tt>, etc... for defining other
-polynomials after having done <tt class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></tt> and
-before executing <tt class="docutils literal">\PolSturmIsolateZeros{sturmname}</tt> else the
-latter will behave erroneously.</p>
-<p><a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{sturmname}</a> gives the index of the last
-element of the Sturm chain.</p>
-</blockquote>
-</div>
-<div class="section" id="id10">
-<span id="id9"></span><h2><a class="toc-backref" href="#id73"><tt class="docutils literal"><span class="pre">\PolToSturm*{polname}{sturmname}</span></tt></a></h2>
-<blockquote>
-<p>Does the same as <a class="reference internal" href="#poltosturm">un-starred version</a> and additionally it
-keeps for user usage the memory of the <em>un-normalized</em> Sturm chain
-polynomials <tt class="docutils literal">sturmname_k_</tt>, <tt class="docutils literal">k=0,1, <span class="pre">...,</span> N</tt>, with
-<tt class="docutils literal">N</tt> being <a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{sturmname}</a>.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">This behaviour was modified at <tt class="docutils literal">0.6</tt>, anyhow the macro was
-broken at <tt class="docutils literal">0.5</tt>.</p>
-</div>
-<div class="admonition hint">
-<p class="first admonition-title">Hint</p>
-<p class="last">The square-free part of <tt class="docutils literal">polname</tt> is <tt class="docutils literal">sturmname_0</tt>, and their
-quotient is the polynomial with name
-<tt class="docutils literal">sturname_\PolSturmChainLength{sturmname}_</tt>. It thus easy to
-set-up a loop iteratively computing the latter until the last one
-is a constant, thus obtaining the decomposition of an <tt class="docutils literal">f</tt> as
-a product <tt class="docutils literal">c f_1 f_2 f_3 ...</tt> of a constant and square-free (primitive)
-polynomials, where each <tt class="docutils literal">f_i</tt> divides its predecessor.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsettosturmchainsignchangesat-macro-sturmname-fraction">
-<span id="polsettosturmchainsignchangesat"></span><h2><a class="toc-backref" href="#id74"><tt class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\macro}{sturmname}{fraction}</span></tt></a></h2>
-<blockquote>
-<p>Sets macro <tt class="docutils literal">\macro</tt> to the number of sign changes in the Sturm
-chain with name prefix <tt class="docutils literal">sturmname</tt>, at location <tt class="docutils literal">fraction</tt>
-(which must be in format as acceptable by the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros.)</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p>The author was lazy and did not provide rather an expandable
-variant, where one would do <tt class="docutils literal"><span class="pre">\edef\macro{\PolNbOf...}</span></tt>.</p>
-<p>This will presumably get added in a future release.</p>
-<p class="last">After some hesitation it was decided the macro would by default
-act globally. To make the scope of its macro definition local,
-use <tt class="docutils literal">[\empty]</tt> as extra optional argument.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsettonbofzeroswithin-macro-sturmname-value-a-value-b">
-<span id="polsettonbofzeroswithin"></span><h2><a class="toc-backref" href="#id75"><tt class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\macro}{sturmname}{value_a}{value_b}</span></tt></a></h2>
-<blockquote>
-<p>Applies the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a> to set <tt class="docutils literal">\macro</tt> to the exact number
-of <strong>distinct</strong> roots of <tt class="docutils literal">sturmname_0</tt> in the interval <tt class="docutils literal">(value_a,
-value_b]</tt> (the macro first re-orders the value for <tt class="docutils literal">value_a &lt;=
-value_b</tt> to hold).</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p>The author was lazy and did not provide rather an expandable
-variant, where one would do <tt class="docutils literal"><span class="pre">\edef\macro{\PolNbOf...}</span></tt>.</p>
-<p>This will presumably get added in future.</p>
-<p class="last">After some hesitation it was decided the macro would by default
-act globally. To make the scope of its macro definition local,
-use <tt class="docutils literal">[\empty]</tt> as extra optional argument.</p>
-</div>
-<p>See also the expandable
-<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a>, from
-which it is immediate (with <tt class="docutils literal">\numexpr</tt>) to create an expandable
-variant of this macro. However the difference is that this macro
-requires only <a class="reference internal" href="#poltosturm">\PolToSturm</a> to have been executed,
-whereas the expandable variant requires prior execution of
-<a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a>.</p>
-<p>See also the expandable
-<a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a>
-which requires prior execution of
-<a class="reference internal" href="#id11">\PolSturmIsolateZeros*</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatezeros-sturmname">
-<span id="polsturmisolatezeros"></span><h2><a class="toc-backref" href="#id76"><tt class="docutils literal">\PolSturmIsolateZeros{sturmname}</tt></a></h2>
-<blockquote>
-<p>The macros locates, using <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm theorem</a>, as many disjoint
-intervals as there are (real) roots.</p>
-<div class="admonition important">
-<p class="first admonition-title">Important</p>
-<p>The Sturm chain must have been produced by an earlier
-<a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</p>
-<p>Why does this macro ask for argument the name of Sturm chain,
-rather than the name of a polynomial? well this is mainly for
-legacy reason, and because it is accompanied by other macros for
-which it is simpler to assume the argument will be the name of an
-already computed Sturm chain.</p>
-<p>Notice that <tt class="docutils literal"><span class="pre">\PolToSturm{f}{f}</span></tt> is perfectly legal (the
-<tt class="docutils literal">sturmname</tt> can be same as the <tt class="docutils literal">polname</tt>): it defines
-polynomials <tt class="docutils literal">f_0</tt>, <tt class="docutils literal">f_1</tt>, ... having <tt class="docutils literal">f</tt> has name prefix.</p>
-<p class="last">Such a prior call
-to <tt class="docutils literal">\PolToSturm</tt> must have been made at any rate for
-<tt class="docutils literal">\PolSturmIsolateZeros</tt> to be usable.</p>
-</div>
-<p>After its execution they are two types of such intervals (stored in
-memory and accessible via macros or <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables, see below):</p>
-<ul class="simple">
-<li>singleton <tt class="docutils literal">{a}</tt>: then <tt class="docutils literal">a</tt> is a root, (necessarily a decimal
-number, but not all such decimal numbers are exactly identified yet).</li>
-<li>open intervals <tt class="docutils literal">(a,b)</tt>: then there is exactly one root <tt class="docutils literal">z</tt>
-such that <tt class="docutils literal">a &lt; z &lt; b</tt>, and the end points are guaranteed to not
-be roots.</li>
-</ul>
-<p>The interval boundaries are decimal numbers, originating
-in iterated decimal subdivision from initial intervals
-<tt class="docutils literal"><span class="pre">(-10^E,</span> 0)</tt> and <tt class="docutils literal">(0, 10^E)</tt> with <tt class="docutils literal">E</tt> chosen initially large
-enough so that all roots are enclosed; if zero is a root it is always
-identified as such. The non-singleton intervals are of the
-type <tt class="docutils literal">(a/10^f, <span class="pre">(a+1)/10^f)</span></tt> with <tt class="docutils literal">a</tt> an integer, which is
-neither <tt class="docutils literal">0</tt> nor <tt class="docutils literal"><span class="pre">-1</span></tt>. Hence either <tt class="docutils literal">a</tt> and <tt class="docutils literal">a+1</tt> are both positive
-or they are both negative.</p>
-<p>One does not <em>a priori</em> know what will be the lengths of these
-intervals (except that they are always powers of ten), they
-vary depending on how many digits two successive roots have in
-common in their respective decimal expansions.</p>
-<div class="admonition important">
-<p class="first admonition-title">Important</p>
-<p>If some two consecutive intervals share an end-point, no
-information is yet gained about the separation between the two
-roots which could at this stage be arbitrarily small.</p>
-<p class="last">See <a class="reference internal" href="#polrefineinterval-sturmname-index">\PolRefineInterval*{sturmname}{index}</a> which addresses
-this issue.</p>
-</div>
-<!-- This procedure is covariant
-with the independent variable ``x`` becoming ``-x``.
-Hmm, pas sûr et trop fatigué -->
-<p>The interval boundaries (and exactly found roots) are made available
-for future computations in <tt class="docutils literal">\xintexpr</tt>-essions or polynomial
-definitions as variables <tt class="docutils literal">&lt;sturmname&gt;L_1</tt>,
-<tt class="docutils literal">&lt;sturmname&gt;L_2</tt>, etc..., for the left end-points and
-<tt class="docutils literal">&lt;sturmname&gt;R_1</tt>, <tt class="docutils literal">&lt;sturmname&gt;R_2</tt>, ..., for the right
-end-points.</p>
-<p>Thus for example, if <tt class="docutils literal">sturmname</tt> is <tt class="docutils literal">f</tt>, one can use the
-<a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables <tt class="docutils literal">fL_1</tt>, <tt class="docutils literal">fL_2</tt>, ... to refer in expressions
-to the left end-points (or to the exact root, if left and right end
-points coincide). Additionally, <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variable <tt class="docutils literal">fZ_1_isknown</tt>
-will have value <tt class="docutils literal">1</tt> if the root in the first interval is known,
-and <tt class="docutils literal">0</tt> otherwise. And similarly for the other intervals.</p>
-<p>Also, macros <a class="reference internal" href="#polsturmisolatedzeroleft-sturmname-index">\PolSturmIsolatedZeroLeft{sturmname}{index}</a> and
-<a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index">\PolSturmIsolatedZeroRight{sturmname}{index}</a> are provided which
-expand to these same values, written in decimal notation (i.e.
-pre-processed by <a class="reference internal" href="#poldectostring">\PolDecToString</a>.) And there
-is also <a class="reference internal" href="#polsturmifzeroexactlyknown-sturmname-index-a-b">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</a>.</p>
-<div class="admonition important">
-<p class="first admonition-title">Important</p>
-<p class="last">Trailing zeroes in the stored decimal numbers accessible via the
-macros are significant: they are also present in the decimal
-expansion of the exact root.</p>
-</div>
-<p>These variables and macros are automatically updated when one next
-uses macros such as <a class="reference internal" href="#polrefineinterval-sturmname-index">\PolRefineInterval*{sturmname}{index}</a>.</p>
-<p>The start of decimal expansion of a positive <tt class="docutils literal">k</tt>-th root is given
-by <a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft{sturmname}{k}</a>, and for a negative root it is given
-by <a class="reference internal" href="#polsturmisolatedzeroright">PolSturmIsolatedZeroRight{sturmname}{k}</a>. These two decimal
-numbers are either both zero or both of the same sign.</p>
-<p>The number of distinct roots is obtainable expandably as
-<a class="reference internal" href="#polsturmnbofisolatedzeros-sturmname">\PolSturmNbOfIsolatedZeros{sturmname}</a>.</p>
-<p>Furthermore
-<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a> and
-<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</a>.
-will expandably compute respectively the number of real roots at
-most equal to <tt class="docutils literal">value</tt> or <tt class="docutils literal">expression</tt>, and the same but with
-multiplicities.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">In the current implementation the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables
-and <a class="reference external" href="http://www.ctan.org/pkg/xint">xinttools</a> arrays are globally defined. On the
-other hand the Sturm sequence polynomials obey the current scope.</p>
-</div>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p>As all computations are done <em>exactly</em> there can be no errors...
-apart those due to bad coding by author. The results are exact
-bounds for the mathematically exact real roots.</p>
-<p class="last">Future releases will perhaps also provide macros based on Newton
-or Regula Falsi methods. Exact computations with such methods
-lead however quickly to very big fractions, and this forces usage
-of some rounding scheme for the abscissas if computation times
-are to remain reasonable. This raises issues of its own, which
-are studied in numerical mathematics.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="id12">
-<span id="id11"></span><h2><a class="toc-backref" href="#id77"><tt class="docutils literal"><span class="pre">\PolSturmIsolateZeros*{sturmname}</span></tt></a></h2>
-<blockquote>
-<p>The macro does the same as <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> and
-then in addition it does the extra work to determine all
-multiplicities (of the real roots):
-after executing this macro,
-<a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</a> will expand
-to the multiplicity of the root located in the <tt class="docutils literal">index</tt>-th
-interval (intervals are enumerated from left to right, with index
-starting at <tt class="docutils literal">1</tt>).</p>
-<p>Furthermore, if for example the <tt class="docutils literal">sturmname</tt> is <tt class="docutils literal">f</tt>, <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a>
-variables <tt class="docutils literal">fM_1</tt>, <tt class="docutils literal">fM_2</tt>... hold the multiplicities thus
-computed.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">It is <strong>not</strong> necessary to have executed the <a class="reference internal" href="#id9">PolToSturm*</a> starred
-variant, as the non-starred variant keeps internally the memory of the
-original GCD (and even of the full non-normalized original Sturm
-chain), even though it does not make the declarations as <em>user-level</em>
-genuine polynomials.</p>
-</div>
-<p>See <a class="reference internal" href="#the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
-roots</a> for an example.</p>
-</blockquote>
-</div>
-<div class="section" id="id14">
-<span id="id13"></span><h2><a class="toc-backref" href="#id78"><tt class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{sturmname}</span></tt></a></h2>
-<blockquote>
-<p>The macro does the same as <a class="reference internal" href="#id12">\PolSturmIsolateZeros*{sturmname}</a> and
-in addition it does the extra work to determine all the <em>rational</em>
-roots.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">After execution of this macro, a root is &quot;known&quot; if and only if
-it is rational.</p>
-</div>
-<p>Furthermore, primitive polynomial <tt class="docutils literal">sturmname_sqf_norr</tt> is created
-to match the (square-free) <tt class="docutils literal">sturmname_0</tt> from which all rational
-roots have been removed (see <a class="reference internal" href="#polexprsetup">\polexprsetup</a> for customizing this
-name). The number of distinct rational roots is thus the difference
-between the degrees of these two polynomials (see also
-<a class="reference internal" href="#polsturmnbofrationalroots-sturmname">\PolSturmNbOfRationalRoots{sturmname}</a>).</p>
-<p>And <tt class="docutils literal">sturmname_norr</tt> is <tt class="docutils literal">sturmname_0_</tt> from which all rational
-roots have been removed (see <a class="reference internal" href="#polexprsetup">\polexprsetup</a>), i.e. it contains
-the irrational roots of the original polynomial, with the same
-multiplicities.</p>
-<p>See <a class="reference internal" href="#a-degree-five-polynomial-with-three-rational-roots">A degree five polynomial with three rational
-roots</a> for an example.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatezerosandgetmultiplicities-sturmname">
-<span id="polsturmisolatezerosandgetmultiplicities"></span><h2><a class="toc-backref" href="#id79"><tt class="docutils literal">\PolSturmIsolateZerosAndGetMultiplicities{sturmname}</tt></a></h2>
-<blockquote>
-This is another name for <a class="reference internal" href="#id12">\PolSturmIsolateZeros*{sturmname}</a>.</blockquote>
-</div>
-<div class="section" id="polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname">
-<span id="polsturmisolatezerosgetmultiplicitiesandrationalroots"></span><h2><a class="toc-backref" href="#id80"><tt class="docutils literal">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}</tt></a></h2>
-<blockquote>
-This is another name for <a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a>.</blockquote>
-</div>
-<div class="section" id="polsturmisolatezerosandfindrationalroots-sturmname">
-<h2><a class="toc-backref" href="#id81"><tt class="docutils literal">\PolSturmIsolateZerosAndFindRationalRoots{sturmname}</tt></a></h2>
-<blockquote>
-<p>This works exactly like <a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a>
-(inclusive of declaring the polynomials <tt class="docutils literal">sturmname_sqf_norr</tt> and
-<tt class="docutils literal">sturmname_norr</tt> with no rational roots) except that it does <em>not</em>
-compute the multiplicities of the <em>non-rational</em> roots.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">There is no macro to find the rational roots but not compute
-their multiplicities at the same time.</p>
-</div>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p>This macro does <em>not</em> define <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> variables
-<tt class="docutils literal">sturmnameM_1</tt>, <tt class="docutils literal">sturmnameM_2</tt>, ... holding the
-multiplicities and it leaves the multiplicity array (whose accessor
-is <a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</a>) into
-a broken state, as all non-rational roots will supposedly have
-multiplicity one. This means that the output of
-<a class="reference internal" href="#id18">\PolPrintIntervals*</a> for example will be
-erroneous for the intervals with irrational roots.</p>
-<p class="last">I decided to document it because finding multiplicities of the
-non rational roots is somewhat costly, and one may be interested
-only into finding the rational roots (of course random
-polynomials with integer coefficients will not have <em>any</em>
-rational root anyhow).</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polrefineinterval-sturmname-index">
-<span id="polrefineinterval"></span><h2><a class="toc-backref" href="#id82"><tt class="docutils literal"><span class="pre">\PolRefineInterval*{sturmname}{index}</span></tt></a></h2>
-<blockquote>
-The <tt class="docutils literal">index</tt>-th interval (starting indexing at one) is further
-subdivided as many times as is necessary in order for the newer
-interval to have both its end-points distinct from the end-points of
-the original interval. This means that the <tt class="docutils literal">k</tt>th root is then
-strictly separated from the other roots.</blockquote>
-</div>
-<div class="section" id="polrefineinterval-n-sturmname-index">
-<span id="polrefineinterval-n"></span><h2><a class="toc-backref" href="#id83"><tt class="docutils literal"><span class="pre">\PolRefineInterval[N]{sturmname}{index}</span></tt></a></h2>
-<blockquote>
-The <tt class="docutils literal">index</tt>-th interval (starting count at one) is further
-subdivided once, reducing its length by a factor of 10. This is done
-<tt class="docutils literal">N</tt> times if the optional argument <tt class="docutils literal">[N]</tt> is present.</blockquote>
-</div>
-<div class="section" id="polensureintervallength-sturmname-index-e">
-<span id="polensureintervallength"></span><h2><a class="toc-backref" href="#id84"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLength{sturmname}{index}{E}</span></tt></a></h2>
-<blockquote>
-The <tt class="docutils literal">index</tt>-th interval is subdivided until its length becomes at
-most <tt class="docutils literal">10^E</tt>. This means (for <tt class="docutils literal">E&lt;0</tt>) that the first <tt class="docutils literal"><span class="pre">-E</span></tt> digits
-after decimal mark of the <tt class="docutils literal">k</tt>th root will then be known exactly.</blockquote>
-</div>
-<div class="section" id="polensureintervallengths-sturmname-e">
-<span id="polensureintervallengths"></span><h2><a class="toc-backref" href="#id85"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{sturmname}{E}</span></tt></a></h2>
-<blockquote>
-<p>The intervals as obtained from <tt class="docutils literal">\PolSturmIsolateZeros</tt> are (if
-necessary) subdivided further by (base 10) dichotomy in order for
-each of them to have length at most <tt class="docutils literal">10^E</tt> (length will be shorter
-than <tt class="docutils literal">10^E</tt> in output only if it did not change or became zero.)</p>
-<p>This means that decimal expansions of all roots will be known with
-<tt class="docutils literal"><span class="pre">-E</span></tt> digits (for <tt class="docutils literal">E&lt;0</tt>) after decimal mark.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervals-varname-sturmname">
-<span id="polprintintervals"></span><h2><a class="toc-backref" href="#id86"><tt class="docutils literal"><span class="pre">\PolPrintIntervals[varname]{sturmname}</span></tt></a></h2>
-<blockquote>
-<p>This is a convenience macro which prints the bounds for the roots
-<tt class="docutils literal">Z_1</tt>, <tt class="docutils literal">Z_2</tt>, ... (the optional argument <tt class="docutils literal">varname</tt> allows to
-specify a replacement for the default <tt class="docutils literal">Z</tt>). This will be done (by
-default) in a
-math mode <tt class="docutils literal">array</tt>, one interval per row, and pattern <tt class="docutils literal">rcccl</tt>,
-where the second and fourth column hold the <tt class="docutils literal">&lt;</tt> sign, except when
-the interval reduces to a singleton, which means the root is known
-exactly.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last">This macro was refactored at 0.7, its default output remained
-identical but the ways to customize it got completely
-modified.</p>
-</div>
-<p>See next macros which govern its output.</p>
-</blockquote>
-<div class="section" id="polprintintervalsnorealroots">
-<h3><a class="toc-backref" href="#id87"><tt class="docutils literal">\PolPrintIntervalsNoRealRoots</tt></a></h3>
-<blockquote>
-<p>Executed in place of an <tt class="docutils literal">array</tt> environment, when there are no
-real roots. Default definition:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsNoRealRoots{}
-</pre>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsbeginenv">
-<h3><a class="toc-backref" href="#id88"><tt class="docutils literal">\PolPrintIntervalsBeginEnv</tt></a></h3>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}
-</pre>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsendenv">
-<h3><a class="toc-backref" href="#id89"><tt class="docutils literal">\PolPrintIntervalsEndEnv</tt></a></h3>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsEndEnv{\end{array}\]}
-</pre>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsknownroot">
-<h3><a class="toc-backref" href="#id90"><tt class="docutils literal">\PolPrintIntervalsKnownRoot</tt></a></h3>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsKnownRoot{%
- &amp;&amp;\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}%
- &amp;=&amp;\PolPrintIntervalsPrintExactZero
-}
-</pre>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsunknownroot">
-<h3><a class="toc-backref" href="#id91"><tt class="docutils literal">\PolPrintIntervalsUnknownRoot</tt></a></h3>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsUnknownRoot{%
- \PolPrintIntervalsPrintLeftEndPoint&amp;&lt;&amp;%
- \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&amp;&lt;&amp;%
- \PolPrintIntervalsPrintRightEndPoint
-}
-</pre>
-</blockquote>
-</div>
-<div class="section" id="id15">
-<span id="polprintintervalsprintexactzero"></span><h3><a class="toc-backref" href="#id92"><tt class="docutils literal">\PolPrintIntervalsPrintExactZero</tt></a></h3>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsPrintExactZero{\PolPrintIntervalsTheLeftEndPoint}
-</pre>
-</blockquote>
-</div>
-<div class="section" id="id16">
-<span id="polprintintervalsprintleftendpoint"></span><h3><a class="toc-backref" href="#id93"><tt class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</tt></a></h3>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsPrintLeftEndPoint{\PolPrintIntervalsTheLeftEndPoint}
-</pre>
-</blockquote>
-</div>
-<div class="section" id="id17">
-<span id="polprintintervalsprintrightendpoint"></span><h3><a class="toc-backref" href="#id94"><tt class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</tt></a></h3>
-<blockquote>
-<p>Default definition is:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}
-</pre>
-</blockquote>
-</div>
-</div>
-<div class="section" id="id19">
-<span id="id18"></span><h2><a class="toc-backref" href="#id95"><tt class="docutils literal"><span class="pre">\PolPrintIntervals*[varname]{sturmname}</span></tt></a></h2>
-<blockquote>
-<p>This starred variant produces an alternative output (which
-displays the root multiplicity), and is provided as an
-example of customization.</p>
-<p>As replacement for <a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a>,
-<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a>,
-<a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a> it uses its own
-<tt class="docutils literal"><span class="pre">\POL&#64;&#64;PrintIntervals...</span></tt> macros. We only reproduce here one
-definition:</p>
-<pre class="literal-block">
-\newcommand\POL&#64;&#64;PrintIntervalsPrintExactZero{%
- \displaystyle
- \xintSignedFrac{\PolPrintIntervalsTheLeftEndPoint}%
-}%
-</pre>
-<p>Multiplicities are printed using this auxiliary macro:</p>
-</blockquote>
-<div class="section" id="polprintintervalsprintmultiplicity">
-<h3><a class="toc-backref" href="#id96"><tt class="docutils literal">\PolPrintIntervalsPrintMultiplicity</tt></a></h3>
-<blockquote>
-<p>whose default definition is:</p>
-<pre class="literal-block">
-\newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}
-</pre>
-</blockquote>
-</div>
-</div>
-<div class="section" id="polmapcoeffs-macro-polname">
-<span id="polmapcoeffs"></span><h2><a class="toc-backref" href="#id97"><tt class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{polname}</span></tt></a></h2>
-<blockquote>
-<p>It modifies ('in-place': original coefficients get lost) each
-coefficient of the defined polynomial via the <em>expandable</em> macro
-<tt class="docutils literal">\macro</tt>. The degree is adjusted as necessary if some leading
-coefficients vanish after the operation. In replacement text of
-<tt class="docutils literal">\macro</tt>, <tt class="docutils literal">\index</tt> expands to the coefficient index (which is
-defined to be zero for the constant term).</p>
-<p>Notice that <tt class="docutils literal">\macro</tt> will have to handle inputs of the shape
-<tt class="docutils literal">A/B[N]</tt> (<a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> internal notation). This means that it probably
-will have to be expressed in terms of macros from <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> package.</p>
-<p>Example:</p>
-<pre class="literal-block">
-\def\foo#1{\xintMul{#1}{\the\numexpr\index*\index\relax}}
-</pre>
-<p>(or with <tt class="docutils literal"><span class="pre">\xintSqr{\index}</span></tt>) to replace <tt class="docutils literal">n</tt>-th coefficient
-<tt class="docutils literal">f_n</tt> by <tt class="docutils literal">f_n*n^2</tt>.</p>
-</blockquote>
-</div>
-<div class="section" id="polreducecoeffs-polname">
-<span id="polreducecoeffs"></span><h2><a class="toc-backref" href="#id98"><tt class="docutils literal">\PolReduceCoeffs{polname}</tt></a></h2>
-<blockquote>
-About the same as <tt class="docutils literal"><span class="pre">\PolMapCoeffs{\xintIrr}{polname}</span></tt> (but
-maintaining a <tt class="docutils literal">[0]</tt> postfix for speedier <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> parsing when
-polynomial function is used for computations.) This is a
-one-argument macro, working 'in-place'.</blockquote>
-</div>
-<div class="section" id="id21">
-<span id="id20"></span><h2><a class="toc-backref" href="#id99"><tt class="docutils literal"><span class="pre">\PolReduceCoeffs*{polname}</span></tt></a></h2>
-<blockquote>
-<p>This starred variant leaves un-touched the decimal exponent in the
-internal representation of the fractional coefficients, i.e. if a
-coefficient is internally <tt class="docutils literal">A/B[N]</tt>, then <tt class="docutils literal">A/B</tt> is reduced to
-smallest terms, but the <tt class="docutils literal">10^N</tt> part is kept as is. Note: if the
-polynomial is freshly defined directly via <a class="reference internal" href="#polfromcsv">\PolFromCSV</a> its coefficients might still be internally in some
-format like <tt class="docutils literal">1.5e7</tt>; the macro will anyhow always first do the
-needed conversion to strict format <tt class="docutils literal">A/B[N]</tt>.</p>
-<p>Evaluations with polynomials treated by this can be much faster than
-with those handled by the non-starred variant
-<a class="reference internal" href="#polreducecoeffs-polname">\PolReduceCoeffs{polname}</a>: as the numerators and denominators
-remain smaller, this proves very beneficial in favorable cases
-(especially when the coefficients are decimal numbers) to the
-expansion speed of the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros used internally by
-<a class="reference internal" href="#polevalat">\PolEval</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polmakemonic-polname">
-<span id="polmakemonic"></span><h2><a class="toc-backref" href="#id100"><tt class="docutils literal">\PolMakeMonic{polname}</tt></a></h2>
-<blockquote>
-Divides by the leading coefficient. It is recommended to execute
-<a class="reference internal" href="#id21">\PolReduceCoeffs*{polname}</a> immediately afterwards. This is not
-done automatically, due to the case the original polynomial had integer
-coefficients and we want to keep the leading one as common
-denominator.</blockquote>
-</div>
-<div class="section" id="polmakeprimitive-polname">
-<span id="polmakeprimitive"></span><h2><a class="toc-backref" href="#id101"><tt class="docutils literal">\PolMakePrimitive{polname}</tt></a></h2>
-<blockquote>
-Divides by the integer content see (<a class="reference internal" href="#policontent">\PolIContent</a>). This thus produces a polynomial with integer
-coefficients having no common factor. The sign of the leading
-coefficient is not modified.</blockquote>
-</div>
-</div>
-<div class="section" id="expandable-macros">
-<h1><a class="toc-backref" href="#id102">Expandable macros</a></h1>
-<p>All these macros expand completely in two steps except <tt class="docutils literal">\PolToExpr</tt>
-and <tt class="docutils literal">\PolToFloatExpr</tt> (and their auxiliaries) which need a
-<tt class="docutils literal">\write</tt>, <tt class="docutils literal">\edef</tt> or a <tt class="docutils literal"><span class="pre">\csname...\endcsname</span></tt> context.</p>
-<div class="section" id="poleval-polname-atexpr-numerical-expression">
-<span id="polevalatexpr"></span><h2><a class="toc-backref" href="#id103"><tt class="docutils literal"><span class="pre">\PolEval{polname}\AtExpr{numerical</span> expression}</tt></a></h2>
-<blockquote>
-It boils down to
-<tt class="docutils literal">\xinttheexpr polname(numerical <span class="pre">expression)\relax</span></tt>.</blockquote>
-</div>
-<div class="section" id="poleval-polname-at-fraction">
-<span id="polevalat"></span><h2><a class="toc-backref" href="#id104"><tt class="docutils literal"><span class="pre">\PolEval{polname}\At{fraction}</span></tt></a></h2>
-<blockquote>
-Evaluates the polynomial at value <tt class="docutils literal">fraction</tt> which must be in (or
-expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros.</blockquote>
-</div>
-<div class="section" id="polevalreduced-polname-atexpr-numerical-expression">
-<span id="polevalreducedatexpr"></span><h2><a class="toc-backref" href="#id105"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\AtExpr{numerical</span> expression}</tt></a></h2>
-<blockquote>
-Boils down to <tt class="docutils literal">\xinttheexpr reduce(polname(numerical <span class="pre">expression))\relax</span></tt>.</blockquote>
-</div>
-<div class="section" id="polevalreduced-polname-at-fraction">
-<span id="polevalreducedat"></span><h2><a class="toc-backref" href="#id106"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\At{fraction}</span></tt></a></h2>
-<blockquote>
-Evaluates the polynomial at value <tt class="docutils literal">fraction</tt> which must be in (or
-expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros, and produce
-an irreducible fraction.</blockquote>
-</div>
-<div class="section" id="polfloateval-polname-atexpr-numerical-expression">
-<span id="polfloatevalatexpr"></span><h2><a class="toc-backref" href="#id107"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\AtExpr{numerical</span> expression}</tt></a></h2>
-<blockquote>
-<p>Boils down to <tt class="docutils literal">\xintthefloatexpr polname(numerical <span class="pre">expression)\relax</span></tt>.</p>
-<p>This is done via a Horner Scheme (see <a class="reference internal" href="#poldef">\poldef</a> and
-<a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>), with already rounded
-coefficients. <a class="footnote-reference" href="#id24" id="id22">[2]</a> To use the <em>exact coefficients</em> with <em>exactly
-executed</em> additions and multiplications, just insert it in the float
-expression as in this example: <a class="footnote-reference" href="#id25" id="id23">[3]</a></p>
-<pre class="literal-block">
-\xintthefloatexpr 3.27*\xintexpr f(2.53)\relax^2\relax
-</pre>
-<p>The <tt class="docutils literal">f(2.53)</tt> is exactly computed then rounded at the time of
-getting raised to the power <tt class="docutils literal">2</tt>. Moving the <tt class="docutils literal">^2</tt> inside, that
-operation would also be treated exactly.</p>
-<table class="docutils footnote" frame="void" id="id24" rules="none">
-<colgroup><col class="label" /><col /></colgroup>
-<tbody valign="top">
-<tr><td class="label"><a class="fn-backref" href="#id22">[2]</a></td><td>Anyway each floating point operation starts by rounding its
-operands to the floating point precision.</td></tr>
-</tbody>
-</table>
-<table class="docutils footnote" frame="void" id="id25" rules="none">
-<colgroup><col class="label" /><col /></colgroup>
-<tbody valign="top">
-<tr><td class="label"><a class="fn-backref" href="#id23">[3]</a></td><td>The <tt class="docutils literal">\xintexpr</tt> here could be <tt class="docutils literal">\xinttheexpr</tt> but that
-would be less efficient. Cf. <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> documentation about
-nested expressions.</td></tr>
-</tbody>
-</table>
-</blockquote>
-</div>
-<div class="section" id="polfloateval-polname-at-fraction">
-<span id="polfloatevalat"></span><h2><a class="toc-backref" href="#id108"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\At{fraction}</span></tt></a></h2>
-<blockquote>
-Evaluates the polynomial at value <tt class="docutils literal">fraction</tt> which must be in (or
-expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros, and produces
-a floating point number.</blockquote>
-</div>
-<div class="section" id="polifcoeffisplusorminusone-a-b">
-<span id="polifcoeffisplusorminusone"></span><h2><a class="toc-backref" href="#id109"><tt class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{A}{B}</span></tt></a></h2>
-<blockquote>
-<p>This macro is a priori undefined.</p>
-<p>It is defined via the default <a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{raw_coeff}</a> to be
-used if needed in the execution of <a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a>,
-e.g. to insert a <tt class="docutils literal">\cdot</tt> in front of <tt class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></tt> if
-the coefficient is not plus or minus one.</p>
-<p>The macro will execute <tt class="docutils literal">A</tt> if the coefficient has been found to be
-plus or minus one, and <tt class="docutils literal">B</tt> if not.</p>
-</blockquote>
-</div>
-<div class="section" id="polleadingcoeff-polname">
-<span id="polleadingcoeff"></span><h2><a class="toc-backref" href="#id110"><tt class="docutils literal">\PolLeadingCoeff{polname}</tt></a></h2>
-<blockquote>
-Expands to the leading coefficient.</blockquote>
-</div>
-<div class="section" id="polnthcoeff-polname-number">
-<span id="polnthcoeff"></span><h2><a class="toc-backref" href="#id111"><tt class="docutils literal"><span class="pre">\PolNthCoeff{polname}{number}</span></tt></a></h2>
-<blockquote>
-It expands to the raw <tt class="docutils literal">N</tt>-th coefficient (<tt class="docutils literal">0/1[0]</tt> if the index
-number is out of range). With <tt class="docutils literal"><span class="pre">N=-1</span></tt>, <tt class="docutils literal"><span class="pre">-2</span></tt>, ... expands to the
-leading coefficients.</blockquote>
-</div>
-<div class="section" id="poldegree-polname">
-<span id="poldegree"></span><h2><a class="toc-backref" href="#id112"><tt class="docutils literal">\PolDegree{polname}</tt></a></h2>
-<blockquote>
-It expands to the degree. This is <tt class="docutils literal"><span class="pre">-1</span></tt> if zero polynomial but this
-may change in future. Should it then expand to <tt class="docutils literal"><span class="pre">-\infty</span></tt> ?</blockquote>
-</div>
-<div class="section" id="policontent-polname">
-<span id="policontent"></span><h2><a class="toc-backref" href="#id113"><tt class="docutils literal">\PolIContent{polname}</tt></a></h2>
-<blockquote>
-<p>It expands to the contents of the polynomial, i.e. to the positive
-fraction such that dividing by this fraction produces a polynomial
-with integer coefficients having no common prime divisor.</p>
-<p>See <a class="reference internal" href="#polmakeprimitive">\PolMakePrimitive</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexpr-polname">
-<span id="poltoexpr"></span><h2><a class="toc-backref" href="#id114"><tt class="docutils literal">\PolToExpr{polname}</tt></a></h2>
-<blockquote>
-<p>Expands <a class="footnote-reference" href="#id27" id="id26">[4]</a> to <tt class="docutils literal"><span class="pre">coeff_N*x^N+...</span></tt> (descending powers.)</p>
-<table class="docutils footnote" frame="void" id="id27" rules="none">
-<colgroup><col class="label" /><col /></colgroup>
-<tbody valign="top">
-<tr><td class="label"><a class="fn-backref" href="#id26">[4]</a></td><td>in a <tt class="docutils literal">\write</tt>, <tt class="docutils literal">\edef</tt>, or <tt class="docutils literal"><span class="pre">\csname...\endcsname</span></tt>, but
-not under <tt class="docutils literal"><span class="pre">\romannumeral-`0</span></tt>.</td></tr>
-</tbody>
-</table>
-<p>By default zero coefficients are skipped (issue <tt class="docutils literal">\poltoexpralltrue</tt> to
-get all of them in output).</p>
-<p>By default, no <tt class="docutils literal">+</tt> sign before negative coefficients, for
-compliance with Maple input format (but see
-<a class="reference internal" href="#poltoexprtermprefix-raw-coeff">\PolToExprTermPrefix{raw_coeff}</a>.) Also, like the default
-behaviour of <a class="reference internal" href="#poltypeset-polname">\PolTypeset{polname}</a>, does not print (for the non
-constant terms) coefficients equal to plus or minus one. The degree
-one monomial is output as <tt class="docutils literal">x</tt>, not <tt class="docutils literal">x^1</tt>. Complete customization is
-possible, see next macros.</p>
-<p>Of course <tt class="docutils literal">\PolToExpr{f}</tt> can be inserted in a <tt class="docutils literal">\poldef</tt>, as the
-latter expands token by token, hence will force complete expansion
-of <tt class="docutils literal">\PolToExpr{f}</tt>, but a simple <tt class="docutils literal">f(x)</tt> is more efficient for
-the identical result.</p>
-</blockquote>
-<div class="section" id="poltoexproneterm-raw-coeff-number">
-<span id="poltoexproneterm"></span><h3><a class="toc-backref" href="#id115"><tt class="docutils literal"><span class="pre">\PolToExprOneTerm{raw_coeff}{number}</span></tt></a></h3>
-<blockquote>
-<p>This two argument expandable command takes care of the monomial and
-its coefficient. The default definition is done in order for
-coefficients of absolute value <tt class="docutils literal">1</tt> not be printed explicitely
-(except of course for the constant term). Also by default, the
-monomial of degree one is <tt class="docutils literal">x</tt> not <tt class="docutils literal">x^1</tt>, and <tt class="docutils literal">x^0</tt> is skipped.</p>
-<p>For compatibility with Maple input requirements, by default a <tt class="docutils literal">*</tt>
-always precedes the <tt class="docutils literal">x^number</tt>, except if the coefficient is a one
-or a minus one. See <a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexpronetermstylea-raw-coeff-number">
-<span id="poltoexpronetermstylea"></span><h3><a class="toc-backref" href="#id116"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{raw_coeff}{number}</span></tt></a></h3>
-<blockquote>
-Holds the default package meaning of
-<a class="reference internal" href="#poltoexproneterm-raw-coeff-number">\PolToExprOneTerm{raw_coeff}{number}</a>.</blockquote>
-</div>
-<div class="section" id="poltoexpronetermstyleb-raw-coeff-number">
-<span id="poltoexpronetermstyleb"></span><h3><a class="toc-backref" href="#id117"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{raw_coeff}{number}</span></tt></a></h3>
-<blockquote>
-<p>For output in this style:</p>
-<pre class="literal-block">
-2*x^11/3+3*x^8/7-x^5-x^4/4-x^3-x^2/2-2*x+1
-</pre>
-<p>issue <tt class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleB</tt> before usage of
-<tt class="docutils literal">\PolToExpr</tt>. Note that then <tt class="docutils literal">\PolToExprCmd</tt> isn't used at all.
-To revert to package default, issue
-<tt class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleA</tt>.</p>
-<p>To suppress the <tt class="docutils literal">*</tt>'s, cf. <a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexprcmd-raw-coeff">
-<span id="poltoexprcmd"></span><h3><a class="toc-backref" href="#id118"><tt class="docutils literal">\PolToExprCmd{raw_coeff}</tt></a></h3>
-<blockquote>
-It is the one-argument macro used by the package definition of
-<tt class="docutils literal">\PolToExprOneTerm</tt> for the coefficients themselves (when not
-equal to plus or minus one), and it defaults to
-<tt class="docutils literal"><span class="pre">\xintPRaw{\xintRawWithZeros{#1}}</span></tt>. One will have to redefine it
-to <tt class="docutils literal"><span class="pre">\xintIrr{#1}</span></tt> or to <tt class="docutils literal"><span class="pre">\xintPRaw{\xintIrr{#1}}</span></tt> to obtain in the
-output forcefully reduced coefficients.</blockquote>
-</div>
-<div class="section" id="poltoexprtermprefix-raw-coeff">
-<span id="poltoexprtermprefix"></span><h3><a class="toc-backref" href="#id119"><tt class="docutils literal">\PolToExprTermPrefix{raw_coeff}</tt></a></h3>
-<blockquote>
-Defined identically as <a class="reference internal" href="#poltypesetcmdprefix-raw-coeff">\PolTypesetCmdPrefix{raw_coeff}</a>. It
-prefixes with a plus sign for non-negative coefficients, because
-they don't carry one by themselves.</blockquote>
-</div>
-<div class="section" id="id28">
-<span id="poltoexprvar"></span><h3><a class="toc-backref" href="#id120"><tt class="docutils literal">\PolToExprVar</tt></a></h3>
-<blockquote>
-This expands to the variable to use in output (it does not have to
-be a single letter, may be an expandable macro.) Initial definition
-is <tt class="docutils literal">x</tt>.</blockquote>
-</div>
-<div class="section" id="id29">
-<span id="poltoexprtimes"></span><h3><a class="toc-backref" href="#id121"><tt class="docutils literal">\PolToExprTimes</tt></a></h3>
-<blockquote>
-This expands to the symbol used for multiplication of an
-<tt class="docutils literal"><span class="pre">x^{number}</span></tt> by the corresponding coefficient. The default is
-<tt class="docutils literal">*</tt>. Redefine the macro to expand to nothing to get rid of it (but
-this will give output incompatible with some professional computer
-algebra software).</blockquote>
-</div>
-</div>
-<div class="section" id="id31">
-<span id="id30"></span><h2><a class="toc-backref" href="#id122"><tt class="docutils literal"><span class="pre">\PolToExpr*{polname}</span></tt></a></h2>
-<blockquote>
-Expands to <tt class="docutils literal"><span class="pre">coeff_0+coeff_1*x+coeff_2*x^2+...</span></tt> (ascending powers).
-Customizable like <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a> via the same macros.</blockquote>
-</div>
-<div class="section" id="poltofloatexpr-polname">
-<span id="poltofloatexpr"></span><h2><a class="toc-backref" href="#id123"><tt class="docutils literal">\PolToFloatExpr{polname}</tt></a></h2>
-<blockquote>
-<p>Similar to <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a> but uses <a class="reference external" href="\PolToFloatExprCmd{raw_coeff}">\PolToFloatExprCmd</a>
-which by default rounds and converts the coefficients to floating
-point format.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p>It is not necessary to have issued
-<a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>. The rounded coefficients are
-not easily recoverable from the <tt class="docutils literal">\xintfloatexpr</tt> polynomial
-function hence <tt class="docutils literal">\PolToFloatExprCmd</tt> operates from the <em>exact</em>
-coefficients anew.</p>
-<p class="last">Attention that both macros obey the prevailing float precision.
-If it is changed between those macro calls, then a mismatch
-exists between the coefficients as used in <tt class="docutils literal">\xintfloatexpr</tt> and
-those output by <tt class="docutils literal">\PolToFloatExpr{polname}</tt>.</p>
-</div>
-</blockquote>
-<div class="section" id="poltofloatexproneterm-raw-coeff-number">
-<span id="poltofloatexproneterm"></span><h3><a class="toc-backref" href="#id124"><tt class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{raw_coeff}{number}</span></tt></a></h3>
-<blockquote>
-Similar to <a class="reference external" href="\PolToExprOneTerm{raw_coeff}{number}">\PolToExprOneTerm</a>. But does not treat
-especially coefficients equal to plus or minus one.</blockquote>
-</div>
-<div class="section" id="poltofloatexprcmd-raw-coeff">
-<span id="id33"></span><h3><a class="toc-backref" href="#id125"><tt class="docutils literal">\PolToFloatExprCmd{raw_coeff}</tt></a></h3>
-<blockquote>
-<p>It is the one-argument macro used by <tt class="docutils literal">\PolToFloatExprOneTerm</tt>.
-Its package definition is <tt class="docutils literal"><span class="pre">\xintFloat{#1}</span></tt>.</p>
-<div class="admonition caution">
-<p class="first admonition-title">Caution!</p>
-<p>Currently (<a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a> <tt class="docutils literal">1.3c</tt>) <tt class="docutils literal">\xintFloat{0}</tt> outputs <tt class="docutils literal">0.e0</tt>
-which is perfectly acceptable input for Python, but not for
-Maple. Thus, one should better leave the <a class="reference internal" href="#poltoexprallfalse">\poltoexprallfalse</a>
-toggle to its default <tt class="docutils literal">\iffalse</tt> state, if one intends to use
-the output in a Maple worksheet.</p>
-<p>But even then the zero polynomial will cause a problem. Workaround:</p>
-<pre class="literal-block">
-\renewcommand\PolToFloatExprCmd[1]{\xintiiifZero{#1}{0.0}{\xintFloat{#1}}}
-</pre>
-<p class="last">Usage of <tt class="docutils literal">\xintiiifZero</tt> and not <tt class="docutils literal">\xintifZero</tt> is only for
-optimization (I can't help it) because <tt class="docutils literal">#1</tt> is known to be
-in <tt class="docutils literal">xintfrac</tt> raw format.</p>
-</div>
-</blockquote>
-</div>
-</div>
-<div class="section" id="id35">
-<span id="id34"></span><h2><a class="toc-backref" href="#id126"><tt class="docutils literal"><span class="pre">\PolToFloatExpr*{polname}</span></tt></a></h2>
-<blockquote>
-Typesets in ascending powers.</blockquote>
-</div>
-<div class="section" id="poltolist-polname">
-<span id="poltolist"></span><h2><a class="toc-backref" href="#id127"><tt class="docutils literal">\PolToList{polname}</tt></a></h2>
-<blockquote>
-Expands to <tt class="docutils literal"><span class="pre">{coeff_0}{coeff_1}...{coeff_N}</span></tt> with <tt class="docutils literal">N</tt> = degree, and
-<tt class="docutils literal">coeff_N</tt> the leading coefficient
-(the zero polynomial does give <tt class="docutils literal">{0/1[0]}</tt> and not an
-empty output.)</blockquote>
-</div>
-<div class="section" id="poltocsv-polname">
-<span id="poltocsv"></span><h2><a class="toc-backref" href="#id128"><tt class="docutils literal">\PolToCSV{polname}</tt></a></h2>
-<blockquote>
-Expands to <tt class="docutils literal">coeff_0, coeff_1, coeff_2, <span class="pre">.....,</span> coeff_N</tt>, starting
-with constant term and ending with leading coefficient. Converse
-to <a class="reference internal" href="#polfromcsv-polname-csv">\PolFromCSV</a>.</blockquote>
-</div>
-<div class="section" id="polsturmchainlength-sturmname">
-<span id="polsturmchainlength"></span><h2><a class="toc-backref" href="#id129"><tt class="docutils literal">\PolSturmChainLength{sturmname}</tt></a></h2>
-<blockquote>
-<p>Returns the integer <tt class="docutils literal">N</tt> such that <tt class="docutils literal">sturmname_N</tt> is the last one
-in the Sturm chain <tt class="docutils literal">sturmname_0</tt>, <tt class="docutils literal">sturmname_1</tt>, ...</p>
-<p>See <a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmifzeroexactlyknown-sturmname-index-a-b">
-<span id="polsturmifzeroexactlyknown"></span><h2><a class="toc-backref" href="#id130"><tt class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</span></tt></a></h2>
-<blockquote>
-<p>Executes <tt class="docutils literal">A</tt> if the <tt class="docutils literal">index</tt>-th interval reduces to a singleton,
-i.e. the root is known exactly, else <tt class="docutils literal">B</tt>.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last"><tt class="docutils literal">index</tt> is allowed to be something like <tt class="docutils literal">1+2*3</tt> as it is fed
-to <tt class="docutils literal"><span class="pre">\the\numexpr...\relax</span></tt>.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatedzeroleft-sturmname-index">
-<span id="polsturmisolatedzeroleft"></span><h2><a class="toc-backref" href="#id131"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{sturmname}{index}</span></tt></a></h2>
-<blockquote>
-<p>Expands to the left end-point for the <tt class="docutils literal">index</tt>-th interval, as
-computed by some earlier <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a>.</p>
-<div class="admonition note">
-<p class="first admonition-title">Note</p>
-<p class="last">Of course, this is kept updated by macros such as
-<a class="reference internal" href="#polrefineinterval-n">\PolRefineInterval{sturmname}{index}</a>.</p>
-</div>
-<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatedzeroright-sturmname-index">
-<span id="polsturmisolatedzeroright"></span><h2><a class="toc-backref" href="#id132"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{sturmname}{index}</span></tt></a></h2>
-<blockquote>
-<p>Expands to the right end-point for the <tt class="docutils literal">index</tt>-th interval as
-computed by some earlier <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> and
-possibly refined afterwards.</p>
-<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatedzeromultiplicity-sturmname-index">
-<span id="polsturmisolatedzeromultiplicity"></span><h2><a class="toc-backref" href="#id133"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</span></tt></a></h2>
-<blockquote>
-<p>Expands to the multiplicity of the unique root contained in the
-<tt class="docutils literal">index</tt>-th interval.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last">A prior execution of <a class="reference internal" href="#id12">\PolSturmIsolateZeros*{sturmname}</a> is mandatory.</p>
-</div>
-<p>See <a class="reference internal" href="#the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
-roots</a> for an example of use.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbofisolatedzeros-sturmname">
-<span id="polsturmnbofisolatedzeros"></span><h2><a class="toc-backref" href="#id134"><tt class="docutils literal">\PolSturmNbOfIsolatedZeros{sturmname}</tt></a></h2>
-<blockquote>
-Expands to the number of real roots of the polynomial
-<tt class="docutils literal">&lt;sturmname&gt;_0</tt>, i.e. the number of distinct real roots of the
-polynomial originally used to create the Sturm chain via
-<a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</blockquote>
-<div class="admonition warning">
-<p class="first admonition-title">Warning</p>
-<p class="last">The next few macros counting roots, with or without multiplicities,
-less than or equal to some value, are under evaluation and may be
-removed from the package if their utility is judged to be not high
-enough. They can be re-coded at user level on the basis of the other
-documented package macros anyway.</p>
-</div>
-<div class="section" id="polsturmnbofrootsof-sturmname-lessthanorequalto-value">
-<h3><a class="toc-backref" href="#id135"><tt class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></tt></a></h3>
-<blockquote>
-<p>Expands to the number of distinct roots (of the polynomial used to
-create the Sturm chain) less than or equal to the <tt class="docutils literal">value</tt> (i.e. a
-number of fraction recognizable by the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros).</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p><a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> must have been executed
-beforehand.</p>
-<p class="last">And the argument is a <tt class="docutils literal">sturmname</tt>, not a <tt class="docutils literal">polname</tt> (this is
-why the macro contains Sturm in its name), simply to be reminded
-of the above constraint.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression">
-<h3><a class="toc-backref" href="#id136"><tt class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></tt></a></h3>
-<blockquote>
-<p>Expands to the number of distinct roots (of the polynomial
-used to create the Sturm chain) which are less than or equal to the
-given <tt class="docutils literal">expression</tt>.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">
-<h3><a class="toc-backref" href="#id137"><tt class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</span></tt></a></h3>
-<blockquote>
-<p>Expands to the number counted with multiplicities of the roots (of
-the polynomial used to create the Sturm chain) which are less than
-or equal to the given <tt class="docutils literal">value</tt>.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#id12">\PolSturmIsolateZeros*{sturmname}</a> (or the double starred
-variant) must have been executed beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-expression">
-<h3><a class="toc-backref" href="#id138"><tt class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</span></tt></a></h3>
-<blockquote>
-<p>Expands to the total number of roots (counted with multiplicities)
-which are less than or equal to the given <tt class="docutils literal">expression</tt>.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#id12">\PolSturmIsolateZeros*{sturmname}</a> (or the double starred
-variant) must have been executed beforehand.</p>
-</div>
-</blockquote>
-</div>
-</div>
-<div class="section" id="polsturmnbofrationalroots-sturmname">
-<h2><a class="toc-backref" href="#id139"><tt class="docutils literal">\PolSturmNbOfRationalRoots{sturmname}</tt></a></h2>
-<blockquote>
-<p>Expands to the number of rational roots (without multiplicities).</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbofrationalrootswithmultiplicities-sturmname">
-<h2><a class="toc-backref" href="#id140"><tt class="docutils literal">\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}</tt></a></h2>
-<blockquote>
-<p>Expands to the number of rational roots (counted with multiplicities).</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmrationalroot-sturmname-k">
-<h2><a class="toc-backref" href="#id141"><tt class="docutils literal"><span class="pre">\PolSturmRationalRoot{sturmname}{k}</span></tt></a></h2>
-<blockquote>
-<p>Expands to the <tt class="docutils literal">k</tt>th rational root (they are ordered and indexed
-starting at 1 for the most negative).</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmrationalrootindex-sturmname-k">
-<h2><a class="toc-backref" href="#id142"><tt class="docutils literal"><span class="pre">\PolSturmRationalRootIndex{sturmname}{k}</span></tt></a></h2>
-<blockquote>
-<p>Expands to <tt class="docutils literal">index</tt> of the <tt class="docutils literal">k</tt>th rational root as part of the
-ordered real roots (without multiplicities). I.e., above macro
-<a class="reference internal" href="#polsturmrationalroot-sturmname-k">\PolSturmRationalRoot{sturmname}{k}</a> is equivalent to this
-nested call:</p>
-<pre class="literal-block">
-\PolSturmIsolatedZeroLeft{sturmname}{\PolSturmRationalRootIndex{sturmname}{k}}
-</pre>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmrationalrootmultiplicity-sturmname-k">
-<h2><a class="toc-backref" href="#id143"><tt class="docutils literal"><span class="pre">\PolSturmRationalRootMultiplicity{sturmname}{k}</span></tt></a></h2>
-<blockquote>
-<p>Expands to the multiplicity of the <tt class="docutils literal">k</tt>th rational root.</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last"><a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polintervalwidth-sturmname-index">
-<span id="polintervalwidth"></span><h2><a class="toc-backref" href="#id144"><tt class="docutils literal"><span class="pre">\PolIntervalWidth{sturmname}{index}</span></tt></a></h2>
-<blockquote>
-The <tt class="docutils literal">10^E</tt> width of the current <tt class="docutils literal">index</tt>-th root localization
-interval. Output is in <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> raw <tt class="docutils literal">1/1[E]</tt> format (if not zero).</blockquote>
-</div>
-<div class="section" id="expandable-macros-for-use-within-execution-of-polprintintervals">
-<h2><a class="toc-backref" href="#id145">Expandable macros for use within execution of <tt class="docutils literal">\PolPrintIntervals</tt></a></h2>
-<p>These macros are for usage within custom user redefinitions of
-<a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a>, <a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a>, or
-in redefinitions of <a class="reference internal" href="#polprintintervalsprintexactzero">PolPrintIntervalsPrintExactZero</a> (used in the
-default for the former) and of <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>,
-<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a> (used in the default for the
-latter).</p>
-<div class="admonition attention">
-<p class="first admonition-title">Attention!</p>
-<p class="last">Some macros formerly mentioned here got removed at 0.7:
-<tt class="docutils literal">\PolPrintIntervalsTheEndPoint</tt>,
-<tt class="docutils literal"><span class="pre">\PolIfEndPointIsPositive{A}{B}</span></tt>,
-<tt class="docutils literal"><span class="pre">\PolIfEndPointIsNegative{A}{B}</span></tt>,
-<tt class="docutils literal"><span class="pre">\PolIfEndPointIsZero{A}{B}</span></tt>.</p>
-</div>
-<div class="section" id="polprintintervalsthevar">
-<h3><a class="toc-backref" href="#id146"><tt class="docutils literal">\PolPrintIntervalsTheVar</tt></a></h3>
-<blockquote>
-Expands to the name (default <tt class="docutils literal">Z</tt>) used for representing the roots,
-which was passed as optional argument <tt class="docutils literal">varname</tt> to
-<a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[varname]{sturmname}</a>.</blockquote>
-</div>
-<div class="section" id="polprintintervalstheindex">
-<h3><a class="toc-backref" href="#id147"><tt class="docutils literal">\PolPrintIntervalsTheIndex</tt></a></h3>
-<blockquote>
-Expands to the index of the considered interval (indexing starting
-at 1 for the leftmost interval).</blockquote>
-</div>
-<div class="section" id="polprintintervalsthesturmname">
-<h3><a class="toc-backref" href="#id148"><tt class="docutils literal">\PolPrintIntervalsTheSturmName</tt></a></h3>
-<blockquote>
-Expands to the argument which was passed as <tt class="docutils literal">sturmname</tt> to
-<a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[varname]{sturmname}</a>.</blockquote>
-</div>
-<div class="section" id="polprintintervalstheleftendpoint">
-<h3><a class="toc-backref" href="#id149"><tt class="docutils literal">\PolPrintIntervalsTheLeftEndPoint</tt></a></h3>
-<blockquote>
-The left end point of the interval, as would be produced by
-<a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a> if it was
-used with arguments the Sturm chain name and interval index returned
-by <a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a> and
-<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>.</blockquote>
-</div>
-<div class="section" id="polprintintervalstherightendpoint">
-<h3><a class="toc-backref" href="#id150"><tt class="docutils literal">\PolPrintIntervalsTheRightEndPoint</tt></a></h3>
-<blockquote>
-The right end point of the interval, as would be produced by
-<a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a> for
-this Sturm chain name and index.</blockquote>
-</div>
-<div class="section" id="polprintintervalsthemultiplicity">
-<h3><a class="toc-backref" href="#id151"><tt class="docutils literal">\PolPrintIntervalsTheMultiplicity</tt></a></h3>
-<blockquote>
-The multiplicity of the unique root within the interval of index
-<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>. Makes sense only if the starred (or
-double-starred) variant of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> was used earlier.</blockquote>
-</div>
-</div>
-<div class="section" id="poldectostring-decimal-number">
-<span id="poldectostring"></span><h2><a class="toc-backref" href="#id152"><tt class="docutils literal">\PolDecToString{decimal number}</tt></a></h2>
-<blockquote>
-<p>This is a utility macro to print decimal numbers. It has been
-backported to <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> (release <tt class="docutils literal">1.3</tt> of <tt class="docutils literal">2018/03/01</tt>) under
-the name <tt class="docutils literal">\xintDecToString</tt>, and the <tt class="docutils literal">polexpr</tt> macro is simply
-now an alias to it.</p>
-<p>For example
-<tt class="docutils literal"><span class="pre">\PolDecToString{123.456e-8}</span></tt> will expand to <tt class="docutils literal">0.00000123456</tt>
-and <tt class="docutils literal"><span class="pre">\PolDecToString{123.450e-8}</span></tt> to <tt class="docutils literal">0.00000123450</tt> which
-illustrates that trailing zeros are not trimmed. To trim trailing
-zeroes, one can use <tt class="docutils literal"><span class="pre">\PolDecToString{\xintREZ{#1}}</span></tt>.</p>
-<p>The precise behaviour of this macro may evolve in future releases of
-<a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a>.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="booleans-with-default-setting-as-indicated">
-<h1><a class="toc-backref" href="#id153">Booleans (with default setting as indicated)</a></h1>
-<div class="section" id="xintverbosefalse">
-<h2><a class="toc-backref" href="#id154"><tt class="docutils literal">\xintverbosefalse</tt></a></h2>
-<blockquote>
-<p>This is actually an <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> configuration. Setting it to
-<tt class="docutils literal">true</tt> triggers the writing of information to the log when new
-polynomials are defined.</p>
-<div class="admonition caution">
-<p class="first admonition-title">Caution!</p>
-<p class="last">The macro meanings as written to the log are to be considered
-unstable and undocumented internal structures.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="poltypesetallfalse">
-<h2><a class="toc-backref" href="#id155"><tt class="docutils literal">\poltypesetallfalse</tt></a></h2>
-<blockquote>
-If <tt class="docutils literal">true</tt>, <a class="reference internal" href="#poltypeset-polname">\PolTypeset{polname}</a> will also typeset the vanishing
-coefficients.</blockquote>
-</div>
-<div class="section" id="poltoexprallfalse">
-<h2><a class="toc-backref" href="#id156"><tt class="docutils literal">\poltoexprallfalse</tt></a></h2>
-<blockquote>
-If <tt class="docutils literal">true</tt>, <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a> and <a class="reference internal" href="#poltofloatexpr-polname">\PolToFloatExpr{polname}</a> will
-also include the vanishing coefficients in their outputs.</blockquote>
-</div>
-</div>
-<div class="section" id="polexprsetup">
-<h1><a class="toc-backref" href="#id157"><tt class="docutils literal">\polexprsetup</tt></a></h1>
-<blockquote>
-<p>Serves to customize the package. Currently only two keys are
-recognized:</p>
-<ul class="simple">
-<li><tt class="docutils literal">norr</tt>: the postfix that <a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a>
-should append to <tt class="docutils literal">sturmname</tt> to declare the primitive polynomial
-obtained from original one after removal of all rational roots.
-The default value is <tt class="docutils literal">_norr</tt> (standing for “no rational roots”).</li>
-<li><tt class="docutils literal">sqfnorr</tt>: the postfix that <a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a>
-should append to <tt class="docutils literal">sturmname</tt> to declare the primitive polynomial
-obtained from original one after removal of all rational roots and
-suppression of all multiplicities.
-The default value is <tt class="docutils literal">_sqf_norr</tt> (standing for “square-free with
-no rational roots”).</li>
-</ul>
-<p>The package executes <tt class="docutils literal">\polexprsetup{norr=_norr,
-sqfnorr=_sqf_norr}</tt> as default.</p>
-</blockquote>
-</div>
-<div class="section" id="technicalities">
-<h1><a class="toc-backref" href="#id158">Technicalities</a></h1>
-<ul>
-<li><p class="first">The catcode of the semi-colon is reset temporarily by <a class="reference internal" href="#poldef">\poldef</a> macro in case some other package (for example the French
-babel module) may have made it active. This will fail though if the
-whole thing was already part of a macro argument, in such cases one
-can use <a class="reference internal" href="#id2">\PolDef{f}{P(x)}</a>
-rather. The colon in <tt class="docutils literal">:=</tt> may be active with no consequences.</p>
-</li>
-<li><p class="first">As a consequence of <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> addition and subtraction always using
-least common multiples for the denominators <a class="footnote-reference" href="#id37" id="id36">[5]</a>, user-chosen common
-denominators survive additions and multiplications. For example, this:</p>
-<pre class="literal-block">
-\poldef P(x):= 1/2 + 2/2*x + 3/2*x^3 + 4/2*x^4;
-\poldef Q(x):= 1/3 + (2/3)x + (3/3)x^3 + (4/3)x^4;
-\poldef PQ(x):= P(x)Q(x);
-</pre>
-<p>gives internally the polynomial:</p>
-<pre class="literal-block">
-1/6+4/6*x^1+4/6*x^2+6/6*x^3+20/6*x^4+16/6*x^5+9/6*x^6+24/6*x^7+16/6*x^8
-</pre>
-<p>where all coefficients have the same denominator 6. Notice though that
-<tt class="docutils literal">\PolToExpr{PQ}</tt> outputs the <tt class="docutils literal">6/6*x^3</tt> as <tt class="docutils literal">x^3</tt> because (by
-default) it recognizes and filters out coefficients equal to one or
-minus one (since release <tt class="docutils literal">0.3</tt>). One can use for example
-<tt class="docutils literal">\PolToCSV{PQ}</tt> to see the internally stored coefficients.</p>
-<table class="docutils footnote" frame="void" id="id37" rules="none">
-<colgroup><col class="label" /><col /></colgroup>
-<tbody valign="top">
-<tr><td class="label"><a class="fn-backref" href="#id36">[5]</a></td><td><p class="first last">prior to <tt class="docutils literal">0.4.1</tt>, <tt class="docutils literal">polexpr</tt> used to temporarily patch
-during the parsing of polynomials the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros. This
-patch was backported to <a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a> at release <tt class="docutils literal">1.3</tt>.</p>
-</td></tr>
-</tbody>
-</table>
-</li>
-<li><p class="first"><a class="reference internal" href="#poldiff-polname-1-polname-2">\PolDiff{polname_1}{polname_2}</a> always applies <tt class="docutils literal">\xintIrr</tt> to the
-resulting coefficients, except that the <em>power of ten</em> part <tt class="docutils literal">[N]</tt>
-(for example an input in scientific notation such as <tt class="docutils literal">1.23e5</tt> gives
-<tt class="docutils literal">123/1[3]</tt> internally in xintfrac) is not taken into account in the
-reduction of the fraction. This is tentative and may change.</p>
-<p>Same remark for <a class="reference internal" href="#polantidiff-polname-1-polname-2">\PolAntiDiff{polname_1}{polname_2}</a>.</p>
-</li>
-<li><p class="first">Currently, the package stores all coefficients from index <tt class="docutils literal">0</tt> to
-index equal to the polynomial degree inside a single macro, as a list.
-This data structure is obviously very inefficient for polynomials of
-high degree and few coefficients (as an example with <tt class="docutils literal">\poldef
-<span class="pre">f(x):=x^1000</span> + x^500;</tt> the subsequent definition <tt class="docutils literal">\poldef <span class="pre">g(x):=</span>
-<span class="pre">f(x)^2;</span></tt> will do of the order of 1,000,000 multiplications and
-additions involvings only zeroes... which does take time). This
-may change in the future.</p>
-</li>
-<li><p class="first">As is to be expected internal structures of the package are barely
-documented and unstable. Don't use them.</p>
-</li>
-</ul>
-</div>
-<div class="section" id="change-log">
-<h1><a class="toc-backref" href="#id159">CHANGE LOG</a></h1>
-<ul>
-<li><p class="first">v0.1 (2018/01/11): initial release. Features:</p>
-<ul class="simple">
-<li>The <a class="reference internal" href="#poldef">\poldef</a> parser itself,</li>
-<li>Differentiation and anti-differentiation,</li>
-<li>Euclidean division and GCDs,</li>
-<li>Various utilities such as <a class="reference internal" href="#polfromcsv">\PolFromCSV</a>,
-<a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>,
-<a class="reference internal" href="#poltocsv">\PolToCSV</a>, <a class="reference internal" href="#poltoexpr">\PolToExpr</a>, ...</li>
-</ul>
-<p>Only one-variable polynomials so far.</p>
-</li>
-<li><p class="first">v0.2 (2018/01/14)</p>
-<ul class="simple">
-<li>Fix: <tt class="docutils literal">&quot;README thinks \numexpr recognizes ^ operator&quot;</tt>.</li>
-<li>Convert README to reStructuredText markup.</li>
-<li>Move main documentation from README to separate <tt class="docutils literal">polexpr.txt</tt> file.</li>
-<li>Provide <tt class="docutils literal">polexpr.html</tt> as obtained via <a class="reference external" href="http://docutils.sourceforge.net/docs/index.html">DocUtils</a> <tt class="docutils literal">rst2html.py</tt>.</li>
-<li>Convert README to (CTAN compatible) Markdown markup.</li>
-</ul>
-<p>Due to lack of available time the test suite might not be extensive
-enough. Bug reports are very welcome!</p>
-</li>
-<li><p class="first">v0.3 (2018/01/17)</p>
-<ul>
-<li><p class="first">bug fixes:</p>
-<ul>
-<li><p class="first">the <tt class="docutils literal">0.1</tt> <a class="reference internal" href="#polevalat">\PolEval</a> accepted expressions for its second
-argument, but this was removed by mistake at <tt class="docutils literal">0.2</tt>. Restored.</p>
-<p><strong>Attention</strong>: at <tt class="docutils literal">0.4</tt> this has been reverted again, and
-<a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> syntax is needed for
-using expressions in the second argument.</p>
-</li>
-</ul>
-</li>
-<li><p class="first">incompatible or breaking changes:</p>
-<ul class="simple">
-<li><a class="reference internal" href="#poltoexpr">\PolToExpr</a> now by default uses <em>descending</em>
-powers (it also treats differently coefficients equal to 1 or -1.)
-Use <a class="reference internal" href="#id30">\PolToExpr*</a> for <em>ascending</em> powers.</li>
-<li><a class="reference internal" href="#polevalat">\PolEval</a> reduced the output to smallest terms,
-but as this is costly with big fractions and not needed if e.g.
-wrapped in an <tt class="docutils literal">\xintRound</tt> or <tt class="docutils literal">\xintFloat</tt>, this step has been
-removed; the former meaning is available as <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>.</li>
-</ul>
-</li>
-<li><p class="first">new (or newly documented) macros:</p>
-<ul class="simple">
-<li><a class="reference internal" href="#poltypesetcmd">\PolTypesetCmd</a></li>
-<li><a class="reference internal" href="#poltypesetcmdprefix">\PolTypesetCmdPrefix</a></li>
-<li><a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a></li>
-<li><a class="reference internal" href="#polevalreducedat">\PolEvalReducedAt</a></li>
-<li><a class="reference internal" href="#poltofloatexpr">\PolToFloatExpr</a></li>
-<li><a class="reference internal" href="#poltoexproneterm">\PolToExprOneTerm</a></li>
-<li><a class="reference internal" href="#poltofloatexproneterm">\PolToFloatExprOneTerm</a></li>
-<li><a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a></li>
-<li><a class="reference internal" href="#id33">\PolToFloatExprCmd</a></li>
-<li><a class="reference internal" href="#poltoexprtermprefix">\PolToExprTermPrefix</a></li>
-<li><a class="reference internal" href="#poltoexprvar">\PolToExprVar</a></li>
-<li><a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a></li>
-</ul>
-</li>
-<li><p class="first">improvements:</p>
-<ul>
-<li><p class="first">documentation has a table of contents, internal hyperlinks,
-standardized signature notations and added explanations.</p>
-</li>
-<li><p class="first">one can do <tt class="docutils literal"><span class="pre">\PolLet{g}={f}</span></tt> or <tt class="docutils literal"><span class="pre">\PolLet{g}{f}</span></tt>.</p>
-</li>
-<li><p class="first"><tt class="docutils literal">\PolToExpr{f}</tt> is highly customizable.</p>
-</li>
-<li><p class="first"><a class="reference internal" href="#poldef">\poldef</a> and other defining macros prepare the polynomial
-functions for usage within <tt class="docutils literal">\xintthefloatexpr</tt> (or
-<tt class="docutils literal">\xintdeffloatvar</tt>). Coefficients are pre-rounded to the
-floating point precision. Indispensible for numerical algorithms,
-as exact fractions, even reduced, quickly become very big. See the
-documentation about how to use the exact polynomials also in
-floating point context.</p>
-<p><strong>Attention</strong>: this has been reverted at <tt class="docutils literal">0.4</tt>. The macro
-<a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must be used for
-generation floating point polynomial functions.</p>
-</li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.3.1 (2018/01/18)</p>
-<p>Fixes two typos in example code included in the documentation.</p>
-</li>
-<li><p class="first">v0.4 (2018/02/16)</p>
-<ul>
-<li><p class="first">bug fixes:</p>
-<ul class="simple">
-<li>when Euclidean division gave a zero remainder, the internal
-representation of this zero polynomial could be faulty; this
-could cause mysterious bugs in conjunction with other package
-macros such as <a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>.</li>
-<li><a class="reference internal" href="#polgcd">\PolGCD</a> was buggy in case of first polynomial being
-of lesser degree than the second one.</li>
-</ul>
-</li>
-<li><p class="first">breaking changes:</p>
-<ul>
-<li><p class="first">formerly <a class="reference internal" href="#polevalat">\PolEval{P}\At{foo}</a> allowed <tt class="docutils literal">foo</tt> to
-be an expression, which was transparently handled via
-<tt class="docutils literal">\xinttheexpr</tt>. Now, <tt class="docutils literal">foo</tt> must be a fraction (or a macro
-expanding to such) in the format acceptable by <tt class="docutils literal">xintfrac.sty</tt>
-macros. Use <a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> for more
-general arguments using expression syntax. E.g., if <tt class="docutils literal">foo</tt> is the
-name of a variable known to <tt class="docutils literal">\xintexpr</tt>.</p>
-<p>The same holds for <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>
-and <a class="reference internal" href="#polfloatevalat">\PolFloatEval</a>.</p>
-</li>
-<li><p class="first">the <tt class="docutils literal">3.0</tt> automatic generation of floating point variants has
-been reverted. Not only do <em>not</em> the package macros automatically
-generate floating point variants of newly created polynomials,
-they actually make pre-existing such variant undefined.</p>
-<p>See <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a>.</p>
-</li>
-</ul>
-</li>
-<li><p class="first">new non-expandable macros:</p>
-<ul class="simple">
-<li><a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a></li>
-<li><a class="reference internal" href="#polgloballet">\PolGlobalLet</a></li>
-<li><a class="reference internal" href="#poltypesetone">\PolTypesetOne</a></li>
-<li><a class="reference internal" href="#polquo">\PolQuo</a></li>
-<li><a class="reference internal" href="#polrem">\PolRem</a></li>
-<li><a class="reference internal" href="#poltosturm">\PolToSturm</a></li>
-<li><a class="reference internal" href="#id9">\PolToSturm*</a></li>
-<li><a class="reference internal" href="#polsettosturmchainsignchangesat">\PolSetToSturmChainSignChangesAt</a></li>
-<li><a class="reference internal" href="#polsettonbofzeroswithin">\PolSetToNbOfZerosWithin</a></li>
-<li><a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a></li>
-<li><a class="reference internal" href="#polrefineinterval">\PolRefineInterval*</a></li>
-<li><a class="reference internal" href="#polrefineinterval-n">\PolRefineInterval[N]</a></li>
-<li><a class="reference internal" href="#polensureintervallength">\PolEnsureIntervalLength</a></li>
-<li><a class="reference internal" href="#polensureintervallengths">\PolEnsureIntervalLengths</a></li>
-<li><a class="reference internal" href="#polprintintervals">\PolPrintIntervals</a></li>
-<li><a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a></li>
-<li><a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a></li>
-<li><a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a></li>
-<li><a class="reference internal" href="#id20">\PolReduceCoeffs*</a></li>
-<li><a class="reference internal" href="#polmakemonic">\PolMakeMonic</a></li>
-</ul>
-</li>
-<li><p class="first">new expandable macros:</p>
-<ul class="simple">
-<li><a class="reference internal" href="#poltoexpronetermstylea">\PolToExprOneTermStyleA</a></li>
-<li><a class="reference internal" href="#polifcoeffisplusorminusone">\PolIfCoeffIsPlusOrMinusOne</a></li>
-<li><a class="reference internal" href="#polleadingcoeff">\PolLeadingCoeff</a></li>
-<li><a class="reference internal" href="#polsturmchainlength">\PolSturmChainLength</a></li>
-<li><a class="reference internal" href="#polsturmnbofisolatedzeros">\PolSturmNbOfIsolatedZeros</a></li>
-<li><a class="reference internal" href="#polsturmifzeroexactlyknown">\PolSturmIfZeroExactlyKnown</a></li>
-<li><a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a></li>
-<li><a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a></li>
-<li><tt class="docutils literal">\PolPrintIntervalsTheEndPoint</tt> (removed at 0.7)</li>
-<li><a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a></li>
-<li><tt class="docutils literal">\PolIfEndPointIsPositive</tt> (removed at 0.7)</li>
-<li><tt class="docutils literal">\PolIfEndPointIsNegative</tt> (removed at 0.7)</li>
-<li><tt class="docutils literal">\PolIfEndPointIsZero</tt> (removed at 0.7)</li>
-<li><a class="reference internal" href="#polintervalwidth">\PolIntervalWidth</a></li>
-<li><a class="reference internal" href="#poldectostring">\PolDecToString</a></li>
-</ul>
-</li>
-<li><p class="first">improvements:</p>
-<p>The main new feature is implementation of the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm algorithm</a>
-for localization of the real roots of polynomials.</p>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.4.1 (2018/03/01)</p>
-<p>Synced with xint 1.3.</p>
-</li>
-<li><p class="first">v0.4.2 (2018/03/03)</p>
-<p>Documentation fix.</p>
-</li>
-<li><p class="first">v0.5 (2018/04/08)</p>
-<ul class="simple">
-<li>bug fixes:<ul>
-<li><a class="reference internal" href="#polget-polname-fromarray-macro">\PolGet{polname}\fromarray\macro</a> crashed when <tt class="docutils literal">\macro</tt> was
-an <a class="reference external" href="http://www.ctan.org/pkg/xint">xinttools</a> array macro with no items. It now produces the zero
-polynomial.</li>
-</ul>
-</li>
-<li>breaking changes:<ul>
-<li><a class="reference internal" href="#poltosturm">\PolToSturm</a> creates primitive integer coefficients polynomials.
-This speeds up localization of roots via
-<a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a>. In case of user protests the author
-will make available again the code producing the bona fide Sturm
-polynomials as used formerly.</li>
-<li>polynomials created from <a class="reference internal" href="#polfromcsv">\PolFromCSV</a> or <a class="reference internal" href="#polget">\PolGet</a>
-get their coefficients normalized via <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a>'s <tt class="docutils literal">\xintRaw</tt>.</li>
-</ul>
-</li>
-<li>experimental change:<ul>
-<li>optional argument to <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> (see <a class="reference internal" href="#the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots">The
-degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2
-as roots</a> for usage). It will presumably be replaced in future by
-an interval specification.</li>
-</ul>
-</li>
-<li>new non-expandable macro:<ul>
-<li><a class="reference internal" href="#polmakeprimitive">\PolMakePrimitive</a></li>
-</ul>
-</li>
-<li>new expandable macro:<ul>
-<li><a class="reference internal" href="#policontent">\PolIContent</a></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.5.1 (2018/04/22)</p>
-<ul class="simple">
-<li>new feature:<ul>
-<li>the character <tt class="docutils literal">'</tt> can be used in polynomial names.</li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.6 (2018/11/20)</p>
-<ul class="simple">
-<li>bugfix:<ul>
-<li>the starred variant <a class="reference internal" href="#id10">\PolToSturm*{polname}{sturmname}</a> was
-broken. On the occasion of the fix, its meaning has been modified,
-see its documentation.</li>
-<li>using <a class="reference internal" href="#poltosturm">\PolToSturm</a> with a constant polynomial
-caused a division by zero error.</li>
-</ul>
-</li>
-<li>new macro:<ul>
-<li><a class="reference internal" href="#id11">\PolSturmIsolateZeros*</a>
-acts like the <a class="reference internal" href="#polsturmisolatezeros">non-starred variant</a> then computes all the multiplicities.</li>
-</ul>
-</li>
-<li>new expandable macros:<ul>
-<li><a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{sturmname}{index}</a></li>
-<li><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a></li>
-<li><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-expression">\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</a></li>
-<li><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}</a></li>
-<li><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-expression">\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}</a></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.7 (2018/12/08), v0.7.1 (bugfix), v0.7.2 (2nd bugfix) (2018/12/09)</p>
-<ul class="simple">
-<li>breaking changes:<ul>
-<li>although <a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[varname]{sturmname}</a> default output
-remains the same, some auxiliary macros for user-customization
-have been removed: <tt class="docutils literal">\PolPrintIntervalsTheEndPoint</tt>,
-<tt class="docutils literal"><span class="pre">\PolIfEndPointIsPositive{A}{B}</span></tt>,
-<tt class="docutils literal"><span class="pre">\PolIfEndPointIsNegative{A}{B}</span></tt>, and
-<tt class="docutils literal"><span class="pre">\PolIfEndPointIsZero{A}{B}</span></tt>.</li>
-</ul>
-</li>
-<li>bugfix:<ul>
-<li>it could happen that, contrarily to documentation, an interval
-computed by <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> had zero as an
-endpoint,</li>
-<li><a class="reference internal" href="#polensureintervallength-sturmname-index-e">\PolEnsureIntervalLength{sturmname}{index}{E}</a> could under
-certain circumstances erroneously replace a non-zero root by
-zero,</li>
-<li><a class="reference internal" href="#polensureintervallengths-sturmname-e">\PolEnsureIntervalLengths{sturmname}{E}</a> crashed when used with
-a polynomial with no real roots, hence for which no isolation intervals
-existed (thanks to Thomas Söll for report).</li>
-</ul>
-</li>
-<li>new macros:<ul>
-<li><a class="reference internal" href="#id14">\PolSturmIsolateZeros**{sturmname}</a></li>
-<li><a class="reference internal" href="#polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}</a></li>
-<li><a class="reference internal" href="#polsturmisolatezerosandfindrationalroots-sturmname">\PolSturmIsolateZerosAndFindRationalRoots{sturmname}</a></li>
-<li><a class="reference internal" href="#polexprsetup">\polexprsetup</a></li>
-<li><a class="reference internal" href="#id18">\PolPrintIntervals*</a></li>
-<li><a class="reference internal" href="#polprintintervalsnorealroots">\PolPrintIntervalsNoRealRoots</a></li>
-<li><a class="reference internal" href="#polprintintervalsbeginenv">\PolPrintIntervalsBeginEnv</a></li>
-<li><a class="reference internal" href="#polprintintervalsendenv">\PolPrintIntervalsEndEnv</a></li>
-<li><a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a></li>
-<li><a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a></li>
-<li><a class="reference internal" href="#polprintintervalsprintmultiplicity">\PolPrintIntervalsPrintMultiplicity</a></li>
-</ul>
-</li>
-<li>new expandable macros:<ul>
-<li><a class="reference internal" href="#polsturmnbofrationalroots-sturmname">\PolSturmNbOfRationalRoots{sturmname}</a></li>
-<li><a class="reference internal" href="#polsturmnbofrationalrootswithmultiplicities-sturmname">\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}</a></li>
-<li><a class="reference internal" href="#polsturmrationalroot-sturmname-k">\PolSturmRationalRoot{sturmname}{k}</a></li>
-<li><a class="reference internal" href="#polsturmrationalrootindex-sturmname-k">\PolSturmRationalRootIndex{sturmname}{k}</a></li>
-<li><a class="reference internal" href="#polsturmrationalrootmultiplicity-sturmname-k">\PolSturmRationalRootMultiplicity{sturmname}{k}</a></li>
-<li><a class="reference internal" href="#polprintintervalsthevar">\PolPrintIntervalsTheVar</a></li>
-<li><a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a></li>
-<li><a class="reference internal" href="#polprintintervalsthemultiplicity">\PolPrintIntervalsTheMultiplicity</a></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.7.3 (2019/02/04)</p>
-<ul class="simple">
-<li>bugfix:<ul>
-<li>Debugging information not destined to user showed in log if root
-finding was done under <tt class="docutils literal">\xintverbosetrue</tt> regime.</li>
-<li><a class="reference internal" href="#polprintintervalsthevar">\PolPrintIntervalsTheVar</a> remained defined after
-<a class="reference internal" href="#polprintintervals">\PolPrintIntervals</a> but was left undefined after
-<a class="reference internal" href="#id18">\PolPrintIntervals*</a> (reported by Jürgen Gilg). Now remains
-defined in both cases, and <a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a>
-also.</li>
-<li>Polynomial names ending in digits caused errors (reported by Thomas
-Söll).</li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.7.4 (2019/02/12)</p>
-<ul class="simple">
-<li>bugfix:<ul>
-<li>20000000000 is too big for <tt class="docutils literal">\numexpr</tt>, shouldn't I know that?
-Thanks to Jürgen Gilg for report.</li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p class="first">v0.7.5 (2020/01/31)</p>
-<p>Synced with xint 1.4. Requires it.</p>
-</li>
-</ul>
-</div>
-<div class="section" id="acknowledgments">
-<h1><a class="toc-backref" href="#id160">Acknowledgments</a></h1>
-<p>Thanks to Jürgen Gilg whose question about <a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a> usage for
-differentiating polynomials was the initial trigger leading to this
-package, and to Jürgen Gilg and Thomas Söll for testing it on some
-concrete problems.</p>
-<p>Renewed thanks to them on occasion of the <tt class="docutils literal">0.6</tt> and <tt class="docutils literal">0.7</tt> releases for their
-continued interest.</p>
-<p>See README.md for the License.</p>
-</div>
-</div>
-</body>
-</html>
diff --git a/Master/texmf-dist/doc/latex/polexpr/polexpr.txt b/Master/texmf-dist/doc/latex/polexpr/polexpr.txt
deleted file mode 100644
index 898375926b0..00000000000
--- a/Master/texmf-dist/doc/latex/polexpr/polexpr.txt
+++ /dev/null
@@ -1,2598 +0,0 @@
-.. comment: -*- fill-column: 72; mode: rst; -*-
-
-===============================
- Package polexpr documentation
-===============================
-
-0.7.5 (2020/01/31)
-==================
-
-.. contents::
-
-Basic syntax
-------------
-
-The syntax is::
-
- \poldef polname(x):= expression in variable x;
-
-where:
-
-- in place of ``x`` an arbitrary *dummy variable* is authorized,
- i.e. per default any of ``[a-z|A-Z]`` (more letters can be declared
- under Unicode engines.)
-
-- ``polname`` consists of letters, digits, and the ``_`` and
- ``'`` characters. It must start with a letter.
-
-.. attention::
-
- The ``'`` is authorized since ``0.5.1``. As a result some constructs
- recognized by the ``\xintexpr`` parser, such as ``var1 'and' var2``
- will get misinterpreted and cause errors. However these constructs
- are unlikely to be frequently needed in polynomial expressions, and
- the ``\xintexpr`` syntax offers alternatives, so it was deemed a
- small evil. Of course the ``\xintexpr`` parser is modified only
- temporarily during execution of ``\poldef``.
-
-One can also issue::
-
- \PolDef{polname}{expression in variable x}
-
-which admits an optional first argument to modify the variable letter
-from its default ``x``.
-
-``\poldef f(x):= 1-x+x^2;``
- defines polynomial ``f``. Polynomial names must start with a
- letter and may contain letters, digits, underscores and the right
- tick character. The
- variable must be a single letter. The colon character is optional.
- The semi-colon at end of expression is mandatory.
-
-``\PolDef{f}{1-x+x^2}``
- does the same as ``\poldef f(x):= 1-x+x^2;`` To use another letter
- than ``x`` in the expression, one must pass it as an extra optional
- argument to ``\PolDef``. Useful if the semi-colon has been assigned
- some non-standard catcode by some package.
-
-``\PolLet{g}={f}``
- saves a copy of ``f`` under name ``g``. Also usable without ``=``.
-
-``\poldef f(z):= f(z)^2;``
- redefines ``f`` in terms of itself.
-
-``\poldef f(T):= f(f(T));``
- again redefines ``f`` in terms of its (new) self.
-
-``\poldef k(z):= f(z)-g(g(z)^2)^2;``
- should now define the zero polynomial... Let's check:
- ``\[ k(z) = \PolTypeset[z]{k} \]``
-
-``\PolDiff{f}{f'}``
- sets ``f'`` to the derivative of ``f``. The name doesn't have to be
- ``f'`` (in fact the ``'`` is licit only since ``0.5.1``).
-
-.. important::
-
- This is not done automatically. If some new definition needs to use
- the derivative of some available polynomial, that derivative
- polynomial must have been defined via ``\PolDiff``: something like
- ``T'(x)^2`` will not work without a prior ``\PolDiff{T}{T'}``.
-
-``\PolDiff{f'}{f''}``
- obtains second derivative.
-
-``\PolDiff[3]{f}{f'''}``
- computes the third derivative.
-
-::
-
- $f(z) = \PolTypeset[z]{f} $\newline
- $f'(z) = \PolTypeset[z]{f'} $\newline
- $f''(z) = \PolTypeset[z]{f''} $\newline
- $f'''(z)= \PolTypeset[z]{f'''} $\par
-
-.. important::
-
- The package does not currently know rational functions: ``/`` in
- a parsed polynomial expression does the Euclidean quotient::
-
- (1-x^2)/(1-x)
-
- does give ``1+x`` but ::
-
- (1/(1-x))*(1-x^2)
-
- evaluates to zero. This will work as expected::
-
- \poldef k(x):= (x-1)(x-2)(x-3)(x-4)/(x^2-5x+4);
-
-.. _warningtacit:
-
-.. attention::
-
- ``1/2 x^2`` skips the space and is treated like ``1/(2*x^2)`` because
- of the tacit multiplication rules of \xintexpr. But this means it
- gives zero! Thus one must use ``(1/2)x^2`` or ``1/2*x^2`` or
- ``(1/2)*x^2`` for disambiguation: ``x - 1/2*x^2 + 1/3*x^3...``. It is
- even simpler to move the denominator to the right: ``x - x^2/2 +
- x^3/3 - ...``.
-
- It is worth noting that ``1/2(x-1)(x-2)`` suffers the same issue:
- xint_ tacit multiplication always "ties more", hence this gets
- interpreted as ``1/(2*(x-1)*(x-2))`` which gives zero by polynomial
- division. Thus, use one of ``(1/2)(x-1)(x-2)``, ``1/2*(x-1)(x-2)`` or
- ``(x-1)(x-2)/2``.
-
-After::
-
- \poldef f_1(x):= 25(x-1)(x^2-2)(x-3)(x-4)(x-5);%
- \poldef f_2(x):= 37(x-1)(x^2-2)(x-6)(x-7)(x-8);%
-
-the macro call ``\PolGCD{f_1}{f_2}{k}`` sets ``k`` to the (unitary) GCD of
-``f_1`` and ``f_2`` (hence to the expansion of ``(x-1)(x^2-2)``.)
-
-``\PolToExpr{k}``
- will (expandably) give in this case ``x^3-x^2-2*x+2``. This is
- useful for console or file output (the syntax is Maple- and
- PSTricks-compatible; the letter used in output can be
- (non-expandably) changed via a redefinition of `\\PolToExprVar`_.)
-
-``\PolToExpr*{k}``
- gives ascending powers: ``2-2*x-x^2+x^3``.
-
-Examples of localization of roots
----------------------------------
-
-- To make printed decimal numbers more enjoyable than via
- ``\xintSignedFrac``::
-
- \renewcommand\PolTypesetOne[1]{\PolDecToString{\xintREZ{#1}}}%
-
- ``\PolDecToString`` will use decimal notation to incorporate the power
- of ten part; and the ``\xintREZ`` will have the effect to suppress
- trailing zeros if present in raw numerator (if those digits end up
- after decimal mark.) Notice that the above are expandable macros and
- that one can also do::
-
- \renewcommand\PolToExprCmd[1]{\PolDecToString{\xintREZ{#1}}}%
-
- to modify output of `\\PolToExpr{polname}`_.
-
-- For extra info in log file use ``\xintverbosetrue``.
-
-- Only for some of these examples is the output included here.
-
-
-A typical example
-~~~~~~~~~~~~~~~~~
-
-In this example the polynomial is square-free.
-
-::
-
- \poldef f(x) := x^7 - x^6 - 2x + 1;
-
- \PolToSturm{f}{f}
- \PolSturmIsolateZeros{f}
- The \PolTypeset{f} polynomial has \PolSturmNbOfIsolatedZeros{f} distinct real
- roots which are located in the following intervals:
- \PolPrintIntervals{f}
- Here is the second root with ten more decimal digits:
- \PolRefineInterval[10]{f}{2}
- \[\PolSturmIsolatedZeroLeft{f}{2}<Z_2<\PolSturmIsolatedZeroRight{f}{2}\]
- And here is the first root with twenty digits after decimal mark:
- \PolEnsureIntervalLength{f}{1}{-20}
- \[\PolSturmIsolatedZeroLeft{f}{1}<Z_1<\PolSturmIsolatedZeroRight{f}{1}\]
- The first element of the Sturm chain has degree $\PolDegree{f_0}$. As
- this is the original degreee $\PolDegree{f}$ we know that $f$ is square free.
- Its derivative is up to a constant \PolTypeset{f_1} (in this example
- it is identical with it).
- \PolToSturm{f_1}{f_1}\PolSturmIsolateZeros{f_1}%
- The derivative has \PolSturmNbOfIsolatedZeros{f_1} distinct real
- roots:
- \PolPrintIntervals[W]{f_1}
- \PolEnsureIntervalLengths{f_1}{-10}%
- Here they are with ten digits after decimal mark:
- \PolPrintIntervals[W]{f_1}
- \PolDiff{f_1}{f''}
- \PolToSturm{f''}{f''}
- \PolSturmIsolateZeros{f''}
- The second derivative is \PolTypeset{f''}.
- It has \PolSturmNbOfIsolatedZeros{f''} distinct real
- roots:
- \PolPrintIntervals[X]{f''}
- Here is the positive one with 20 digits after decimal mark:
- \PolEnsureIntervalLength{f''}{2}{-20}%
- \[X_2 = \PolSturmIsolatedZeroLeft{f''}{2}\dots\]
- The more mathematically advanced among our dear readers will be able
- to give the exact value for $X_2$!
-
-A degree four polynomial with nearby roots
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-Notice that this example is a bit outdated as ``0.7`` release has
-added ``\PolSturmIsolateZeros**{sturmname}`` which would find exactly
-the roots. The steps here retain their interest when one is interested
-in finding isolating intervals for example to prepare some demonstration
-of dichotomy method.
-
-
-::
-
- \PolDef{Q}{(x-1.050001)(x-1.105001)(x-1.110501)(x-1.111051)}
- \PolTypeset{Q}
- \PolToSturm{Q}{Q} % it is allowed to use same prefix for Sturm chain
- \PolSturmIsolateZeros{Q}
- \PolPrintIntervals{Q}
- % reports 1.0 < Z_1 < 1.1, 1.10 < Z_2 < 1.11, 1.110 < Z_3 < 1.111, and 1.111 < Z_4 < 1.112
- % but the above bounds do not allow minimizing separation between roots
- % so we refine:
- \PolRefineInterval*{Q}{1}
- \PolRefineInterval*{Q}{2}
- \PolRefineInterval*{Q}{3}
- \PolRefineInterval*{Q}{4}
- \PolPrintIntervals{Q}
- % reports 1.05 < Z_1 < 1.06, 1.105 < Z_2 < 1.106, 1.1105 < Z_3 < 1.1106,
- % and 1.11105 < Z_4 < 1.11106.
- \PolEnsureIntervalLengths{Q}{-6}
- \PolPrintIntervals{Q}
- % of course finds here all roots exactly
-
-
-The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-::
-
- % define a user command (xinttools is loaded automatically by polexpr)
- \newcommand\showmultiplicities[1]{% #1 = "sturmname"
- \xintFor* ##1 in {\xintSeq{1}{\PolSturmNbOfIsolatedZeros{#1}}}\do{%
- The multiplicity is \PolSturmIsolatedZeroMultiplicity{#1}{##1}
- \PolSturmIfZeroExactlyKnown{#1}{##1}%
- {at the root $x=\PolSturmIsolatedZeroLeft{#1}{##1}$}
- {for the root such that
- $\PolSturmIsolatedZeroLeft{#1}{##1}<x<\PolSturmIsolatedZeroRight{#1}{##1}$}
- \par
- }}%
- \PolDef{f}{(x-0.99)^3(x-0.999)^3(x-0.9999)^3}
- \renewcommand\PolTypesetOne[1]{\PolDecToString{\xintREZ{#1}}}
- \PolTypeset{f}\par
- \PolToSturm{f}{f}% it is allowed to use "polname" as "sturmname" too
- \PolSturmIsolateZerosAndGetMultiplicities{f}% use the "sturmname" here
- % or \PolSturmIsolateZeros*{f} which is exactly the same, but shorter..
-
- \showmultiplicities{f}
-
-In this example, the output will look like this (but using math mode)::
-
- x^9 - 8.9667x^8 + 35.73400293x^7 - 83.070418400109x^6 + 124.143648875193123x^5
- - 123.683070924326075877x^4 + 82.149260397553075617891x^3
- - 35.07602992699900159127007x^2 + 8.7364078733314648368671733x
- - 0.967100824643585986488103299
-
- The multiplicity is 3 at the root x = 0.99
- The multiplicity is 3 at the root x = 0.999
- The multiplicity is 3 at the root x = 0.9999
-
-On first pass, these rational roots were found (due to their relative
-magnitudes, using ``\PolSturmIsolateZeros**`` was not needed here). But
-multiplicity computation works also with (decimal) roots not yet
-identified or with non-decimal or irrational roots.
-
-It is fun to modify only a tiny bit the polynomial and see if polexpr
-survives::
-
- \PolDef{g}{f(x)+1e-27}
- \PolTypeset{g}\par
- \PolToSturm{g}{g}
- \PolSturmIsolateZeros*{g}
-
- \showmultiplicities{g}
-
-This produces::
-
- x^9 - 8.9667x^8 + 35.73400293x^7 - 83.070418400109x^6 + 124.143648875193123x^5
- - 123.683070924326075877x^4 + 82.149260397553075617891x^3
- - 35.07602992699900159127007x^2 + 8.7364078733314648368671733x
- - 0.967100824643585986488103298
-
- The multiplicity is 1 for the root such that 0.98 < x < 0.99
- The multiplicity is 1 for the root such that 0.9991 < x < 0.9992
- The multiplicity is 1 for the root such that 0.9997 < x < 0.9998
-
-Which means that the multiplicity-3 roots each became a real and a pair of
-complex ones. Let's see them better::
-
- \PolEnsureIntervalLengths{g}{-10}
-
- \showmultiplicities{g}
-
-which produces::
-
- The multiplicity is 1 for the root such that 0.9899888032 < x < 0.9899888033
- The multiplicity is 1 for the root such that 0.9991447980 < x < 0.9991447981
- The multiplicity is 1 for the root such that 0.9997663986 < x < 0.9997663987
-
-A degree five polynomial with three rational roots
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-::
-
- \poldef Q(x) := 1581755751184441 x^5
- -14907697165025339 x^4
- +48415668972339336 x^3
- -63952057791306264 x^2
- +46833913221154895 x
- -49044360626280925;
-
- \PolToSturm{Q}{Q}
- %\begin{flushleft}
- \renewcommand\PolTypesetCmdPrefix[1]{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%
- $Q_0(x) = \PolTypeset{Q_0}$
- %\end{flushleft}
- \PolSturmIsolateZeros**{Q}
- \PolPrintIntervals{Q}
-
- $Q_{norr}(x) = \PolTypeset{Q_norr}$
-
-Here, all real roots are rational::
-
- Z_1 = 833719/265381
- Z_2 = 165707065/52746197
- Z_3 = 355/113
-
- Q_norr(x) = x^2 + 1
-
-And let's get their decimal expansion too::
-
- % print decimal expansion of the found roots
- \renewcommand\PolPrintIntervalsPrintExactZero
- {\xintTrunc{20}{\PolPrintIntervalsTheLeftEndPoint}\dots}
- \PolPrintIntervals{Q}
-
- Z_1 = 3.14159265358107777120...
- Z_2 = 3.14159265358979340254...
- Z_3 = 3.14159292035398230088...
-
-
-A Mignotte type polynomial
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-::
-
- \PolDef{P}{x^10 - (10x-1)^2}%
- \PolTypeset{P} % prints it in expanded form
- \PolToSturm{P}{P} % we can use same prefix for Sturm chain
- \PolSturmIsolateZeros{P} % finds 4 real roots
- This polynomial has \PolSturmNbOfIsolatedZeros{P} distinct real roots:
- \PolPrintIntervals{P}%
- % reports -2 < Z_1 < -1, 0.09 < Z_2 < 0.10, 0.1 < Z_3 < 0.2, 1 < Z_4 < 2
- Let us refine the second and third intervals to separate the corresponding
- roots:
- \PolRefineInterval*{P}{2}% will refine to 0.0999990 < Z_2 < 0.0999991
- \PolRefineInterval*{P}{3}% will refine to 0.100001 < Z_3 < 0.100002
- \PolPrintIntervals{P}%
- Let us now get to know all roots with 10 digits after decimal mark:
- \PolEnsureIntervalLengths{P}{-10}%
- \PolPrintIntervals{P}% now all roots are known 10 decimal digits after mark
- Finally, we display 20 digits of the second root:
- \PolEnsureIntervalLength{P}{2}{-20}% makes Z_2 known with 20 digits after mark
- \[\PolSturmIsolatedZeroLeft{P}{2}<Z_2<\PolSturmIsolatedZeroRight{P}{2}\]
-
-The last line produces::
-
- 0.09999900004999650028 < Z_2 < 0.09999900004999650029
-
-
-The Wilkinson polynomial
-~~~~~~~~~~~~~~~~~~~~~~~~
-
-See `Wilkinson polynomial`_.
-
-::
-
- \documentclass{article}
- \usepackage{polexpr}
- \begin{document}
- %\xintverbosetrue % for the curious...
-
- \poldef f(x) := mul((x - i), i = 1..20);
-
- \renewcommand\PolTypesetCmdPrefix[1]{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%
- \renewcommand\PolTypesetOne[1]{\xintDecToString{#1}}%
-
- \noindent\PolTypeset{f}
-
- \PolToSturm{f}{f}
- \PolSturmIsolateZeros{f}
- \PolPrintIntervals{f}
-
- \clearpage
-
- \poldef g(x) := f(x) - 2**{-23} x**19;
-
- % be patient!
- \PolToSturm{g}{g}
- \noindent\PolTypeset{g_0}% integer coefficient primitive polynomial
-
- \PolSturmIsolateZeros{g}
- \PolEnsureIntervalLengths{g}{-10}
-
- \renewcommand\PolPrintIntervalsPrintMultiplicity{}
- \PolPrintIntervals*{g}
-
- \end{document}
-
-
-The first polynomial::
-
- f(x) = x**20
- - 210 x**19
- + 20615 x**18
- - 1256850 x**17
- + 53327946 x**16
- - 1672280820 x**15
- + 40171771630 x**14
- - 756111184500 x**13
- + 11310276995381 x**12
- - 135585182899530 x**11
- + 1307535010540395 x**10
- - 10142299865511450 x**9
- + 63030812099294896 x**8
- - 311333643161390640 x**7
- + 1206647803780373360 x**6
- - 3599979517947607200 x**5
- + 8037811822645051776 x**4
- - 12870931245150988800 x**3
- + 13803759753640704000 x**2
- - 8752948036761600000 x
- + 2432902008176640000
-
-is handled fast enough (a few seconds), but the modified one ``f(x) -
-2**-23 x**19`` takes about 20x longer (the Sturm chain polynomials
-have integer coefficients with up to 321 digits, whereas (surprisingly
-perhaps) those of the Sturm chain polynomials derived from ``f`` never
-have more than 21 digits ...).
-
-Once the Sturm chain is computed and the zeros isolated, obtaining their
-decimal digits is relatively faster. Here is for the ten real roots of
-``f(x) - 2**-23 x**19`` as computed by the code above::
-
- Z_1 = 0.9999999999...
- Z_2 = 2.0000000000...
- Z_3 = 2.9999999999...
- Z_4 = 4.0000000002...
- Z_5 = 4.9999999275...
- Z_6 = 6.0000069439...
- Z_7 = 6.9996972339...
- Z_8 = 8.0072676034...
- Z_9 = 8.9172502485...
- Z_10 = 20.8469081014...
-
-The second Wilkinson polynomial
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-::
-
- \documentclass{article}
- \usepackage{polexpr}
- \begin{document}
- \poldef f(x) := mul(x - 2^-i, i = 1..20);
-
- %\PolTypeset{f}
-
- \PolToSturm{f}{f}
- \PolSturmIsolateZeros**{f}
- \PolPrintIntervals{f}
- \end{document}
-
-This takes more time than the polynomial with 1, 2, .., 20 as roots but
-less than the latter modified by the ``2**-23`` change in one
-coefficient.
-
-Here is the output (with release 0.7.2)::
-
- Z_1 = 0.00000095367431640625
- Z_2 = 0.0000019073486328125
- Z_3 = 0.000003814697265625
- Z_4 = 0.00000762939453125
- Z_5 = 0.0000152587890625
- Z_6 = 0.000030517578125
- Z_7 = 0.00006103515625
- Z_8 = 0.0001220703125
- Z_9 = 1/4096
- Z_10 = 1/2048
- Z_11 = 1/1024
- Z_12 = 1/512
- Z_13 = 1/256
- Z_14 = 1/128
- Z_15 = 0.015625
- Z_16 = 0.03125
- Z_17 = 0.0625
- Z_18 = 0.125
- Z_19 = 0.25
- Z_20 = 0.5
-
-There is some incoherence in output format which has its source in the
-fact that some roots are found in branches which can only find decimal
-roots, whereas some are found in branches which could find general
-fractions and they use ``\xintIrr`` before storage of the found root.
-This may evolve in future.
-
-
-The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-::
-
- \PolDef{P}{mul((x-i*1e-1), i=-20..20)}% i/10 is same but less efficient
-
-In the defining expression we could have used ``i/10`` but this gives
-less efficient internal form for the coefficients (the ``10``'s end up
-in denominators). Using ``\PolToExpr{P}`` after having done
-
-::
-
- \renewcommand\PolToExprCmd[1]{\PolDecToString{\xintREZ{#1}}}
-
-we get this expanded form::
-
- x^41
- -28.7*x^39
- +375.7117*x^37
- -2975.11006*x^35
- +15935.28150578*x^33
- -61167.527674162*x^31
- +173944.259366417394*x^29
- -373686.963560544648*x^27
- +613012.0665016658846445*x^25
- -771182.31133138163125495*x^23
- +743263.86672885754888959569*x^21
- -545609.076599482896371978698*x^19
- +301748.325708943677229642930528*x^17
- -123655.8987669450434698869844544*x^15
- +36666.1782054884005855608205864192*x^13
- -7607.85821367459445649518380016128*x^11
- +1053.15135918687298508885950223794176*x^9
- -90.6380005918141132650786081964032*x^7
- +4.33701563847327366842552218288128*x^5
- -0.0944770968420804735498178265088*x^3
- +0.00059190121813899276854174416896*x
-
-which shows coefficients with up to 36 significant digits...
-
-Stress test: not a hard challenge to ``xint + polexpr``, but be a bit patient!
-
-::
-
- \PolDef{P}{mul((x-i*1e-1), i=-20..20)}%
- \PolToSturm{P}{S} % dutifully computes S_0, ..., S_{41}
- % the [1] optional argument limits the search to interval (-10,10)
- \PolSturmIsolateZeros[1]{S} % finds *exactly* (but a bit slowly) all 41 roots!
- \PolPrintIntervals{S} % nice, isn't it?
-
-.. note::
-
- Release ``0.5`` has *experimental* addition of optional argument
- ``E`` to ``\PolSturmIsolateZeros``. It instructs to search roots only
- in interval ``(-10^E, 10^E)``. Important: the extremities are
- *assumed to not be roots*. In this example, the ``[1]`` in
- ``\PolSturmIsolateZeros[1]{S}`` gives some speed gain; without it, it
- turns out in this case that ``polexpr`` would have started with
- ``(-10^6, 10^6)`` interval.
-
- Please note that this will probably get replaced in future by the
- specification of a general interval. Do not rely on meaning of this
- optional argument keeping the same.
-
-Roots of Chebyshev polynomials
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-::
-
- \newcount\mycount
- \poldef T_0(x) := 1;
- \poldef T_1(x) := x;
- \mycount 2
- \xintloop
- \poldef T_\the\mycount(x) :=
- 2x*T_\the\numexpr\mycount-1(x)
- - T_\the\numexpr\mycount-2(x);
- \ifnum\mycount<15
- \advance\mycount 1
- \repeat
-
- \[T_{15} = \PolTypeset[X]{T_15}\]
- \PolToSturm{T_15}{T_15}
- \PolSturmIsolateZeros{T_15}
- \PolEnsureIntervalLengths{T_15}{-10}
- \PolPrintIntervals{T_15}
-
-
-Non-expandable macros
----------------------
-
-.. _poldef;:
-
-``\poldef polname(letter):= expression in letter;``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This evaluates the *polynomial expression* and stores the coefficients
- in a private structure accessible later via other package macros,
- under the user-chosen ``polname``. Of course the *expression* can
- use other previously defined polynomials. Names must start with a
- letter and are constituted of letters, digits, underscores and
- (since ``0.5.1``) the right tick ``'``.
- The whole xintexpr_ syntax is authorized::
-
- \poldef sin(z) := add((-1)^i z^(2i+1)/(2i+1)!, i = 0..10);
-
- With fractional coefficients, beware the `tacit multiplication issue
- <warningtacit_>`_.
-
- As a side effect the function ``polname()`` is recognized as a
- genuine ``\xintexpr...\relax`` function for (exact) numerical
- evaluation (or within an ``\xintdefvar`` assignment.) It computes
- values not according to the original expression but via the Horner
- scheme corresponding to the polynomial coefficients.
-
- .. attention::
-
- Release ``0.3`` also did the necessary set-up to let the
- polynomial be known to the ``\xintfloatexpr`` (or
- ``\xintdeffloatvar``) parser.
-
- Since ``0.4`` this isn't done automatically. Even more, a
- previously existing floating point variant of the same name will
- be let undefined again, to avoid hard to debug mismatches between
- exact and floating point polynomials. This also applies when the
- polynomial is produced not via ``\poldef`` or ``\PolDef`` but as
- a product of the other package macros.
-
- See `\\PolGenFloatVariant{polname}`_.
-
- The original expression is lost after parsing, and in particular
- the package provides no way to typeset it. This has to be done
- manually, if needed.
-
-.. _PolDef:
-
-``\PolDef[letter]{polname}{expression in letter}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Does the same as `\\poldef <poldef;>`_ in an undelimited macro
- format (thus avoiding potential problems with the catcode of the
- semi-colon in presence of some packages.) In absence of the
- ``[letter]`` optional argument, the variable is assumed to be ``x``.
-
-.. _PolGenFloatVariant:
-
-``\PolGenFloatVariant{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Makes the polynomial also usable in the ``\xintfloatexpr`` parser.
- It will therein evaluates via an Horner scheme with coefficients
- already pre-rounded to the float precision.
-
- See also `\\PolToFloatExpr{polname}`_.
-
- .. attention::
-
- Release ``0.3`` did this automatically on ``\PolDef`` and
- ``\poldef`` but this was removed at ``0.4`` for optimization.
-
- Any operation, for example generating the derivative polynomial,
- or dividing two polynomials or using the ``\PolLet``, **must** be
- followed by explicit usage of ``\PolGenFloatVariant{polname}`` if
- the new polynomial is to be used in ``\xintfloatexpr`` or alike
- context.
-
-.. _PolLet:
-
-``\PolLet{polname_2}={polname_1}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Makes a copy of the already defined polynomial ``polname_1`` to a
- new one ``polname_2``. Same effect as
- ``\PolDef{polname_2}{polname_1(x)}`` but with less overhead. The
- ``=`` is optional.
-
-.. _PolGlobalLet:
-
-``\PolGlobalLet{polname_2}={polname_1}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Acts globally.
-
-.. _PolAssign:
-
-``\PolAssign{polname}\toarray\macro``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Defines a one-argument expandable macro ``\macro{#1}`` which expands
- to the (raw) #1th polynomial coefficient.
-
- - Attention, coefficients here are indexed starting at 1.
-
- - With #1=-1, -2, ..., ``\macro{#1}`` returns leading coefficients.
-
- - With #1=0, returns the number of coefficients, i.e. ``1 + deg f``
- for non-zero polynomials.
-
- - Out-of-range #1's return ``0/1[0]``.
-
- See also `\\PolNthCoeff{polname}{number}`_. The main difference is that
- with ``\PolAssign``, ``\macro`` is made a prefix to ``1 + deg f``
- already defined (hidden to user) macros holding individually the
- coefficients but `\\PolNthCoeff{polname}{number}`_ does each time the job
- to expandably recover the ``Nth`` coefficient, and due to
- expandability can not store it in a macro for future usage (of course,
- it can be an argument in an ``\edef``.) The other difference
- is the shift by one in indexing, mentioned above (negative
- indices act the same in both.)
-
-.. _PolGet:
-
-``\PolGet{polname}\fromarray\macro``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Does the converse operation to
- ``\PolAssign{polname}\toarray\macro``. Each individual
- ``\macro{number}`` gets expanded in an ``\edef`` and then normalized
- via xintfrac_\ 's macro ``\xintRaw``.
-
- The leading zeros are removed from the polynomial.
-
- (contrived) Example::
-
- \xintAssignArray{1}{-2}{5}{-3}\to\foo
- \PolGet{f}\fromarray\foo
-
- This will define ``f`` as would have ``\poldef f(x):=1-2x+5x^2-3x^3;``.
-
- .. note::
-
- Prior to ``0.5``, coefficients were not normalized via
- ``\xintRaw`` for internal storage.
-
-.. _PolFromCSV:
-
-``\PolFromCSV{polname}{<csv>}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Defines a polynomial directly from the comma separated list of values
- (or a macro expanding to such a list) of its coefficients, the *first
- item* gives the constant term, the *last item* gives the leading
- coefficient, except if zero, then it is dropped (iteratively). List
- items are each expanded in an ``\edef`` and then put into normalized
- form via xintfrac_\ 's macro ``\xintRaw``.
-
- As leading zero coefficients are removed::
-
- \PolFromCSV{f}{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
-
- defines the zero polynomial, which holds only one coefficient.
-
- See also expandable macro `\\PolToCSV <\\PolToCSV{polname}_>`_.
-
- .. note::
-
- Prior to ``0.5``, coefficients were not normalized via
- ``\xintRaw`` for internal storage.
-
-.. _PolTypeset:
-
-``\PolTypeset{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~
-
- Typesets in descending powers in math mode. It uses letter ``x`` but
- this can be changed via an optional argument::
-
- \PolTypeset[z]{polname}
-
- By default zero coefficients are skipped (issue ``\poltypesetalltrue``
- to get all of them in output).
-
- These commands (whose meanings will be found in the package code)
- can be re-defined for customization. Their default definitions are
- expandable, but this is not a requirement.
-
-.. _PolTypesetCmd:
-
-``\PolTypesetCmd{raw_coeff}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Checks if the coefficient is ``1`` or ``-1`` and then skips printing
- the ``1``, except for the constant term. Also it sets conditional
- `\\PolIfCoeffIsPlusOrMinusOne{A}{B}`_.
-
- The actual printing of the coefficients, when not equal to plus or
- minus one is handled by `\\PolTypesetOne{raw_coeff}`_.
-
-.. _PolTypesetOne:
-
-``\PolTypesetOne{raw_coeff}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- The default is ``\xintSignedFrac`` but this macro is annoying as it
- insists to use a power of ten, and not decimal notation.
-
- One can do things such as for example: [#]_
-
- ::
-
- \renewcommand\PolTypesetOne[1]{\num{\xintPFloat[5]{#1}}}
- \renewcommand\PolTypesetOne[1]{\num{\xintRound{4}{#1}}}
-
- where e.g. we used the ``\num`` macro of ``siunitx`` as it
- understands floating point notation.
-
- .. [#] the difference in the syntaxes of ``\xintPFloat`` and
- ``\xintRound`` is explained from the fact that
- ``\xintPFloat`` by default uses the prevailing precision
- hence the extra argument like here ``5`` is an optional one.
-
- One can also give a try to using `\\PolDecToString{decimal number}`_
- which uses decimal notation (at least for the numerator part).
-
-.. _PolTypesetMonomialCmd:
-
-``\PolTypesetMonomialCmd``
-^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- This decides how a monomial (in variable ``\PolVar`` and with
- exponent ``\PolIndex``) is to be printed. The default does nothing
- for the constant term, ``\PolVar`` for the first degree and
- ``\PolVar^{\PolIndex}`` for higher degrees monomials. Beware that
- ``\PolIndex`` expands to digit tokens and needs termination in
- ``\ifnum`` tests.
-
-.. _PolTypesetCmdPrefix:
-
-``\PolTypesetCmdPrefix{raw_coeff}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to a ``+`` if the ``raw_coeff`` is zero or positive, and to
- nothing if ``raw_coeff`` is negative, as in latter case the
- ``\xintSignedFrac`` used by `\\PolTypesetCmd{raw_coeff}`_ will put
- the ``-`` sign in front of the fraction (if it is a fraction) and
- this will thus serve as separator in the typeset formula. Not used
- for the first term.
-
-.. _PolTypeset*:
-
-``\PolTypeset*{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Typesets in ascending powers. Use e.g. ``[h]`` optional argument
- (after the ``*``) to use letter ``h`` rather than ``x``.
-
-.. _PolDiff:
-
-``\PolDiff{polname_1}{polname_2}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_2`` to the first derivative of ``polname_1``. It
- is allowed to issue ``\PolDiff{f}{f}``, effectively replacing ``f``
- by ``f'``.
-
- Coefficients of the result ``polname_2`` are irreducible fractions
- (see `Technicalities`_ for the whole story.)
-
-.. _PolDiff[N]:
-
-``\PolDiff[N]{polname_1}{polname_2}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_2`` to the ``N``-th derivative of ``polname_1``.
- Identical arguments is allowed. With ``N=0``, same effect as
- ``\PolLet{polname_2}={polname_1}``. With negative ``N``, switches to
- using ``\PolAntiDiff``.
-
-.. _PolAntiDiff:
-
-``\PolAntiDiff{polname_1}{polname_2}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_2`` to the primitive of ``polname_1`` vanishing
- at zero.
-
- Coefficients of the result ``polname_2`` are irreducible fractions
- (see `Technicalities`_ for the whole story.)
-
-.. _PolAntiDiff[N]:
-
-``\PolAntiDiff[N]{polname_1}{polname_2}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_2`` to the result of ``N`` successive integrations on
- ``polname_1``. With negative ``N``, it switches to using ``\PolDiff``.
-
-.. _PolDivide:
-
-``\PolDivide{polname_1}{polname_2}{polname_Q}{polname_R}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_Q`` and ``polname_R`` to be the quotient and
- remainder in the Euclidean division of ``polname_1`` by
- ``polname_2``.
-
-.. _PolQuo:
-
-``\PolQuo{polname_1}{polname_2}{polname_Q}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_Q`` to be the quotient in the Euclidean division
- of ``polname_1`` by ``polname_2``.
-
-.. _PolRem:
-
-``\PolRem{polname_1}{polname_2}{polname_R}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_R`` to be the remainder in the Euclidean division
- of ``polname_1`` by ``polname_2``.
-
-.. _PolGCD:
-
-``\PolGCD{polname_1}{polname_2}{polname_GCD}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This sets ``polname_GCD`` to be the (monic) GCD of the two first
- polynomials. It is a unitary polynomial except if both ``polname_1``
- and ``polname_2`` vanish, then ``polname_GCD`` is the zero
- polynomial.
-
-.. ``\PolIGCD{polname_1}{polname_2}{polname_iGCD}``
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- **NOT YET**
-
- This **assumes** that the two polynomials have integer coefficients.
- It then computes the greatest common divisor in the integer
- polynomial ring, normalized to have a positive leading coefficient
- (if the inputs are not both zero).
-
- ``\PolIContent{polname}``
- ~~~~~~~~~~~~~~~~~~~~~~~~~
-
- **NOT YET**
-
- This computes a positive rational number such that dividing the
- polynomial with it returns an integer coefficients polynomial with
- no common factor among the coefficients.
-
-.. _PolToSturm:
-
-``\PolToSturm{polname}{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- With ``polname`` being for example ``P``, the macro starts by
- computing polynomials ``P`` and ``P'``, then computes the (opposite
- of the) remainder in euclidean division, iteratively.
-
- The last non-zero remainder ``P_N_`` (where ``N`` is obtainable as
- `\\PolSturmChainLength{sturmname}`_) is up to a factor
- the GCD of ``P`` and ``P'`` hence it is a constant if and only if
- ``P`` is square-free.
-
- .. note::
-
- - Since ``0.5`` all these polynomials are divided by their rational
- content, so they have integer coefficients with no common factor,
- and the last one if a constant is either ``1`` or ``-1``.
-
- - After this normalization to primitive polynomials, they are
- stored internally as ``sturmname_k_``, ``k=0,1, ...``.
-
- - These polynomials are used internally only. To keep them as
- genuine declared polynomials also after the macro call, use the
- starred variant `PolToSturm*`_.
-
- .. note::
-
- It is perfectly allowed to use the polynomial name as Sturm chain name:
- ``\PolToSturm{f}(f}``.
-
- The macro then declares ``sturmname_0``, ``sturmname_1``, ..., which are
- the (non-declared) ``sturmname_k_`` divided by the last one. Division is
- not done if this last one is the constant ``1`` or ``-1``, i.e. if the
- original polynomial was square-free. These polynomials are primitive
- polynomials too, i.e. with integer coefficients having no common factor.
-
- Thus ``sturmname_0`` has exactly the same real and complex roots as
- polynomial ``polname``, but with each root now of multiplicity one:
- i.e. it is the "square-free part" of original polynomial ``polname``.
-
- Notice that ``sturmname_1`` isn't necessarily the derivative of
- ``sturmname_0`` due to the various normalizations.
-
- The polynomials ``sturmname_k`` main utility is for the execution of
- `\\PolSturmIsolateZeros{sturmname}`_. Be careful not to use these
- names ``sturmname_0``, ``sturmname_1``, etc... for defining other
- polynomials after having done ``\PolToSturm{polname}{sturmname}`` and
- before executing ``\PolSturmIsolateZeros{sturmname}`` else the
- latter will behave erroneously.
-
- `\\PolSturmChainLength{sturmname}`_ gives the index of the last
- element of the Sturm chain.
-
-.. _PolToSturm*:
-
-``\PolToSturm*{polname}{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Does the same as `un-starred version <PolToSturm_>`_ and additionally it
- keeps for user usage the memory of the *un-normalized* Sturm chain
- polynomials ``sturmname_k_``, ``k=0,1, ..., N``, with
- ``N`` being `\\PolSturmChainLength{sturmname}`_.
-
- .. note::
-
- This behaviour was modified at ``0.6``, anyhow the macro was
- broken at ``0.5``.
-
- .. hint::
-
- The square-free part of ``polname`` is ``sturmname_0``, and their
- quotient is the polynomial with name
- ``sturname_\PolSturmChainLength{sturmname}_``. It thus easy to
- set-up a loop iteratively computing the latter until the last one
- is a constant, thus obtaining the decomposition of an ``f`` as
- a product ``c f_1 f_2 f_3 ...`` of a constant and square-free (primitive)
- polynomials, where each ``f_i`` divides its predecessor.
-
-.. _PolSetToSturmChainSignChangesAt:
-
-``\PolSetToSturmChainSignChangesAt{\macro}{sturmname}{fraction}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Sets macro ``\macro`` to the number of sign changes in the Sturm
- chain with name prefix ``sturmname``, at location ``fraction``
- (which must be in format as acceptable by the xintfrac_ macros.)
-
- .. note::
-
- The author was lazy and did not provide rather an expandable
- variant, where one would do ``\edef\macro{\PolNbOf...}``.
-
- This will presumably get added in a future release.
-
- After some hesitation it was decided the macro would by default
- act globally. To make the scope of its macro definition local,
- use ``[\empty]`` as extra optional argument.
-
-.. _PolSetToNbOfZerosWithin:
-
-``\PolSetToNbOfZerosWithin{\macro}{sturmname}{value_a}{value_b}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Applies the `Sturm Theorem`_ to set ``\macro`` to the exact number
- of **distinct** roots of ``sturmname_0`` in the interval ``(value_a,
- value_b]`` (the macro first re-orders the value for ``value_a <=
- value_b`` to hold).
-
- .. note::
-
- The author was lazy and did not provide rather an expandable
- variant, where one would do ``\edef\macro{\PolNbOf...}``.
-
- This will presumably get added in future.
-
- After some hesitation it was decided the macro would by default
- act globally. To make the scope of its macro definition local,
- use ``[\empty]`` as extra optional argument.
-
- See also the expandable
- `\\PolSturmNbOfRootsOf{sturmname}\\LessThanOrEqualTo{value}`_, from
- which it is immediate (with ``\numexpr``) to create an expandable
- variant of this macro. However the difference is that this macro
- requires only `\\PolToSturm <PolToSturm_>`_ to have been executed,
- whereas the expandable variant requires prior execution of
- `\\PolSturmIsolateZeros <PolSturmIsolateZeros_>`_.
-
- See also the expandable
- `\\PolSturmNbWithMultOfRootsOf{sturmname}\\LessThanOrEqualTo{value}`_
- which requires prior execution of
- `\\PolSturmIsolateZeros* <PolSturmIsolateZeros*_>`_.
-
-
-.. _PolSturmIsolateZeros:
-
-``\PolSturmIsolateZeros{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The macros locates, using `Sturm theorem`_, as many disjoint
- intervals as there are (real) roots.
-
- .. important::
-
- The Sturm chain must have been produced by an earlier
- `\\PolToSturm{polname}{sturmname}`_.
-
- Why does this macro ask for argument the name of Sturm chain,
- rather than the name of a polynomial? well this is mainly for
- legacy reason, and because it is accompanied by other macros for
- which it is simpler to assume the argument will be the name of an
- already computed Sturm chain.
-
- Notice that ``\PolToSturm{f}{f}`` is perfectly legal (the
- ``sturmname`` can be same as the ``polname``): it defines
- polynomials ``f_0``, ``f_1``, ... having ``f`` has name prefix.
-
- Such a prior call
- to ``\PolToSturm`` must have been made at any rate for
- ``\PolSturmIsolateZeros`` to be usable.
-
- After its execution they are two types of such intervals (stored in
- memory and accessible via macros or xintexpr_ variables, see below):
-
- - singleton ``{a}``: then ``a`` is a root, (necessarily a decimal
- number, but not all such decimal numbers are exactly identified yet).
-
- - open intervals ``(a,b)``: then there is exactly one root ``z``
- such that ``a < z < b``, and the end points are guaranteed to not
- be roots.
-
- The interval boundaries are decimal numbers, originating
- in iterated decimal subdivision from initial intervals
- ``(-10^E, 0)`` and ``(0, 10^E)`` with ``E`` chosen initially large
- enough so that all roots are enclosed; if zero is a root it is always
- identified as such. The non-singleton intervals are of the
- type ``(a/10^f, (a+1)/10^f)`` with ``a`` an integer, which is
- neither ``0`` nor ``-1``. Hence either ``a`` and ``a+1`` are both positive
- or they are both negative.
-
- One does not *a priori* know what will be the lengths of these
- intervals (except that they are always powers of ten), they
- vary depending on how many digits two successive roots have in
- common in their respective decimal expansions.
-
- .. important::
-
- If some two consecutive intervals share an end-point, no
- information is yet gained about the separation between the two
- roots which could at this stage be arbitrarily small.
-
- See `\\PolRefineInterval*{sturmname}{index}`_ which addresses
- this issue.
-
- .. This procedure is covariant
- with the independent variable ``x`` becoming ``-x``.
- Hmm, pas sûr et trop fatigué
-
- The interval boundaries (and exactly found roots) are made available
- for future computations in ``\xintexpr``-essions or polynomial
- definitions as variables ``<sturmname>L_1``,
- ``<sturmname>L_2``, etc..., for the left end-points and
- ``<sturmname>R_1``, ``<sturmname>R_2``, ..., for the right
- end-points.
-
- Thus for example, if ``sturmname`` is ``f``, one can use the
- xintexpr_ variables ``fL_1``, ``fL_2``, ... to refer in expressions
- to the left end-points (or to the exact root, if left and right end
- points coincide). Additionally, xintexpr_ variable ``fZ_1_isknown``
- will have value ``1`` if the root in the first interval is known,
- and ``0`` otherwise. And similarly for the other intervals.
-
- Also, macros `\\PolSturmIsolatedZeroLeft{sturmname}{index}`_ and
- `\\PolSturmIsolatedZeroRight{sturmname}{index}`_ are provided which
- expand to these same values, written in decimal notation (i.e.
- pre-processed by `\\PolDecToString <PolDecToString_>`_.) And there
- is also `\\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}`_.
-
- .. important::
-
- Trailing zeroes in the stored decimal numbers accessible via the
- macros are significant: they are also present in the decimal
- expansion of the exact root.
-
- These variables and macros are automatically updated when one next
- uses macros such as `\\PolRefineInterval*{sturmname}{index}`_.
-
- The start of decimal expansion of a positive ``k``-th root is given
- by `\\PolSturmIsolatedZeroLeft{sturmname}{k}
- <PolSturmIsolatedZeroLeft_>`_, and for a negative root it is given
- by `\PolSturmIsolatedZeroRight{sturmname}{k}
- <PolSturmIsolatedZeroRight_>`_. These two decimal
- numbers are either both zero or both of the same sign.
-
- The number of distinct roots is obtainable expandably as
- `\\PolSturmNbOfIsolatedZeros{sturmname}`_.
-
- Furthermore
- `\\PolSturmNbOfRootsOf{sturmname}\\LessThanOrEqualTo{value}`_ and
- `\\PolSturmNbOfRootsOf{sturmname}\\LessThanOrEqualToExpr{expression}`_.
- will expandably compute respectively the number of real roots at
- most equal to ``value`` or ``expression``, and the same but with
- multiplicities.
-
- .. note::
-
- In the current implementation the xintexpr_ variables
- and xinttools_ arrays are globally defined. On the
- other hand the Sturm sequence polynomials obey the current scope.
-
- .. note::
-
- As all computations are done *exactly* there can be no errors...
- apart those due to bad coding by author. The results are exact
- bounds for the mathematically exact real roots.
-
- Future releases will perhaps also provide macros based on Newton
- or Regula Falsi methods. Exact computations with such methods
- lead however quickly to very big fractions, and this forces usage
- of some rounding scheme for the abscissas if computation times
- are to remain reasonable. This raises issues of its own, which
- are studied in numerical mathematics.
-
-.. _PolSturmIsolateZeros*:
-
-``\PolSturmIsolateZeros*{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The macro does the same as `\\PolSturmIsolateZeros{sturmname}`_ and
- then in addition it does the extra work to determine all
- multiplicities (of the real roots):
- after executing this macro,
- `\\PolSturmIsolatedZeroMultiplicity{sturmname}{index}`_ will expand
- to the multiplicity of the root located in the ``index``\ -th
- interval (intervals are enumerated from left to right, with index
- starting at ``1``).
-
- Furthermore, if for example the ``sturmname`` is ``f``, xintexpr_
- variables ``fM_1``, ``fM_2``... hold the multiplicities thus
- computed.
-
- .. note::
-
- It is **not** necessary to have executed the `PolToSturm*`_ starred
- variant, as the non-starred variant keeps internally the memory of the
- original GCD (and even of the full non-normalized original Sturm
- chain), even though it does not make the declarations as *user-level*
- genuine polynomials.
-
- See `The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
- roots`_ for an example.
-
-.. _PolSturmIsolateZeros**:
-
-``\PolSturmIsolateZeros**{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The macro does the same as `\\PolSturmIsolateZeros*{sturmname}`_ and
- in addition it does the extra work to determine all the *rational*
- roots.
-
- .. note::
-
- After execution of this macro, a root is "known" if and only if
- it is rational.
-
- Furthermore, primitive polynomial ``sturmname_sqf_norr`` is created
- to match the (square-free) ``sturmname_0`` from which all rational
- roots have been removed (see `\\polexprsetup`_ for customizing this
- name). The number of distinct rational roots is thus the difference
- between the degrees of these two polynomials (see also
- `\\PolSturmNbOfRationalRoots{sturmname}`_).
-
- And ``sturmname_norr`` is ``sturmname_0_`` from which all rational
- roots have been removed (see `\\polexprsetup`_), i.e. it contains
- the irrational roots of the original polynomial, with the same
- multiplicities.
-
- See `A degree five polynomial with three rational
- roots`_ for an example.
-
-.. _PolSturmIsolateZerosAndGetMultiplicities:
-
-``\PolSturmIsolateZerosAndGetMultiplicities{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This is another name for `\\PolSturmIsolateZeros*{sturmname}`_.
-
-.. _PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots:
-
-``\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This is another name for `\\PolSturmIsolateZeros**{sturmname}`_.
-
-
-``\PolSturmIsolateZerosAndFindRationalRoots{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This works exactly like `\\PolSturmIsolateZeros**{sturmname}`_
- (inclusive of declaring the polynomials ``sturmname_sqf_norr`` and
- ``sturmname_norr`` with no rational roots) except that it does *not*
- compute the multiplicities of the *non-rational* roots.
-
- .. note::
-
- There is no macro to find the rational roots but not compute
- their multiplicities at the same time.
-
- .. attention::
-
- This macro does *not* define xintexpr_ variables
- ``sturmnameM_1``, ``sturmnameM_2``, ... holding the
- multiplicities and it leaves the multiplicity array (whose accessor
- is `\\PolSturmIsolatedZeroMultiplicity{sturmname}{index}`_) into
- a broken state, as all non-rational roots will supposedly have
- multiplicity one. This means that the output of
- `\\PolPrintIntervals* <PolPrintIntervals*_>`_ for example will be
- erroneous for the intervals with irrational roots.
-
- I decided to document it because finding multiplicities of the
- non rational roots is somewhat costly, and one may be interested
- only into finding the rational roots (of course random
- polynomials with integer coefficients will not have *any*
- rational root anyhow).
-
-
-.. _PolRefineInterval*:
-
-``\PolRefineInterval*{sturmname}{index}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The ``index``\ -th interval (starting indexing at one) is further
- subdivided as many times as is necessary in order for the newer
- interval to have both its end-points distinct from the end-points of
- the original interval. This means that the ``k``\ th root is then
- strictly separated from the other roots.
-
-.. _PolRefineInterval[N]:
-
-``\PolRefineInterval[N]{sturmname}{index}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The ``index``\ -th interval (starting count at one) is further
- subdivided once, reducing its length by a factor of 10. This is done
- ``N`` times if the optional argument ``[N]`` is present.
-
-.. _PolEnsureIntervalLength:
-
-``\PolEnsureIntervalLength{sturmname}{index}{E}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The ``index``\ -th interval is subdivided until its length becomes at
- most ``10^E``. This means (for ``E<0``) that the first ``-E`` digits
- after decimal mark of the ``k``\ th root will then be known exactly.
-
-.. _PolEnsureIntervalLengths:
-
-``\PolEnsureIntervalLengths{sturmname}{E}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The intervals as obtained from ``\PolSturmIsolateZeros`` are (if
- necessary) subdivided further by (base 10) dichotomy in order for
- each of them to have length at most ``10^E`` (length will be shorter
- than ``10^E`` in output only if it did not change or became zero.)
-
- This means that decimal expansions of all roots will be known with
- ``-E`` digits (for ``E<0``) after decimal mark.
-
-.. _PolPrintIntervals:
-
-``\PolPrintIntervals[varname]{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This is a convenience macro which prints the bounds for the roots
- ``Z_1``, ``Z_2``, ... (the optional argument ``varname`` allows to
- specify a replacement for the default ``Z``). This will be done (by
- default) in a
- math mode ``array``, one interval per row, and pattern ``rcccl``,
- where the second and fourth column hold the ``<`` sign, except when
- the interval reduces to a singleton, which means the root is known
- exactly.
-
- .. attention::
-
- This macro was refactored at 0.7, its default output remained
- identical but the ways to customize it got completely
- modified.
-
- See next macros which govern its output.
-
-``\PolPrintIntervalsNoRealRoots``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Executed in place of an ``array`` environment, when there are no
- real roots. Default definition::
-
- \newcommand\PolPrintIntervalsNoRealRoots{}
-
-``\PolPrintIntervalsBeginEnv``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Default definition::
-
- \newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}
-
-``\PolPrintIntervalsEndEnv``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Default definition::
-
- \newcommand\PolPrintIntervalsEndEnv{\end{array}\]}
-
-``\PolPrintIntervalsKnownRoot``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Default definition::
-
- \newcommand\PolPrintIntervalsKnownRoot{%
- &&\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}%
- &=&\PolPrintIntervalsPrintExactZero
- }
-
-``\PolPrintIntervalsUnknownRoot``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Default definition::
-
- \newcommand\PolPrintIntervalsUnknownRoot{%
- \PolPrintIntervalsPrintLeftEndPoint&<&%
- \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&<&%
- \PolPrintIntervalsPrintRightEndPoint
- }
-
-
-.. _PolPrintIntervalsPrintExactZero:
-
-``\PolPrintIntervalsPrintExactZero``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Default definition::
-
- \newcommand\PolPrintIntervalsPrintExactZero{\PolPrintIntervalsTheLeftEndPoint}
-
-
-.. _PolPrintIntervalsPrintLeftEndPoint:
-
-``\PolPrintIntervalsPrintLeftEndPoint``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Default definition::
-
- \newcommand\PolPrintIntervalsPrintLeftEndPoint{\PolPrintIntervalsTheLeftEndPoint}
-
-.. _PolPrintIntervalsPrintRightEndPoint:
-
-``\PolPrintIntervalsPrintRightEndPoint``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Default definition is::
-
- \newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}
-
-.. _PolPrintIntervals*:
-
-``\PolPrintIntervals*[varname]{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This starred variant produces an alternative output (which
- displays the root multiplicity), and is provided as an
- example of customization.
-
- As replacement for `\\PolPrintIntervalsKnownRoot`_,
- `\\PolPrintIntervalsPrintExactZero`_,
- `\\PolPrintIntervalsUnknownRoot`_ it uses its own
- ``\POL@@PrintIntervals...`` macros. We only reproduce here one
- definition::
-
- \newcommand\POL@@PrintIntervalsPrintExactZero{%
- \displaystyle
- \xintSignedFrac{\PolPrintIntervalsTheLeftEndPoint}%
- }%
-
- Multiplicities are printed using this auxiliary macro:
-
-``\PolPrintIntervalsPrintMultiplicity``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- whose default definition is::
-
- \newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}
-
-
-.. _PolMapCoeffs:
-
-``\PolMapCoeffs{\macro}{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- It modifies ('in-place': original coefficients get lost) each
- coefficient of the defined polynomial via the *expandable* macro
- ``\macro``. The degree is adjusted as necessary if some leading
- coefficients vanish after the operation. In replacement text of
- ``\macro``, ``\index`` expands to the coefficient index (which is
- defined to be zero for the constant term).
-
- Notice that ``\macro`` will have to handle inputs of the shape
- ``A/B[N]`` (xintfrac_ internal notation). This means that it probably
- will have to be expressed in terms of macros from xintfrac_ package.
-
- Example::
-
- \def\foo#1{\xintMul{#1}{\the\numexpr\index*\index\relax}}
-
- (or with ``\xintSqr{\index}``) to replace ``n``-th coefficient
- ``f_n`` by ``f_n*n^2``.
-
-.. _PolReduceCoeffs:
-
-``\PolReduceCoeffs{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- About the same as ``\PolMapCoeffs{\xintIrr}{polname}`` (but
- maintaining a ``[0]`` postfix for speedier xintfrac_ parsing when
- polynomial function is used for computations.) This is a
- one-argument macro, working 'in-place'.
-
-.. _PolReduceCoeffs*:
-
-``\PolReduceCoeffs*{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This starred variant leaves un-touched the decimal exponent in the
- internal representation of the fractional coefficients, i.e. if a
- coefficient is internally ``A/B[N]``, then ``A/B`` is reduced to
- smallest terms, but the ``10^N`` part is kept as is. Note: if the
- polynomial is freshly defined directly via `\\PolFromCSV
- <PolFromCSV_>`_ its coefficients might still be internally in some
- format like ``1.5e7``; the macro will anyhow always first do the
- needed conversion to strict format ``A/B[N]``.
-
- Evaluations with polynomials treated by this can be much faster than
- with those handled by the non-starred variant
- `\\PolReduceCoeffs{polname}`_: as the numerators and denominators
- remain smaller, this proves very beneficial in favorable cases
- (especially when the coefficients are decimal numbers) to the
- expansion speed of the xintfrac_ macros used internally by
- `\\PolEval <PolEvalAt_>`_.
-
-.. _PolMakeMonic:
-
-``\PolMakeMonic{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Divides by the leading coefficient. It is recommended to execute
- `\\PolReduceCoeffs*{polname}`_ immediately afterwards. This is not
- done automatically, due to the case the original polynomial had integer
- coefficients and we want to keep the leading one as common
- denominator.
-
-.. _PolMakePrimitive:
-
-``\PolMakePrimitive{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Divides by the integer content see (`\\PolIContent
- <PolIContent_>`_). This thus produces a polynomial with integer
- coefficients having no common factor. The sign of the leading
- coefficient is not modified.
-
-Expandable macros
------------------
-
-All these macros expand completely in two steps except ``\PolToExpr``
-and ``\PolToFloatExpr`` (and their auxiliaries) which need a
-``\write``, ``\edef`` or a ``\csname...\endcsname`` context.
-
-.. _PolEvalAtExpr:
-
-``\PolEval{polname}\AtExpr{numerical expression}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- It boils down to
- ``\xinttheexpr polname(numerical expression)\relax``.
-
-.. _PolEvalAt:
-
-``\PolEval{polname}\At{fraction}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Evaluates the polynomial at value ``fraction`` which must be in (or
- expand to) a format acceptable to the xintfrac_ macros.
-
-.. _PolEvalReducedAtExpr:
-
-``\PolEvalReduced{polname}\AtExpr{numerical expression}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Boils down to ``\xinttheexpr reduce(polname(numerical expression))\relax``.
-
-.. _PolEvalReducedAt:
-
-``\PolEvalReduced{polname}\At{fraction}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Evaluates the polynomial at value ``fraction`` which must be in (or
- expand to) a format acceptable to the xintfrac_ macros, and produce
- an irreducible fraction.
-
-.. _PolFloatEvalAtExpr:
-
-``\PolFloatEval{polname}\AtExpr{numerical expression}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Boils down to ``\xintthefloatexpr polname(numerical expression)\relax``.
-
- This is done via a Horner Scheme (see `\\poldef <poldef;_>`_ and
- `\\PolGenFloatVariant{polname}`_), with already rounded
- coefficients. [#]_ To use the *exact coefficients* with *exactly
- executed* additions and multiplications, just insert it in the float
- expression as in this example: [#]_
-
- ::
-
- \xintthefloatexpr 3.27*\xintexpr f(2.53)\relax^2\relax
-
- The ``f(2.53)`` is exactly computed then rounded at the time of
- getting raised to the power ``2``. Moving the ``^2`` inside, that
- operation would also be treated exactly.
-
-
- .. [#] Anyway each floating point operation starts by rounding its
- operands to the floating point precision.
-
- .. [#] The ``\xintexpr`` here could be ``\xinttheexpr`` but that
- would be less efficient. Cf. xintexpr_ documentation about
- nested expressions.
-
-.. _PolFloatEvalAt:
-
-``\PolFloatEval{polname}\At{fraction}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Evaluates the polynomial at value ``fraction`` which must be in (or
- expand to) a format acceptable to the xintfrac_ macros, and produces
- a floating point number.
-
-.. _PolIfCoeffIsPlusOrMinusOne:
-
-``\PolIfCoeffIsPlusOrMinusOne{A}{B}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This macro is a priori undefined.
-
- It is defined via the default `\\PolTypesetCmd{raw_coeff}`_ to be
- used if needed in the execution of `\\PolTypesetMonomialCmd`_,
- e.g. to insert a ``\cdot`` in front of ``\PolVar^{\PolIndex}`` if
- the coefficient is not plus or minus one.
-
- The macro will execute ``A`` if the coefficient has been found to be
- plus or minus one, and ``B`` if not.
-
-.. _PolLeadingCoeff:
-
-``\PolLeadingCoeff{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the leading coefficient.
-
-.. _PolNthCoeff:
-
-``\PolNthCoeff{polname}{number}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- It expands to the raw ``N``-th coefficient (``0/1[0]`` if the index
- number is out of range). With ``N=-1``, ``-2``, ... expands to the
- leading coefficients.
-
-.. _PolDegree:
-
-``\PolDegree{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~
-
- It expands to the degree. This is ``-1`` if zero polynomial but this
- may change in future. Should it then expand to ``-\infty`` ?
-
-.. _PolIContent:
-
-``\PolIContent{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
- It expands to the contents of the polynomial, i.e. to the positive
- fraction such that dividing by this fraction produces a polynomial
- with integer coefficients having no common prime divisor.
-
- See `\\PolMakePrimitive <PolMakePrimitive_>`_.
-
-.. _PolToExpr:
-
-``\PolToExpr{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands [#]_ to ``coeff_N*x^N+...`` (descending powers.)
-
- .. [#] in a ``\write``, ``\edef``, or ``\csname...\endcsname``, but
- not under ``\romannumeral-`0``.
-
- By default zero coefficients are skipped (issue ``\poltoexpralltrue`` to
- get all of them in output).
-
- By default, no ``+`` sign before negative coefficients, for
- compliance with Maple input format (but see
- `\\PolToExprTermPrefix{raw_coeff}`_.) Also, like the default
- behaviour of `\\PolTypeset{polname}`_, does not print (for the non
- constant terms) coefficients equal to plus or minus one. The degree
- one monomial is output as ``x``, not ``x^1``. Complete customization is
- possible, see next macros.
-
- Of course ``\PolToExpr{f}`` can be inserted in a ``\poldef``, as the
- latter expands token by token, hence will force complete expansion
- of ``\PolToExpr{f}``, but a simple ``f(x)`` is more efficient for
- the identical result.
-
-.. _PolToExprOneTerm:
-
-``\PolToExprOneTerm{raw_coeff}{number}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- This two argument expandable command takes care of the monomial and
- its coefficient. The default definition is done in order for
- coefficients of absolute value ``1`` not be printed explicitely
- (except of course for the constant term). Also by default, the
- monomial of degree one is ``x`` not ``x^1``, and ``x^0`` is skipped.
-
- For compatibility with Maple input requirements, by default a ``*``
- always precedes the ``x^number``, except if the coefficient is a one
- or a minus one. See `\\PolToExprTimes`_.
-
-.. _PolToExprOneTermStyleA:
-
-``\PolToExprOneTermStyleA{raw_coeff}{number}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Holds the default package meaning of
- `\\PolToExprOneTerm{raw_coeff}{number}`_.
-
-.. _PolToExprOneTermStyleB:
-
-``\PolToExprOneTermStyleB{raw_coeff}{number}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- For output in this style::
-
- 2*x^11/3+3*x^8/7-x^5-x^4/4-x^3-x^2/2-2*x+1
-
- issue ``\let\PolToExprOneTerm\PolToExprOneTermStyleB`` before usage of
- ``\PolToExpr``. Note that then ``\PolToExprCmd`` isn't used at all.
- To revert to package default, issue
- ``\let\PolToExprOneTerm\PolToExprOneTermStyleA``.
-
- To suppress the ``*``'s, cf. `\\PolToExprTimes`_.
-
-.. _PolToExprCmd:
-
-``\PolToExprCmd{raw_coeff}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- It is the one-argument macro used by the package definition of
- ``\PolToExprOneTerm`` for the coefficients themselves (when not
- equal to plus or minus one), and it defaults to
- ``\xintPRaw{\xintRawWithZeros{#1}}``. One will have to redefine it
- to ``\xintIrr{#1}`` or to ``\xintPRaw{\xintIrr{#1}}`` to obtain in the
- output forcefully reduced coefficients.
-
-.. _PolToExprTermPrefix:
-
-``\PolToExprTermPrefix{raw_coeff}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Defined identically as `\\PolTypesetCmdPrefix{raw_coeff}`_. It
- prefixes with a plus sign for non-negative coefficients, because
- they don't carry one by themselves.
-
-.. _PolToExprVar:
-
-``\PolToExprVar``
-^^^^^^^^^^^^^^^^^
-
- This expands to the variable to use in output (it does not have to
- be a single letter, may be an expandable macro.) Initial definition
- is ``x``.
-
-.. _PolToExprTimes:
-
-``\PolToExprTimes``
-^^^^^^^^^^^^^^^^^^^
-
- This expands to the symbol used for multiplication of an
- ``x^{number}`` by the corresponding coefficient. The default is
- ``*``. Redefine the macro to expand to nothing to get rid of it (but
- this will give output incompatible with some professional computer
- algebra software).
-
-.. _PolToExpr*:
-
-``\PolToExpr*{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to ``coeff_0+coeff_1*x+coeff_2*x^2+...`` (ascending powers).
- Customizable like `\\PolToExpr{polname}`_ via the same macros.
-
-.. _PolToFloatExpr:
-
-``\PolToFloatExpr{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Similar to `\\PolToExpr{polname}`_ but uses `\\PolToFloatExprCmd
- <\\PolToFloatExprCmd{raw_coeff}>`_
- which by default rounds and converts the coefficients to floating
- point format.
-
- .. note::
-
- It is not necessary to have issued
- `\\PolGenFloatVariant{polname}`_. The rounded coefficients are
- not easily recoverable from the ``\xintfloatexpr`` polynomial
- function hence ``\PolToFloatExprCmd`` operates from the *exact*
- coefficients anew.
-
- Attention that both macros obey the prevailing float precision.
- If it is changed between those macro calls, then a mismatch
- exists between the coefficients as used in ``\xintfloatexpr`` and
- those output by ``\PolToFloatExpr{polname}``.
-
-.. _PolToFloatExprOneTerm:
-
-``\PolToFloatExprOneTerm{raw_coeff}{number}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Similar to `\\PolToExprOneTerm
- <\\PolToExprOneTerm{raw_coeff}{number}>`_. But does not treat
- especially coefficients equal to plus or minus one.
-
-.. _PolToFloatExprCmd:
-
-``\PolToFloatExprCmd{raw_coeff}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- It is the one-argument macro used by ``\PolToFloatExprOneTerm``.
- Its package definition is ``\xintFloat{#1}``.
-
- .. caution::
-
- Currently (xint_ ``1.3c``) ``\xintFloat{0}`` outputs ``0.e0``
- which is perfectly acceptable input for Python, but not for
- Maple. Thus, one should better leave the `\\poltoexprallfalse`_
- toggle to its default ``\iffalse`` state, if one intends to use
- the output in a Maple worksheet.
-
- But even then the zero polynomial will cause a problem. Workaround::
-
- \renewcommand\PolToFloatExprCmd[1]{\xintiiifZero{#1}{0.0}{\xintFloat{#1}}}
-
- Usage of ``\xintiiifZero`` and not ``\xintifZero`` is only for
- optimization (I can't help it) because ``#1`` is known to be
- in ``xintfrac`` raw format.
-
-.. _PolToFloatExpr*:
-
-``\PolToFloatExpr*{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Typesets in ascending powers.
-
-.. _PolToList:
-
-``\PolToList{polname}``
-~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to ``{coeff_0}{coeff_1}...{coeff_N}`` with ``N`` = degree, and
- ``coeff_N`` the leading coefficient
- (the zero polynomial does give ``{0/1[0]}`` and not an
- empty output.)
-
-.. _PolToCSV:
-
-``\PolToCSV{polname}``
-~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to ``coeff_0, coeff_1, coeff_2, ....., coeff_N``, starting
- with constant term and ending with leading coefficient. Converse
- to `\\PolFromCSV <\\PolFromCSV{polname}{\<csv\>}_>`_.
-
-.. _PolSturmChainLength:
-
-``\PolSturmChainLength{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Returns the integer ``N`` such that ``sturmname_N`` is the last one
- in the Sturm chain ``sturmname_0``, ``sturmname_1``, ...
-
- See `\\PolToSturm{polname}{sturmname}`_.
-
-.. _PolSturmIfZeroExactlyKnown:
-
-``\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Executes ``A`` if the ``index``\ -th interval reduces to a singleton,
- i.e. the root is known exactly, else ``B``.
-
- .. note::
-
- ``index`` is allowed to be something like ``1+2*3`` as it is fed
- to ``\the\numexpr...\relax``.
-
-.. _PolSturmIsolatedZeroLeft:
-
-``\PolSturmIsolatedZeroLeft{sturmname}{index}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the left end-point for the ``index``\ -th interval, as
- computed by some earlier `\\PolSturmIsolateZeros{sturmname}`_.
-
- .. note::
-
- Of course, this is kept updated by macros such as
- `\\PolRefineInterval{sturmname}{index} <PolRefineInterval[N]_>`_.
-
- The value is pre-formatted using `\\PolDecTostring
- <PolDecToString_>`_.
-
-.. _PolSturmIsolatedZeroRight:
-
-``\PolSturmIsolatedZeroRight{sturmname}{index}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the right end-point for the ``index``\ -th interval as
- computed by some earlier `\\PolSturmIsolateZeros{sturmname}`_ and
- possibly refined afterwards.
-
- The value is pre-formatted using `\\PolDecTostring
- <PolDecToString_>`_.
-
-.. _PolSturmIsolatedZeroMultiplicity:
-
-``\PolSturmIsolatedZeroMultiplicity{sturmname}{index}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the multiplicity of the unique root contained in the
- ``index``\ -th interval.
-
- .. attention::
-
- A prior execution of `\\PolSturmIsolateZeros*{sturmname}`_ is mandatory.
-
- See `The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
- roots`_ for an example of use.
-
-.. _PolSturmNbOfIsolatedZeros:
-
-``\PolSturmNbOfIsolatedZeros{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the number of real roots of the polynomial
- ``<sturmname>_0``, i.e. the number of distinct real roots of the
- polynomial originally used to create the Sturm chain via
- `\\PolToSturm{polname}{sturmname}`_.
-
-.. warning::
-
- The next few macros counting roots, with or without multiplicities,
- less than or equal to some value, are under evaluation and may be
- removed from the package if their utility is judged to be not high
- enough. They can be re-coded at user level on the basis of the other
- documented package macros anyway.
-
-``\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualTo{value}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to the number of distinct roots (of the polynomial used to
- create the Sturm chain) less than or equal to the ``value`` (i.e. a
- number of fraction recognizable by the xintfrac_ macros).
-
- .. attention::
-
- `\\PolSturmIsolateZeros{sturmname}`_ must have been executed
- beforehand.
-
- And the argument is a ``sturmname``, not a ``polname`` (this is
- why the macro contains Sturm in its name), simply to be reminded
- of the above constraint.
-
-``\PolSturmNbOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to the number of distinct roots (of the polynomial
- used to create the Sturm chain) which are less than or equal to the
- given ``expression``.
-
- .. attention::
-
- `\\PolSturmIsolateZeros{sturmname}`_ must have been executed
- beforehand.
-
-``\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualTo{value}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to the number counted with multiplicities of the roots (of
- the polynomial used to create the Sturm chain) which are less than
- or equal to the given ``value``.
-
- .. attention::
-
- `\\PolSturmIsolateZeros*{sturmname}`_ (or the double starred
- variant) must have been executed beforehand.
-
-``\PolSturmNbWithMultOfRootsOf{sturmname}\LessThanOrEqualToExpr{expression}``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to the total number of roots (counted with multiplicities)
- which are less than or equal to the given ``expression``.
-
- .. attention::
-
- `\\PolSturmIsolateZeros*{sturmname}`_ (or the double starred
- variant) must have been executed beforehand.
-
-``\PolSturmNbOfRationalRoots{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the number of rational roots (without multiplicities).
-
- .. attention::
-
- `\\PolSturmIsolateZeros**{sturmname}`_ must have been executed
- beforehand.
-
-``\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the number of rational roots (counted with multiplicities).
-
- .. attention::
-
- `\\PolSturmIsolateZeros**{sturmname}`_ must have been executed
- beforehand.
-
-``\PolSturmRationalRoot{sturmname}{k}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the ``k``\ th rational root (they are ordered and indexed
- starting at 1 for the most negative).
-
- .. attention::
-
- `\\PolSturmIsolateZeros**{sturmname}`_ must have been executed
- beforehand.
-
-``\PolSturmRationalRootIndex{sturmname}{k}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to ``index`` of the ``k``\ th rational root as part of the
- ordered real roots (without multiplicities). I.e., above macro
- `\\PolSturmRationalRoot{sturmname}{k}`_ is equivalent to this
- nested call::
-
- \PolSturmIsolatedZeroLeft{sturmname}{\PolSturmRationalRootIndex{sturmname}{k}}
-
- .. attention::
-
- `\\PolSturmIsolateZeros**{sturmname}`_ must have been executed
- beforehand.
-
-``\PolSturmRationalRootMultiplicity{sturmname}{k}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Expands to the multiplicity of the ``k``\ th rational root.
-
- .. attention::
-
- `\\PolSturmIsolateZeros**{sturmname}`_ must have been executed
- beforehand.
-
-.. _PolIntervalWidth:
-
-``\PolIntervalWidth{sturmname}{index}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- The ``10^E`` width of the current ``index``\ -th root localization
- interval. Output is in xintfrac_ raw ``1/1[E]`` format (if not zero).
-
-Expandable macros for use within execution of ``\PolPrintIntervals``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-These macros are for usage within custom user redefinitions of
-`\\PolPrintIntervalsKnownRoot`_, `\\PolPrintIntervalsUnknownRoot`_, or
-in redefinitions of `\PolPrintIntervalsPrintExactZero`_ (used in the
-default for the former) and of `\\PolPrintIntervalsPrintLeftEndPoint`_,
-`\\PolPrintIntervalsPrintRightEndPoint`_ (used in the default for the
-latter).
-
-.. attention::
-
- Some macros formerly mentioned here got removed at 0.7:
- ``\PolPrintIntervalsTheEndPoint``,
- ``\PolIfEndPointIsPositive{A}{B}``,
- ``\PolIfEndPointIsNegative{A}{B}``,
- ``\PolIfEndPointIsZero{A}{B}``.
-
-``\PolPrintIntervalsTheVar``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to the name (default ``Z``) used for representing the roots,
- which was passed as optional argument ``varname`` to
- `\\PolPrintIntervals[varname]{sturmname}`_.
-
-``\PolPrintIntervalsTheIndex``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to the index of the considered interval (indexing starting
- at 1 for the leftmost interval).
-
-``\PolPrintIntervalsTheSturmName``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- Expands to the argument which was passed as ``sturmname`` to
- `\\PolPrintIntervals[varname]{sturmname}`_.
-
-``\PolPrintIntervalsTheLeftEndPoint``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- The left end point of the interval, as would be produced by
- `\\PolSturmIsolatedZeroLeft <PolSturmIsolatedZeroLeft_>`_ if it was
- used with arguments the Sturm chain name and interval index returned
- by `\\PolPrintIntervalsTheSturmName`_ and
- `\\PolPrintIntervalsTheIndex`_.
-
-``\PolPrintIntervalsTheRightEndPoint``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- The right end point of the interval, as would be produced by
- `\\\PolSturmIsolatedZeroRight <PolSturmIsolatedZeroRight_>`_ for
- this Sturm chain name and index.
-
-``\PolPrintIntervalsTheMultiplicity``
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
- The multiplicity of the unique root within the interval of index
- `\\PolPrintIntervalsTheIndex`_. Makes sense only if the starred (or
- double-starred) variant of `\\PolSturmIsolateZeros
- <PolSturmIsolateZeros_>`_ was used earlier.
-
-.. _PolDecToString:
-
-``\PolDecToString{decimal number}``
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- This is a utility macro to print decimal numbers. It has been
- backported to xintfrac_ (release ``1.3`` of ``2018/03/01``) under
- the name ``\xintDecToString``, and the ``polexpr`` macro is simply
- now an alias to it.
-
- For example
- ``\PolDecToString{123.456e-8}`` will expand to ``0.00000123456``
- and ``\PolDecToString{123.450e-8}`` to ``0.00000123450`` which
- illustrates that trailing zeros are not trimmed. To trim trailing
- zeroes, one can use ``\PolDecToString{\xintREZ{#1}}``.
-
- The precise behaviour of this macro may evolve in future releases of
- xint_.
-
-Booleans (with default setting as indicated)
---------------------------------------------
-
-``\xintverbosefalse``
-~~~~~~~~~~~~~~~~~~~~~
-
- This is actually an xintexpr_ configuration. Setting it to
- ``true`` triggers the writing of information to the log when new
- polynomials are defined.
-
- .. caution::
-
- The macro meanings as written to the log are to be considered
- unstable and undocumented internal structures.
-
-``\poltypesetallfalse``
-~~~~~~~~~~~~~~~~~~~~~~~
-
- If ``true``, `\\PolTypeset{polname}`_ will also typeset the vanishing
- coefficients.
-
-
-``\poltoexprallfalse``
-~~~~~~~~~~~~~~~~~~~~~~
-
- If ``true``, `\\PolToExpr{polname}`_ and `\\PolToFloatExpr{polname}`_ will
- also include the vanishing coefficients in their outputs.
-
-``\polexprsetup``
------------------
-
- Serves to customize the package. Currently only two keys are
- recognized:
-
- - ``norr``: the postfix that `\\PolSturmIsolateZeros**{sturmname}`_
- should append to ``sturmname`` to declare the primitive polynomial
- obtained from original one after removal of all rational roots.
- The default value is ``_norr`` (standing for “no rational roots”).
-
- - ``sqfnorr``: the postfix that `\\PolSturmIsolateZeros**{sturmname}`_
- should append to ``sturmname`` to declare the primitive polynomial
- obtained from original one after removal of all rational roots and
- suppression of all multiplicities.
- The default value is ``_sqf_norr`` (standing for “square-free with
- no rational roots”).
-
- The package executes ``\polexprsetup{norr=_norr,
- sqfnorr=_sqf_norr}`` as default.
-
-Technicalities
---------------
-
-- The catcode of the semi-colon is reset temporarily by `\\poldef
- <poldef;_>`_ macro in case some other package (for example the French
- babel module) may have made it active. This will fail though if the
- whole thing was already part of a macro argument, in such cases one
- can use `\\PolDef{f}{P(x)} <PolDef_>`_
- rather. The colon in ``:=`` may be active with no consequences.
-
-- As a consequence of xintfrac_ addition and subtraction always using
- least common multiples for the denominators [#]_, user-chosen common
- denominators survive additions and multiplications. For example, this::
-
- \poldef P(x):= 1/2 + 2/2*x + 3/2*x^3 + 4/2*x^4;
- \poldef Q(x):= 1/3 + (2/3)x + (3/3)x^3 + (4/3)x^4;
- \poldef PQ(x):= P(x)Q(x);
-
- gives internally the polynomial::
-
- 1/6+4/6*x^1+4/6*x^2+6/6*x^3+20/6*x^4+16/6*x^5+9/6*x^6+24/6*x^7+16/6*x^8
-
- where all coefficients have the same denominator 6. Notice though that
- ``\PolToExpr{PQ}`` outputs the ``6/6*x^3`` as ``x^3`` because (by
- default) it recognizes and filters out coefficients equal to one or
- minus one (since release ``0.3``). One can use for example
- ``\PolToCSV{PQ}`` to see the internally stored coefficients.
-
- .. [#] prior to ``0.4.1``, ``polexpr`` used to temporarily patch
- during the parsing of polynomials the xintfrac_ macros. This
- patch was backported to xint_ at release ``1.3``.
-
-- `\\PolDiff{polname_1}{polname_2}`_ always applies ``\xintIrr`` to the
- resulting coefficients, except that the *power of ten* part ``[N]``
- (for example an input in scientific notation such as ``1.23e5`` gives
- ``123/1[3]`` internally in xintfrac) is not taken into account in the
- reduction of the fraction. This is tentative and may change.
-
- Same remark for `\\PolAntiDiff{polname_1}{polname_2}`_.
-
-- Currently, the package stores all coefficients from index ``0`` to
- index equal to the polynomial degree inside a single macro, as a list.
- This data structure is obviously very inefficient for polynomials of
- high degree and few coefficients (as an example with ``\poldef
- f(x):=x^1000 + x^500;`` the subsequent definition ``\poldef g(x):=
- f(x)^2;`` will do of the order of 1,000,000 multiplications and
- additions involvings only zeroes... which does take time). This
- may change in the future.
-
-- As is to be expected internal structures of the package are barely
- documented and unstable. Don't use them.
-
-
-CHANGE LOG
-----------
-
-- v0.1 (2018/01/11): initial release. Features:
-
- * The `\\poldef <poldef;_>`_ parser itself,
- * Differentiation and anti-differentiation,
- * Euclidean division and GCDs,
- * Various utilities such as `\\PolFromCSV <PolFromCSV_>`_,
- `\\PolMapCoeffs <PolMapCoeffs_>`_,
- `\\PolToCSV <PolToCSV_>`_, `\\PolToExpr <PolToExpr_>`_, ...
-
- Only one-variable polynomials so far.
-
-- v0.2 (2018/01/14)
-
- * Fix: ``"README thinks \numexpr recognizes ^ operator"``.
- * Convert README to reStructuredText markup.
- * Move main documentation from README to separate ``polexpr.txt`` file.
- * Provide ``polexpr.html`` as obtained via DocUtils_ ``rst2html.py``.
- * Convert README to (CTAN compatible) Markdown markup.
-
- Due to lack of available time the test suite might not be extensive
- enough. Bug reports are very welcome!
-
-- v0.3 (2018/01/17)
-
- * bug fixes:
-
- - the ``0.1`` `\\PolEval <PolEvalAt_>`_ accepted expressions for its second
- argument, but this was removed by mistake at ``0.2``. Restored.
-
- **Attention**: at ``0.4`` this has been reverted again, and
- `\\PolEval{P}\\AtExpr{foo} <PolEvalAtExpr_>`_ syntax is needed for
- using expressions in the second argument.
- * incompatible or breaking changes:
-
- - `\\PolToExpr <PolToExpr_>`_ now by default uses *descending*
- powers (it also treats differently coefficients equal to 1 or -1.)
- Use `\\PolToExpr* <PolToExpr*_>`_ for *ascending* powers.
- - `\\PolEval <PolEvalAt_>`_ reduced the output to smallest terms,
- but as this is costly with big fractions and not needed if e.g.
- wrapped in an ``\xintRound`` or ``\xintFloat``, this step has been
- removed; the former meaning is available as `\\PolEvalReduced
- <PolEvalReducedAt_>`_.
- * new (or newly documented) macros:
-
- - `\\PolTypesetCmd <PolTypesetCmd_>`_
- - `\\PolTypesetCmdPrefix <PolTypesetCmdPrefix_>`_
- - `\\PolTypesetMonomialCmd <PolTypesetMonomialCmd_>`_
- - `\\PolEvalReducedAt <PolEvalReducedAt_>`_
- - `\\PolToFloatExpr <PolToFloatExpr_>`_
- - `\\PolToExprOneTerm <PolToExprOneTerm_>`_
- - `\\PolToFloatExprOneTerm <PolToFloatExprOneTerm_>`_
- - `\\PolToExprCmd <PolToExprCmd_>`_
- - `\\PolToFloatExprCmd <PolToFloatExprCmd_>`_
- - `\\PolToExprTermPrefix <PolToExprTermPrefix_>`_
- - `\\PolToExprVar <PolToExprVar_>`_
- - `\\PolToExprTimes <PolToExprTimes_>`_
- * improvements:
-
- - documentation has a table of contents, internal hyperlinks,
- standardized signature notations and added explanations.
- - one can do ``\PolLet{g}={f}`` or ``\PolLet{g}{f}``.
- - ``\PolToExpr{f}`` is highly customizable.
- - `\\poldef <poldef;_>`_ and other defining macros prepare the polynomial
- functions for usage within ``\xintthefloatexpr`` (or
- ``\xintdeffloatvar``). Coefficients are pre-rounded to the
- floating point precision. Indispensible for numerical algorithms,
- as exact fractions, even reduced, quickly become very big. See the
- documentation about how to use the exact polynomials also in
- floating point context.
-
- **Attention**: this has been reverted at ``0.4``. The macro
- `\\PolGenFloatVariant <PolGenFloatVariant_>`_ must be used for
- generation floating point polynomial functions.
-
-- v0.3.1 (2018/01/18)
-
- Fixes two typos in example code included in the documentation.
-
-- v0.4 (2018/02/16)
-
- * bug fixes:
-
- - when Euclidean division gave a zero remainder, the internal
- representation of this zero polynomial could be faulty; this
- could cause mysterious bugs in conjunction with other package
- macros such as `\\PolMapCoeffs <PolMapCoeffs_>`_.
- - `\\PolGCD <PolGCD_>`_ was buggy in case of first polynomial being
- of lesser degree than the second one.
- * breaking changes:
-
- - formerly `\\PolEval{P}\\At{foo} <PolEvalAt_>`_ allowed ``foo`` to
- be an expression, which was transparently handled via
- ``\xinttheexpr``. Now, ``foo`` must be a fraction (or a macro
- expanding to such) in the format acceptable by ``xintfrac.sty``
- macros. Use `\\PolEval{P}\\AtExpr{foo} <PolEvalAtExpr_>`_ for more
- general arguments using expression syntax. E.g., if ``foo`` is the
- name of a variable known to ``\xintexpr``.
-
- The same holds for `\\PolEvalReduced <PolEvalReducedAt_>`_
- and `\\PolFloatEval <PolFloatEvalAt_>`_.
- - the ``3.0`` automatic generation of floating point variants has
- been reverted. Not only do *not* the package macros automatically
- generate floating point variants of newly created polynomials,
- they actually make pre-existing such variant undefined.
-
- See `\\PolGenFloatVariant <PolGenFloatVariant_>`_.
- * new non-expandable macros:
-
- - `\\PolGenFloatVariant <PolGenFloatVariant_>`_
- - `\\PolGlobalLet <PolGlobalLet_>`_
- - `\\PolTypesetOne <PolTypesetOne_>`_
- - `\\PolQuo <PolQuo_>`_
- - `\\PolRem <PolRem_>`_
- - `\\PolToSturm <PolToSturm_>`_
- - `\\PolToSturm\* <PolToSturm*_>`_
- - `\\PolSetToSturmChainSignChangesAt <PolSetToSturmChainSignChangesAt_>`_
- - `\\PolSetToNbOfZerosWithin <PolSetToNbOfZerosWithin_>`_
- - `\\PolSturmIsolateZeros <PolSturmIsolateZeros_>`_
- - `\\PolRefineInterval* <PolRefineInterval*_>`_
- - `\\PolRefineInterval[N] <PolRefineInterval[N]_>`_
- - `\\PolEnsureIntervalLength <PolEnsureIntervalLength_>`_
- - `\\PolEnsureIntervalLengths <PolEnsureIntervalLengths_>`_
- - `\\PolPrintIntervals <PolPrintIntervals_>`_
- - `\\PolPrintIntervalsPrintExactZero <PolPrintIntervalsPrintExactZero_>`_
- - `\\PolPrintIntervalsPrintLeftEndPoint <PolPrintIntervalsPrintLeftEndPoint_>`_
- - `\\PolPrintIntervalsPrintRightEndPoint <PolPrintIntervalsPrintRightEndPoint_>`_
- - `\\PolReduceCoeffs* <PolReduceCoeffs*_>`_
- - `\\PolMakeMonic <PolMakeMonic_>`_
- * new expandable macros:
-
- - `\\PolToExprOneTermStyleA <PolToExprOneTermStyleA_>`_
- - `\\PolIfCoeffIsPlusOrMinusOne <PolIfCoeffIsPlusOrMinusOne_>`_
- - `\\PolLeadingCoeff <PolLeadingCoeff_>`_
- - `\\PolSturmChainLength <PolSturmChainLength_>`_
- - `\\PolSturmNbOfIsolatedZeros <PolSturmNbOfIsolatedZeros_>`_
- - `\\PolSturmIfZeroExactlyKnown <PolSturmIfZeroExactlyKnown_>`_
- - `\\PolSturmIsolatedZeroLeft <PolSturmIsolatedZeroLeft_>`_
- - `\\PolSturmIsolatedZeroRight <PolSturmIsolatedZeroRight_>`_
- - ``\PolPrintIntervalsTheEndPoint`` (removed at 0.7)
- - `\\PolPrintIntervalsTheIndex`_
- - ``\PolIfEndPointIsPositive`` (removed at 0.7)
- - ``\PolIfEndPointIsNegative`` (removed at 0.7)
- - ``\PolIfEndPointIsZero`` (removed at 0.7)
- - `\\PolIntervalWidth <PolIntervalWidth_>`_
- - `\\PolDecToString <PolDecToString_>`_
- * improvements:
-
- The main new feature is implementation of the `Sturm algorithm`_
- for localization of the real roots of polynomials.
-
-- v0.4.1 (2018/03/01)
-
- Synced with xint 1.3.
-
-- v0.4.2 (2018/03/03)
-
- Documentation fix.
-
-- v0.5 (2018/04/08)
-
- * bug fixes:
-
- - `\\PolGet{polname}\\fromarray\\macro`_ crashed when ``\macro`` was
- an xinttools_ array macro with no items. It now produces the zero
- polynomial.
- * breaking changes:
-
- - `\\PolToSturm`_ creates primitive integer coefficients polynomials.
- This speeds up localization of roots via
- `\\PolSturmIsolateZeros`_. In case of user protests the author
- will make available again the code producing the bona fide Sturm
- polynomials as used formerly.
- - polynomials created from `\\PolFromCSV`_ or `\\PolGet <PolGet_>`_
- get their coefficients normalized via xintfrac_\ 's ``\xintRaw``.
- * experimental change:
-
- - optional argument to `\\PolSturmIsolateZeros`_ (see `The
- degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2
- as roots`_ for usage). It will presumably be replaced in future by
- an interval specification.
- * new non-expandable macro:
-
- - `\\PolMakePrimitive`_
- * new expandable macro:
-
- - `\\PolIContent`_
-
-- v0.5.1 (2018/04/22)
-
- * new feature:
-
- - the character ``'`` can be used in polynomial names.
-
-- v0.6 (2018/11/20)
-
- * bugfix:
-
- - the starred variant `\\PolToSturm*{polname}{sturmname}`_ was
- broken. On the occasion of the fix, its meaning has been modified,
- see its documentation.
-
- - using `\\PolToSturm <PolToSturm_>`_ with a constant polynomial
- caused a division by zero error.
-
- * new macro:
-
- - `\\PolSturmIsolateZeros* <PolSturmIsolateZeros*_>`_
- acts like the `non-starred variant
- <PolSturmIsolateZeros_>`_ then computes all the multiplicities.
-
- * new expandable macros:
-
- - `\\PolSturmIsolatedZeroMultiplicity{sturmname}{index}`_
- - `\\PolSturmNbOfRootsOf{sturmname}\\LessThanOrEqualTo{value}`_
- - `\\PolSturmNbOfRootsOf{sturmname}\\LessThanOrEqualToExpr{expression}`_
- - `\\PolSturmNbWithMultOfRootsOf{sturmname}\\LessThanOrEqualTo{value}`_
- - `\\PolSturmNbWithMultOfRootsOf{sturmname}\\LessThanOrEqualToExpr{expression}`_
-
-- v0.7 (2018/12/08), v0.7.1 (bugfix), v0.7.2 (2nd bugfix) (2018/12/09)
-
- * breaking changes:
-
- - although `\\PolPrintIntervals[varname]{sturmname}`_ default output
- remains the same, some auxiliary macros for user-customization
- have been removed: ``\PolPrintIntervalsTheEndPoint``,
- ``\PolIfEndPointIsPositive{A}{B}``,
- ``\PolIfEndPointIsNegative{A}{B}``, and
- ``\PolIfEndPointIsZero{A}{B}``.
-
- * bugfix:
-
- - it could happen that, contrarily to documentation, an interval
- computed by `\\PolSturmIsolateZeros{sturmname}`_ had zero as an
- endpoint,
- - `\\PolEnsureIntervalLength{sturmname}{index}{E}`_ could under
- certain circumstances erroneously replace a non-zero root by
- zero,
- - `\\PolEnsureIntervalLengths{sturmname}{E}`_ crashed when used with
- a polynomial with no real roots, hence for which no isolation intervals
- existed (thanks to Thomas Söll for report).
-
- * new macros:
-
- - `\\PolSturmIsolateZeros**{sturmname}`_
- - `\\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{sturmname}`_
- - `\\PolSturmIsolateZerosAndFindRationalRoots{sturmname}`_
- - `\\polexprsetup`_
- - `\\PolPrintIntervals* <PolPrintIntervals*_>`_
- - `\\PolPrintIntervalsNoRealRoots`_
- - `\\PolPrintIntervalsBeginEnv`_
- - `\\PolPrintIntervalsEndEnv`_
- - `\\PolPrintIntervalsKnownRoot`_
- - `\\PolPrintIntervalsUnknownRoot`_
- - `\\PolPrintIntervalsPrintMultiplicity`_
-
- * new expandable macros:
-
- - `\\PolSturmNbOfRationalRoots{sturmname}`_
- - `\\PolSturmNbOfRationalRootsWithMultiplicities{sturmname}`_
- - `\\PolSturmRationalRoot{sturmname}{k}`_
- - `\\PolSturmRationalRootIndex{sturmname}{k}`_
- - `\\PolSturmRationalRootMultiplicity{sturmname}{k}`_
- - `\\PolPrintIntervalsTheVar`_
- - `\\PolPrintIntervalsTheSturmName`_
- - `\\PolPrintIntervalsTheMultiplicity`_
-
-- v0.7.3 (2019/02/04)
-
- * bugfix:
-
- - Debugging information not destined to user showed in log if root
- finding was done under ``\xintverbosetrue`` regime.
- - `\\PolPrintIntervalsTheVar`_ remained defined after
- `\\PolPrintIntervals`_ but was left undefined after
- `\\PolPrintIntervals*`_ (reported by Jürgen Gilg). Now remains
- defined in both cases, and `\\PolPrintIntervalsTheSturmName`_
- also.
- - Polynomial names ending in digits caused errors (reported by Thomas
- Söll).
-
-- v0.7.4 (2019/02/12)
-
- * bugfix:
-
- - 20000000000 is too big for ``\numexpr``, shouldn't I know that?
- Thanks to Jürgen Gilg for report.
-
-- v0.7.5 (2020/01/31)
-
- Synced with xint 1.4. Requires it.
-
-
-Acknowledgments
----------------
-
-Thanks to Jürgen Gilg whose question about xint_ usage for
-differentiating polynomials was the initial trigger leading to this
-package, and to Jürgen Gilg and Thomas Söll for testing it on some
-concrete problems.
-
-Renewed thanks to them on occasion of the ``0.6`` and ``0.7`` releases for their
-continued interest.
-
-See README.md for the License.
-
-.. _xinttools:
-.. _xintfrac:
-.. _xintexpr:
-.. _xint: http://www.ctan.org/pkg/xint
-
-.. _Wilkinson polynomial: https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial
-
-.. _Sturm algorithm:
-.. _Sturm Theorem: https://en.wikipedia.org/wiki/Sturm%27s_theorem
-
-.. _DocUtils: http://docutils.sourceforge.net/docs/index.html
diff --git a/Master/texmf-dist/tex/generic/polexpr/polexpr.sty b/Master/texmf-dist/tex/generic/polexpr/polexpr.sty
new file mode 100644
index 00000000000..c94a4e8d61d
--- /dev/null
+++ b/Master/texmf-dist/tex/generic/polexpr/polexpr.sty
@@ -0,0 +1,1057 @@
+% author: Jean-François Burnol
+% License: LPPL 1.3c (author-maintained)
+% Usage: \input polexpr.sty (Plain or other macro formats)
+% or \usepackage{polexpr} (LaTeX macro format)
+% polexpr.sty (this file) inputs:
+% polexprcore.tex
+% polexprexpr.tex
+% polexprsturm.tex
+\begingroup\catcode61\catcode48\catcode32=10\relax%
+ \catcode13=5 % ^^M
+ \endlinechar=13 %
+ \catcode123=1 % {
+ \catcode125=2 % }
+ \catcode64=11 % @
+ \catcode35=6 % #
+ \catcode44=12 % ,
+ \catcode45=12 % -
+ \catcode46=12 % .
+ \catcode58=12 % :
+ \def\z {\endgroup}%
+ \expandafter\let\expandafter\x\csname ver@polexpr.sty\endcsname
+ \expandafter\let\expandafter\w\csname ver@xintexpr.sty\endcsname
+ \expandafter
+ \ifx\csname PackageInfo\endcsname\relax
+ \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}%
+ \else
+ \def\y#1#2{\PackageInfo{#1}{#2}}%
+ \fi
+ \expandafter
+ % I don't think engine exists providing \expanded but not \numexpr
+ \ifx\csname expanded\endcsname\relax
+ \y{polexpr}{\expanded not available, aborting input}%
+ \aftergroup\endinput
+ \else
+ \ifx\x\relax % plain-TeX, first loading of polexpr.sty
+ \ifx\w\relax % but xintexpr.sty not yet loaded.
+ \expandafter\def\expandafter\z\expandafter
+ {\z\input xintexpr.sty\relax}%
+ \fi
+ \else
+ \def\empty {}%
+ \ifx\x\empty % LaTeX, first loading,
+ % variable is initialized, but \ProvidesPackage not yet seen
+ \ifx\w\relax % xintexpr.sty not yet loaded.
+ \expandafter\def\expandafter\z\expandafter
+ {\z\RequirePackage{xintexpr}[2021/02/20]}%
+ \fi
+ \else
+ \aftergroup\endinput % polexpr already loaded.
+ \fi
+ \fi
+ \fi
+\z%
+\XINTsetupcatcodes%
+\XINT_providespackage
+\ProvidesPackage{polexpr}%
+ [2021/03/29 v0.8 Polynomial expressions with rational coefficients (JFB)]%
+\begingroup
+ \def\x#1/#2/#3 #4\xint:{#1#2#3}%
+ \ifnum\expandafter\x\expanded{\csname ver@xintexpr.sty\endcsname}\xint:
+ <20210220 % actually 20200131 (xint 1.4) is presumably ok
+ \immediate\write128{! Package polexpr error: xintexpr too old, aborting input}%
+ \else\expandafter\xint_gobble_i
+ \fi
+\endinput\endgroup
+\let\PolDecToString\xintDecToString
+\long\def\POL@ifstar#1#2%
+{%
+ \begingroup\def\@tempa{#1}\def\@tempb{#2}%
+ \futurelet\@let@token\POL@@ifstar
+}%
+\def\POL@@ifstar
+{%
+ \xint_firstofone{\ifx} \@let@token\def\next{\POL@@again\POL@@ifstar}\else
+ \ifx*\@let@token\def\next##1{\expandafter\endgroup\@tempa}\else
+ \def\next{\expandafter\endgroup\@tempb}\fi\fi\next
+}%
+\xint_firstofone{\def\POL@@again#1} {\futurelet\@let@token#1}%
+\long\def\POL@chkopt#1[#2]%
+{%
+ \begingroup\def\@tempa{#1}\def\@tempb{#1[#2]}%
+ \futurelet\@let@token\POL@@ifopt
+}%
+\def\POL@@ifopt
+{%
+ \xint_firstofone{\ifx} \@let@token\def\next{\POL@@again\POL@@ifopt}\else
+ \ifx[\@let@token\def\next{\expandafter\endgroup\@tempa}\else %]
+ \def\next{\expandafter\endgroup\@tempb}\fi\fi\next
+}%
+% \polexprsetup added at 0.7
+\catcode`! 3
+\def\polexprsetup#1{\POL@setup_parsekeys #1,=!,\xint_bye}%
+\def\POL@setup_parsekeys #1=#2#3,{%
+ \ifx!#2\expandafter\xint_bye\fi
+ \csname POL@setup_setkey_\xint_zapspaces #1 \xint_gobble_i\endcsname
+ \xint_firstoftwo
+ {\PackageWarning{polexpr}{The \detokenize{#1} key is unknown! ignoring}}%
+ {\xintZapLastSpaces{#2#3}}%
+ \POL@setup_parsekeys
+}%
+\def\POL@setup_setkey_norr #1#2{\edef\POL@norr}%
+\def\POL@setup_setkey_sqfnorr #1#2{\edef\POL@sqfnorr}%
+\polexprsetup{norr=_norr, sqfnorr=_sqf_norr}
+\catcode`! 11 % special catcode for ! as used in xintexpr.sty
+%
+\newif\ifxintveryverbose
+\newif\ifpolnewpolverbose
+\newif\ifpoltypesetall
+\newif\ifpoltoexprall
+%%
+%% Main data format for non-expandable manipulations
+%%
+%% The main exchange structure is:
+%% N.\empty{coeff0}{coeff1}....{coeffN}
+%% It is stored in macros \POLuserpol@<name of polynomial>
+%% The \empty is basically there to avoid brace-stripping
+%% in some grabbing contexts (maybe I should revisit this)
+%%
+%% The zero polynomial is stored as -1.\empty{0/1[0]}
+%% Degree zero polynomials are 0.\empty{numeric value}
+%%
+%% Depending on input path the numeric values coeff0, coeff1, ...., coeffN
+%% may have been or not already converted into A/B[n] format.
+%% As a rule, computations are not followed with reducing the fractions
+%% to smallest terms; the innocent may be unaware that computing
+%% with fractions quickly give gigantic numbers. There is \PolReduceCoeffs
+%% to do that.
+%%
+%% This base structure is maintained at 0.8 for legacy reasons but perhaps I
+%% need to revisit this. A characteristic of the package so far is that it
+%% thus stores and manipulate polynomials basically as the complete sequence
+%% of coefficients, (using the xintfrac "zero" for missing coefficients) which
+%% means that it will handle poorly polynomials of high degrees such as X^500.
+%%
+%% Test if zero
+\def\POL@ifZero#1{\expandafter\POL@ifZero@aux#1;}%
+\def\POL@ifZero@aux #1#2;{\if-#1\expandafter\xint_firstoftwo
+ \else\expandafter\xint_secondoftwo
+ \fi}%
+%% Split into degree and coefficients
+% The \expandafter chain removes the \empty token
+\def\POL@split#1.#2;#3#4%
+ {\def#3{#1}\expandafter\def\expandafter#4\expandafter{#2}}%
+%% Define from values stored in a "macros-array"
+\def\POL@resultfromarray #1{%
+ \edef\POL@result{\ifnum\count@>\z@
+ \the\numexpr\count@-\@ne.\noexpand\empty
+ \xintiloop [1+1]%
+ \expandafter\POL@braceit\csname POL@array#1\xintiloopindex\endcsname
+ \ifnum\xintiloopindex<\count@
+ \repeat
+ \else-1.\noexpand\empty{0/1[0]}\fi}%
+}%
+\def\POL@braceit#1{{#1}}% needed as \xintiloopindex can not "see" through braces
+%%
+%% Conversion between legacy data storage and the one used for the
+%% the novel polexpr 0.8 notion of \xintexpr polynomial variables
+%%
+%% The 0.8 expandable implementation of core algebra is also manipulating
+%% the complete list of coefficients. The internal data structure is
+%% (this is the numeric leaf in xintexpr ople terminology) currently:
+%% PN.{coeff0}{coeff1}....{coeffN}
+%% where the P letter identifies the polynomial type.
+%% Here the degree N is *always* at least 1: if some evaluation ends
+%% up in a constant polynomial it will always be output as a genuine
+%% scalar numeric variable, as a rule in in A/B[n] format
+%%
+%% This is not definitive and I need to think about it more (in particular
+%% in the distant perspective of supporting multi-variable polynomials).
+%% However modifying this will be costly labor at this stage.
+%%
+\input polexprcore.tex\relax % load expandable algebra
+\def\POL@vartolegacy #1% \romannumeral\POL@vartolegacy ... \xint:
+{%
+ \if 0#1\xint_dothis\POL@vartolegacy@zero\fi
+ \if P#1\xint_dothis\POL@vartolegacy@pol\fi
+ \xint_orthat\POL@vartolegacy@scalar #1%
+}%
+\def\POL@vartolegacy@zero #1\xint:{\xint_c_ -1.\empty{0/1[0]}}%
+\def\POL@vartolegacy@scalar #1\xint:{\xint_c_ 0.\empty{#1}}%
+\def\POL@vartolegacy@pol P#1.#2\xint:{\xint_c_ #1.\empty#2}%
+%
+\def\POL@tovar#1{\romannumeral\expandafter\expandafter\expandafter
+ \POL@legacytovar\csname POLuserpol@#1\endcsname}%
+\def\POL@legacytovar #1.% \romannumeral\POL@legacytovar N.\empty{c0}...
+{%
+ \ifnum #1<\xint_c_i\xint_dothis\POL@legacytovar@scalar\fi
+ \xint_orthat\POL@legacytovar@pol #1.%
+}%
+\def\POL@legacytovar@scalar #1.\empty#2{\xint_c_ #2}%
+\def\POL@legacytovar@pol #1.\empty{\xint_c_ P#1.}%
+%%
+%% Extend \xintexpr (\xintdefvar, \xintdeffunc) to recognize the new
+%% polynomial type
+%%
+%% **** It does NOT apply to \xintfloatexpr context
+%%
+\input polexprexpr.tex\relax
+%%
+%% \poldef
+%%
+\def\PolDef{\POL@chkopt\POL@oPolDef[x]}%
+\def\POL@oPolDef[#1]#2#3{\poldef #2(#1):=#3;}%
+\def\poldef{\edef\POL@restoresemicolon{\catcode59=\the\catcode59\relax}%
+ \catcode59 12 \POL@defpol}%
+\def\POL@defpol #1(#2)#3=#4;{%
+ \POL@restoresemicolon
+ \edef\POL@polname{\xint_zapspaces #1 \xint_gobble_i}%
+\begingroup
+ \unless\ifxintveryverbose\xintverbosefalse\fi
+ %% RADICAL CHANGE AT 0.8:
+ %% we define a **variable** not a **function**
+ %% ever since polexpr initial version, a function was defined and
+ %% the associated macros was then deconstructed in further analysis
+ %% via non-expandable approach. At 0.8 the polynomial algebra has
+ %% been implemented expandably allowing direct plug-in into \xintexpr
+ \xintdefvar __pol = subs(#4,#2=qraw({{P1.{0/1[0]}{1/1[0]}}}));%
+ \expandafter
+\endgroup
+ \expandafter\def\expandafter\POL@result\expandafter
+ {\romannumeral0\expandafter\xint_stop_atfirstofone
+ \romannumeral0\csname XINT_expr_varvalue___pol\endcsname}%
+ \XINT_global\expandafter\def\csname POLuserpol@\POL@polname\expandafter\endcsname
+ \expandafter{\romannumeral\expandafter\POL@vartolegacy\POL@result\xint:}%
+ \expandafter\POL@newpol\expandafter{\POL@polname}%
+}%
+\def\POL@newpol#1{%
+ % 0.7.5 had some complicated special handling of constant
+ % polynomials, but these are complications of the past
+ % First a variable usable in \poldef but not in \xintexpr for arithmetic
+ % only for special dedicated functions such as coeff(), deg()
+ % (when they will be implemented). In \poldef, composition of polynomials
+ % in P(Q) syntax will be more efficient than P(Q(x)).
+ % This will use \XINT_global and obey \xintverbose... setting
+ \XINT_expr_defvar_one{#1}{{\POL@tovar{#1}}}%
+ % Second a function usable not only in \poldef but also in \xintexpr
+ % Will use \XINT_global
+ \POL@newpolhorner{#1}%
+ \POL@defpolfunc{#1}{expr}%
+ \XINT_global\expandafter\let\csname XINT_flexpr_func_#1\endcsname\@undefined
+ \ifpolnewpolverbose\POL@info{#1}\fi
+}%
+\def\POL@newfloatpol#1{%
+ \POL@newfloatpolhorner{#1}%
+ \POL@defpolfunc{#1}{flexpr}%
+ \ifpolnewpolverbose\POL@floatinfo{#1}%
+ \else
+ \ifxintverbose\POL@floatinfo{#1}\fi
+ \fi
+}%
+\def\POL@info #1{%
+ \xintMessage {polexpr}{Info}%
+ {Function #1 for the \string\xintexpr\space parser is
+ \ifxintglobaldefs(globally) \fi
+ associated to \string\XINT_expr_polfunc_#1\space
+ with meaning:
+ \expandafter\meaning
+ \csname XINT_expr_polfunc_#1\endcsname}%
+}%
+\def\POL@floatinfo #1{%
+ \xintMessage {polexpr}{Info}%
+ {Function #1 for the \string\xintfloatexpr\space parser is
+ \ifxintglobaldefs(globally) \fi
+ associated to \string\XINT_flexpr_polfunc_#1\space
+ with meaning:
+ \expandafter\meaning
+ \csname XINT_flexpr_polfunc_#1\endcsname}%
+}%
+%
+\def\POL@newpolhorner#1{%
+ \expandafter\expandafter\expandafter\POL@split
+ \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
+ \edef\POL@var@coeffs{\xintRevWithBraces{\POL@var@coeffs}}%
+ \begingroup
+ \expandafter\POL@newpol@horner\POL@var@coeffs\relax
+ \expandafter
+ \endgroup
+ \expandafter\XINT_global
+ \expandafter\def\csname XINT_expr_polfunc_#1\expandafter\endcsname
+ \expandafter##\expandafter1\expandafter{\POL@tmp{##1}}%
+}%
+\def\POL@newfloatpolhorner#1{%
+ %% redefine function to expand by Horner scheme. Is this useful?
+ %% perhaps bad idea for numerical evaluation of thing such as (1+x)^10?
+% note: I added {0/1[0]} item to zero polynomial also to facilitate this
+ \expandafter\expandafter\expandafter\POL@split
+ \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
+ \edef\POL@var@coeffs{\xintRevWithBraces{\POL@var@coeffs}}%
+ \begingroup
+ \expandafter\POL@newpol@floathorner\POL@var@coeffs\relax
+ \expandafter
+ \endgroup
+ \expandafter\def\csname XINT_flexpr_polfunc_#1\expandafter\endcsname
+ \expandafter##\expandafter1\expandafter{\POL@tmp{##1}}%
+}%
+\def\POL@newpol@horner#1{\let\xintPolAdd\relax\let\xintPolMul\relax
+ \def\POL@tmp##1{#1}\POL@newpol@horner@loop.}%
+\def\POL@newpol@horner@loop.#1{%
+ \if\relax#1\expandafter\xint_gob_til_dot\fi
+ \edef\POL@tmp##1{\xintiiifZero{#1}
+ {\xint_firstofone}{\xintPolAdd{#1}}%
+ {\xintPolMul{##1}{\POL@tmp{##1}}}}%
+ \POL@newpol@horner@loop.%
+}%
+\def\POL@newpol@floathorner#1{\let\XINTinFloatAdd\relax\let\XINTinFloatMul\relax
+ \edef\POL@tmp##1{\XINTinFloatdigits{#1}}%
+ \POL@newpol@floathorner@loop.}%
+\def\POL@newpol@floathorner@loop.#1{%
+ \if\relax#1\expandafter\xint_gob_til_dot\fi
+ \edef\POL@tmp##1{\xintiiifZero{#1}
+ {\xint_firstofone}{\XINTinFloatAdd{\XINTinFloatdigits{#1}}}%
+ {\XINTinFloatMul{##1}{\POL@tmp{##1}}}}%
+ \POL@newpol@floathorner@loop.%
+}%
+%%
+%% Non-expandable polynomial manipulations
+%%
+\def\PolGenFloatVariant#1{\POL@newfloatpol{#1}}%
+%
+\def\PolLet#1#2{\if=\noexpand#2\expandafter\xint_firstoftwo
+ \else\expandafter\xint_secondoftwo\fi
+ \POL@@let\POL@let{#1}{#2}}%
+\def\POL@@let#1#2#3{\POL@let{#1}{#3}}%
+\def\POL@let#1#2{%
+ \XINT_global
+ \expandafter\let\csname POLuserpol@#1\expandafter\endcsname
+ \csname POLuserpol@#2\endcsname
+ \XINT_expr_defvar_one{#1}{{\POL@tovar{#1}}}%
+ \XINT_global
+ \expandafter\let\csname XINT_expr_polfunc_#1\expandafter\endcsname
+ \csname XINT_expr_polfunc_#2\endcsname
+ \POL@defpolfunc{#1}{expr}%
+ \ifpolnewpolverbose\POL@info{#1}\fi
+}%
+\def\PolGlobalLet#1#2{\begingroup\xintglobaldefstrue\PolLet{#1}{#2}\endgroup}
+%
+\def\PolAssign#1{\def\POL@polname{#1}\POL@assign}% zap spaces in #1?
+\def\POL@assign#1\toarray#2{%
+ \expandafter\expandafter\expandafter\POL@split
+ \csname POLuserpol@\POL@polname\endcsname;\POL@var@deg\POL@var@coeffs
+ \xintAssignArray\POL@var@coeffs\to#2%
+ % modify \#200 macro to return 0/1[0] for out of range indices
+ \@namedef{\xint_arrayname00}##1##2##3{%
+ \@namedef{\xint_arrayname00}####1{%
+ \ifnum####1>##1 \xint_dothis{ 0/1[0]}\fi
+ \ifnum####1>\m@ne \xint_dothis
+ {\expandafter\expandafter\expandafter##3%
+ \csname##2####1\endcsname}\fi
+ \unless\ifnum-####1>##1 \xint_dothis
+ {\expandafter\expandafter\expandafter##3%
+ \csname##2\the\numexpr##1+####1+\@ne\endcsname}\fi
+ \xint_orthat{ 0/1[0]}}% space stops a \romannumeral0
+ }%
+ \csname\xint_arrayname00\expandafter\expandafter\expandafter\endcsname
+ \expandafter\expandafter\expandafter
+ {\csname\xint_arrayname0\expandafter\endcsname\expandafter}\expandafter
+ {\xint_arrayname}{ }%
+}%
+\def\PolGet{}%
+\def\PolGet#1#2\fromarray#3{%
+ \begingroup % closed in \POL@getfromarray
+ \POL@getfromarray{#1}{#3}%
+ \POL@newpol{#1}%
+}%
+\def\POL@getfromarray#1#2{%
+ \count@=#2{0} %<- intentional space
+ \ifnum\count@=\z@
+ \def\POL@result{-1.\empty{0/1[0]}}% 0.5 fix for empty array
+ \else
+ \xintloop
+ \edef\POL@tmp{#2{\count@}}%
+ \edef\POL@tmp{\xintRaw{\POL@tmp}}%
+% sadly xinttools (current 1.3a) arrays have no setters for individual items...
+ \expandafter\let\csname POL@tmparray\the\count@\endcsname\POL@tmp
+ \if0\xintiiSgn{\POL@tmp}%
+ \advance\count@\m@ne
+ \repeat
+ \count\tw@\count@
+ \xintloop
+ \ifnum\count@>\@ne
+ \advance\count@\m@ne
+ \edef\POL@tmp{#2{\count@}}%
+ \edef\POL@tmp{\xintRaw{\POL@tmp}}%
+ \expandafter\let\csname POL@tmparray\the\count@\endcsname\POL@tmp
+ \repeat
+ \count@\count\tw@
+ \def\POL@tmp##1.{{\csname POL@tmparray##1\endcsname}}%
+ \edef\POL@result{\the\numexpr\count@-\@ne.\noexpand\empty
+ \xintiloop[1+1]%
+ \expandafter\POL@tmp\xintiloopindex.%
+ \ifnum\xintiloopindex<\count@
+ \repeat}%
+ \fi
+ \expandafter
+ \endgroup
+ \expandafter
+ \XINT_global
+ \expandafter
+ \def\csname POLuserpol@#1\expandafter\endcsname
+ \expandafter{\POL@result}%
+}%
+%
+\def\PolFromCSV#1#2{%
+ \begingroup % closed in \POL@getfromarray
+ \xintAssignArray\xintCSVtoList{#2}\to\POL@arrayA
+ \POL@getfromarray{#1}\POL@arrayA
+ \POL@newpol{#1}%
+}%
+%
+\def\PolMapCoeffs#1#2{% #1 = macro, #2 = name
+ \POL@mapcoeffs{#1}{#2}%
+ \POL@newpol{#2}%
+}%
+\def\POL@mapcoeffs#1#2{%
+ \begingroup
+ \def\POL@mapcoeffs@macro{#1}%
+ \expandafter\expandafter\expandafter\POL@split
+ \csname POLuserpol@#2\endcsname;\POL@mapcoeffs@deg\POL@mapcoeffs@coeffs
+% ATTENTION à ne pas faire un \expandafter ici, car brace removal si 1 item
+ \xintAssignArray\POL@mapcoeffs@coeffs\to\POL@arrayA
+ \def\index{0}%
+ \count@\z@
+ \expandafter\POL@map@loop\expandafter.\POL@mapcoeffs@coeffs\relax
+ \xintloop
+% this abuses that \POL@arrayA0 is never 0.
+ \xintiiifZero{\csname POL@arrayA\the\count@\endcsname}%
+ {\iftrue}%
+ {\iffalse}%
+ \advance\count@\m@ne
+ \repeat
+% donc en sortie \count@ est 0 ssi pol nul.
+ \POL@resultfromarray A%
+ \expandafter
+ \endgroup
+ \expandafter
+ \XINT_global
+ \expandafter
+ \def\csname POLuserpol@#2\expandafter\endcsname\expandafter{\POL@result}%
+}%
+\def\POL@map@loop.#1{\if\relax#1\expandafter\xint_gob_til_dot\fi
+ \advance\count@\@ne
+ \edef\POL@map@coeff{\POL@mapcoeffs@macro{#1}}%
+ \expandafter
+ \let\csname POL@arrayA\the\count@\endcsname\POL@map@coeff
+ \edef\index{\the\numexpr\index+\@ne}%
+ \POL@map@loop.}%
+%
+\def\POL@xintIrr#1{\xintIrr{#1}[0]}%
+\def\PolReduceCoeffs{\POL@ifstar\POL@sreducecoeffs\POL@reducecoeffs}%
+\def\POL@reducecoeffs#1{\PolMapCoeffs{\POL@xintIrr}{#1}}%
+\def\POL@sreducecoeffs#1{\PolMapCoeffs{\xintPIrr}{#1}}%
+%
+\def\PolMakeMonic#1{%
+ \edef\POL@leadingcoeff{\PolLeadingCoeff{#1}}%
+ \edef\POL@leadingcoeff@inverse{\xintDiv{1/1[0]}{\POL@leadingcoeff}}%
+ \PolMapCoeffs{\xintMul{\POL@leadingcoeff@inverse}}{#1}%
+}%
+%
+%% \PolMakePrimitive (0.5)
+% This uses expandable \PolIContent
+% Note: the integer coefficients stored in A/1[n] form with
+% A not having trailing zeroes, due to usage of \xintREZ here.
+\def\POL@makeprim@macro#1%
+ {\xintREZ{\xintNum{\xintDiv{#1}{\POL@makeprim@icontent}}}}%
+\def\PolMakePrimitive#1{%
+ % This does not need a full user declared polynomial on input, only
+ % a \POLuserpol@name macro, but on output it is fully declared
+ \edef\POL@makeprim@icontent{\PolIContent{#1}}%
+ \PolMapCoeffs\POL@makeprim@macro{#1}%
+}%
+\def\POL@makeprimitive#1{%
+ % Avoids declaring the polynomial, internal usage in \PolToSturm
+ \edef\POL@makeprim@icontent{\PolIContent{#1}}%
+ \POL@mapcoeffs\POL@makeprim@macro{#1}%
+}%
+%
+%% Euclidean division
+% now based on the expandable routine from polexprcore.tex
+%
+\def\PolDivide#1#2#3#4{% #3=quotient, #4=remainder of #1 by #2
+ \POL@divide{#1}{#2}%
+ \XINT_global\expandafter\let\csname POLuserpol@#3\endcsname\POL@Q
+ \POL@newpol{#3}%
+ \XINT_global\expandafter\let\csname POLuserpol@#4\endcsname\POL@R
+ \POL@newpol{#4}%
+}%
+\def\PolQuo#1#2#3{% #3=quotient of #1 by #2
+ \POL@divide{#1}{#2}%
+ \XINT_global\expandafter\let\csname POLuserpol@#3\endcsname\POL@Q
+ \POL@newpol{#3}%
+}%
+\def\PolRem#1#2#3{% #3=remainder of #1 by #2
+ \POL@divide{#1}{#2}%
+ \XINT_global\expandafter\let\csname POLuserpol@#3\endcsname\POL@R
+ \POL@newpol{#3}%
+}%
+\def\POL@divide#1#2{%
+ % much simpler at 0.8 thanks to our expandable macros
+ \xintAssign\xintPolQuoRem{\POL@tovar{#1}}{\POL@tovar{#2}}\to\POL@Q\POL@R
+ \odef\POL@Q{\romannumeral\expandafter\POL@vartolegacy\POL@Q\xint:}%
+ \odef\POL@R{\romannumeral\expandafter\POL@vartolegacy\POL@R\xint:}%
+}%
+%% Euclidean special pseudo-remainder
+\def\POL@getprem#1#2{%
+ \let\POL@Q\undefined % trap errors in Sturm code update to use \POL@prem
+ % this was simpler before I converted \xintPolPRem into returning a tuple...
+ \odef\POL@R{\romannumeral\expandafter\POL@vartolegacy
+ \romannumeral0\expandafter\xint_stop_atsecondoftwo
+ \romannumeral`&&@\xintPolPRem{\POL@tovar{#1}}{\POL@tovar{#2}}%
+ \xint:}%
+}%
+%
+%%%%%%%%%%%%
+%%
+%% Things are currenly implemented twice : here the legacy macros
+%% such as GCD or Diff, and in polexprcore.tex the expandable
+%% support macros for the \xinteval interface.
+%%
+%% Soon, I will probably remove all legacy code (like I did already
+%% for division) and make the user macros simple wrappers to the
+%% expandable code.
+%%
+%% But for 0.8 release, I preferred not to yet, as I did not have
+%% really the time to compare speed. Usage of the "special
+%% pseudo euclidean remainder" (expandable) code in Sturm chain
+%% construction proved very beneficial as it divided by 3 the
+%% \PolToSturm execution time on the Wilkinson perturbed type 1
+%% example in the documentation.
+%%
+%%%%%%%%%%%%
+%
+%% GCD
+%
+% It seems I didn't even use here the (now deleted) macros implementing
+% division, and I redid here what was needed: this code, which I leave
+% standing as I have other priorities, does not use the \POL@divide !
+%
+\def\PolGCD#1#2#3{% sets #3 to the (unitary) G.C.D. of #1 and #2
+ \POL@GCD{#1}{#2}{#3}%
+ \POL@newpol{#3}%
+}%
+\def\POL@GCD #1#2#3{%
+ \begingroup
+ \expandafter\let\expandafter\POL@A\csname POLuserpol@#1\endcsname
+ \expandafter\let\expandafter\POL@B\csname POLuserpol@#2\endcsname
+ \expandafter\POL@split\POL@A;\POL@degA\POL@polA
+ \expandafter\POL@split\POL@B;\POL@degB\POL@polB
+ \ifnum\POL@degA<\z@
+ \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
+ \fi
+ {\ifnum\POL@degB<\z@
+ \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
+ \fi
+ {\def\POL@result{-1.\empty{0/1[0]}}}%
+ {\xintAssignArray\POL@polB\to\POL@arrayB
+ \POL@normalize{B}%
+ \POL@gcd@exit BA}}%
+ {\ifnum\POL@degB<\z@
+ \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
+ \fi
+ {\xintAssignArray\POL@polA\to\POL@arrayA
+ \POL@normalize{A}%
+ \POL@gcd@exit AB}%
+ {\ifnum\POL@degA<\POL@degB\space
+ \let\POL@tmp\POL@B\let\POL@B\POL@A\let\POL@A\POL@tmp
+ \let\POL@tmp\POL@degB\let\POL@degB\POL@degA\let\POL@degA\POL@tmp
+ \let\POL@tmp\POL@polB\let\POL@polB\POL@polA\let\POL@polA\POL@tmp
+ \fi
+ \xintAssignArray\POL@polA\to\POL@arrayA
+ \xintAssignArray\POL@polB\to\POL@arrayB
+ \POL@gcd AB%
+ }}%
+ \expandafter
+ \endgroup
+ \expandafter
+ \XINT_global
+ \expandafter\def\csname POLuserpol@#3\expandafter\endcsname
+ \expandafter{\POL@result}%
+}%
+\def\POL@normalize#1{%
+ \expandafter\def\expandafter\POL@tmp\expandafter
+ {\csname POL@array#1\csname POL@array#10\endcsname\endcsname}%
+ \edef\POL@normalize@leading{\POL@tmp}%
+ \expandafter\def\POL@tmp{1/1[0]}%
+ \count@\csname POL@deg#1\endcsname\space
+ \xintloop
+ \ifnum\count@>\z@
+ \expandafter\edef\csname POL@array#1\the\count@\endcsname
+ {\xintIrr{\xintDiv
+ {\csname POL@array#1\the\count@\endcsname}%
+ {\POL@normalize@leading}}[0]}%
+ \advance\count@\m@ne
+ \repeat
+}%
+\def\POL@gcd#1#2{%
+ \POL@normalize{#2}%
+ \edef\POL@degQ{\the\numexpr\csname POL@deg#1\endcsname
+ -\csname POL@deg#2\endcsname}%
+ \count@\numexpr\csname POL@deg#1\endcsname+\@ne\relax
+ \count\tw@\numexpr\POL@degQ+\@ne\relax
+ \xintloop
+ \POL@gcd@getremainder@loopbody#1#2%
+ \ifnum\count\tw@>\z@
+ \repeat
+ \expandafter\def\csname POL@array#10\endcsname{1}%
+ \xintloop
+ \xintiiifZero{\csname POL@array#1\the\count@\endcsname}%
+ {\iftrue}%
+ {\iffalse}%
+ \advance\count@\m@ne
+ \repeat
+ \expandafter\edef\csname POL@deg#1\endcsname{\the\numexpr\count@-\@ne}%
+ \ifnum\count@<\@ne
+ \expandafter\POL@gcd@exit
+ \else
+ \expandafter\edef\csname POL@array#10\endcsname{\the\count@}%
+ \expandafter\POL@gcd
+ \fi{#2}{#1}%
+}%
+\def\POL@gcd@getremainder@loopbody#1#2{%
+ \edef\POL@gcd@ratio{\csname POL@array#1\the\count@\endcsname}%
+ \advance\count@\m@ne
+ \advance\count\tw@\m@ne
+ \count4 \count@
+ \count6 \csname POL@deg#2\endcsname\space
+ \xintloop
+ \ifnum\count6>\z@
+ \expandafter\edef\csname POL@array#1\the\count4\endcsname
+ {\xintSub
+ {\csname POL@array#1\the\count4\endcsname}%
+ {\xintMul
+ {\POL@gcd@ratio}%
+ {\csname POL@array#2\the\count6\endcsname}}}%
+ \advance\count4 \m@ne
+ \advance\count6 \m@ne
+ \repeat
+}%
+\def\POL@gcd@exit#1#2{%
+ \count@\numexpr\csname POL@deg#1\endcsname+\@ne\relax
+ \POL@resultfromarray #1%
+}%
+%
+%% DIFFERENTIATION
+%
+\def\POL@diff@loop@one #1/#2[#3]#4%
+ {\xintIrr{\xintiiMul{#4}{#1}/#2[0]}[#3]}%
+\def\POL@diff#1{\POL@diff@loop1.}%
+\def\POL@diff@loop#1.#2{%
+ \if\relax#2\expandafter\xint_gob_til_dot\fi
+ {\expandafter\POL@diff@loop@one\romannumeral0\xintraw{#2}{#1}}%
+ \expandafter\POL@diff@loop\the\numexpr#1+\@ne.%
+}%
+\def\PolDiff{\POL@chkopt\POL@oPolDiff[1]}%
+\def\POL@oPolDiff[#1]{%
+ % optional parameter is how many times to derivate
+ % first mandatory arg is name of polynomial function to derivate,
+ % same name as in \NewPolExpr
+ % second mandatory arg name of derivative
+ \edef\POL@iterindex{\the\numexpr#1\relax}%
+ \ifnum\POL@iterindex<\z@
+ \expandafter\xint_firstoftwo
+ \else
+ \expandafter\xint_secondoftwo
+ \fi
+ {\PolAntiDiff[-\POL@iterindex]}{\POL@Diff}%
+}%
+\def\POL@Diff{%
+ \ifcase\POL@iterindex\space
+ \expandafter\POL@Diff@no
+ \or\expandafter\POL@Diff@one
+ \else\xint_afterfi{\POL@Iterate\POL@Diff@one}%
+ \fi
+}%
+\def\POL@Diff@no #1#2{\POL@let{#2}{#1}}%
+\def\POL@Diff@one #1#2{\POL@Diff@@one {#1}{#2}\POL@newpol{#2}}%
+\def\POL@Diff@@one#1#2{%
+ \expandafter\expandafter\expandafter\POL@split
+ \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
+ \ifnum\POL@var@deg<\@ne
+ \XINT_global\@namedef{POLuserpol@#2}{-1.\empty{0/1[0]}}%
+ \else
+ \edef\POL@var@coeffs{\expandafter\POL@diff\POL@var@coeffs\relax}%
+ \XINT_global\expandafter\edef\csname POLuserpol@#2\endcsname
+ {\the\numexpr\POL@var@deg-\@ne.\noexpand\empty\POL@var@coeffs}%
+ \fi
+}%
+% lazy way but allows to share with AntiDiff
+\def\POL@Iterate#1#2#3{%
+ \begingroup
+ \xintverbosefalse
+ #1{#2}{#3}%
+ \xintloop
+ \ifnum\POL@iterindex>\tw@
+ #1{#3}{#3}%
+ \edef\POL@iterindex{\the\numexpr\POL@iterindex-\@ne}%
+ \repeat
+ \expandafter
+ \endgroup\expandafter
+ \XINT_global
+ \expandafter
+ \def\csname POLuserpol@#3\expandafter\endcsname
+ \expandafter{\romannumeral`&&@\csname POLuserpol@#3\endcsname}%
+ #1{#3}{#3}%
+}%
+%
+%% ANTI-DIFFERENTIATION
+%
+\def\POL@antidiff@loop@one #1/#2[#3]#4%
+ {\xintIrr{#1/\xintiiMul{#4}{#2}[0]}[#3]}%
+\def\POL@antidiff{\POL@antidiff@loop1.}%
+\def\POL@antidiff@loop#1.#2{%
+ \if\relax#2\expandafter\xint_gob_til_dot\fi
+ {\expandafter\POL@antidiff@loop@one\romannumeral0\xintraw{#2}{#1}}%
+ \expandafter\POL@antidiff@loop\the\numexpr#1+\@ne.%
+}%
+\def\PolAntiDiff{\POL@chkopt\POL@oPolAntiDiff[1]}%
+\def\POL@oPolAntiDiff[#1]{%
+ % optional parameter is how many times to derivate
+ % first mandatory arg is name of polynomial function to derivate,
+ % same name as in \NewPolExpr
+ % second mandatory arg name of derivative
+ \edef\POL@iterindex{\the\numexpr#1\relax}%
+ \ifnum\POL@iterindex<\z@
+ \expandafter\xint_firstoftwo
+ \else
+ \expandafter\xint_secondoftwo
+ \fi
+ {\PolDiff[-\POL@iterindex]}{\POL@AntiDiff}%
+}%
+\def\POL@AntiDiff{%
+ \ifcase\POL@iterindex\space
+ \expandafter\POL@AntiDiff@no
+ \or\expandafter\POL@AntiDiff@one
+ \else\xint_afterfi{\POL@Iterate\POL@AntiDiff@one}%
+ \fi
+}%
+\let\POL@AntiDiff@no\POL@Diff@no
+\def\POL@AntiDiff@one #1#2{\POL@AntiDiff@@one{#1}{#2}\POL@newpol{#2}}%
+\def\POL@AntiDiff@@one#1#2{%
+ \expandafter\expandafter\expandafter\POL@split
+ \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
+ \ifnum\POL@var@deg<\z@
+ \XINT_global\@namedef{POLuserpol@#2}{-1.\empty{0/1[0]}}%
+ \else
+ \edef\POL@var@coeffs{\expandafter\POL@antidiff\POL@var@coeffs\relax}%
+ \XINT_global\expandafter\edef\csname POLuserpol@#2\endcsname
+ {\the\numexpr\POL@var@deg+\@ne.\noexpand\empty{0/1[0]}\POL@var@coeffs}%
+ \fi
+}%
+%
+%%
+%% Localization of roots
+%%
+% this is big. It provides also output macros, of both expandable and
+% non-expandable type
+\input polexprsturm.tex\relax
+%
+%
+%% Non-expandable output macros
+%
+\def\PolTypesetCmdPrefix#1{\xintiiifSgn{#1}{}{+}{+}}%
+\def\PolTypesetCmd#1{\xintifOne{\xintiiAbs{#1}}%
+ {\ifnum\PolIndex=\z@\xintiiSgn{#1}\else
+ \xintiiifSgn{#1}{-}{}{}\fi
+ \let\PolIfCoeffIsPlusOrMinusOne\xint_firstoftwo}%
+ {\PolTypesetOne{#1}%
+ \let\PolIfCoeffIsPlusOrMinusOne\xint_secondoftwo}%
+ }%
+\ifdefined\frac
+\def\PolTypesetOne{\xintSignedFrac}%
+\else
+\def\PolTypesetOne{\xintSignedFwOver}%
+\fi
+\catcode`^ 7
+\def\PolTypesetMonomialCmd{%
+ \ifcase\PolIndex\space
+ %
+ \or\PolVar
+ \else\PolVar^{\PolIndex}%
+ \fi
+}%
+\catcode`^ 11 % normal xint catcode
+\def\PolTypeset{\POL@ifstar
+ {\def\POL@ts@ascending{1}\POL@Typeset}%
+ {\def\POL@ts@ascending{0}\POL@Typeset}%
+}%
+%%
+%% \PolTypeset
+%%
+%% extended at 0.8 to handle arbitrary expressions on input
+%%
+\def\POL@Typeset{\POL@chkopt\POL@oPOL@Typeset[x]}%
+\def\POL@oPOL@Typeset[#1]#2{%
+ \ifmmode\let\POL@endtypeset\empty\else$\def\POL@endtypeset{$}\fi
+ \ifcsname POLuserpol@#2\endcsname
+ \expandafter\expandafter\expandafter\POL@split
+ \csname POLuserpol@#2\endcsname;\POL@var@deg\POL@var@coeffs
+ \else
+ \xintAssign\expandafter\xint_firstofone\romannumeral0\xintbareeval
+ subs((deg(x),coeffs(x)),x=subs(#2,\PolToExprInVar=pol([0,1])))\relax
+ \to\POL@var@deg\POL@var@coeffs
+ \fi
+ \if\POL@ts@ascending1%
+ \def\PolIndex{0}%
+ \let\POL@ts@reverse\xint_firstofone
+ \let\POL@@ne@or@m@ne\@ne
+ \else
+ \let\PolIndex\POL@var@deg
+ \ifnum\PolIndex<\z@\def\PolIndex{0}\fi
+ \let\POL@ts@reverse\xintRevWithBraces
+ \let\POL@@ne@or@m@ne\m@ne
+ \fi
+ \def\PolVar{#1}%
+ \ifnum\POL@var@deg<\z@
+ \PolTypesetCmd{0/1[0]}\PolTypesetMonomialCmd
+ \else
+ \ifnum\POL@var@deg=\z@
+ \expandafter\PolTypesetCmd\POL@var@coeffs\PolTypesetMonomialCmd
+ \else
+ \def\POL@ts@prefix##1{\let\POL@ts@prefix\PolTypesetCmdPrefix}%
+ \expandafter\POL@ts@loop
+ \romannumeral-`0\POL@ts@reverse{\POL@var@coeffs}\relax
+ \fi
+ \fi
+ \POL@endtypeset
+}%
+\def\POL@ts@loop{\ifpoltypesetall\expandafter\xint_firstoftwo
+ \else\expandafter\xint_secondoftwo\fi
+ {\POL@ts@nocheck}{\POL@ts@check}.%
+}%
+\def\POL@ts@check.#1{%
+ \if\relax#1\expandafter\xint_gob_til_dot\fi
+ \xintiiifZero{#1}%
+ {}%
+ {\POL@ts@prefix{#1}\PolTypesetCmd{#1}\PolTypesetMonomialCmd}%
+ \edef\PolIndex{\the\numexpr\PolIndex+\POL@@ne@or@m@ne}\POL@ts@check.%
+}%
+\def\POL@ts@nocheck.#1{%
+ \if\relax#1\expandafter\xint_gob_til_dot\fi
+ \POL@ts@prefix{#1}\PolTypesetCmd{#1}\PolTypesetMonomialCmd
+ \edef\PolIndex{\the\numexpr\PolIndex+\POL@@ne@or@m@ne}\POL@ts@nocheck.%
+}%
+%
+%%
+%% Expandable output macros (legacy)
+%%
+\def\POL@eval@fork#1\At#2#3\krof{#2}%
+\def\PolEval#1#2#3{\romannumeral`&&@\POL@eval@fork
+ #2\PolEvalAt
+ \At\PolEvalAtExpr\krof {#1}{#3}%
+}%
+\def\PolEvalAt#1#2{%
+ \xintpraw{\csname XINT_expr_polfunc_#1\endcsname{#2}}%
+}%
+\def\POL@eval#1#2{%
+ \csname XINT_expr_polfunc_#1\endcsname{#2}%
+}%
+\def\PolEvalAtExpr#1#2{\xinttheexpr #1(#2)\relax}%
+%
+\def\PolEvalReduced#1#2#3{\romannumeral`&&@\POL@eval@fork
+ #2\PolEvalReducedAt
+ \At\PolEvalReducedAtExpr\krof {#1}{#3}%
+}%
+\def\PolEvalReducedAt#1#2{%
+ \xintpraw % in order not to print denominator if the latter equals 1
+ {\xintIrr{\csname XINT_expr_polfunc_#1\endcsname{#2}}[0]}%
+}%
+\def\PolEvalReducedAtExpr#1#2{%
+ \xintpraw
+ {\expandafter\xintIrr\romannumeral`&&@\xintthebareeval#1(#2)\relax[0]}%
+}%
+%
+\def\PolFloatEval#1#2#3{\romannumeral`&&@\POL@eval@fork
+ #2\PolFloatEvalAt
+ \At\PolFloatEvalAtExpr\krof {#1}{#3}%
+}%
+\def\PolFloatEvalAt#1#2{%
+ \xintpfloat{\csname XINT_flexpr_polfunc_#1\endcsname{#2}}%
+}%
+\def\PolFloatEvalAtExpr#1#2{\xintthefloatexpr #1(#2)\relax}%
+\def\PolLeadingCoeff#1{%
+ \romannumeral`&&@\expandafter\expandafter\expandafter\xintlastitem
+ \expandafter\expandafter\expandafter
+ {\csname POLuserpol@#1\endcsname}%
+}%
+%
+\def\PolNthCoeff#1#2{\romannumeral`&&@%
+ \expandafter\POL@nthcoeff
+ \romannumeral0\xintnthelt{\ifnum\numexpr#2<\z@#2\else(#2)+1\fi}%
+ {\expandafter\expandafter\expandafter
+ \xint_gob_til_dot\csname POLuserpol@#1\endcsname}@%
+}%
+\def\POL@nthcoeff#1@{\if @#1@\expandafter\xint_firstoftwo
+ \else\expandafter\xint_secondoftwo\fi
+ {0/1[0]}{#1}}%
+%
+% returns -1 for zero polynomial for context of numerical expression
+% should it return -\infty?
+\def\PolDegree#1{\romannumeral`&&@\expandafter\expandafter\expandafter
+ \POL@degree\csname POLuserpol@#1\endcsname;}%
+\def\POL@degree #1.#2;{#1}%
+%
+\def\PolToList#1{\romannumeral`&&@\expandafter\expandafter\expandafter
+ \xint_gob_til_dot\csname POLuserpol@#1\endcsname}%
+%
+\def\PolToCSV#1{\romannumeral0\xintlistwithsep{, }{\PolToList{#1}}}%
+%
+% \PolIContent (0.5)
+% Why did I call this IContent and not Content? Ah, I see Maple terminology
+% But I realize now I misread the Maple doc, its icontent() is the gcd of
+% all coeffs of a multivariate polynomial. Whereas content(,) second argument
+% specifies which variable to consider expression as being univariate in it
+%
+\def\POL@icontent#1{\romannumeral0\expandafter\XINT_fgcd_out
+ \romannumeral0\expandafter\XINT_fgcdof\romannumeral`&&@#1^}%
+% Since xintexpr 1.4d, \xintGCDof always outputs an irreducible fraction A/B.
+% (with B=1 if A/B integer).
+\def\PolIContent#1{\xintGCDof{\PolToList{#1}}}%
+%
+\def\PolToExprCmd#1{\xintPRaw{\xintRawWithZeros{#1}}}%
+\def\PolToFloatExprCmd#1{\xintFloat{#1}}%
+% \def\PolTypesetCmdPrefix#1{\xintiiifSgn{#1}{}{+}{+}}%
+\let\PolToExprTermPrefix\PolTypesetCmdPrefix
+\def\PolToExprOneTermStyleA#1#2{%
+ \ifnum#2=\z@
+ \PolToExprCmd{#1}%
+ \else
+ \xintifOne{\xintiiAbs{#1}}
+ {\xintiiifSgn{#1}{-}{}{}}% + from \PolToExprTermPrefix
+ {\PolToExprCmd{#1}\PolToExprTimes}%
+ \fi
+ \ifcase\xintiiAbs{#2} %<-- space here mandatory
+ \or\PolToExprVar
+ \else\PolToExprVar\PolToExprCaret\xintiiAbs{#2}%
+ \fi
+}%
+\let\PolToExprOneTerm\PolToExprOneTermStyleA
+\def\PolToExprOneTermStyleB#1#2{%
+ \ifnum#2=\z@
+ \xintNumerator{#1}%
+ \else
+ \xintifOne{\xintiiAbs{\xintNumerator{#1}}}
+ {\xintiiifSgn{#1}{-}{}{}}% + from \PolToExprTermPrefix
+ {\xintNumerator{#1}\PolToExprTimes}%
+ \fi
+ \ifcase\xintiiAbs{#2} %<-- space here mandatory
+ \or\PolToExprVar
+ \else\PolToExprVar\PolToExprCaret\xintiiAbs{#2}%
+ \fi
+ \xintiiifOne{\xintDenominator{#1}}{}{/\xintDenominator{#1}}%
+}%
+\def\PolToFloatExprOneTerm#1#2{%
+ \ifnum#2=\z@
+ \PolToFloatExprCmd{#1}%
+ \else
+ \PolToFloatExprCmd{#1}\PolToExprTimes
+ \fi
+ \ifcase\xintiiAbs{#2} %<-- space here mandatory
+ \or\PolToExprVar
+ \else\PolToExprVar\PolToExprCaret\xintiiAbs{#2}%
+ \fi
+}%
+\def\PolToExprTimes{*}%
+\def\PolToExprVar{x}%
+\def\PolToExprInVar{x}%
+\edef\PolToExprCaret{\string ^}%
+%%
+%% \PolToExpr
+%%
+%% extended at 0.8 to handle arbitrary expressions on input
+%%
+\def\PolToExpr#1{%
+ \if*\noexpand#1\expandafter\xint_firstoftwo\else
+ \expandafter\xint_secondoftwo\fi
+ \PolToExprAscending\PolToExprDescending{#1}}%
+\def\PolToFloatExpr#1{%
+ \if*\noexpand#1\expandafter\xint_firstoftwo\else
+ \expandafter\xint_secondoftwo\fi
+ \PolToFloatExprAscending\PolToFloatExprDescending{#1}}%
+\def\PolToExpr@getit#1%
+{%
+ \ifcsname XINT_expr_varvalue_#1\endcsname
+ \csname XINT_expr_varvalue_#1\expandafter\endcsname
+ \else
+ \expandafter\xint_firstofone\romannumeral0%
+ \xintbareeval subs(#1,\PolToExprInVar=pol([0,1]))\expandafter\relax
+ \fi
+}%
+\def\PolToExprAscending#1#2{%
+ \expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#2}%
+ \PolToExprOneTerm\POL@toexprA
+}%
+\def\PolToFloatExprAscending#1#2{%
+ \expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#2}%
+ \PolToFloatExprOneTerm\POL@toexprA
+}%
+\def\PolToExprDescending#1{%
+ \expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#1}%
+ \PolToExprOneTerm\POL@toexprD
+}%
+\def\PolToFloatExprDescending#1{%
+ \expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#1}%
+ \PolToFloatExprOneTerm\POL@toexprD
+}%
+\def\POL@toexpr#1#2#3{\POL@toexpr@fork#3#2#1\relax}%
+\def\POL@toexpr@fork #1#2#3{%
+ \POL_Pfork
+ #3\POL@toexpr@pol
+ P\POL@toexpr@cst
+ \krof #1#2#3%
+}%
+\def\POL@toexpr@cst#1#2#3\relax{#2{#3}{0}}%
+\def\POL@toexpr@pol#1#2P#3.{#1{#3}#2\empty}%
+% now back to legacy pre 0.8 code
+\def\POL@toexprA #1#2\empty#3{%
+ \ifpoltoexprall\expandafter\POL@toexprall@b
+ \else\expandafter\POL@toexpr@b
+ \fi {#3}#2{0}1.%
+}%
+\def\POL@toexprD #1#2#3\relax{% #3 has \empty to prevent brace removal
+ \expandafter\POL@toexprD@a\expandafter#2%
+ \the\numexpr #1\expandafter.\romannumeral0\xintrevwithbraces{#3}\relax
+}%
+\def\POL@toexprD@a #1#2.#3{%
+ \ifpoltoexprall\expandafter\POL@toexprall@b
+ \else\expandafter\POL@toexpr@b
+ \fi{#3}#1{-#2}\the\numexpr\@ne+-#2.%
+}%
+\def\POL@toexpr@b #1#2#3{%
+ \xintiiifZero{#1}%
+ {\expandafter\POL@toexpr@loop\expandafter\POL@toexpr@b}%
+ {#2{#1}{#3}%
+ \expandafter\POL@toexpr@loop\expandafter\POL@toexpr@c}%
+ \expandafter#2%
+}%
+\def\POL@toexpr@c #1#2#3{%
+ \xintiiifZero{#1}%
+ {}%
+ {\PolToExprTermPrefix{#1}#2{#1}{#3}}%
+ \expandafter\POL@toexpr@loop\expandafter\POL@toexpr@c
+ \expandafter#2%
+}%
+\def\POL@toexprall@b #1#2#3{%
+ #2{#1}{#3}%
+ \expandafter\POL@toexpr@loop\expandafter\POL@toexprall@c
+ \expandafter#2%
+}%
+\def\POL@toexprall@c #1#2#3{%
+ \PolToExprTermPrefix{#1}#2{#1}{#3}%
+ \expandafter\POL@toexpr@loop\expandafter\POL@toexprall@c
+ \expandafter#2%
+}%
+\def\POL@toexpr@loop#1#2#3.#4{%
+ \if\relax#4\expandafter\xint_gob_til_dot\fi
+ #1{#4}#2{#3}\the\numexpr\@ne+#3.%
+}%
+\XINT_restorecatcodes_endinput%
diff --git a/Master/texmf-dist/tex/generic/polexpr/polexprcore.tex b/Master/texmf-dist/tex/generic/polexpr/polexprcore.tex
new file mode 100644
index 00000000000..e071729e42b
--- /dev/null
+++ b/Master/texmf-dist/tex/generic/polexpr/polexprcore.tex
@@ -0,0 +1,1366 @@
+%% This file polexprcore.tex is part of the polexpr package (0.8, 2021/03/29)
+%% Core routines to match infix operators +, -, *, //, /:, ^, ** and some
+%% functions
+%% The atoms representing polynomials inside \xintexpr are
+%% - for constants: a numeric value (indistinguishable. from scalars)
+%% - for degree at least 1: P<degree>.{c0}{c1}....{cN} with N = degree
+%% Auxiliaries
+\long\def\POL_Pfork #1P#2#3\krof{#2}%
+\long\def\POL_PPfork #1PP#2#3\krof{#2}%
+\long\def\POL_zeroPfork #10P#2#3\krof{#2}%
+\long\def\POL_secondofthree#1#2#3{#2}%
+% \long\def\POL_Apply:x #1#2%
+% {%
+% \POL_apply:x_loop {#1}#2%
+% \xint_Bye\xint_Bye\xint_Bye\xint_Bye
+% \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+% }%
+\long\def\POL_bBye#1\xint_Bye{}%
+\long\def\POL_apply:x_loop #1#2#3#4#5#6#7#8#9%
+{%
+ \POL_bBye #2\xint_Bye{#1{#2}}%
+ \POL_bBye #3\xint_Bye{#1{#3}}%
+ \POL_bBye #4\xint_Bye{#1{#4}}%
+ \POL_bBye #5\xint_Bye{#1{#5}}%
+ \POL_bBye #6\xint_Bye{#1{#6}}%
+ \POL_bBye #7\xint_Bye{#1{#7}}%
+ \POL_bBye #8\xint_Bye{#1{#8}}%
+ \POL_bBye #9\xint_Bye{#1{#9}}%
+ \POL_apply:x_loop {#1}%
+}%
+\long\def\POL_apply:x_iloop #1#2#3#4#5#6#7#8#9%
+{%
+ \POL_bBye #2\xint_Bye{#10{#2}}%
+ \POL_bBye #3\xint_Bye{#11{#3}}%
+ \POL_bBye #4\xint_Bye{#12{#4}}%
+ \POL_bBye #5\xint_Bye{#13{#5}}%
+ \POL_bBye #6\xint_Bye{#14{#6}}%
+ \POL_bBye #7\xint_Bye{#15{#7}}%
+ \POL_bBye #8\xint_Bye{#16{#8}}%
+ \POL_bBye #9\xint_Bye{#17{#9}}%
+ \POL_apply:x_iloop_a#1%
+}%
+\def\POL_apply:x_iloop_a#1#2.%
+{%
+ \expandafter\POL_apply:x_iloop
+ \expandafter{\expandafter#1\the\numexpr\xint_c_viii+#1.}%
+}%
+\long\def\POL_apply:x_iloop #1#2#3#4#5#6#7#8#9%
+{%
+ \POL_bBye #2\xint_Bye{#10{#2}}%
+ \POL_bBye #3\xint_Bye{#11{#3}}%
+ \POL_bBye #4\xint_Bye{#12{#4}}%
+ \POL_bBye #5\xint_Bye{#13{#5}}%
+ \POL_bBye #6\xint_Bye{#14{#6}}%
+ \POL_bBye #7\xint_Bye{#15{#7}}%
+ \POL_bBye #8\xint_Bye{#16{#8}}%
+ \POL_bBye #9\xint_Bye{#17{#9}}%
+ \POL_apply:x_iloop_a#1%
+}%
+\def\POL_apply:x_iloop_a#1#2.%
+{%
+ \expandafter\POL_apply:x_iloop
+ \expandafter{\expandafter#1\the\numexpr\xint_c_viii+#1.}%
+}%
+%%
+%% ADDITION
+%%
+\def\xintPolAdd #1%
+{%
+ \expanded\expandafter\POL_add_in\romannumeral`&&@#1\xint:
+}%
+\def\POL_add_in #1\xint:#2%
+{%
+ {%
+ \expandafter\POL_add_fork
+% Fragile but this macro is not public anyhow and won't get arbitrary input
+% At odds with systematic \xint: style further down
+ \romannumeral`&&@#2\xint_bye\xint_bye\xint_bye\xint_bye\empty
+ #1\xint_bye\xint_bye\xint_bye\xint_bye\empty
+ \empty
+ }%
+}%
+% Careful that first means "first here" i.e. the original second argument,
+% and vice versa
+\def\POL_add_fork #1#2\empty#3%
+{%
+ \POL_PPfork
+ #1#3{\POL_add_a}%
+ #1P{\POL_add_second_is_scalar}%
+ #3P{\POL_add_first_is_scalar}%
+ PP{\POL_add_both_are_scalar}%
+ \krof #1#2\empty#3%
+}%
+\def\POL_add_first_is_scalar #1\xint_bye#2\empty#3.#4%
+{%
+ #3.{\xintAdd{#1}{#4}}%
+}%
+\def\POL_add_second_is_scalar #1.#2#3\empty#4\xint_bye#5\empty\empty
+{%
+ #1.{\xintAdd{#2}{#4}}#3%
+}%
+\def\POL_add_both_are_scalar #1\xint_bye#2\empty#3\xint_bye#4\empty\empty
+{%
+ \xintAdd{#1}{#3}%
+}%
+\def\POL_add_a P#1.#2#3#4#5\empty P#6.#7#8#9%
+{%
+ \expandafter\POL_add_b
+ \expanded\bgroup\unexpanded{#1.#6.}%
+ \xint_bye #2\POL_add_Eb\xint_bye
+ \xint_bye #7\POL_add_Fb\xint_bye {\xintAdd{#2}{#7}}%
+ \xint_bye #3\POL_add_Ec\xint_bye
+ \xint_bye #8\POL_add_Fc\xint_bye {\xintAdd{#3}{#8}}%
+ \xint_bye #4\POL_add_Ed\xint_bye
+ \xint_bye #9\POL_add_Fd\xint_bye {\xintAdd{#4}{#9}}%
+ \POL_add_A #5\empty
+}%
+\def\POL_add_b #1.#2.%
+{%
+ \ifnum#1=#2 \expandafter\POL_add_c
+ \else
+ \ifnum#1>#2 P#1.\else P#2.\fi
+ \fi
+}%
+% No brace stripping possible, because constant polynomials are really
+% represented by scalars in all those internal contexts, so real
+% polynomials have at least two coefficients
+\def\POL_add_c #1\empty
+{%
+ \expandafter\POL_add_d
+ \romannumeral0\XINT_revwbr_loop {}%
+ #1\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint_bye
+ \xint_bye
+}%
+% Attention, reused in various other locations. It is all f-expandable.
+\def\POL_add_d #1%
+{%
+% abuse of \XINT_Sgn internals compatible to #1 being \xint_bye
+ \if0\XINT_Sgn#1\xint:
+ \xint_dothis\POL_add_d
+ \fi
+ \xint_orthat{\POL_add_e {#1}}%
+}%
+\def\POL_add_e #1%
+{%
+ \xint_bye#1\POL_add_e_zero\xint_bye \POL_add_f\empty{#1}%
+}%
+\def\POL_add_e_zero\xint_bye\POL_add_f\empty #1{0/1[0]}%
+% #1 starts with \empty to avoid brace stripping.
+\def\POL_add_f #1\xint_bye
+{%
+ \expandafter\POL_add_g
+ \the\numexpr
+ \xintLength{#1}-\xint_c_ii\expandafter.%
+ \romannumeral0\expandafter
+ \XINT_revwbr_loop\expandafter {\expandafter}%
+ #1\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint_bye
+}%
+\def\POL_add_g #1.%
+{%
+ \ifnum#1=\xint_c_\expandafter\POL_add_h\fi
+ P#1.%
+}%
+\def\POL_add_h P0.#1{#1}%
+% Attention reused in \POL_mul_d and \POL_quorem_c
+\def\POL_add_A #1#2#3#4#5\empty#6#7#8#9%
+{%
+ \xint_bye #1\POL_add_Ea\xint_bye
+ \xint_bye #6\POL_add_Fa\xint_bye {\xintAdd{#1}{#6}}%
+ \xint_bye #2\POL_add_Eb\xint_bye
+ \xint_bye #7\POL_add_Fb\xint_bye {\xintAdd{#2}{#7}}%
+ \xint_bye #3\POL_add_Ec\xint_bye
+ \xint_bye #8\POL_add_Fc\xint_bye {\xintAdd{#3}{#8}}%
+ \xint_bye #4\POL_add_Ed\xint_bye
+ \xint_bye #9\POL_add_Fd\xint_bye {\xintAdd{#4}{#9}}%
+ \POL_add_A #5\empty
+}%
+\def\POL_add_Ea\xint_bye
+ \xint_bye #1\POL_add_Fa\xint_bye #2\xint_bye\xint_bye
+ \POL_add_Eb\xint_bye\xint_bye#3\POL_add_Fb\xint_bye #4\xint_bye\xint_bye
+ \POL_add_Ec\xint_bye\xint_bye#5\POL_add_Fc\xint_bye #6\xint_bye\xint_bye
+ \POL_add_Ed\xint_bye\xint_bye#7\POL_add_Fd\xint_bye #8%
+ \POL_add_A#9\empty
+{%
+ \xint_bye #1\POL_add_G\xint_bye{#1}%
+ \xint_bye #3\POL_add_G\xint_bye{#3}%
+ \xint_bye #5\POL_add_G\xint_bye{#5}%
+ \xint_bye #7\POL_add_G\xint_bye{#7}%
+ \iffalse{\fi}%
+}%
+\def\POL_add_G#1\empty{\iffalse{\fi}}%
+\def\POL_add_Fa\xint_bye #1%
+ \xint_bye #2\POL_add_Eb \xint_bye
+ \xint_bye\xint_bye\POL_add_Fb\xint_bye #3%
+ \xint_bye #4\POL_add_Ec \xint_bye
+ \xint_bye\xint_bye\POL_add_Fc\xint_bye #5%
+ \xint_bye #6\POL_add_Ed #7\POL_add_A
+ #8\empty#9\empty
+{%
+ \expandafter\xint_bye\POL_secondofthree #1%
+ \POL_add_G\xint_bye{\POL_secondofthree#1}%
+ \xint_bye #2\POL_add_G\xint_bye{#2}%
+ \xint_bye #4\POL_add_G\xint_bye{#4}%
+ \xint_bye #6\POL_add_G\xint_bye{#6}%
+ \iffalse{\fi}#8\empty%
+}%
+\def\POL_add_Eb\xint_bye
+ \xint_bye #1\POL_add_Fb\xint_bye #2\xint_bye\xint_bye
+ \POL_add_Ec\xint_bye\xint_bye#3\POL_add_Fc\xint_bye #4\xint_bye\xint_bye
+ \POL_add_Ed\xint_bye\xint_bye#5\POL_add_Fd\xint_bye #6%
+ \POL_add_A#7\empty
+{%
+ \xint_bye #1\POL_add_G\xint_bye{#1}%
+ \xint_bye #3\POL_add_G\xint_bye{#3}%
+ \xint_bye #5\POL_add_G\xint_bye{#5}%
+ \iffalse{\fi}%
+}%
+\def\POL_add_Fb\xint_bye #1%
+ \xint_bye #2\POL_add_Ec \xint_bye
+ \xint_bye\xint_bye\POL_add_Fc\xint_bye #3%
+ \xint_bye #4\POL_add_Ed #5\POL_add_A
+ #6\empty#7\empty
+{%
+ \expandafter\xint_bye\POL_secondofthree #1%
+ \POL_add_G\xint_bye{\POL_secondofthree#1}%
+ \xint_bye #2\POL_add_G\xint_bye{#2}%
+ \xint_bye #4\POL_add_G\xint_bye{#4}%
+ \iffalse{\fi}#6\empty
+}%
+\def\POL_add_Ec\xint_bye
+ \xint_bye #1\POL_add_Fc\xint_bye #2\xint_bye\xint_bye
+ \POL_add_Ed\xint_bye\xint_bye#3\POL_add_Fd\xint_bye #4%
+ \POL_add_A#5\empty
+{%
+ \xint_bye #1\POL_add_G\xint_bye{#1}%
+ \xint_bye #3\POL_add_G\xint_bye{#3}%
+ \iffalse{\fi}%
+}%
+\def\POL_add_Fc\xint_bye #1\xint_bye #2\POL_add_Ed #3\POL_add_A
+ #4\empty#5\empty
+{%
+ \expandafter\xint_bye\POL_secondofthree #1%
+ \POL_add_G\xint_bye{\POL_secondofthree#1}%
+ \xint_bye #2\POL_add_G\xint_bye{#2}%
+ \iffalse{\fi}#4\empty
+}%
+\def\POL_add_Ed\xint_bye\xint_bye#1\POL_add_Fd\xint_bye#2\POL_add_A#3\empty
+{%
+ \xint_bye #1\POL_add_G\xint_bye{#1}%
+ \iffalse{\fi}%
+}%
+\def\POL_add_Fd\xint_bye#1\POL_add_A #2\empty#3\empty
+{%
+ \expandafter\xint_bye \POL_secondofthree #1%
+ \POL_add_G\xint_bye{\POL_secondofthree#1}%
+ \iffalse{\fi}#2\empty
+}%
+%%
+%% OPPOSITE
+%%
+\def\xintPolOpp #1%
+{%
+ \expanded{%
+ \expandafter\POL_opp_fork\romannumeral`&&@#1%
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+\def\POL_opp_fork #1%
+{%
+ \if P#1\xint_dothis\POL_opp_a\fi
+ \xint_orthat\POL_opp_scalar #1%
+}%
+\def\POL_opp_scalar #1\xint_Bye#2\xint_bye
+{%
+ \XINT_Opp #1%
+}%
+\def\POL_opp_a #1.%
+{%
+ #1.\POL_apply:x_loop{\XINT_Opp}%
+}%
+%%
+%% SUBTRACTION
+%%
+\def\xintPolSub #1%
+{%
+ \expanded\expandafter\POL@sub\romannumeral`&&@#1\xint:
+}%
+\def\POL@sub #1\xint:#2%
+{%
+ {%
+ \expandafter
+ \POL_add_fork\expanded{%
+ \expandafter\POL_opp_fork \romannumeral`&&@#2%
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+ \xint_bye\xint_bye\xint_bye\xint_bye\empty
+ #1\xint_bye\xint_bye\xint_bye\xint_bye\empty
+ \empty
+ }%
+}%
+%%
+%% MULTIPLICATION
+%%
+\def\xintPolSqr #1%
+{%
+ \expanded\expandafter\POL_sqr_in\romannumeral`&&@#1\xint:
+}%
+\def\POL_sqr_in #1\xint:
+{%
+ {%
+ \expandafter\POL_mul_fork
+ #1\xint_bye
+ #1\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+%
+\def\xintPolMul #1%
+{%
+ \expanded\expandafter\POL_mul_in\romannumeral`&&@#1\xint:
+}%
+\def\POL_mul_in #1\xint:#2%
+{%
+ {%
+ \expandafter\POL_mul_fork
+ \romannumeral`&&@#2\xint_bye
+ #1\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+\def\POL_mul_fork #1#2\xint_bye#3%
+{%
+ \POL_PPfork
+ #1#3{\POL_mul_a}%
+ #1P{\POL_mul_second_is_scalar}%
+ #3P{\POL_mul_first_is_scalar}%
+ PP{\POL_mul_both_are_scalar}%
+ \krof #1#2\xint_bye#3%
+}%
+\def\POL_mul_both_are_scalar #1\xint_bye#2\xint_Bye#3\xint_bye
+{%
+ \xintMul{#1}{#2}%
+}%
+\def\POL_mul_second_is_scalar #1\xint_bye#2\xint_Bye
+{%
+ \POL_mul_first_is_scalar #2\xint_bye#1\xint_Bye
+}%
+\def\POL_mul_first_is_scalar #1%
+{%
+ \xint_gob_til_zero#1\POL_mul_zero0\POL_mul_scalar #1%
+}%
+\def\POL_mul_zero0\POL_mul_scalar #1\xint_bye#2\xint_bye{0/1[0]}%
+\def\POL_mul_scalar #1\xint_bye P#2.%
+{%
+ P#2.\POL_apply:x_loop{\xintMul{#1}}%
+}%
+\def\POL_mul_a P#1.#2#3P#4.#5\xint_bye
+{%
+ P\the\numexpr#1+#4.%
+ \expandafter\POL_mul_b
+ \expanded{\POL_apply:x_loop{\xintMul{#2}}#5\xint_bye}%
+ \xint:
+ #3\empty#5\xint_bye
+}%
+\def\POL_mul_b #1{{#1}\POL_mul_c\empty}%
+\def\POL_mul_c #1\xint:#2%
+{%
+ \xint_bye#2\POL_mul_E\xint_bye
+ \expandafter\POL_mul_d\expandafter{#1}{#2}%
+}%
+\def\POL_mul_d #1#2#3\empty#4\xint_bye
+{%
+ \expandafter\POL_mul_b
+ \expanded\bgroup
+ \expandafter\POL_add_A
+ \expanded{\POL_apply:x_loop{\xintMul{#2}}#4\xint_bye}%
+ \xint_bye\xint_bye\xint_bye\xint_bye\empty
+ #1\xint_bye\xint_bye\xint_bye\xint_bye\empty
+ \xint:
+ #3\empty#4\xint_bye
+}%
+\def\POL_mul_E\xint_bye
+ \expandafter\POL_mul_d\expandafter#1#2\xint_bye
+% This #1 starts with \empty
+{%
+ #1%
+}%
+%%
+%% POWERS
+%%
+\def\xintPolPow #1%
+{%
+ \expanded\expandafter\POL_pow_in\romannumeral`&&@#1\xint:
+}%
+\def\POL_pow_in #1\xint:#2%
+{%
+ {%
+ \expandafter\POL_pow_fork\the\numexpr \xintNum{#2}.#1\empty
+ }%
+}%
+\def\POL_pow_fork #1#2.%
+{%
+ \xint_UDzerominusfork
+ #1-\POL_pow_zero
+ 0#1\POL_pow_neg
+ 0-\POL_pow_pos
+ \krof
+ #1#2.%
+}%
+\def\POL_pow_zero #1\empty{1/1[0]}%
+\def\POL_pow_neg #1.#2%
+{%
+ \POL_Pfork #2{\POL_pow_neg_pol}P{\POL_pow_scalar}\krof #1.#2%
+}%
+\def\POL_pow_pos #1.#2%
+{%
+ \POL_Pfork #2{\POL_pow_a}P{\POL_pow_scalar}\krof #1.#2%
+}%
+\def\POL_pow_scalar #1.#2\empty
+{%
+ \xintPow{#2}{#1}%
+}%
+\def\POL_pow_neg_pol #1.#2\empty
+{%
+ \romannumeral0\XINT_signalcondition{InvalidOperation}%
+ {Not supported: polynomial to negative power #1}{}{1/1[0]}%
+}%
+\def\POL_pow_a #1.%
+{%
+% trailing \empty will disappear in expanded context (old comment)
+ \ifnum#1=\xint_c_i\xint_afterfi\xint_gob_til_dot\fi
+ \expandafter\POL_pow_b \the\numexpr#1-\xint_c_i.%
+}%
+\def\POL_pow_b #1.%
+{%
+ \ifodd #1 \xint_dothis{\expandafter\POL_pow_even}\fi
+ \xint_orthat{\expandafter\POL_pow_odd}\the\numexpr#1/\xint_c_ii.%
+}%
+\def\POL_pow_even #1.#2\empty
+{%
+ \expandafter\POL_pow_a
+ \expanded{\unexpanded{#1.}%
+ \POL_mul_a#2\xint_bye
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }\empty
+}%
+\def\POL_pow_odd #1.#2\empty
+{%
+ \expanded
+ {\unexpanded{\POL_mul_a #2\xint_bye}%
+ \expandafter\POL_pow_a
+ \expanded{\unexpanded{#1.}%
+ \POL_mul_a#2\xint_bye
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+ \empty
+ }%
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+}%
+%%
+%% DIVISION
+%%
+%
+% / is deprecated for polynomial Euclidean division
+%
+\def\xintPolQuo #1%
+{%
+ \romannumeral0\expandafter\xint_stop_atfirstoftwo
+ \expanded\expandafter\POL_quorem_in\romannumeral`&&@#1\xint:
+}%
+% there is no operator, for lack of obvious best notation
+\def\xintPolRem #1%
+{%
+ \romannumeral0\expandafter\xint_stop_atsecondoftwo
+ \expanded\expandafter\POL_quorem_in\romannumeral`&&@#1\xint:
+}%
+% //
+\def\xintPolDivModQ #1%
+{%
+ \romannumeral0\expandafter\xint_stop_atfirstoftwo
+ \expanded\expandafter\POL_divmod_in\romannumeral`&&@#1\xint:
+}%
+% /:
+\def\xintPolDivModR #1%
+{%
+ \romannumeral0\expandafter\xint_stop_atsecondoftwo
+ \expanded\expandafter\POL_divmod_in\romannumeral`&&@#1\xint:
+}%
+% "divmod" will apply coefficient per coefficient when divisor is scalar
+% I have found it convenient to treat constant polynomials
+% as really being scalars. But I need perhaps to think more about it.
+\def\xintPolDivMod #1%
+{%
+ \expanded\expandafter\POL_divmod_in\romannumeral`&&@#1\xint:
+}%
+% the euclidean division
+\def\xintPolQuoRem #1%
+{%
+ \expanded\expandafter\POL_quorem_in\romannumeral`&&@#1\xint:
+}%
+\def\POL_quorem_in #1\xint:#2%
+{%
+ {%
+ \expandafter\POL_quorem_fork
+ \romannumeral`&&@#2\xint_bye#1\xint_bye
+ }%
+}%
+% the overloading of divmod which does euclidean division if divisor is not a scalar
+\def\POL_divmod_in #1\xint:#2%
+{%
+ {%
+ \expandafter\POL_divmod_fork
+ \romannumeral`&&@#2\xint_bye#1\xint_bye
+ }%
+}%
+% "first" and "second" refer to the actual positions, permuted compared
+% to original arguments
+\def\POL_quorem_fork #1#2\xint_bye#3%
+{%
+ \POL_PPfork
+ #1#3{\POL_quorem_a}% both polynomials -> {eucl. quotient}{remainder}
+ #1P{\POL_quorem_second_is_scalar}% -> {zero quotient}{scalar}
+ #3P{\POL_quorem_first_is_scalar}% -> {polynomial/scalar}{zero}
+ PP{\POL_quorem_both_are_scalar}% -> {scalar/scalar}{zero}
+ \krof #1#2\xint_bye#3%
+}%
+\def\POL_quorem_first_is_scalar #1\xint_bye#2\xint_bye
+{%
+ {\expandafter\POL_quorem_first_is_scalar_i\expandafter
+ {\romannumeral0\xintinv{#1}}%
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye}{0/1[0]}%
+}%
+\def\POL_quorem_first_is_scalar_i #1#2.%
+{%
+ #2.\POL_apply:x_loop{\xintMul{#1}}%
+}%
+% #2 was initial first argument and is scalar
+\def\POL_quorem_second_is_scalar #1\xint_bye#2\xint_bye
+{%
+ {0/1[0]}{#2}%
+}%
+\def\POL_quorem_both_are_scalar #1\xint_bye#2\xint_bye
+{%
+ {\xintDiv{#2}{#1}}{0/1[0]}%
+}%
+% attention that "first", "second" refer to the actual arguments positions
+\def\POL_divmod_fork #1#2\xint_bye#3%
+{%
+ \POL_PPfork
+ #1#3{\POL_quorem_a}% both polynomials -> {eucl. quotient}{remainder}
+ #1P{\POL_quorem_second_is_scalar}% -> {zero quotient}{scalar}
+ #3P{\POL_divmod_first_is_scalar}% -> {per coeff//scalar}{per coeff/:scalar}
+ PP{\POL_divmod_both_are_scalar}% -> {s1//s2}{s1/:s2}
+ \krof #1#2\xint_bye#3%
+}%
+\def\POL_divmod_both_are_scalar #1\xint_bye#2\xint_bye
+{%
+ \xintDivMod{#2}{#1}%
+}%
+\def\POL_divmod_first_is_scalar #1\xint_bye #2.#3\xint_bye
+{%
+ \expandafter\POL_divmod_first_is_scalar_a
+ \expanded{\unexpanded{{#1}}\expandafter}%
+ \romannumeral0\XINT_revwbr_loop {}%
+ #3\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint_bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ \iffalse{\fi}%
+ \xint:
+}%
+\long\def\POL_exchange_args#1#2#3{#1{#3}{#2}}%
+\def\POL_divmod_first_is_scalar_a #1%
+{%
+ \expandafter\POL_divmod_first_is_scalar_b
+ \expanded\bgroup
+ \POL_apply:x_loop{\POL_exchange_args\xintDivMod{#1}}%
+}%
+% attention re-use of \POL_add_d
+\def\POL_divmod_first_is_scalar_b #1\xint:
+{%
+ {\expandafter\POL_add_d\expanded{%
+ \POL_apply:x_loop{\expandafter\xint_firstoftwo\xint_firstofone}%
+ #1\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye}\xint_bye}%
+ {\expandafter\POL_add_d\expanded{%
+ \POL_apply:x_loop{\expandafter\xint_secondoftwo\xint_firstofone}%
+ #1\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye}\xint_bye}%
+}%
+\def\POL_quorem_a P#1.#2\xint_bye P#3.#4\xint_bye
+{%
+ \ifnum#1>#3 \xint_dothis{\POL_quorem_easy #3.}\fi
+ \xint_orthat
+ {\expandafter\POL_quorem_EQuo
+ \expanded\bgroup
+ \expandafter\POL_quorem_b\the\numexpr#3-#1\expandafter.%
+ \expanded\bgroup
+ \xintRevWithBraces
+ }%
+ {#2}%
+ \noexpand\xint_Bye
+ \xint:
+ \expandafter\POL_placemark_loop
+ \the\numexpr#1-\xint_c_vii\expandafter.%
+ \romannumeral0\xintrevwithbraces{#4}%
+% This added {1} is related to termination clean-up (a bit annoying) process
+ {1}%
+ \the\numexpr#3-#1.%
+ \iffalse{\fi}%
+}%
+\def\POL_quorem_easy #1.#2\xintrevwithbraces#3#4.#5#6%
+{%
+ {0/1[0]}{P#1.#3}%
+}%
+\def\POL_placemark_loop #1#2.%
+{%
+ \xint_gob_til_minus#1\POL_placemark_loop_end-%
+ \expandafter\POL_placemark_step\the\numexpr#1#2-\xint_c_viii.%
+}%
+\def\POL_placemark_step #1.#2#3#4#5#6#7#8#9%
+{%
+ {#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}\POL_placemark_loop#1.%
+}%
+\def\POL_placemark_loop_end-%
+ \expandafter\POL_placemark_step\the\numexpr-#1-\xint_c_viii.%
+{%
+ \csname POL_placemark_end#1\endcsname
+}%
+\expandafter\def\csname POL_placemark_end1\endcsname
+ #1#2#3#4#5#6#7{{#1}{#2}{#3}{#4}{#5}{#6}{#7}\noexpand\xint_bye\xint:}%
+\expandafter\def\csname POL_placemark_end2\endcsname
+ #1#2#3#4#5#6{{#1}{#2}{#3}{#4}{#5}{#6}\noexpand\xint_bye\xint:}%
+\expandafter\def\csname POL_placemark_end3\endcsname
+ #1#2#3#4#5{{#1}{#2}{#3}{#4}{#5}\noexpand\xint_bye\xint:}%
+\expandafter\def\csname POL_placemark_end4\endcsname
+ #1#2#3#4{{#1}{#2}{#3}{#4}\noexpand\xint_bye\xint:}%
+\expandafter\def\csname POL_placemark_end5\endcsname
+ #1#2#3{{#1}{#2}{#3}\noexpand\xint_bye\xint:}%
+\expandafter\def\csname POL_placemark_end6\endcsname
+ #1#2{{#1}{#2}\noexpand\xint_bye\xint:}%
+\expandafter\def\csname POL_placemark_end7\endcsname
+ #1{{#1}\noexpand\xint_bye\xint:}%
+\expandafter\def\csname POL_placemark_end8\endcsname
+ {\noexpand\xint_bye\xint:}%
+\def\POL_quorem_b #1.#2#3\xint:#4#5\xint:#6%
+{%
+% \xintDiv FG computes F/G
+ \expandafter\POL_quorem_c\romannumeral0\xintdiv{\XINT_Opp#4}{#2}.%
+ #1.{#2}#3\xint:
+% there is already \xint_Bye at ends of #3
+ #3\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+% this terminates the \expanded from \POL_apply:x_loop
+ \iffalse{\fi}%
+ \xint_bye\xint_bye\xint_bye\xint_bye\empty
+ #5\xint_bye\xint_bye\xint_bye\empty
+% a \iffalse{\fi} will get inserted by \POL_add_A here
+ {#6}\xint_bye\xint:
+}%
+\def\POL_quorem_c #1.#2.#3\xint:%
+{%
+ {\XINT_Opp#1}%
+ \expandafter\POL_quorem_d\the\numexpr#2-\xint_c_i\expandafter.%
+ \expanded\bgroup
+ \unexpanded{#3}\xint:
+ \expandafter\POL_add_A
+ \expanded\bgroup
+ \POL_apply:x_loop{\xintMul{#1}}%
+}%
+\def\POL_quorem_d #1#2.%
+{%
+ \xint_gob_til_minus#1\POL_quorem_E-%
+ \POL_quorem_b #1#2.%
+}%
+\def\POL_quorem_E-\POL_quorem_b-1.#1\xint:#2\xint_bye\xint:#3.%
+{%
+% this terminates the \POL_quorem_a \expanded
+ \iffalse{\fi}\xint:#3.%
+% recycling some termination code from addition
+ {\expandafter\POL_quorem_ERem_fix\expanded{\POL_add_d#2\xint_bye}}%
+}%
+\def\POL_quorem_ERem_fix #1%
+{%
+ \if P#1\expandafter\POL_quorem_ERem_fix_a\fi 0/1[0]%
+}%
+\def\POL_quorem_ERem_fix_a 0/1[0]#1.#2%
+{%
+ \ifcase #1
+ \or
+ \expandafter\xint_firstofone
+ \else
+ P\the\numexpr#1-\xint_c_i.%
+ \fi
+}%
+\def\POL_quorem_EQuo#1\xint:#2.%
+{%
+ {\ifnum#2=\xint_c_
+ #1%
+ \else
+ P#2.\romannumeral0\XINT_revwbr_loop {}%
+ #1\xint:\xint:\xint:\xint:%
+ \xint:\xint:\xint:\xint:\xint_bye
+ \fi}%
+}%
+\def\xintPolPRem #1%
+{%
+ \expanded\expandafter\POL_prem_in\romannumeral`&&@#1\xint:
+}%
+\def\POL_prem_in #1\xint:#2%
+{%
+ \bgroup
+ \expandafter\POL_prem_fork
+ \romannumeral`&&@#2\xint:#1\xint:
+ \POL_prem_end
+}%
+\def\POL_prem_fork #1#2\xint:#3%
+{%
+ \POL_PPfork
+ #1#3{\POL_prem_a}% both polynomials
+ #1P{\POL_prem_second_is_scalar}% -> scalar
+ #3P{\POL_prem_first_is_scalar}% -> zero
+ PP{\POL_prem_both_are_scalar}% -> zero
+ \krof #1#2\xint:#3%
+}%
+\def\POL_prem_first_is_scalar #1\xint:#2\xint:\POL_prem_end
+{%
+ \iffalse{\fi}{1/1[0]}{0/1[0]}%
+}%
+\def\POL_prem_second_is_scalar #1\xint:#2\xint:\POL_prem_end
+{%
+ \iffalse{\fi}{1/1[0]}{#2}%
+}%
+\def\POL_prem_both_are_scalar #1\xint:#2\xint:\POL_prem_end
+{%
+ \iffalse{\fi}{1/1[0]}{0/1[0]}%
+}%
+\def\POL_prem_a P#1.#2\xint: P#3.#4\xint:
+{%
+ \ifnum#1>#3 \xint_dothis{\POL_prem_easy #3.}\fi
+ \xint_orthat
+ {\expandafter\POL_prem_b\the\numexpr#3-#1\expandafter.%
+ \expanded\bgroup
+ \xintRevWithBraces
+ }%
+ {#2}%
+ \noexpand\xint_Bye
+ \xint:
+ \expandafter\POL_placeBye_loop
+ \the\numexpr#1-\xint_c_vii\expandafter.%
+ \romannumeral0\xintrevwithbraces{#4}%
+ {1/1[0]}%
+ \iffalse{\fi}%
+}%
+\def\POL_prem_easy #1.#2\xintrevwithbraces#3#4\POL_prem_end
+{%
+ \iffalse{\fi}{1/1[0]}{P#1.#3}%
+}%
+\def\POL_placeBye_loop #1#2.%
+{%
+ \xint_gob_til_minus#1\POL_placeBye_loop_end-%
+ \expandafter\POL_placeBye_step\the\numexpr#1#2-\xint_c_viii.%
+}%
+\def\POL_placeBye_step #1.#2#3#4#5#6#7#8#9%
+{%
+ {#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}\POL_placeBye_loop#1.%
+}%
+\def\POL_placeBye_loop_end-%
+ \expandafter\POL_placeBye_step\the\numexpr-#1-\xint_c_viii.%
+{%
+ \csname POL_placeBye_end#1\endcsname
+}%
+\expandafter\def\csname POL_placeBye_end1\endcsname
+ #1#2#3#4#5#6#7{{#1}{#2}{#3}{#4}{#5}{#6}{#7}\noexpand\xint_Bye\xint:{1}}%
+\expandafter\def\csname POL_placeBye_end2\endcsname
+ #1#2#3#4#5#6{{#1}{#2}{#3}{#4}{#5}{#6}\noexpand\xint_Bye\xint:{1}}%
+\expandafter\def\csname POL_placeBye_end3\endcsname
+ #1#2#3#4#5{{#1}{#2}{#3}{#4}{#5}\noexpand\xint_Bye\xint:{1}}%
+\expandafter\def\csname POL_placeBye_end4\endcsname
+ #1#2#3#4{{#1}{#2}{#3}{#4}\noexpand\xint_Bye\xint:{1}}%
+\expandafter\def\csname POL_placeBye_end5\endcsname
+ #1#2#3{{#1}{#2}{#3}\noexpand\xint_Bye\xint:{1}}%
+\expandafter\def\csname POL_placeBye_end6\endcsname
+ #1#2{{#1}{#2}\noexpand\xint_Bye\xint:{1}}%
+\expandafter\def\csname POL_placeBye_end7\endcsname
+ #1{{#1}\noexpand\xint_Bye\xint:{1}}%
+\expandafter\def\csname POL_placeBye_end8\endcsname
+ {\noexpand\xint_Bye\xint:{1}}%
+\def\POL_prem_b_skip#1#2\unexpanded#3#4#5\xint_Bye#6\xint:#7#8#9%
+{%
+ \iffalse{\fi\expandafter}\xint_gobble_i#5#1%
+}%
+\def\POL_prem_b #1.#2#3\xint:#4#5\xint:#6#7%
+{%
+ \expandafter\POL_prem_c\the\numexpr#1-\xint_c_i\expandafter.%
+ \expanded\bgroup
+ \unexpanded{{#2}#3}\xint:
+ \if0\XINT_Sgn#4\xint:\xint_afterfi
+ {\expandafter\POL_prem_b_skip\expandafter
+ {\expandafter{\romannumeral0\xintmul{#6}{#7}}\xint_Bye\xint:{#6}}%
+ }%
+ \fi
+ \expandafter\POL_add_A
+ \expanded\bgroup
+ \expanded{\noexpand\POL_apply:x_loop{\noexpand\xintMul
+ {\if1\XINT_Sgn#2\xint:\expandafter\XINT_Opp\fi#4}}}%
+% there is already \xint_Bye at ends of #3
+ #3\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+% separator for \POL_add_A
+ \unexpanded{\xint_bye\xint_bye\xint_bye\xint_bye\empty}%
+% there is already \xint_Bye at ends of #5
+ \expanded{\noexpand\POL_apply:x_loop{\noexpand\xintMul{\XINT_Abs#2}}}%
+ #5\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ \unexpanded{\xint_bye\xint_bye\xint_bye\xint_bye\empty}%
+% a \iffalse{\fi} will get inserted by \POL_add_A exit routine and if will
+% terminate the \expanded triggered here after \POL_prem_c
+% what is next will have already have been expanded
+ {\xintMul{\xintMul{\XINT_Abs#2}{#6}}{#7}}\noexpand\xint_Bye\xint:
+ {\xintMul{\XINT_Abs#2}{#6}}%
+% This terminates the \expanded following \POL_add_A
+ \iffalse{\fi}%
+}%
+\def\POL_prem_c #1%
+{%
+ \xint_gob_til_minus#1\POL_prem_E_-\POL_prem_b#1%
+}%
+% attention that #2 here has a two dummies at end
+% advantage is that \POL_add_a will always think it is non scalar
+\def\POL_prem_E_-\POL_prem_b-1.#1\xint:#2\xint_Bye\xint:#3%
+{%
+ \expandafter\POL_prem_E\expanded{\POL_add_d#2\xint_bye}%
+}%
+\def\POL_prem_E #1%
+{%
+ \if P#1\expandafter\POL_prem_E_i
+ \else\expandafter\POL_prem_E_zero
+ \fi #1%
+}%
+\def\POL_prem_E_zero #1\POL_prem_end{\iffalse{\fi}{#1}{0/1[0]}}%
+\def\POL_prem_E_i P#1.%
+{%
+ \ifnum #1>\xint_c_i\POL_prem_E_ii#1.\fi
+ \POL_prem_E_iii%
+}%
+\def\POL_prem_E_iii#1\POL_prem_end{\iffalse{\fi}#1}%
+\def\POL_prem_E_ii#1.#2\POL_prem_E_iii#3%
+ {#2{#3}{P\the\numexpr#1-\xint_c_i\iffalse}\fi.}%
+\def\POL_prem_end{\iffalse{{\fi}}}%
+%%
+%% SUPPORT FOR FUNCTIONAL INTERFACE
+%%
+% should I do a qpol([]) ?, i.e. without testing for leading zeros, hence
+% would be faster ? but advantage would arise only for very high degree
+% pol([]) this one checks for zeros in the right most coeffs
+\def\xintPolPol#1{\romannumeral`&&@\expandafter\POL_add_d
+ \romannumeral0\expandafter\XINT_revwbr_loop\expandafter
+ {\expandafter}%
+ \romannumeral`&&@#1\xint:\xint:\xint:\xint:
+ \xint:\xint:\xint:\xint:\xint_bye
+ \xint_bye
+}%
+% attention to not overwrite macro names (there is a legacy \PolEvalAt)
+\def\xintPolEvalAt#1#2%
+{%
+% generally, #2 will be scalar, but we allow also a polynomial here
+% should I test for #2 being the monomial, hence handle it very quickly?
+ \romannumeral`&&@\expandafter\POL_evalat_in\romannumeral`&&@#2\xint:
+ #1\xint:\xint:\xint:\xint:
+ \xint:\xint:\xint:\xint:\xint_bye\xint:
+}%
+\def\POL_evalat_in #1\xint:
+{%
+ \expandafter\POL_evalat_fork\expanded{\unexpanded{#1\xint:}\expandafter}%
+ \romannumeral`&&@%
+}%
+\def\POL_evalat_fork #1\xint:#2%
+{%
+ \POL_Pfork
+ #2{\POL_evalat_pol}%
+ P{\POL_evalat_cst}%
+ \krof #1\xint:#2%
+}%
+\def\POL_evalat_cst #1\xint: #2\xint:#3\xint_bye\xint:{#2}%
+\def\POL_evalat_pol #1\xint: P#2.%
+{%
+ \expanded{\unexpanded{\POL_evalat_a#1\xint:}\expandafter}%
+ \romannumeral0\XINT_revwbr_loop{}%
+}%
+\def\POL_evalat_a#1\xint:#2%
+{%
+ \POL_evalat_loop#2\xint:#1\xint:
+}%
+\def\POL_evalat_loop#1\xint:#2\xint:#3%
+{%
+ \xint_gob_til_xint:#3\POL_evalat_E\xint:
+% I have dropped here my old strict \xintFoo = \romannumeral0\xintfoo style
+% ATTENTION! We must allow evaluating at a polynomial expression
+ \expandafter\POL_evalat_loop
+ \romannumeral`&&@\xintPolAdd{#3}{\xintPolMul{#2}{#1}}\xint:#2\xint:
+}%
+\def\POL_evalat_E\xint:\expandafter\POL_evalat_loop
+ \romannumeral`&&@\xintPolAdd #1#2\xint:#3\xint:
+{%
+ \xint_thirdofthree#2%
+}%
+%
+\def\xintPolDeg#1%
+{%
+ \romannumeral`&&@\expandafter\POL_deg_fork\romannumeral`&&@#1\xint:
+}%
+\def\POL_deg_fork #1%
+{%
+ \POL_zeroPfork
+ #1P{\POL_deg_zero}%
+ 0#1{\POL_deg_pol}%
+ 0P{\POL_deg_cst}%
+ \krof #1%
+}%
+% usual hesitations about using or not raw frac format
+\def\POL_deg_zero#1\xint:{-1}%
+\def\POL_deg_cst #1\xint:{0}%
+\def\POL_deg_pol P#1.#2\xint:{#1}%
+%
+\def\xintPolCoeffs#1%
+{%
+ \romannumeral`&&@\expandafter\POL_coeffs_fork\romannumeral`&&@#1\xint:
+}%
+\def\POL_coeffs_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_coeffs_pol
+ P\POL_coeffs_cst
+ \krof #1%
+}%
+% usual hesitations about using or not raw frac format
+\def\POL_coeffs_cst #1\xint:{{#1}}%
+% no brace stripping possible, at least two coefficients
+% annoying that we had to put this delimiter \xint:
+\def\POL_coeffs_pol P#1.#2\xint:{#2}%
+%
+\def\xintPolCoeff#1#2%
+{%
+ \romannumeral`&&@\expandafter\POL_coeff_fork
+ \the\numexpr\xintNum{#2}\expandafter.%
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_coeff_fork #1.#2%
+{%
+ \POL_Pfork
+ #2\POL_coeff_pol
+ P\POL_coeff_cst
+ \krof #1.#2%
+}%
+\def\POL_coeff_cst#1%
+{%
+ \xint_UDzerofork
+ #1\POL_coeff_itself
+ 0\POL_coeff_zero
+ \krof #1%
+}%
+\def\POL_coeff_itself#1.#2\xint:{#2}%
+\def\POL_coeff_zero#1\xint:{0/1[0]}%
+\def\POL_coeff_pol #1.P#2.%
+{%
+ \ifnum#1<\xint_c_\xint_dothis\POL_coeff_zero\fi
+ \ifnum#1>#2 \xint_dothis\POL_coeff_zero\fi
+ \xint_orthat\POL_coeff_a{#1}%
+}%
+\def\POL_coeff_a#1{\expandafter\POL_coeff_b\romannumeral\xintgobble{#1}}%
+\def\POL_coeff_b#1#2\xint:{#1}%
+%
+\def\xintPolLCoeff#1%
+{%
+ \romannumeral`&&@\expandafter\POL_lcoeff_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_lcoeff_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_lcoeff_pol
+ P\POL_lcoeff_cst
+ \krof #1%
+}%
+\def\POL_lcoeff_cst#1\xint:{#1}%
+\def\POL_lcoeff_pol P#1.%
+{%
+ \expandafter\POL_lcoeff_a\romannumeral\xintgobble{#1}%
+}%
+\def\POL_lcoeff_a#1\xint:{#1}%
+%
+\def\xintPolMonicPart#1%
+{%
+ \romannumeral`&&@\expandafter\POL_monicpart_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_monicpart_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_monicpart_pol
+ P\POL_monicpart_cst
+ \krof #1%
+}%
+% monicpart(0) must be 0 to avoid breaking algorithms
+\def\POL_monicpart_cst#1#2\xint:{\if#10\xint_dothis0\fi\xint_orthat1/1[0]}%
+\def\POL_monicpart_pol P#1.#2\xint:%
+{%
+ \expanded{%
+ P#1.%
+ \expandafter\POL_monicpart_a\romannumeral\xintgobble{#1}%
+ #2#2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+\def\POL@DivByFirstAndIrrAndREZ#1#2{\xintREZ{\xintIrr{\xintDiv{#2}{#1}}}}%
+\def\POL_monicpart_a#1%
+{%
+ \POL_apply:x_loop{\POL@DivByFirstAndIrrAndREZ{#1}}%
+}%
+%
+\def\xintPolIContent#1%
+{%
+ \romannumeral`&&@\expandafter\POL_icontent_fork
+ \romannumeral`&&@#1^%
+}%
+\def\POL_icontent_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_icontent_pol
+ P\POL_icontent_cst
+ \krof #1%
+}%
+\def\POL_icontent_cst #1^{\xintIrr{\xintAbs{#1}}[0]}%
+\def\POL_icontent_pol P#1.%
+{%
+% 1.4d xintfrac \XINT_fgcdof much saner than 1.4 version !
+% \XINT_fgcd_out does \xintIrr
+ \expandafter\XINT_fgcd_out\romannumeral0\XINT_fgcdof
+}%
+%
+\def\xintPolPrimPart#1%
+{%
+ \romannumeral`&&@\expandafter\POL_primpart_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_primpart_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_primpart_pol
+ P\POL_primpart_cst
+ \krof #1%
+}%
+\def\POL_primpart_cst#1#2\xint:{\if#10\xint_dothis0\fi\xint_orthat1/1[0]}%
+\def\POL_primpart_pol P#1.#2\xint:%
+{%
+ \expanded{%
+ P#1.\expandafter\POL_primpart_a
+ \romannumeral0\expandafter\XINT_fgcd_out
+ \romannumeral0\XINT_fgcdof#2^\xint:
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+% cf legacy \POL@makeprim@macro
+\def\POL@DivByFirstAndNumAndREZ#1#2{\xintREZ{\xintNum{\xintDiv{#2}{#1}}}}%
+\def\POL_primpart_a#1\xint:{\POL_apply:x_loop{\POL@DivByFirstAndNumAndREZ{#1}}}%
+%
+\def\xintPolRedCoeffs#1%
+{%
+ \romannumeral`&&@\expandafter\POL_redcoeffs_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_redcoeffs_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_redcoeffs_pol
+ P\POL_redcoeffs_cst
+ \krof #1%
+}%
+\def\POL_redcoeffs_cst#1\xint:{\xintIrr{#1}[0]}%
+\def\POL_redcoeffs_pol P#1.#2\xint:%
+{%
+ \expanded{%
+ P#1.\POL_apply:x_loop\POL@xintIrr
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+%
+\def\xintPolSRedCoeffs#1%
+{%
+ \romannumeral`&&@\expandafter\POL_sredcoeffs_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_sredcoeffs_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_sredcoeffs_pol
+ P\POL_sredcoeffs_cst
+ \krof #1%
+}%
+\def\POL_sredcoeffs_cst#1\xint:{\xintREZ{\xintIrr{#1}[0]}}%
+\def\POL_sredcoeffs_pol P#1.#2\xint:%
+{%
+ \expanded{%
+ P#1.\POL_apply:x_loop\POL@xintIrrAndREZ
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+\def\POL@xintIrrAndREZ#1{\xintREZ{\xintIrr{#1}[0]}}%
+%
+\def\xintPolDiffOne#1%
+{%
+ \romannumeral`&&@\expandafter\POL_diffone_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_diffone_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_diffone_pol
+ P\POL_diffone_cst
+ \krof #1%
+}%
+\def\POL_diffone_cst#1\xint:{0/1[0]}%
+\def\POL_diffone_pol P#1.#2#3\xint:%
+{%
+ \expanded{%
+ \ifnum#1=\xint_c_i #3%
+ \else
+ P\the\numexpr#1-\xint_c_i.%
+ \POL_apply:x_iloop{\POL_diffone_diff1.}%
+ #3\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ \fi
+ }%
+}%
+\def\POL_diffone_diff#1.#2#3{\xintMul{#1+#2}{#3}}%
+%
+\def\xintPolAntiOne#1%
+{%
+ \romannumeral`&&@\expandafter\POL_antione_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_antione_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_antione_pol
+ P\POL_antione_cst
+ \krof #1%
+}%
+\def\POL_antione_cst#1%
+{%
+ \xint_gob_til_zero#1\POL_antione_zero0\POL_antione_cst_i#1%
+}%
+\def\POL_antione_cst_i#1\xint:{P1.{0/1[O]}{#1}}%
+\def\POL_antione_zero#1\xint:{0/1[0]}%
+\def\POL_antione_pol P#1.#2\xint:%
+{%
+ \expanded{%
+ P\the\numexpr#1+\xint_c_i.{0/1[0]}%
+ \POL_apply:x_iloop{\POL_antione_anti1.}%
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+\def\POL_antione_anti#1.#2#3{\xintDiv{#3}{#1+#2}}%
+%
+% #2 can be a polynomial
+\def\xintPolIntFrom#1%#2%
+{%
+ \romannumeral`&&@\expandafter\POL_intfrom_a\expandafter
+ {\romannumeral`&&@\xintPolAntiOne{#1}}%
+}%
+\def\POL_intfrom_a #1#2%
+{%
+ \xintPolSub{#1}{\xintPolEvalAt{#1}{#2}}%
+}%
+%
+\def\xintPolIntegral#1#2%
+{%
+ \romannumeral`&&@\expandafter\POL_integral_a\expanded
+ {\xintPolAntiOne{#1}\xint:#2\xint:}%
+}%
+\def\POL_integral_a #1\xint:#2#3\xint:
+{%
+ \xintPolSub{\xintPolEvalAt{#1}{#3}}{\xintPolEvalAt{#1}{#2}}%
+}%
+%
+\def\xintPolDiffTwo#1%
+{%
+ \romannumeral`&&@\expandafter\POL_difftwo_fork
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_difftwo_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_difftwo_pol
+ P\POL_difftwo_cst
+ \krof #1%
+}%
+\def\POL_difftwo_cst#1\xint:{0/1[0]}%
+\def\POL_difftwo_pol P#1.%
+{%
+ \ifcase #1
+ \or \expandafter\POL_difftwo_zeroout
+ \or \expandafter\POL_difftwo_cstout
+ \else\expandafter\POL_difftwo_polout
+ \fi #1.%
+}%
+\def\POL_difftwo_zeroout#1\xint:{0/1[0]}%
+\def\POL_difftwo_cstout 2.#1#2#3\xint:{\xintMul{2}{#3}}%
+\def\POL_difftwo_polout #1.#2#3#4\xint:%
+{%
+ \expanded{%
+ P\the\numexpr#1-\xint_c_ii.%
+ \POL_apply:x_iloop{\POL_difftwo_diff2.}%
+ #4\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }%
+}%
+\def\POL_difftwo_diff#1.#2#3{\xintMul{\the\numexpr(#1+#2)*(#1+#2-\xint_c_i)\relax}{#3}}%
+%
+\def\POL_diffone_iter_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_diffone_iter_pol
+ P\POL_diffone_iter_cst
+ \krof #1%
+}%
+\def\POL_diffone_iter_cst#1\xint:{0/1[0]\xint:}%
+\def\POL_diffone_iter_pol P#1.#2#3\xint:%
+{%
+ \expanded{%
+ \ifnum#1=\xint_c_i #3%
+ \else
+ P\the\numexpr#1-\xint_c_i.%
+ \POL_apply:x_iloop{\POL_diffone_diff1.}%
+ #3\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ \fi
+ }\xint:
+}%
+%
+\def\POL_antione_iter_fork #1%
+{%
+ \POL_Pfork
+ #1\POL_antione_iter_pol
+ P\POL_antione_iter_cst
+ \krof #1%
+}%
+\def\POL_antione_iter_cst#1%
+{%
+ \xint_gob_til_zero#1\POL_antione_iter_zero0\POL_antione_iter_cst_i#1%
+}%
+\def\POL_antione_iter_cst_i#1\xint:{P1.{0/1[O]}{#1}\xint:}%
+\def\POL_antione_iter_zero#1\xint:{0/1[0]\xint:}%
+\def\POL_antione_iter_pol P#1.#2\xint:%
+{%
+ \expanded{%
+ P\the\numexpr#1+\xint_c_i.{0/1[0]}%
+ \POL_apply:x_iloop{\POL_antione_anti1.}%
+ #2\xint_Bye\xint_Bye\xint_Bye\xint_Bye
+ \xint_Bye\xint_Bye\xint_Bye\xint_Bye\xint_bye
+ }\xint:
+}%
+%
+\def\xintPolDiffN#1#2%
+{%
+ \romannumeral`&&@\expandafter\POL_diffn_fork
+ \the\numexpr\xintNum{#2}\expandafter.%
+ \romannumeral`&&@#1\xint:
+}%
+\def\POL_diffn_fork #1%
+{%
+ \xint_UDzerominusfork
+ #1-\POL_diffn_none
+ 0#1\POL_diffn_anti
+ 0-\POL_diffn_diff
+ \krof #1%
+}%
+\def\POL_diffn_none0.#1\xint:{#1}%
+\def\POL_diffn_diff#1.%#2\xint:%
+{%
+ \ifnum#1>\xint_c_i
+ \expandafter\POL_diffn_diff\the\numexpr#1-\xint_c_i\expandafter.%
+ \romannumeral`&&@\expandafter\POL_diffone_iter_fork
+ \else
+ \expandafter\POL_diffone_fork
+ \fi
+}%
+\def\POL_diffn_anti#1.%#2\xint:%
+{%
+ \ifnum#1<-\xint_c_i
+ \expandafter\POL_diffn_anti\the\numexpr#1+\xint_c_i\expandafter.%
+ \romannumeral`&&@\expandafter\POL_antione_iter_fork
+ \else
+ \expandafter\POL_antione_fork
+ \fi
+}%
+%
+% Support for (multi-variable) polgcd
+%
+\def\xintPolGCDof #1%
+{%
+ \romannumeral`&&@\expandafter\POL_polgcdof\romannumeral`&&@#1^%
+}%
+\def\XINT_PolGCDof{\romannumeral`&&@\POL_polgcdof}%
+\def\POL_polgcdof #1%
+{%
+ \romannumeral`&&@\expandafter
+ \POL_polgcdof_chkempty\romannumeral`&&@#1\xint:
+}%
+\def\POL_polgcdof_chkempty #1%
+{%
+ \xint_gob_til_^#1\POL_polgcdof_empty ^\POL_polgcdof_in #1%
+}%
+\def\POL_polgcdof_empty #1\xint:{1/1[0]}% hesitation
+\def\POL_polgcdof_in #1\xint:
+{%
+ \expandafter\POL_polgcdof_loop
+ \romannumeral`&&@\xintPolPrimPart{#1}\xint:
+}%
+\def\POL_polgcdof_loop #1\xint:#2%
+{%
+ \expandafter\POL_polgcdof_chkend\romannumeral`&&@#2\xint:#1\xint:\xint:
+}%
+\def\POL_polgcdof_chkend #1%
+{%
+ \xint_gob_til_^#1\POL_polgcdof_end ^\POL_polgcdof_loop_pair #1%
+}%
+% hesitation with returning a monic polynomial
+%\def\POL_polgcdof_end #1\xint:#2\xint:\xint:{\xintPolMonicPart{#2}}%
+\def\POL_polgcdof_end #1\xint:#2\xint:\xint:{#2}%
+\def\POL_polgcdof_loop_pair #1\xint:
+{%
+ \expandafter\POL_polgcdof_loop
+ \romannumeral`&&@\expandafter\POL_polgcd_pair
+ \romannumeral`&&@\xintPolPrimPart{#1}\xint:
+}%
+% MEMO comme le #2 sera au début le pgcd accumulé il sera souvent de plus
+% petit degré donc il y aura souvent un premier mod "easy" un peu inutile
+% J'hésite à faire une permutation avant de lancer le polgcd_pair
+\def\POL_polgcd_pair#1\xint:#2\xint:
+{%
+ \xintiiifSgn {\xintPolDeg {#1}}%
+ {#2}%
+ {1}%
+ {\expandafter\POL_polgcd_pair
+ \romannumeral`&&@\xintPolPrimPart
+ {\expandafter\xint_secondoftwo
+ \romannumeral`&&@\xintPolPRem {#2}{#1}}\xint:
+ #1\xint:
+ }%
+}%
+%
+\endinput
diff --git a/Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex b/Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex
new file mode 100644
index 00000000000..9b60e7bab00
--- /dev/null
+++ b/Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex
@@ -0,0 +1,179 @@
+%% This file polexprexpr.tex is part of the polexpr package (0.8, 2021/03/29)
+%% Extending \xintexpr syntax:
+%%
+%% 1. Authorize ' in variable and function names
+%% This currently breaks infix operators 'and', 'or', 'xor', 'mod'
+%% hence forces usage everywhere of &&, ||, /: and xor() syntax
+%% (if : is active then use /\string : input syntax!)
+%%
+%% 2. Map infix operators to the polexprcore macros
+%%
+%% Overloading of infix operators must be done even outside of \poldef's
+%% scope else functions declared via \xintdeffunc would not be usable in
+%% \poldef as they would be using the xintfrac macros unaware of polynomials
+%%
+%% The overloading of // and /: is experimental.
+%%
+%% 3. Support for the polynomial functions to work in \xintdeffunc
+%%
+%% 4. Support macros for the new functions acting on polynomial variables
+%
+% 1.
+\def\XINT_expr_scanfunc_b #1%
+{%
+ \ifcat \relax#1\xint_dothis{\iffalse{\fi}(_#1}\fi
+ \if (#1\xint_dothis{\iffalse{\fi}(`}\fi
+ \if 1\ifcat a#10\fi
+ \ifnum\xint_c_ix<1\string#1 0\fi
+ \if @#10\fi
+ \if _#10\fi
+ \if '#10\fi
+ 1%
+ \xint_dothis{\iffalse{\fi}(_#1}\fi
+ \xint_orthat {#1\XINT_expr_scanfunc_a}%
+}%
+% 2.
+% the minus sign as prefix
+\def\POL_tmp #1#2%
+{%
+ \expandafter\def\csname XINT_expr_exec_#1\endcsname##1##2##3% \XINT_expr_exec_<op><level>
+ {%
+ \expandafter ##1\expandafter ##2\expandafter
+ {\romannumeral`&&@\XINT:NEhook:f:one:from:one{\romannumeral`&&@#2##3}}%
+ }%
+}%
+\POL_tmp{-xii} \xintPolOpp
+\POL_tmp{-xiv} \xintPolOpp
+\POL_tmp{-xvi} \xintPolOpp
+\POL_tmp{-xviii}\xintPolOpp
+% infix operators
+\def\POL_tmp #1#2%
+{%
+ \expandafter\def\csname XINT_expr_exec_#1\endcsname##1##2##3##4% \XINT_expr_exec_<op>
+ {%
+ \expandafter##2\expandafter##3\expandafter
+ {\romannumeral`&&@\XINT:NEhook:f:one:from:two{\romannumeral`&&@#2##1##4}}%
+ }%
+}%
+\POL_tmp + \xintPolAdd
+\POL_tmp - \xintPolSub
+\POL_tmp * \xintPolMul
+\POL_tmp / \xintPolQuo
+% there is no infix operator mapped to \xintPolRem
+% for lack of notation: perhaps /; ? advices welcome
+\POL_tmp{//}\xintPolDivModQ
+\POL_tmp{/:}\xintPolDivModR
+\POL_tmp ^ \xintPolPow
+\expandafter\let\csname XINT_expr_op_**\expandafter\endcsname
+ \csname XINT_expr_op_^\endcsname
+% 3.
+% Matches with "mysterious stuff" section of xintexpr source code
+\let\POL:NEhook:polfunc\expandafter
+\toks0\expandafter{\XINT_expr_redefinemacros}%
+\toks2 {\let\POL:NEhook:polfunc\POL:NE:polfunc}%
+\edef\XINT_expr_redefinemacros{\the\toks0 \the\toks2}%
+\catcode`~ 12
+\def\POL@defpolfunc #1#2%
+{%
+ \expandafter\POL@defpolfunc_a
+ \csname XINT_#2_func_#1\expandafter\endcsname
+ \csname XINT_#2_polfunc_#1\endcsname
+}%
+\def\POL@defpolfunc_a #1#2%
+{%
+ \XINT_global
+ \def#1##1##2##3%
+ {%
+ \expandafter##1\expandafter##2\expandafter{%
+ \romannumeral`&&@\POL:NEhook:polfunc{\romannumeral`&&@#2##3}}%
+ }%
+}%
+\def\POL:NE:polfunc #1{%
+\def\POL:NE:polfunc ##1%
+{%
+ \if0\XINT:NE:hastilde ##1~!\relax % this ! of catcode 11
+ \XINT:NE:hashash ##1#1!\relax 0\else
+ \xint_dothis\POL:NE:polfunc_a\fi
+ \xint_orthat\POL:NE:polfunc_b
+ ##1&&A%
+}}\expandafter\POL:NE:polfunc\string#%
+\def\POL:NE:polfunc_a\romannumeral`&&@#1#2&&A%
+{%
+% If we are here #2 was not braced; \string is done with \escapechar126
+ \expandafter{\expanded{~romannumeral~POL:NE:usepolfunc%
+ {\expandafter\xint_gobble_i\string#1}}#2}%
+}%
+\def\POL:NE:polfunc_b#1{%
+\def\POL:NE:polfunc_b\romannumeral`&&@##1##2&&A%
+{%
+ \expandafter{%
+ \romannumeral`&&@%
+ \if0\XINT:NE:hastilde ##2~!\relax
+ \XINT:NE:hashash ##2#1!\relax 0\else
+ \POL:NE:polfunc_c\fi
+ ##1{##2}}%
+}}\expandafter\POL:NE:polfunc_b\string#%
+% In this case the \expandafter inserted by \POL:NE:usepolfunc
+% expansion will be superfluous
+\def\POL:NE:polfunc_c#1#2% #1=\fi
+{%
+ \expanded{#1~romannumeral~POL:NE:usepolfunc%
+ {\expandafter\xint_gobble_i\string#2}}%
+}%
+% This \expandafter is in case there is an \expanded after that due
+% to some slicing constructs
+% Call: \romannumeral\POL:NE:usepolfunc
+\def\POL:NE:usepolfunc#1{`&&@\csname#1\expandafter\endcsname}%
+\catcode`~ 3 % its normal catcode in xint bundle
+% 4.
+\def\POL_tmp #1#2#3%
+{%
+ \expandafter\def\csname XINT_expr_func_#1\endcsname##1##2##3%
+ {%
+ \expandafter ##1\expandafter ##2\expandafter
+ {%
+ \romannumeral`&&@#2{\romannumeral`&&@#3##3}%
+ }%
+ }%
+}%
+\POL_tmp {sqr} \XINT:NEhook:f:one:from:one \xintPolSqr
+\POL_tmp {pol} \XINT:NEhook:f:one:from:one \xintPolPol
+\POL_tmp {deg} \XINT:NEhook:f:one:from:one \xintPolDeg
+\POL_tmp {coeffs} \XINT:NEhook:f:one:from:one \xintPolCoeffs
+\POL_tmp {coeff} \XINT:NEhook:f:one:from:two \xintPolCoeff
+\POL_tmp {lcoeff} \XINT:NEhook:f:one:from:one \xintPolLCoeff
+\POL_tmp {monicpart} \XINT:NEhook:f:one:from:one \xintPolMonicPart
+\POL_tmp {icontent} \XINT:NEhook:f:one:from:one \xintPolIContent
+\POL_tmp {primpart} \XINT:NEhook:f:one:from:one \xintPolPrimPart
+\POL_tmp {rdcoeffs} \XINT:NEhook:f:one:from:one \xintPolRedCoeffs
+\POL_tmp {rdzcoeffs} \XINT:NEhook:f:one:from:one \xintPolSRedCoeffs
+\POL_tmp {diff1} \XINT:NEhook:f:one:from:one \xintPolDiffOne
+\POL_tmp {diff2} \XINT:NEhook:f:one:from:one \xintPolDiffTwo
+\POL_tmp {diffn} \XINT:NEhook:f:one:from:two \xintPolDiffN
+\POL_tmp {antider} \XINT:NEhook:f:one:from:one \xintPolAntiOne
+\POL_tmp {integral} \XINT:NEhook:f:one:from:two \xintPolIntegral
+\POL_tmp {quorem} \XINT:NEhook:f:one:from:two \xintPolQuoRem
+\POL_tmp {quo} \XINT:NEhook:f:one:from:two \xintPolQuo
+\POL_tmp {rem} \XINT:NEhook:f:one:from:two \xintPolRem
+\POL_tmp {prem} \XINT:NEhook:f:one:from:two \xintPolPRem
+\POL_tmp {divmod} \XINT:NEhook:f:one:from:two \xintPolDivMod
+\POL_tmp {mod} \XINT:NEhook:f:one:from:two \xintPolDivModR
+\POL_tmp {evalp} \XINT:NEhook:f:one:from:two \xintPolEvalAt
+\def\XINT_expr_func_polgcd #1#2#3%
+{%
+ \expandafter #1\expandafter #2\expandafter{\expandafter
+ {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_PolGCDof#3^}}%
+}%
+% this is provisory
+\xintdeffunc polpowmod_(P, m, Q) :=
+ isone(m)?
+ % m=1: return P modulo Q
+ { mod(P,Q) }
+ % m > 1: test if odd or even and do recursive call
+ { odd(m)? { mod(P*sqr(polpowmod_(P, m//2, Q)), Q) }
+ { mod( sqr(polpowmod_(P, m//2, Q)), Q) }
+ }
+ ;%
+\xintdeffunc polpowmod(P, m, Q) := (m)?{polpowmod_(P, m, Q)}{1};%
+%
+\endinput
diff --git a/Master/texmf-dist/tex/latex/polexpr/polexpr.sty b/Master/texmf-dist/tex/generic/polexpr/polexprsturm.tex
index 30fef289141..3fa1861558d 100644
--- a/Master/texmf-dist/tex/latex/polexpr/polexpr.sty
+++ b/Master/texmf-dist/tex/generic/polexpr/polexprsturm.tex
@@ -1,893 +1,4 @@
-% author: Jean-François Burnol
-% License: LPPL 1.3c (author-maintained)
-\ProvidesPackage{polexpr}%
- [2020/01/31 v0.7.5 Polynomial expressions with rational coefficients (JFB)]%
-\RequirePackage{xintexpr}[2020/01/31]% xint 1.4
-\edef\POL@restorecatcodes % TODO: think better about what is reasonable here
- {\catcode`\noexpand\_ \the\catcode`\_ %
- \catcode`\noexpand\! \the\catcode`\! %
- \catcode`\noexpand\* \the\catcode`\* %
- \catcode`\noexpand\~ \the\catcode`\~ %
- \catcode`\noexpand\: \the\catcode`\: %
- \catcode0 \the\catcode0\relax}%
-\catcode`\_ 11 \catcode0 12 \catcode`\* 12
-\long\def\xint_stop_atfirstoftwo #1#2{ #1}% not yet in xint 1.3c
-\long\def\xint_stop_atsecondoftwo #1#2{ #2}%
-
-%% 0.7.5 VERY SERIOUS TROUBLES TO GET polexpr TO WORK WITH xintexpr 1.4
-
-%% I hesitated about incorporating it directly into xint 1.4
-%% Don't do this at home, only xint gurus are allowed.
-\let\POL@originalXINT_expr_redefinemacros\XINT_expr_redefinemacros
-\def\XINT_expr_redefinemacros
-{%
- \POL@originalXINT_expr_redefinemacros
- \POL@activateNEhook
-}%
-%% Using \def's and not \let's to get better readable trace
-%% in case I need to debug but this never happens
-\def\POL@activateNEhook@xint % done in a group
-{%
- \def\POL@NEhook@polfunc{\POL@NE@polfunc}%
-}%
-\def\POL@activateNEhook@pol
-{%
- \def\POL@NEhook@polfunc{\POL@NP@polfunc}%
-}%
-\def\POL@activateNEhook{\POL@activateNEhook@xint}%
-%
-%
-\catcode`~ 12
-\catcode`! 11
-\catcode`: 11
-% We drop consideration of \XINT_global matters
-% because we have other more urgent and arduous problems
-\def\POL@defpolfunc #1#2%
-{%
- \expandafter\POL@defpolfunc_a
- \csname XINT_#2_func_#1\expandafter\endcsname
- \csname XINT_#2_polfunc_#1\endcsname {#1}{#2}%
-}%
-\def\POL@defpolfunc_a #1#2#3#4%
-{%
- \protected % xintexpr 1.4 does things such as \expandafter\xintAdd\expanded
- \expandafter\def\expandafter#2\expandafter##\expandafter1\expandafter
- {%
- #2{##1}%
- }%
- \def#1##1##2##3%
- {%
- % put it directly at the correct level of bracing
- % don't worry for now about minimizing how many times ##3 is grabbed
- \expandafter##1\expandafter##2\expandafter{\expandafter
- {\romannumeral`^^@\POL@NEhook@polfunc{XINT_#4_polfunc_#3}#2{##3}}}%
- }%
-}%
-%
-\def\POL@polfunc@go #1#2#3{#2#3}% brace stripping intentional
-\def\POL@NEhook@polfunc{\POL@polfunc@go}% default for pure numerics
-%
-% Hook for expansion in \poldef
-\def\POL@NP@polfunc #1{%
-\def\POL@NP@polfunc ##1##2##3%
-{%
- \if0\expandafter\XINT:NE:hastilde\detokenize{##3}~!\relax
- \expandafter\XINT:NE:hashash\detokenize{##3}#1!\relax 0%
- \expandafter\POL@polfunc@go
- \else
- \expandafter\POL:NP:polfunc:p
- \fi {##1}{##2}{##3}%
-}}\expandafter\POL@NP@polfunc\string#%
-\def\POL:NP:polfunc:p #1#2#3%
-{%
- ~romannumeral~POL:usepolfunc:pol{#1}{#3}%
-}%
-\def\POL:usepolfunc:pol #1%#2%
-{%
-% Here we are in the core of \poldef and we really
-% need to get rid of some \expanded tokens so
-% we accept being exposed to \expanded but arrange to
-% remain invariant. Then we will try to speed up
-% polynomial composition (at this time the \#1
-% is a nested Horner type macro) by «pre-expanding»
-% the argument, but this means using the \POL@get
-% methods inside an \hbox
-%
-% \POL@applypolfunc will be defined \protected
-%
- \expandafter\xint_c_\expandafter\POL@applypolfunc
-% This will be \protected
- \csname#1\endcsname
-% #2% brace stripping is deliberate
-}%
-%
-% Hook for expansion in \xintexpr
-\def\POL@NE@polfunc #1{%
-\def\POL@NE@polfunc ##1##2##3%
-{%
- \if0\expandafter\XINT:NE:hastilde\detokenize{##3}~!\relax
- \expandafter\XINT:NE:hashash\detokenize{##3}#1!\relax 0%
- \expandafter\POL@polfunc@go
- \else
- \expandafter\POL:NE:polfunc:p
- \fi {##1}{##2}{##3}%
-}}\expandafter\POL@NE@polfunc\string#%
-\def\POL:NE:polfunc:p #1#2#3%
-{%
- ~romannumeral~POL:usepolfunc:xint{#1}{#3}%
-}%
-\def\POL:usepolfunc:xint #1%
-{%
-% This is done to overcome \protected and is useful
-% in case the polynomial function ends up nested
-% in some non-polynomial user declared function
-% as the latter (and other things) tries to pre-expand
-% its arguments (as they may be used multiple time)
-% using \expanded, but \#1 is protected.
-% And this works recursively. We are inside braces.
-% However we have a very big problem with constant
-% polynomial functions. We have to handle them
-% in a special way.
- -`0\csname#1\expandafter\endcsname\expanded
-}%
-\catcode`~ 13
-\catcode`: 12
-
-
-%% Start defining some \protected ones here
-\protected\def\POL@empty{}%
-\newif\ifPOL@pol
-\protected\def\POL@polglobaltrue {\global\let\ifPOL@pol\iftrue}%
-\protected\def\POL@polglobalfalse{\global\let\ifPOL@pol\iffalse}%
-
-
-%% Patch xintexpr to authorize ' in names (0.5.1)
-%% Adapted 0.7.5 to follow-up on xintexpr 1.4 internal changes
-%% (much simpler than previous stuff...)
-%% This allows ' as a character in a polynomial name (not initial one)
-\def\POL@XINT_expr_scanfunc_b #1%
-{%
- \ifcat \relax#1\xint_dothis{\iffalse{\fi}(_#1}\fi
- \if (#1\xint_dothis{\iffalse{\fi}(`}\fi
- \if 1\ifcat a#10\fi
- \ifnum\xint_c_ix<1\string#1 0\fi
- \if @#10\fi
- \if _#10\fi
- \if '#10\fi
- 1%
- \xint_dothis{\iffalse{\fi}(_#1}\fi
- \xint_orthat {#1\XINT_expr_scanfunc_a}%
-}%
-
-
-%% Activate polexp's modified xintexpr (only during definitions
-%% of polynomials)
-\def\POL@hackxintexpr {%
- \let\POL@originalXINT_expr_scanfunc_b\XINT_expr_scanfunc_b
- \let\XINT_expr_scanfunc_b\POL@XINT_expr_scanfunc_b
- \def\POL@activateNEhook{\POL@activateNEhook@pol}%
-}%
-\def\POL@restorexintexpr {%
- \let\XINT_expr_scanfunc_b\POL@originalXINT_expr_scanfunc_b
- \def\POL@activateNEhook{\POL@activateNEhook@xint}%
-}%
-
-
-%% AUXILIARIES
-\catcode`! 3
-%% added at 0.7
-\newcommand\polexprsetup[1]{\POL@setup_parsekeys #1,=!,\xint_bye}%
-\def\POL@setup_parsekeys #1=#2#3,{%
- \ifx!#2\expandafter\xint_bye\fi
- \csname POL@setup_setkey_\xint_zapspaces #1 \xint_gobble_i\endcsname
- \xint_firstoftwo
- {\PackageWarning{polexpr}{The \detokenize{#1} key is unknown! ignoring}}%
- {\xintZapLastSpaces{#2#3}}%
- \POL@setup_parsekeys
-}%
-\catcode`! 11
-\def\POL@setup_setkey_norr #1#2{\edef\POL@norr}%
-\def\POL@setup_setkey_sqfnorr #1#2{\edef\POL@sqfnorr}%
-\polexprsetup{norr=_norr, sqfnorr=_sqf_norr}
-
-\newcount\POL@count
-\newif\ifxintveryverbose
-\newif\ifpoltypesetall
-\newif\ifPOL@tosturm@makefirstprimitive
-\POL@tosturm@makefirstprimitivetrue
-\newif\ifPOL@isolz@nextwillneedrefine
-\newif\ifpoltoexprall
-%% the main exchange structure (stored in macros \POLuserpol@<name>)
-%% is: degree.\POL@empty{coeff0}{coeff1}....{coeffN}
-%% (degree=N except zero polynomial recognized from degree set to -1
-%% but it has always the {0/1[0]} coeff0.)
-\def\POL@ifZero#1{\expandafter\POL@ifZero@aux#1;}%
-\def\POL@ifZero@aux #1#2;{\if-#1\expandafter\xint_firstoftwo
- \else\expandafter\xint_secondoftwo
- \fi}%
-\def\POL@split#1.#2;#3#4% separates degree and list of coefficients
-% The \expandafter chain removes the \empty token
- {\def#3{#1}\expandafter\def\expandafter#4\expandafter{#2}}%
-%
-\def\POL@resultfromarray #1{% ATTENTION, **MUST** be executed with
-% \count@ set to 1 + degree (\count@ = 0 for zero polynomial)
-% Attention to the \protected here at 0.7.5
-% They are many all over the place
- \protected\edef\POL@result{\ifnum\count@>\z@
- \the\numexpr\count@-\@ne.\POL@empty
- \xintiloop [1+1]%
- \expandafter\POL@braceit\csname POL@array#1\xintiloopindex\endcsname
- \ifnum\xintiloopindex<\count@
- \repeat
-% Attention to this \protected\POL@empty
-% They are many all over the place
- \else-1.\POL@empty{0/1[0]}\fi}%
-}%
-\def\POL@braceit#1{{#1}}% needed as \xintiloopindex can not "see" through braces
-
-
-\newcommand\PolDef[3][x]{\poldef #2(#1):=#3;}%
-\def\poldef{\edef\POL@restoresemicolon{\catcode59=\the\catcode59\relax}%
- \catcode59 12 \POL@defpol}%
-\def\POL@defpol #1(#2)#3=#4;{%
- \POL@restoresemicolon
- \edef\POL@tmp{\ifxintverbose1\else0\fi}%
- \unless\ifxintveryverbose\xintverbosefalse\fi
- \POL@hackxintexpr
- \xintdeffunc __pol(#2):=0+(#4);% force conversion to raw if a constant
- \POL@restorexintexpr
- \if1\POL@tmp\xintverbosetrue\fi
- \edef\POL@polname{\xint_zapspaces #1 \xint_gobble_i}%
- \begingroup
- \setbox0\hbox{%
- \let\xintScalarAdd\xintAdd
- \let\xintScalarSub\xintSub
- \let\xintScalarMul\xintMul
- \let\xintScalarDiv\xintDiv
- \let\xintScalarPow\xintPow
- \let\xintScalarOpp\xintOpp
- \let\xintAdd\POL@add
- \let\xintMul\POL@mul
- \let\xintDiv\POL@div
- \let\xintPow\POL@pow
- \let\xintOpp\POL@opp
- \def\xintSub ##1##2{\xintAdd{##1}{\xintOpp{##2}}}%
- % \xintAdd{0} to get \POL@result defined even if numerical only expression
- % I could also test \ifPOL@pol, but this is anyhow small overhead
-% Attention that xintexpr 1.4 has braces all over the place
- \expandafter\xintAdd\expandafter{\expandafter0\expandafter}%
- \romannumeral0\csname XINT_expr_userfunc___pol\endcsname
- {\POL@polglobaltrue\protected\def\POL@result{1.\POL@empty{0/1[0]}{1/1[0]}}}%
- \expandafter}\expandafter
- \endgroup\expandafter
- \def\csname POLuserpol@\POL@polname\expandafter\endcsname
- \expandafter{\POL@result}%
- \expandafter\POL@newpol\expandafter{\POL@polname}%
-}%
-%
-
-
-\def\POL@newpol#1{%
-%% We must handle specially constant polynomials because they must
-%% be made to work expandably in \poldef of other polynomials due
-%% to complicated matters having to do with the \POL@ifpol conditional
- \ifnum\PolDegree{#1}<\@ne
- % non-zero constant
- % I am defining this one only for the Info message, no time now
- \expandafter\edef\csname XINT_expr_polfunc_#1\endcsname
- ##1{\PolNthCoeff{#1}{0}}%
- % No hooks here!
- \expandafter\edef\csname XINT_expr_func_#1\endcsname ##1##2##3%
- {##1##2{{\PolNthCoeff{#1}{0}}}}%
- \else
- % polynomial of degree at least 1. This means that mechanism
- % to get \POL@result will get activated and we must be very careful
- % to never \edef when the Horner macro will be converted to
- % a polynomial
- \POL@newpolhorner{#1}%
- \POL@defpolfunc{#1}{expr}%
- \fi
- \expandafter\let\csname XINT_flexpr_func_#1\endcsname\@undefined
- \ifxintverbose\POL@info{#1}\fi
-}%
-\def\POL@newfloatpol#1{%
-%% We must handle specially constant polynomials because they must
-%% be made to work expandably in \poldef of other polynomials due
-%% to complicated matters having to do with the \POL@ifpol conditional
- \ifnum\PolDegree{#1}<\@ne
- % non-zero constant
- % I am defining this one only for the Info message, no time now
- \expandafter\edef\csname XINT_flexpr_polfunc_#1\endcsname
- ##1{\PolNthCoeff{#1}{0}}%
- % No hooks here!
- \expandafter\edef\csname XINT_flexpr_func_#1\endcsname ##1##2##3%
- {##1##2{{\PolNthCoeff{#1}{0}}}}%
- \else
- % polynomial of degree at least 1. This means that mechanism
- % to get \POL@result will get activated and we must be very careful
- % to never \edef when the Horner macro will be converted to
- % a polynomial
- \POL@newfloatpolhorner{#1}%
- \POL@defpolfunc{#1}{flexpr}%
- \fi
- \ifxintverbose\POL@floatinfo{#1}\fi
-}%
-\def\POL@info #1{%
- \xintMessage {polexpr}{Info}%
- {Function #1 for the \string\xintexpr\space parser is
- associated to \string\XINT_expr_polfunc_#1\space
- whose meaning uses Horner scheme:
- \expandafter\meaning
- \csname XINT_expr_polfunc_#1\endcsname}%
-}%
-\def\POL@floatinfo #1{%
- \xintMessage {polexpr}{Info}%
- {Function #1 for the \string\xintfloatexpr\space parser is
- associated to \string\XINT_flexpr_polfunc_#1\space
- whose meaning uses Horner scheme:
- \expandafter\meaning
- \csname XINT_flexpr_polfunc_#1\endcsname}%
-}%
-%
-\def\POL@newpolhorner#1{%
- %% redefine function to expand by Horner scheme. Is this useful?
- %% perhaps bad idea for numerical evaluation of thing such as (1+x)^10?
-% note: I added {0/1[0]} item to zero polynomial also to facilitate this
- \expandafter\expandafter\expandafter\POL@split
- \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
- \edef\POL@var@coeffs{\xintRevWithBraces{\POL@var@coeffs}}%
- \begingroup
- \expandafter\POL@newpol@horner\POL@var@coeffs\relax
- \expandafter
- \endgroup
- \expandafter\def\csname XINT_expr_polfunc_#1\expandafter\endcsname
- \expandafter##\expandafter1\expandafter{\POL@tmp{##1}}%
-}%
-\def\POL@newfloatpolhorner#1{%
- %% redefine function to expand by Horner scheme. Is this useful?
- %% perhaps bad idea for numerical evaluation of thing such as (1+x)^10?
-% note: I added {0/1[0]} item to zero polynomial also to facilitate this
- \expandafter\expandafter\expandafter\POL@split
- \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
- \edef\POL@var@coeffs{\xintRevWithBraces{\POL@var@coeffs}}%
- \begingroup
- \expandafter\POL@newpol@floathorner\POL@var@coeffs\relax
- \expandafter
- \endgroup
- \expandafter\def\csname XINT_flexpr_polfunc_#1\expandafter\endcsname
- \expandafter##\expandafter1\expandafter{\POL@tmp{##1}}%
-}%
-\def\POL@newpol@horner#1{\let\xintAdd\relax\let\xintMul\relax
- \def\POL@tmp##1{#1}\POL@newpol@horner@loop.}%
-\def\POL@newpol@horner@loop.#1{%
- \if\relax#1\expandafter\xint_gob_til_dot\fi
- \edef\POL@tmp##1{\xintiiifZero{#1}
- {\@firstofone}{\xintAdd{#1}}%
- {\xintMul{##1}{\POL@tmp{##1}}}}%
- \POL@newpol@horner@loop.%
-}%
-\def\POL@newpol@floathorner#1{\let\XINTinFloatAdd\relax\let\XINTinFloatMul\relax
- \def\xintAdd{\XINTinFloatAdd}\def\xintMul{\XINTinFloatMul}%
- \edef\POL@tmp##1{\XINTinFloatdigits{#1}}%
- \POL@newpol@floathorner@loop.}%
-\def\POL@newpol@floathorner@loop.#1{%
- \if\relax#1\expandafter\xint_gob_til_dot\fi
- \edef\POL@tmp##1{\xintiiifZero{#1}
- {\@firstofone}{\xintAdd{\XINTinFloatdigits{#1}}}%
- {\xintMul{##1}{\POL@tmp{##1}}}}%
- \POL@newpol@floathorner@loop.%
-}%
-
-
-\newcommand\PolGenFloatVariant[1]{\POL@newfloatpol{#1}}%
-
-
-\newcommand\PolLet[2]{\if=\noexpand#2\expandafter\xint_firstoftwo
- \else\expandafter\xint_secondoftwo\fi
- \POL@@let\POL@let{#1}{#2}}%
-\def\POL@@let#1#2#3{\POL@let{#1}{#3}}%
-\def\POL@let#1#2{%
- \expandafter\let\csname POLuserpol@#1\expandafter\endcsname
- \csname POLuserpol@#2\endcsname
- \expandafter\let\csname XINT_expr_polfunc_#1\expandafter\endcsname
- \csname XINT_expr_polfunc_#2\endcsname
- \POL@defpolfunc{#1}{expr}%
- \ifxintverbose\POL@info{#1}\fi
-}%
-\newcommand\PolGlobalLet[2]{\begingroup
- \globaldefs\@ne
- \if=\noexpand#2\expandafter\xint_firstoftwo
- \else\expandafter\xint_secondoftwo\fi
-% do I need to check something here relative to \xintNewExpr?
- \POL@@globallet\POL@globallet {#1}{#2}}%
-\def\POL@@globallet#1#2#3{\POL@globallet{#1}{#3}}%
-\def\POL@globallet#1#2{\POL@let{#1}{#2}\endgroup}%
-
-\newcommand\PolAssign[1]{\def\POL@polname{#1}\POL@assign}% zap spaces in #1?
-\def\POL@assign#1\toarray#2{%
- \expandafter\expandafter\expandafter\POL@split
- \csname POLuserpol@\POL@polname\endcsname;\POL@var@deg\POL@var@coeffs
- \xintAssignArray\POL@var@coeffs\to#2%
- % modify \#200 macro to return 0/1[0] for out of range indices
- \@namedef{\xint_arrayname00}##1##2##3{%
- \@namedef{\xint_arrayname00}####1{%
- \ifnum####1>##1 \xint_dothis{ 0/1[0]}\fi
- \ifnum####1>\m@ne \xint_dothis
- {\expandafter\expandafter\expandafter##3%
- \csname##2####1\endcsname}\fi
- \unless\ifnum-####1>##1 \xint_dothis
- {\expandafter\expandafter\expandafter##3%
- \csname##2\the\numexpr##1+####1+\@ne\endcsname}\fi
- \xint_orthat{ 0/1[0]}}% space stops a \romannumeral0
- }%
- \csname\xint_arrayname00\expandafter\expandafter\expandafter\endcsname
- \expandafter\expandafter\expandafter
- {\csname\xint_arrayname0\expandafter\endcsname\expandafter}\expandafter
- {\xint_arrayname}{ }%
-}%
-
-
-\newcommand\PolGet{}%
-\def\PolGet#1#2\fromarray#3{%
- \begingroup % closed in \POL@getfromarray
- \POL@getfromarray{#1}{#3}%
- \POL@newpol{#1}%
-}%
-\def\POL@getfromarray#1#2{%
- \count@=#2{0} %<- intentional space
- \ifnum\count@=\z@
- \protected\def\POL@result{-1.\POL@empty{0/1[0]}}% 0.5 fix for empty array
- \else
- \xintloop
- \edef\POL@tmp{#2{\count@}}%
- \edef\POL@tmp{\xintRaw{\POL@tmp}}%
-% sadly xinttools (current 1.3a) arrays have no setters for individual items...
- \expandafter\let\csname POL@tmparray\the\count@\endcsname\POL@tmp
- \if0\xintiiSgn{\POL@tmp}%
- \advance\count@\m@ne
- \repeat
-% dans le cas particulier d'un array avec que des éléments nuls, \count@ est
-% ici devenu 0 et la boucle s'est arrêtée car #2{0} était au moins 1. De plus
-% \POL@tmparray1 est bien 0/1[0] donc ok pour polynôme nul dans \POL@result
- \count\tw@\count@
- \xintloop
-% on mouline tous les coeffs via \xintRaw
- \ifnum\count@>\@ne
- \advance\count@\m@ne
- \edef\POL@tmp{#2{\count@}}%
- \edef\POL@tmp{\xintRaw{\POL@tmp}}%
- \expandafter\let\csname POL@tmparray\the\count@\endcsname\POL@tmp
- \repeat
- \count@\count\tw@
- \def\POL@tmp##1.{{\csname POL@tmparray##1\endcsname}}%
- \protected\edef\POL@result{\the\numexpr\count@-\@ne.\POL@empty
- \xintiloop[1+1]%
- \expandafter\POL@tmp\xintiloopindex.%
- \ifnum\xintiloopindex<\count@
- \repeat}%
- \fi
- \expandafter
- \endgroup
- \expandafter
- \def\csname POLuserpol@#1\expandafter\endcsname
- \expandafter{\POL@result}%
-}%
-
-
-\newcommand\PolFromCSV[2]{%
- \begingroup % closed in \POL@getfromarray
- \xintAssignArray\xintCSVtoList{#2}\to\POL@arrayA
- \POL@getfromarray{#1}\POL@arrayA
- \POL@newpol{#1}%
-% semble un peu indirect et sous-optimal
-% mais je veux élaguer les coefficients nuls. Peut-être à revoir.
-}%
-
-
-\newcommand\PolTypesetCmdPrefix[1]{\xintiiifSgn{#1}{}{+}{+}}%
-\newcommand\PolTypesetCmd[1]{\xintifOne{\xintiiAbs{#1}}%
- {\ifnum\PolIndex=\z@\xintiiSgn{#1}\else
- \xintiiifSgn{#1}{-}{}{}\fi
- \let\PolIfCoeffIsPlusOrMinusOne\@firstoftwo}%
- {\PolTypesetOne{#1}%
- \let\PolIfCoeffIsPlusOrMinusOne\@secondoftwo}%
- }%
-\newcommand\PolTypesetOne{\xintSignedFrac}%
-\newcommand\PolTypesetMonomialCmd{%
- \ifcase\PolIndex\space
- %
- \or\PolVar
- \else\PolVar^{\PolIndex}%
- \fi
-}%
-\newcommand\PolTypeset{\@ifstar
- {\def\POL@ts@ascending{1}\POL@Typeset}%
- {\def\POL@ts@ascending{0}\POL@Typeset}%
-}%
-\newcommand\POL@Typeset[2][x]{% LaTeX \newcommand forces optional argument first
- \ensuremath{%
- \expandafter\expandafter\expandafter\POL@split
- \csname POLuserpol@#2\endcsname;\POL@var@deg\POL@var@coeffs
- \if\POL@ts@ascending1%
- \def\PolIndex{0}%
- \let\POL@ts@reverse\@firstofone
- \let\POL@@ne@or@m@ne\@ne
- \else
- \let\PolIndex\POL@var@deg
- \ifnum\PolIndex<\z@\def\PolIndex{0}\fi
- \let\POL@ts@reverse\xintRevWithBraces
- \let\POL@@ne@or@m@ne\m@ne
- \fi
- \def\PolVar{#1}%
- \ifnum\POL@var@deg<\z@
- \PolTypesetCmd{0/1[0]}\PolTypesetMonomialCmd
- \else
- \ifnum\POL@var@deg=\z@
- \expandafter\PolTypesetCmd\POL@var@coeffs\PolTypesetMonomialCmd
- \else
- \def\POL@ts@prefix##1{\let\POL@ts@prefix\PolTypesetCmdPrefix}%
- \expandafter\POL@ts@loop
- \romannumeral-`0\POL@ts@reverse{\POL@var@coeffs}\relax
- \fi
- \fi
- }%
-}%
-\def\POL@ts@loop{\ifpoltypesetall\expandafter\xint_firstoftwo
- \else\expandafter\xint_secondoftwo\fi
- {\POL@ts@nocheck}{\POL@ts@check}.%
-}%
-\def\POL@ts@check.#1{%
- \if\relax#1\expandafter\xint_gob_til_dot\fi
- \xintiiifZero{#1}%
- {}%
- {\POL@ts@prefix{#1}\PolTypesetCmd{#1}\PolTypesetMonomialCmd}%
- \edef\PolIndex{\the\numexpr\PolIndex+\POL@@ne@or@m@ne}\POL@ts@check.%
-}%
-\def\POL@ts@nocheck.#1{%
- \if\relax#1\expandafter\xint_gob_til_dot\fi
- \POL@ts@prefix{#1}\PolTypesetCmd{#1}\PolTypesetMonomialCmd
- \edef\PolIndex{\the\numexpr\PolIndex+\POL@@ne@or@m@ne}\POL@ts@nocheck.%
-}%
-
-
-\newcommand\PolMapCoeffs[2]{% #1 = macro, #2 = name
- \POL@mapcoeffs{#1}{#2}%
- \POL@newpol{#2}%
-}%
-\def\POL@mapcoeffs#1#2{%
- \begingroup
- \def\POL@mapcoeffs@macro{#1}%
- \expandafter\expandafter\expandafter\POL@split
- \csname POLuserpol@#2\endcsname;\POL@mapcoeffs@deg\POL@mapcoeffs@coeffs
-% ATTENTION à ne pas faire un \expandafter ici, car brace removal si 1 item
- \xintAssignArray\POL@mapcoeffs@coeffs\to\POL@arrayA
- \def\index{0}%
- \count@\z@
- \expandafter\POL@map@loop\expandafter.\POL@mapcoeffs@coeffs\relax
- \xintloop
-% this abuses that \POL@arrayA0 is never 0.
- \xintiiifZero{\csname POL@arrayA\the\count@\endcsname}%
- {\iftrue}%
- {\iffalse}%
- \advance\count@\m@ne
- \repeat
-% donc en sortie \count@ est 0 ssi pol nul.
- \POL@resultfromarray A%
- \expandafter
- \endgroup
- \expandafter
- \def\csname POLuserpol@#2\expandafter\endcsname\expandafter{\POL@result}%
-}%
-\def\POL@map@loop.#1{\if\relax#1\expandafter\xint_gob_til_dot\fi
- \advance\count@\@ne
- \edef\POL@map@coeff{\POL@mapcoeffs@macro{#1}}%
- \expandafter
- \let\csname POL@arrayA\the\count@\endcsname\POL@map@coeff
- \edef\index{\the\numexpr\index+\@ne}%
- \POL@map@loop.}%
-\def\POL@xintIrr#1{\xintIrr{#1}[0]}%
-\newcommand\PolReduceCoeffs{\@ifstar\POL@sreducecoeffs\POL@reducecoeffs}%
-\def\POL@reducecoeffs#1{\PolMapCoeffs{\POL@xintIrr}{#1}}%
-\def\POL@sreducecoeffs#1{\PolMapCoeffs{\xintPIrr}{#1}}%
-
-
-%% EUCLIDEAN DIVISION
-\newcommand\PolDivide[4]{% #3=quotient, #4=remainder of #1 by #2
- \POL@divide{#1}{#2}%
- \expandafter\let\csname POLuserpol@#3\endcsname\POL@Q
- \POL@newpol{#3}%
- \expandafter\let\csname POLuserpol@#4\endcsname\POL@R
- \POL@newpol{#4}%
-}%
-\newcommand\PolQuo[3]{% #3=quotient of #1 by #2
- \POL@divide{#1}{#2}%
- \expandafter\let\csname POLuserpol@#3\endcsname\POL@Q
- \POL@newpol{#3}%
-}%
-\newcommand\PolRem[3]{% #3=remainder of #1 by #2
- \POL@divide{#1}{#2}%
- \expandafter\let\csname POLuserpol@#3\endcsname\POL@R
- \POL@newpol{#3}%
-}%
-\newcommand\POL@divide[2]{%
- \begingroup
- \let\xintScalarSub\xintSub
- \let\xintScalarAdd\xintAdd
- \let\xintScalarMul\xintMul
- \let\xintScalarDiv\xintDiv
- \expandafter\let\expandafter\POL@A\csname POLuserpol@#1\endcsname
- \expandafter\let\expandafter\POL@B\csname POLuserpol@#2\endcsname
- \POL@div@c
- \let\POL@Q\POL@result
- \ifnum\POL@degQ<\z@
- \let\POL@R\POL@A
- \else
- \count@\numexpr\POL@degR+\@ne\relax
- \POL@resultfromarray R%
- \let\POL@R\POL@result
- \fi
- \expandafter
- \endgroup
- \expandafter
- \def\csname POL@Q\expandafter\expandafter\expandafter\endcsname
- \expandafter\expandafter\expandafter{\expandafter\POL@Q\expandafter}%
- \expandafter
- \def\csname POL@R\expandafter\endcsname\expandafter{\POL@R}%
-}%
-
-
-%% GCD
-\newcommand\PolGCD[3]{% sets #3 to the (unitary) G.C.D. of #1 and #2
- \POL@GCD{#1}{#2}{#3}%
- \POL@newpol{#3}%
-}%
-\def\POL@GCD #1#2#3{%
- \begingroup
- \let\xintScalarSub\xintSub
- \let\xintScalarAdd\xintAdd
- \let\xintScalarMul\xintMul
- \let\xintScalarDiv\xintDiv
- \expandafter\let\expandafter\POL@A\csname POLuserpol@#1\endcsname
- \expandafter\let\expandafter\POL@B\csname POLuserpol@#2\endcsname
- \expandafter\POL@split\POL@A;\POL@degA\POL@polA
- \expandafter\POL@split\POL@B;\POL@degB\POL@polB
- \ifnum\POL@degA<\z@
- \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
- \fi
- {\ifnum\POL@degB<\z@
- \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
- \fi
- {\protected\def\POL@result{-1.\POL@empty{0/1[0]}}}%
- {\xintAssignArray\POL@polB\to\POL@arrayB
- \POL@normalize{B}%
- \POL@gcd@exit BA}}%
- {\ifnum\POL@degB<\z@
- \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
- \fi
- {\xintAssignArray\POL@polA\to\POL@arrayA
- \POL@normalize{A}%
- \POL@gcd@exit AB}%
- {\ifnum\POL@degA<\POL@degB\space
- \let\POL@tmp\POL@B\let\POL@B\POL@A\let\POL@A\POL@tmp
- \let\POL@tmp\POL@degB\let\POL@degB\POL@degA\let\POL@degA\POL@tmp
- \let\POL@tmp\POL@polB\let\POL@polB\POL@polA\let\POL@polA\POL@tmp
- \fi
- \xintAssignArray\POL@polA\to\POL@arrayA
- \xintAssignArray\POL@polB\to\POL@arrayB
- \POL@gcd AB%
- }}%
- \expandafter
- \endgroup
- \expandafter\def\csname POLuserpol@#3\expandafter\endcsname
- \expandafter{\POL@result}%
-}%
-\def\POL@normalize#1{%
- \expandafter\def\expandafter\POL@tmp\expandafter
- {\csname POL@array#1\csname POL@array#10\endcsname\endcsname}%
- \edef\POL@normalize@leading{\POL@tmp}%
- \expandafter\def\POL@tmp{1/1[0]}%
- \count@\csname POL@deg#1\endcsname\space
- \xintloop
- \ifnum\count@>\z@
- \expandafter\edef\csname POL@array#1\the\count@\endcsname
- {\xintIrr{\xintScalarDiv
- {\csname POL@array#1\the\count@\endcsname}%
- {\POL@normalize@leading}}[0]}%
- \advance\count@\m@ne
- \repeat
-}%
-\def\POL@gcd#1#2{%
- \POL@normalize{#2}%
- \edef\POL@degQ{\the\numexpr\csname POL@deg#1\endcsname
- -\csname POL@deg#2\endcsname}%
- \count@\numexpr\csname POL@deg#1\endcsname+\@ne\relax
- \count\tw@\numexpr\POL@degQ+\@ne\relax
- \xintloop
- \POL@gcd@getremainder@loopbody#1#2%
- \ifnum\count\tw@>\z@
- \repeat
- \expandafter\def\csname POL@array#10\endcsname{1}%
- \xintloop
- \xintiiifZero{\csname POL@array#1\the\count@\endcsname}%
- {\iftrue}%
- {\iffalse}%
- \advance\count@\m@ne
- \repeat
- \expandafter\edef\csname POL@deg#1\endcsname{\the\numexpr\count@-\@ne}%
- \ifnum\count@<\@ne
- \expandafter\POL@gcd@exit
- \else
- \expandafter\edef\csname POL@array#10\endcsname{\the\count@}%
- \expandafter\POL@gcd
- \fi{#2}{#1}%
-}%
-\def\POL@gcd@getremainder@loopbody#1#2{%
- \edef\POL@gcd@ratio{\csname POL@array#1\the\count@\endcsname}%
- \advance\count@\m@ne
- \advance\count\tw@\m@ne
- \count4 \count@
- \count6 \csname POL@deg#2\endcsname\space
- \xintloop
- \ifnum\count6>\z@
- \expandafter\edef\csname POL@array#1\the\count4\endcsname
- {\xintScalarSub
- {\csname POL@array#1\the\count4\endcsname}%
- {\xintScalarMul
- {\POL@gcd@ratio}%
- {\csname POL@array#2\the\count6\endcsname}}}%
- \advance\count4 \m@ne
- \advance\count6 \m@ne
- \repeat
-}%
-\def\POL@gcd@exit#1#2{%
- \count@\numexpr\csname POL@deg#1\endcsname+\@ne\relax
- \POL@resultfromarray #1%
-}%
-
-
-%% TODO: BEZOUT
-
-
-%% DIFFERENTIATION
-\def\POL@diff@loop@one #1/#2[#3]#4%
- {\xintIrr{\xintiiMul{#4}{#1}/#2[0]}[#3]}%
-\def\POL@diff#1{\POL@diff@loop1.}%
-\def\POL@diff@loop#1.#2{%
- \if\relax#2\expandafter\xint_gob_til_dot\fi
- {\expandafter\POL@diff@loop@one\romannumeral0\xintraw{#2}{#1}}%
- \expandafter\POL@diff@loop\the\numexpr#1+\@ne.%
-}%
-\newcommand\PolDiff[1][1]{%
- % optional parameter is how many times to derivate
- % first mandatory arg is name of polynomial function to derivate,
- % same name as in \NewPolExpr
- % second mandatory arg name of derivative
- \edef\POL@iterindex{\the\numexpr#1\relax}%
- \ifnum\POL@iterindex<\z@
- \expandafter\@firstoftwo
- \else
- \expandafter\@secondoftwo
- \fi
- {\PolAntiDiff[-\POL@iterindex]}{\POL@Diff}%
-}%
-\def\POL@Diff{%
- \ifcase\POL@iterindex\space
- \expandafter\POL@Diff@no
- \or\expandafter\POL@Diff@one
- \else\xint_afterfi{\POL@Iterate\POL@Diff@one}%
- \fi
-}%
-\def\POL@Diff@no #1#2{\POL@let{#2}{#1}}%
-\def\POL@Diff@one #1#2{\POL@Diff@@one {#1}{#2}\POL@newpol{#2}}%
-\def\POL@Diff@@one#1#2{%
- \expandafter\expandafter\expandafter\POL@split
- \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
- \ifnum\POL@var@deg<\@ne
- \@namedef{POLuserpol@#2}{-1.\POL@empty{0/1[0]}}%
- \else
- \edef\POL@var@coeffs{\expandafter\POL@diff\POL@var@coeffs\relax}%
- \expandafter\edef\csname POLuserpol@#2\endcsname
- {\the\numexpr\POL@var@deg-\@ne.\POL@empty\POL@var@coeffs}%
- \fi
-}%
-% lazy way but allows to share with AntiDiff
-\def\POL@Iterate#1#2#3{%
- \begingroup
- \xintverbosefalse
- #1{#2}{#3}%
- \xintloop
- \ifnum\POL@iterindex>\tw@
- #1{#3}{#3}%
- \edef\POL@iterindex{\the\numexpr\POL@iterindex-\@ne}%
- \repeat
- \expandafter
- \endgroup\expandafter
- \def\csname POLuserpol@#3\expandafter\endcsname
- \expandafter{\romannumeral`^^@\csname POLuserpol@#3\endcsname}%
- #1{#3}{#3}%
-}%
-
-
-%% ANTI-DIFFERENTIATION
-\def\POL@antidiff@loop@one #1/#2[#3]#4%
- {\xintIrr{#1/\xintiiMul{#4}{#2}[0]}[#3]}%
-\def\POL@antidiff{\POL@antidiff@loop1.}%
-\def\POL@antidiff@loop#1.#2{%
- \if\relax#2\expandafter\xint_gob_til_dot\fi
- {\expandafter\POL@antidiff@loop@one\romannumeral0\xintraw{#2}{#1}}%
- \expandafter\POL@antidiff@loop\the\numexpr#1+\@ne.%
-}%
-\newcommand\PolAntiDiff[1][1]{%
- % optional parameter is how many times to derivate
- % first mandatory arg is name of polynomial function to derivate,
- % same name as in \NewPolExpr
- % second mandatory arg name of derivative
- \edef\POL@iterindex{\the\numexpr#1\relax}%
- \ifnum\POL@iterindex<\z@
- \expandafter\@firstoftwo
- \else
- \expandafter\@secondoftwo
- \fi
- {\PolDiff[-\POL@iterindex]}{\POL@AntiDiff}%
-}%
-\def\POL@AntiDiff{%
- \ifcase\POL@iterindex\space
- \expandafter\POL@AntiDiff@no
- \or\expandafter\POL@AntiDiff@one
- \else\xint_afterfi{\POL@Iterate\POL@AntiDiff@one}%
- \fi
-}%
-\let\POL@AntiDiff@no\POL@Diff@no
-\def\POL@AntiDiff@one #1#2{\POL@AntiDiff@@one{#1}{#2}\POL@newpol{#2}}%
-\def\POL@AntiDiff@@one#1#2{%
- \expandafter\expandafter\expandafter\POL@split
- \csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
- \ifnum\POL@var@deg<\z@
- \@namedef{POLuserpol@#2}{-1.\POL@empty{0/1[0]}}%
- \else
- \edef\POL@var@coeffs{\expandafter\POL@antidiff\POL@var@coeffs\relax}%
- \expandafter\edef\csname POLuserpol@#2\endcsname
- {\the\numexpr\POL@var@deg+\@ne.\POL@empty{0/1[0]}\POL@var@coeffs}%
- \fi
-}%
-
-%% IContent and \PolMakePrimitive (0.5)
-\def\POL@aux@mgcd@loop#1#2{%
- \if\relax#2\expandafter\POL@aux@mgcd@exit\fi
- \expandafter
- \POL@aux@mgcd@loop\romannumeral0\POL@aux@gcd#1.#2.%
-}%
-\def\POL@aux@mgcd@exit
- \expandafter
- \POL@aux@mgcd@loop\romannumeral0\POL@aux@gcd#1.\relax.{\xintiiabs{#1}}%
-\def\POL@aux@gcd#1.#2.{%
- \if0\xintiiSgn{#1}\expandafter\POL@aux@gcd@exit\fi
- \expandafter\POL@aux@gcd\romannumeral0\xintmod {#2}{#1}.#1.}%
-\def\POL@aux@gcd@exit
- \expandafter\POL@aux@gcd\romannumeral0\xintmod #1#2.#3.{{#1}}%
-
-\def\POL@icontent #1{\romannumeral0\expandafter
- \POL@aux@mgcd@loop\romannumeral`^^@#1\relax}%
-
-\newcommand\PolIContent[1]{\romannumeral0\expandafter
- \POL@aux@mgcd@loop\romannumeral`^^@\PolToList{#1}\relax}%
-
-
-\def\POL@makeprim@macro#1%
- {\xintREZ{\xintNum{\xintDiv{#1}{\POL@makeprim@icontent}}}}%
-\newcommand\PolMakePrimitive[1]{%
- % This does not need a full user declared polynomial on input, only
- % a \POLuserpol@name macro, but on output it is fully declared
- \edef\POL@makeprim@icontent{\PolIContent{#1}}%
- \PolMapCoeffs\POL@makeprim@macro{#1}%
-}%
-\def\POL@makeprimitive#1{%
- % Avoids declaring the polynomial, internal usage in \PolToSturm
- \edef\POL@makeprim@icontent{\PolIContent{#1}}%
- \POL@mapcoeffs\POL@makeprim@macro{#1}%
-}%
-
-
+%% This file polexprsturm.tex is part of the polexpr package (0.8, 2021/03/29)
%% Sturm Algorithm (polexpr 0.4)
%% 0.5 uses primitive polynomials for faster evaluations afterwards
%% 0.6 corrects misuse of \@ifstar! (mumble). \PolToSturm* was broken.
@@ -898,7 +9,16 @@
%% holding the coefficients in memory
%% 0.6 fixes the case of a constant polynomial P which caused division
%% by zero error from P'.
-\newcommand\PolToSturm{\@ifstar{\PolToSturm@@}{\PolToSturm@}}%
+%% 0.8 - fixes 0.7.5 failure to have updated to xint 1.4 format the defined
+%% \xintexpr variables holding the localization intervals extremities
+%% - also, it uses the prem() in computing the Sturm chain, for a 3X
+%% speed gain in the case of the "perturbed" first Wilkinson example
+%%
+\newcount\POL@count
+\newif\ifPOL@tosturm@makefirstprimitive\POL@tosturm@makefirstprimitivetrue
+\newif\ifPOL@isolz@nextwillneedrefine
+%%
+\def\PolToSturm{\POL@ifstar{\PolToSturm@@}{\PolToSturm@}}%
\def\POL@aux@toint#1{\xintREZ{\xintNum{#1}}}% for polynomials with int. coeffs!
%% Attention that some macros rely upon this one setting \POL@sturmname
%% and \POL@sturm@N as it does
@@ -914,7 +34,7 @@
\POL@count\z@
% if I applied the same as for positive degree, I should make it -1
% if constant is negative. I also don't worry if polynomial is zero.
- \@namedef{POLuserpol@\POL@sturmname _0}{0.\POL@empty{1/1[0]}}%
+ \XINT_global\@namedef{POLuserpol@\POL@sturmname _0}{0.\empty{1/1[0]}}%
\else
\ifPOL@tosturm@makefirstprimitive\POL@makeprimitive{\POL@sturmname _0_}\fi
\POL@tosturm@dosturm
@@ -945,12 +65,13 @@
\POL@makeprimitive{\POL@sturmname _1_}% does not do \POL@newpol
\POL@count\@ne
\xintloop
- \POL@divide{\POL@sturmname _\the\numexpr\POL@count-\@ne\relax _}%
- {\POL@sturmname _\the\POL@count _}%
+ % prior to 0.8, code was using here \POL@divide
+ \POL@getprem{\POL@sturmname _\the\numexpr\POL@count-\@ne\relax _}%
+ {\POL@sturmname _\the\POL@count _}%
\expandafter\POL@split\POL@R;\POL@degR\POL@polR
\unless\ifnum\POL@degR=\m@ne
\advance\POL@count\@ne
- \expandafter\let
+ \XINT_global\expandafter\let
\csname POLuserpol@\POL@sturmname _\the\POL@count _\endcsname\POL@R
\edef\POL@makeprim@icontent{-\POL@icontent\POL@polR}%
% this avoids the \POL@newpol from \PolMapCoeffs
@@ -964,18 +85,18 @@
\advance\POL@count\m@ne
\POL@divide{\POL@sturmname _\the\POL@count _}%
{\POL@sturmname _\POL@sturm@N _}%
- \expandafter
- \let\csname POLuserpol@\POL@sturmname _\the\POL@count\endcsname\POL@Q
+ \XINT_global\expandafter
+ \let\csname POLuserpol@\POL@sturmname _\the\POL@count\endcsname\POL@Q
% quotient actually belongs to Z[X] and is primitive
\POL@mapcoeffs\POL@aux@toint{\POL@sturmname _\the\POL@count}%
\ifnum\POL@count>\z@
\repeat
- \@namedef{POLuserpol@\POL@sturmname _\POL@sturm@N}{0.\POL@empty{1/1[0]}}%
+ \XINT_global\@namedef{POLuserpol@\POL@sturmname _\POL@sturm@N}{0.\empty{1/1[0]}}%
\else % they are already normalized
\advance\POL@count\@ne % attention to include last one also
\xintloop
\advance\POL@count\m@ne
- \expandafter\let
+ \XINT_global\expandafter\let
\csname POLuserpol@\POL@sturmname _\the\POL@count\expandafter\endcsname
\csname POLuserpol@\POL@sturmname _\the\POL@count _\endcsname
\ifnum\POL@count>\z@
@@ -983,10 +104,13 @@
\fi
% Back to \PolToSturm@, \POL@count holds 0
}%
-\newcommand\PolSturmChainLength[1]
- {\romannumeral`^^@\csname PolSturmChainLength_#1\endcsname}%
-
-\newcommand\PolSetToSturmChainSignChangesAt[4][\global]{%
+\def\PolSturmChainLength#1{%
+ \romannumeral`&&@\csname PolSturmChainLength_#1\endcsname
+}%
+\def\PolSetToSturmChainSignChangesAt{%
+ \POL@chkopt\POL@oPolSetToSturmChainSignChangesAt[\global]%
+}%
+\def\POL@oPolSetToSturmChainSignChangesAt[#1]#2#3#4{%
\edef\POL@sturmchain@X{\xintREZ{#4}}%
\edef\POL@sturmname{#3}%
\edef\POL@sturmlength{\PolSturmChainLength{\POL@sturmname}}%
@@ -1014,7 +138,10 @@
\fi
\repeat
}%
-\newcommand\PolSetToNbOfZerosWithin[5][\global]{%
+\def\PolSetToNbOfZerosWithin{%
+ \POL@chkopt\POL@oPolSetToNbOfZerosWithin[\global]%
+}%
+\def\POL@oPolSetToNbOfZerosWithin[#1]#2#3#4#5{%
\edef\POL@tmpA{\xintREZ{#4}}%
\edef\POL@tmpB{\xintREZ{#5}}%
\edef\POL@sturmname{#3}%
@@ -1029,23 +156,25 @@
#1\edef#2{\the\numexpr\POL@SVA-\POL@SVB}%
\fi
}%
-
-
% 0.6 added starred variant to count multiplicities
% 0.7 added double starred variant to locate all rational roots
-\newcommand\PolSturmIsolateZeros{\@ifstar
+\def\PolSturmIsolateZeros{\POL@ifstar
{\PolSturmIsolateZerosAndGetMultiplicities}%
{\PolSturmIsolateZeros@}%
}%
-\newcommand\PolSturmIsolateZerosAndGetMultiplicities{\@ifstar
+\def\PolSturmIsolateZerosAndGetMultiplicities{\POL@ifstar
{\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots}%
{\PolSturmIsolateZerosAndGetMultiplicities@}%
}%
% on aurait besoin de ça dans xint, mais il aurait un \xintRaw{#1} alors
\def\POL@xintfrac@getNDE #1%
- {\expandafter\POL@xintfrac@getNDE@i\romannumeral`^^@#1}%
+ {\expandafter\POL@xintfrac@getNDE@i\romannumeral`&&@#1}%
\def\POL@xintfrac@getNDE@i #1/#2[#3]#4#5#6{\def#4{#1}\def#5{#2}\def#6{#3}}%
-\newcommand\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots[2][\empty]{%
+%
+\def\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{%
+ \POL@chkopt\POL@oPolSturmIsolateZerosGetMultiplicitiesAndRationalRoots[\empty]%
+}%
+\def\POL@oPolSturmIsolateZerosGetMultiplicitiesAndRationalRoots[#1]#2{%
\PolSturmIsolateZerosAndFindRationalRoots[#1]{#2}%
\ifnum\POL@isolz@NbOfRoots>\z@
% get multiplicities of irrational (real) roots, if any
@@ -1056,7 +185,10 @@
\fi
}%
% added at 0.7
-\newcommand\PolSturmIsolateZerosAndFindRationalRoots[2][\empty]{%
+\def\PolSturmIsolateZerosAndFindRationalRoots{%
+ \POL@chkopt\POL@oPolSturmIsolateZerosAndFindRationalRoots[\empty]%
+}%
+\def\POL@oPolSturmIsolateZerosAndFindRationalRoots[#1]#2{%
% #1 optional E such that roots are searched in -10^E < x < 10^E
% both -10^E and +10^E must not be roots!
% #2 name of Sturm chain (already pre-computed)
@@ -1078,9 +210,11 @@
% on ne va pas utiliser de Horner, mais des divisions par X - x, et ces
% choses vont évoluer, ainsi que le coefficient dominant entier
% (pour \POL@divide entre autres if faut des noms de user pol)
+ \XINT_global
\expandafter\let
\csname POLuserpol@\POL@sturmname\POL@sqfnorr\expandafter\endcsname
\csname POLuserpol@\POL@sturmname _0\endcsname
+ \XINT_global
\expandafter\let
\csname POLuserpol@\POL@sturmname\POL@norr\expandafter\endcsname
\csname POLuserpol@\POL@sturmname _0_\endcsname
@@ -1161,7 +295,7 @@
\POL@findrat@xN\POL@findrat@xD\POl@_
% we can't move this to updatequotients because other branch will
% need to do the division first anyhow
- \edef\POLuserpol@_findrat@oneterm{1.\POL@empty
+ \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty
{\xintiiOpp\POL@findrat@xN/1[0]}{\POL@findrat@xD/1[0]}}%
\POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult.
%\expandafter\POL@split\POL@R;\POL@degR\POL@polR
@@ -1295,7 +429,7 @@
% zero should never occur here
\POL@findrat@ifnegative{\edef\POL@findrat@x{-\POL@findrat@x}}{}%
\POL@xintfrac@getNDE\POL@findrat@x\POL@findrat@xN\POL@findrat@xD\POL@_
- \edef\POLuserpol@_findrat@oneterm{1.\POL@empty
+ \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty
{\xintiiOpp{\POL@findrat@xN}/1[0]}{\POL@findrat@xD/1[0]}}%
\POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult.
\expandafter\POL@split\POL@R;\POL@degR\POL@polR
@@ -1362,7 +496,7 @@
% safer to do the edef as \POL@findrat@x used later in storeit
\edef\POL@findrat@x{\xintIrr{\xintDiv\POL@findrat@Num\POL@findrat@D}[0]}%
\POL@xintfrac@getNDE\POL@findrat@x\POL@findrat@xN\POL@findrat@xD\POL@_
- \edef\POLuserpol@_findrat@oneterm{1.\POL@empty
+ \edef\POLuserpol@_findrat@oneterm{1.\noexpand\empty
{\xintiiOpp{\POL@findrat@xN}/1[0]}{\POL@findrat@xD/1[0]}}%
\POL@divide{\POL@sturmname\POL@sqfnorr}{_findrat@oneterm}% the one without mult.
\expandafter\POL@split\POL@R;\POL@degR\POL@polR
@@ -1385,23 +519,24 @@
\let\csname POL_ZK\POL@sturmname*\POL@findrat@index\endcsname
\xint_stop_atfirstoftwo
\begingroup\xintglobaldefstrue
- % skip some overhead of \xintdefvar...
+ % skip some overhead of \xintdefvar...
+ % BUT attention to changes in xint 1.4 internal format !
\XINT_expr_defvar_one{\POL@sturmname L_\POL@findrat@index}%
- {\POL@findrat@x}%
+ {{\POL@findrat@x}}%
\XINT_expr_defvar_one{\POL@sturmname R_\POL@findrat@index}%
- {\POL@findrat@x}%
+ {{\POL@findrat@x}}%
\XINT_expr_defvar_one{\POL@sturmname Z_\POL@findrat@index _isknown}%
- {1}%
+ {{1}}%
\endgroup
}%
\def\POL@findrat@loop@updatequotients{%
% attention last division must have been one testing vanishing of\POL@sqfnorr
- \expandafter\let\csname POLuserpol@\POL@sturmname\POL@sqfnorr\endcsname\POL@Q
+ \XINT_global\expandafter\let\csname POLuserpol@\POL@sturmname\POL@sqfnorr\endcsname\POL@Q
% quotient belongs to Z[X] and is primitive
\POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@sqfnorr}%
% update the one with multiplicities
\POL@divide{\POL@sturmname\POL@norr}{_findrat@oneterm}%
- \expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q
+ \XINT_global\expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q
\POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@norr}
% updating of \POL@findrat@D at end of execution of getmultiplicity
}%
@@ -1411,7 +546,7 @@
\POL@divide{\POL@sturmname\POL@norr}{_findrat@oneterm}%
\expandafter\POL@split\POL@R;\POL@degR\POL@polR
\ifnum\POL@degR=\m@ne % yes
- \expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q
+ \XINT_global\expandafter\let\csname POLuserpol@\POL@sturmname\POL@norr\endcsname\POL@Q
\POL@mapcoeffs\POL@aux@toint{\POL@sturmname\POL@norr}%
\expandafter
\xdef
@@ -1451,14 +586,19 @@
\let\POL@sturm@N\@gobble% !
\let\POL@isolz@NbOfRoots@with_unknown_mult\POL@findrat@nbofirrroots
\POL@tosturm@makefirstprimitivefalse
+\expanded{\unexpanded{%
+ \unless\ifxintveryverbose\xintverbosefalse\polnewpolverbosefalse\fi
\POL@isolzmult@loop
+}\ifxintverbose\noexpand\xintverbosetrue\fi
+ \ifpolnewpolverbose\noexpand\polnewpolverbosetrue\fi}%
\POL@tosturm@makefirstprimitivetrue
\let\POL@sturmname\POL@originalsturmname
\fi
}%
-
-
-\newcommand\PolSturmIsolateZerosAndGetMultiplicities@[2][\empty]{%
+\def\PolSturmIsolateZerosAndGetMultiplicities@{%
+ \POL@chkopt\POL@oPolSturmIsolateZerosAndGetMultiplicities@[\empty]%
+}%
+\def\POL@oPolSturmIsolateZerosAndGetMultiplicities@[#1]#2{%
% #1 optional E such that roots are searched in -10^E < x < 10^E
% both -10^E and +10^E must not be roots!
% #2 name of Sturm chain (already pre-computed)
@@ -1487,7 +627,11 @@
% store Sturm chain name, it is needed and altered in isolzmult@loop
\let\POL@originalsturmname\POL@sturmname
\POL@tosturm@makefirstprimitivefalse
- \POL@isolzmult@loop
+\expanded{\unexpanded{%
+ \unless\ifxintveryverbose\xintverbosefalse\polnewpolverbosefalse\fi
+ \POL@isolzmult@loop
+}\ifxintverbose\noexpand\xintverbosetrue\fi
+ \ifpolnewpolverbose\noexpand\polnewpolverbosetrue\fi}%
\POL@tosturm@makefirstprimitivetrue
\let\POL@sturmname\POL@originalsturmname
\fi
@@ -1502,8 +646,9 @@
\let\x\POL@isolz@NbOfRoots
\xintloop
% skip some overhead of \xintdefvar...
+ % ATTENTION to xint 1.4 internal changes !
\XINT_expr_defvar_one{\POL@sturmname M_\x}%
- {\csname POL_ZM\POL@sturmname*\x\endcsname}%
+ {{\csname POL_ZM\POL@sturmname*\x\endcsname}}%
\edef\x{\the\numexpr\x-\@ne}%
\ifnum\x>\z@
\repeat
@@ -1586,9 +731,10 @@
{\the\numexpr\POL@isolz@NbOfRoots@with_unknown_mult-\@ne}%
\fi
}%
-
-
-\newcommand\PolSturmIsolateZeros@[2][\empty]{%
+\def\PolSturmIsolateZeros@{%
+ \POL@chkopt\POL@oPolSturmIsolateZeros@[\empty]%
+}%
+\def\POL@oPolSturmIsolateZeros@[#1]#2{%
% #1 optional E such that roots are searched in -10^E < x < 10^E
% both -10^E and +10^E must not be roots!
% #2 name of Sturm chain (already pre-computed from a given polynomial)
@@ -2077,17 +1223,20 @@
\fi
\begingroup\xintglobaldefstrue
% skip some overhead of \xintdefvar...
+ % Let me repeat: ATTENTION to change of internal format at xint 1.4
\XINT_expr_defvar_one{\POL@sturmname L_\POL@isolz@IntervalIndex}%
- {\POL@IsoLeft@rawout}%
+ {{\POL@IsoLeft@rawout}}%
\XINT_expr_defvar_one{\POL@sturmname R_\POL@isolz@IntervalIndex}%
- {\POL@IsoRight@rawout}%
+ {{\POL@IsoRight@rawout}}%
% added at 0.7
\XINT_expr_defvar_one{\POL@sturmname Z_\POL@isolz@IntervalIndex _isknown}%
- {\ifnum\POL@IsoRightSign=\z@ 1\else 0\fi}%
+ {{\ifnum\POL@IsoRightSign=\z@ 1\else 0\fi}}%
\endgroup
}%
%% \PolRefineInterval
-\def\POL@xintexprGetVar#1{\csname XINT_expr_varvalue_#1\endcsname}%
+%% ATTENTION TO xint 1.4 INTERNAL CHANGES
+\def\POL@xintexprGetVar#1{\expandafter\expandafter\expandafter\xint_firstofone
+ \csname XINT_expr_varvalue_#1\endcsname}%
% attention, also used by \POL@findrat@loop@a
\def\POL@get@IsoLeft@rawin{%
\edef\POL@IsoLeft@rawin
@@ -2103,8 +1252,11 @@
\def\POL@get@IsoLeft@Int{%
\expandafter\POL@get@Int@aux\POL@IsoLeft@rawin\POL@IsoLeft@Int\POL@isolz@E
}%
-\newcommand\PolRefineInterval{\@ifstar\POL@srefine@start\POL@refine@start}%
-\newcommand\POL@refine@start[3][1]{%
+\def\PolRefineInterval{\POL@ifstar\POL@srefine@start\POL@refine@start}%
+\def\POL@refine@start{%
+ \POL@chkopt\POL@oPOL@refine@start[1]%
+}%
+\def\POL@oPOL@refine@start[#1]#2#3{%
\edef\POL@isolz@IntervalIndex{\the\numexpr#3}%
\edef\POL@sturmname{#2}%
\expandafter\POL@refine@sharedbody\expandafter
@@ -2138,8 +1290,8 @@
\fi
}%
\def\POL@refine@loop#1{%
- \let\POL@refine@left@next \@empty % no recursion at end sub-intervals
- \let\POL@refine@right@next\@empty
+ \let\POL@refine@left@next \empty % no recursion at end sub-intervals
+ \let\POL@refine@right@next\empty
\xintiloop[1+1]
\POL@refine@main
\ifnum\POL@IsoRightSign=\z@
@@ -2160,11 +1312,11 @@
\ifnum\POL@IsoRightSign=\z@
\let\POL@IsoLeft@Int\POL@IsoRight@Int % root at 1
\def\POL@IsoLeftSign{0}%
- \let\POL@next\@empty
+ \let\POL@next\empty
\else
\ifnum\POL@IsoRightSign=\POL@@IsoRightSign\space
- \let\POL@next\POL@refine@left@next % may be \@empty or \POL@refine@main for recursion
- \let\POL@refine@right@next\@empty
+ \let\POL@next\POL@refine@left@next % may be \empty or \POL@refine@main for recursion
+ \let\POL@refine@right@next\empty
\else
\let\POL@IsoLeft@Int\POL@IsoRight@Int
\edef\POL@IsoRight@Int{\xintDec{\POL@@IsoRight@Int}}%
@@ -2173,7 +1325,7 @@
\ifnum\POL@IsoRightSign=\z@
\let\POL@IsoLeft@Int\POL@IsoRight@Int % root at 9
\def\POL@IsoLeftSign{0}%
- \let\POL@next\@empty
+ \let\POL@next\empty
\else
\ifnum\POL@IsoRightSign=\POL@@IsoRightSign\space
\let\POL@next\POL@refine@doonce
@@ -2182,7 +1334,7 @@
\let\POL@IsoRight@Int\POL@@IsoRight@Int
\let\POL@IsoRightSign\POL@@IsoRightSign
\let\POL@next\POL@refine@right@next
- \let\POL@refine@left@next\@empty
+ \let\POL@refine@left@next\empty
\fi
\fi
\fi\fi
@@ -2190,18 +1342,16 @@
}%
% lacking pre-defined xintfrac macro here (such as an \xintRawExponent)
\def\POL@refine@getE#1[#2]{#2}% \xintREZ already applied, for safety
-
-
-\newcommand\PolIntervalWidth[2]{%
+%
+%
+\def\PolIntervalWidth#1#2{%
% le \xintRez est à cause des E positifs, car trailing zéros explicites
% si je travaillais à partir des variables xintexpr directement ne devrait
% pas être nécessaire, mais trop fragile par rapport à chgt internes possibles
\romannumeral0\xintrez{\xintSub{\@nameuse{POL_ZR#1*}{#2}}%
{\@nameuse{POL_ZL#1*}{#2}}}
}%
-
-
-\newcommand\PolEnsureIntervalLengths[2]{% #1 = Sturm chain name,
+\def\PolEnsureIntervalLengths#1#2{% #1 = Sturm chain name,
% localize roots in intervals of length at most 10^{#2}
\edef\POL@sturmname{#1}%
\edef\POL@ensure@targetE{\the\numexpr#2}%
@@ -2220,7 +1370,7 @@
\ifnum\POL@nbofroots>\POL@count
\repeat
}%
-\newcommand\PolEnsureIntervalLength[3]{% #1 = Sturm chain name,
+\def\PolEnsureIntervalLength#1#2#3{% #1 = Sturm chain name,
% #2 = index of interval
% localize roots in intervals of length at most 10^{#3}
\edef\POL@sturmname{#1}%
@@ -2230,7 +1380,7 @@
\ifnum\POL@isolz@IntervalIndex>\z@
% 0.7, add this safeguard but attention means this structure must be in place
\ifnum\csname POL_ZL\POL@sturmname*0\endcsname>\z@
-% je ne fais pas les \expandafter mais je préfèrerai ne pas être à l'intérieur
+% je ne fais pas les \expandafter mais je préfèrerais ne pas être à l'intérieur
\POL@ensure@one
\fi
\fi
@@ -2282,24 +1432,39 @@
\expandafter\xintbreakloop
\fi
}%
-
-
+%
+%% \PolPrintIntervals
\catcode`_ 8
-\newcommand\PolPrintIntervals
- {\@ifstar{\PolPrintIntervals@@}{\PolPrintIntervals@}}%
-\newcommand\PolPrintIntervals@@{%
+\catcode`& 4
+\def\PolPrintIntervals{\POL@ifstar{\PolPrintIntervals@@}{\PolPrintIntervals@}}%
+% As explained in the docs, this is an example of customization so is not
+% itself customizable, apart from redefining it entirely!
+\def\PolPrintIntervals@@{%
\begingroup
\def\POL@AfterPrintIntervals{\endgroup}%
- \def\arraystretch{2}%
\let\PolPrintIntervalsPrintExactZero\POL@@PrintIntervalsPrintExactZero
\let\PolPrintIntervalsUnknownRoot\POL@@PrintIntervalsUnknownRoot
\let\PolPrintIntervalsKnownRoot\POL@@PrintIntervalsKnownRoot
+\ifdefined\array
+ \def\arraystretch{2}%
\def\PolPrintIntervalsBeginEnv{\[\begin{array}{cl}}%\]
\def\PolPrintIntervalsEndEnv{\end{array}\]}%
+\else
+ \def\PolPrintIntervalsBeginEnv{$$\tabskip0pt plus 1000pt minus 1000pt
+ \halign to\displaywidth\bgroup
+ \hfil\vrule height 2\ht\strutbox
+ depth 2\dp\strutbox
+ width \z@
+ $####$\tabskip6pt&$####$\hfil
+ \tabskip0pt plus 1000pt minus 1000pt\cr}%$$
+ \def\PolPrintIntervalsEndEnv{\crcr\egroup$$}%$$
+\fi
\PolPrintIntervals@
}%
-\newcommand\PolPrintIntervals@[2][Z]{\POL@PrintIntervals{#1}{#2}}%
-\newcommand\POL@PrintIntervals[2]{%
+\def\PolPrintIntervals@{%
+ \POL@chkopt\POL@oPolPrintIntervals@[Z]%
+}%
+\def\POL@oPolPrintIntervals@[#1]#2{%
\def\PolPrintIntervalsTheVar{#1}%
\def\PolPrintIntervalsTheSturmName{#2}%
\ifnum\@nameuse{POL_ZL#2*}{0}=\z@
@@ -2317,34 +1482,60 @@
\def\PolPrintIntervalsTheVar{#1}%
\def\PolPrintIntervalsTheSturmName{#2}%
}%
-\let\POL@AfterPrintIntervals\@empty
-\newcommand\PolPrintIntervalsNoRealRoots{}%
-\newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}%
-\newcommand\PolPrintIntervalsEndEnv{\end{array}\]}%
-\newcommand\PolPrintIntervalsKnownRoot{%
+\let\POL@AfterPrintIntervals\empty
+\let\PolPrintIntervalsNoRealRoots\empty
+\def\PolPrintIntervalsArrayStretch{1}%
+\ifdefined\array
+ \def\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}%
+ \def\PolPrintIntervalsEndEnv{\end{array}\]}%
+\else
+ \def\PolPrintIntervalsBeginEnv
+ {$$\tabskip 0pt plus 1000pt minus 1000pt
+ \halign to\displaywidth\bgroup
+ \hfil\vrule height\PolPrintIntervalsArrayStretch\ht\strutbox
+ depth \PolPrintIntervalsArrayStretch\dp\strutbox
+ width \z@
+ $##$\tabskip 6pt &\hfil $##$\hfil &\hfil $##$\hfil &\hfil $##$\hfil &$##$\hfil
+ \tabskip 0pt plus 1000pt minus 1000pt \cr
+ }%$$
+ \def\PolPrintIntervalsEndEnv{\crcr\egroup$$}%$$
+\fi
+\def\PolPrintIntervalsKnownRoot{%
&&\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}%
&=&\PolPrintIntervalsPrintExactZero
}%
-\newcommand\PolPrintIntervalsUnknownRoot{%
+\def\PolPrintIntervalsUnknownRoot{%
\PolPrintIntervalsPrintLeftEndPoint&<&%
\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&<&%
\PolPrintIntervalsPrintRightEndPoint
}%
-\newcommand\PolPrintIntervalsPrintExactZero {\PolPrintIntervalsTheLeftEndPoint}%
-\newcommand\PolPrintIntervalsPrintLeftEndPoint {\PolPrintIntervalsTheLeftEndPoint}%
-\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}%
-\newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}%
+\def\PolPrintIntervalsPrintExactZero {\PolPrintIntervalsTheLeftEndPoint}%
+\def\PolPrintIntervalsPrintLeftEndPoint {\PolPrintIntervalsTheLeftEndPoint}%
+\def\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}%
+%
+\ifdefined\mbox
+\def\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}%
+\else
+\def\PolPrintIntervalsPrintMultiplicity{(\hbox{mult. }\PolPrintIntervalsTheMultiplicity)}%
+\fi
%
-\newcommand\POL@@PrintIntervalsKnownRoot{%
+\def\POL@@PrintIntervalsKnownRoot{%
\PolPrintIntervalsPrintMultiplicity&%
\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%
\PolPrintIntervalsPrintExactZero
}%
-\newcommand\POL@@PrintIntervalsPrintExactZero{%
+\ifdefined\frac
+\def\POL@@PrintIntervalsPrintExactZero{%
\displaystyle
\xintSignedFrac{\PolPrintIntervalsTheLeftEndPoint}%
}%
-\newcommand\POL@@PrintIntervalsUnknownRoot{%
+\else
+\def\POL@@PrintIntervalsPrintExactZero{%
+ \displaystyle
+ \xintSignedFwOver{\PolPrintIntervalsTheLeftEndPoint}%
+}%
+\fi
+\def\POL@@PrintIntervalsUnknownRoot{%
\PolPrintIntervalsPrintMultiplicity&%
\xintifSgn{\PolPrintIntervalsTheLeftEndPoint}%
{\xintifSgn{\PolPrintIntervalsTheRightEndPoint}
@@ -2364,8 +1555,9 @@
{\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%
\PolPrintIntervalsPrintLeftEndPoint\dots}}%
}%
-%
+\catcode`& 7
\catcode`_ 11
+\def\POL@PrintIntervals@Loop#1{%
\def\POL@PrintIntervals@Loop{%
\POL@SturmIfZeroExactlyKnown\PolPrintIntervalsTheSturmName
\PolPrintIntervalsTheIndex
@@ -2375,9 +1567,10 @@
\unless\ifnum\PolPrintIntervalsTheIndex>
\@nameuse{POL_ZL\PolPrintIntervalsTheSturmName*0}
\POL@PrintIntervals@DoDefs
- \xint_afterfi{\\\POL@PrintIntervals@Loop}%
+ \xint_afterfi{#1\POL@PrintIntervals@Loop}%
\fi
-}%
+}}%
+\ifdefined\array\POL@PrintIntervals@Loop{\\}\else\POL@PrintIntervals@Loop{\cr}\fi
\def\POL@PrintIntervals@DoDefs{%
\xdef\PolPrintIntervalsTheLeftEndPoint{%
\csname POL_ZL\PolPrintIntervalsTheSturmName*\PolPrintIntervalsTheIndex
@@ -2397,492 +1590,60 @@
\fi
}%
}%
-
-
-\newcommand\PolSturmIfZeroExactlyKnown[2]{% #1 = sturmname, #2=index
+%
+%% Expandable interface
+%
+\def\PolSturmIfZeroExactlyKnown#1#2{% #1 = sturmname, #2=index
\romannumeral0\csname POL_ZK#1*\endcsname{#2}%
}%
-\newcommand\POL@SturmIfZeroExactlyKnown[2]{% #1 = sturmname, #2=index
+\def\POL@SturmIfZeroExactlyKnown#1#2{% #1 = sturmname, #2=index
\romannumeral0\csname POL_ZK#1*\the\numexpr#2\endcsname
}%
-\newcommand\PolSturmIsolatedZeroMultiplicity[2]{%
- \romannumeral`^^@\csname POL_ZM#1*\endcsname{#2}%
+\def\PolSturmIsolatedZeroMultiplicity#1#2{%
+ \romannumeral`&&@\csname POL_ZM#1*\endcsname{#2}%
}%
-\newcommand\PolSturmIsolatedZeroLeft[2]{%
- \romannumeral`^^@\csname POL_ZL#1*\endcsname{#2}%
+\def\PolSturmIsolatedZeroLeft#1#2{%
+ \romannumeral`&&@\csname POL_ZL#1*\endcsname{#2}%
}%
-\newcommand\PolSturmIsolatedZeroRight[2]{%
- \romannumeral`^^@\csname POL_ZR#1*\endcsname{#2}%
+\def\PolSturmIsolatedZeroRight#1#2{%
+ \romannumeral`&&@\csname POL_ZR#1*\endcsname{#2}%
}%
-\newcommand\PolSturmNbOfIsolatedZeros[1]{%
- \romannumeral`^^@\csname POL_ZL#1*0\endcsname
+\def\PolSturmNbOfIsolatedZeros#1{%
+ \romannumeral`&&@\csname POL_ZL#1*0\endcsname
}%
-\newcommand\PolSturmRationalRoot[2]{%
- \romannumeral`^^@\csname POL_ZL#1*%
+\def\PolSturmRationalRoot#1#2{%
+ \romannumeral`&&@\csname POL_ZL#1*%
\csname POL_RI#1*\endcsname{#2}\endcsname
}%
-\newcommand\PolSturmRationalRootIndex[2]{%
- \romannumeral`^^@\csname POL_RI#1*\endcsname{#2}%
+\def\PolSturmRationalRootIndex#1#2{%
+ \romannumeral`&&@\csname POL_RI#1*\endcsname{#2}%
}%
-\newcommand\PolSturmRationalRootMultiplicity[2]{%
- \romannumeral`^^@\csname POL_ZM#1%
+\def\PolSturmRationalRootMultiplicity#1#2{%
+ \romannumeral`&&@\csname POL_ZM#1%
*\csname POL_RI#1*\endcsname{#2}\endcsname
}%
-\newcommand\PolSturmNbOfRationalRoots[1]{%
- \romannumeral`^^@\csname POL_RI#1*0\endcsname
+\def\PolSturmNbOfRationalRoots#1{%
+ \romannumeral`&&@\csname POL_RI#1*0\endcsname
}%
-\newcommand\PolSturmNbOfRationalRootsWithMultiplicities[1]{%
+\def\PolSturmNbOfRationalRootsWithMultiplicities#1{%
% means the \POL@norr must not have been changed in-between...
\the\numexpr\PolDegree{#1}-\PolDegree{#1\POL@norr}\relax
}%
-
-
-\let\PolDecToString\xintDecToString
-
-
-\newcommand\PolMakeMonic[1]{%
- \edef\POL@leadingcoeff{\PolLeadingCoeff{#1}}%
- \edef\POL@leadingcoeff@inverse{\xintDiv{1/1[0]}{\POL@leadingcoeff}}%
- \PolMapCoeffs{\xintMul{\POL@leadingcoeff@inverse}}{#1}%
-}%
-
-
-%% CORE ALGEBRA MACROS
-%% We do this non-expandably, but in a nestable way... this is the whole
-%% point because \xintdeffunc as used by \poldef creates a big nested macro.
-%% The idea is to execute it with another meaning given to \xintAdd etc..,
-%% so that it operates on "polynomials". This is a mixture of expandable
-%% and non-expandable techniques.
-%%
-%% And it was complicated to let it work with xintexpr 1.4
-%%
-\def\POL@get#1#2#3{%
- \relax %!! part de la tambouille pour fonctionner en xint 1.4
- \POL@polglobalfalse
- \begingroup
- \protected\def\POL@result{#3}%
- #3%
- \expandafter
- \endgroup
- \expandafter\def\expandafter#1\expandafter{\POL@result}%
- \unless\ifPOL@pol
- % avoid expanding more than twice #3
- % #3 must be purely numerical or at least compatible with \edef
- % this is why at 0.7.5 I had to handle especially constant
- % polynomial functions to remove any protection from them
- % (because the protection triggers the COMPOSITION when
- % the polynomial is found as argument of another one and
- % this is not expandable)
- \edef#1{#3}%
- \xintiiifZero{#1}%
- {\def#1{-1.\POL@empty{0/1[0]}}}%
- {\edef#1{0.\POL@empty{#1}}}%
- \fi
- #2%
-}%
-
-%% COMPOSITION
-%% This did not exist before 0.7.5 and is part of its adaptation to xint 1.4
-%% We thus took up this opportunity to speed up substantially composition.
-%% Very serious difficulties with constant polynomials. Had to handle them
-%% especially.
-%% OK, that was really tough, but advantage now is that composition
-%% at 0.7.5 should be more efficient than before. However when polynomials
-%% become big via composition, coefficients also are big and the time
-%% taken by arithmetic dominates. No time to test really, though, relieved
-%% I can release xint 1.4 at last. My basic polexpr test suite passes,
-%% but it goes back already to old releases.
-\protected\def\POL@applypolfunc#1#2%
-{%
-% This #2 may be also invoing \POL@applypolfunc...
- \POL@get\POL@A\POL@applypolfunc@b#2#1%
-}%
-\def\POL@applypolfunc@b #1%
-{%
-% and now the have our Horner scheme nested macro
-% which hopefully will do its job with \POL@add, \POL@mul etc...
- \POL@polglobalfalse
- \expandafter#1\expanded
- {{\POL@polglobaltrue\protected\def\noexpand\POL@result{\POL@A}}}%
- \unless\ifPOL@pol
- \odef\POL@result{#1{0}}%
- \xintiiifZero{\POL@result}%
- {\protected\def\POL@result{-1.\POL@empty{0/1[0]}}}%
- {\protected\edef\POL@result{0.\POL@empty{\POL@result}}}%
- \fi
-}%
-
-%% ADDITION
-\def\POL@add {\POL@get\POL@A\POL@add@b}%
-\def\POL@add@b{\POL@get\POL@B\POL@add@c}%
-\def\POL@add@c{%
- \POL@polglobaltrue
- \POL@ifZero\POL@A
- {\let\POL@result\POL@B}%
- {\POL@ifZero\POL@B
- {\let\POL@result\POL@A}%
- {\POL@@add}}%
-}%
-\def\POL@@add{%
- \expandafter\POL@split\POL@A;\POL@degA\POL@polA
- \expandafter\POL@split\POL@B;\POL@degB\POL@polB
- \ifnum\POL@degA>\POL@degB\relax
- \xintAssignArray\POL@polA\to\POL@arrayA
- \xintAssignArray\POL@polB\to\POL@arrayB
- \else
- \xintAssignArray\POL@polB\to\POL@arrayA
- \xintAssignArray\POL@polA\to\POL@arrayB
- \let\POL@tmp\POL@degB\let\POL@degB\POL@degA\let\POL@degA\POL@tmp
- \fi
- \count@\z@
- \xintloop
- \advance\count@\@ne
- \expandafter\edef\csname POL@arrayA\the\count@\endcsname
- {\xintScalarAdd{\@nameuse{POL@arrayA\the\count@}}%
- {\@nameuse{POL@arrayB\the\count@}}}%
- \unless\ifnum\POL@degB<\count@
- \repeat
- \count@\@nameuse{POL@arrayA0} % 1+\POL@degA
- % trim zero leading coefficients (we could check for equal degrees,
- % but would not bring much as anyhow loop exists immediately if not)
- \xintloop
- % this abuses that \POL@arrayA0 is never zero
- \xintiiifZero{\@nameuse{POL@arrayA\the\count@}}%
- {\iftrue}%
- {\iffalse}%
- \advance\count@\m@ne
- \repeat
- \POL@resultfromarray A% attention that \POL@arrayA0 not updated
-}%
-
-%% MULTIPLICATION
-\def\POL@mul {\POL@get\POL@A\POL@mul@b}%
-\def\POL@mul@b{\POL@get\POL@B\POL@mul@c}%
-\def\POL@mul@c{%
- \POL@polglobaltrue
- \POL@ifZero\POL@A
- {\protected\def\POL@result{-1.\POL@empty{0/1[0]}}}%
- {\POL@ifZero\POL@B
- {\protected\def\POL@result{-1.\POL@empty{0/1[0]}}}%
- {\POL@@mul}}%
-}%
-\def\POL@@mul{%
- \expandafter\POL@split\POL@A;\POL@degA\POL@polA
- \expandafter\POL@split\POL@B;\POL@degB\POL@polB
- \ifnum\POL@degA>\POL@degB\relax
- \xintAssignArray\POL@polA\to\POL@arrayA
- \xintAssignArray\POL@polB\to\POL@arrayB
- \else
- \xintAssignArray\POL@polB\to\POL@arrayA
- \xintAssignArray\POL@polA\to\POL@arrayB
- \let\POL@tmp\POL@degB
- \let\POL@degB\POL@degA
- \let\POL@degA\POL@tmp
- \fi
- \count@\z@
- \xintloop
- \POL@@mul@phaseIloopbody
- \unless\ifnum\POL@degB<\count@
- \repeat
- \xintloop
- \unless\ifnum\POL@degA<\count@ % car attention au cas de mêmes degrés
- \POL@@mul@phaseIIloopbody
- \repeat
- \edef\POL@degC{\the\numexpr\POL@degA+\POL@degB}%
- \xintloop
- \unless\ifnum\POL@degC<\count@
- \POL@@mul@phaseIIIloopbody
- \repeat
- %\count@\the\numexpr\POL@degC+\@ne\relax % never zero polynomial here
- \POL@resultfromarray C%
-}%
-\def\POL@@mul@phaseIloopbody{%
- \advance\count@\@ne
- \def\POL@tmp{0[0]}%
- \count\tw@\z@
- \xintloop
- \advance\count\tw@\@ne
- \edef\POL@tmp{%
- \xintScalarAdd
- {\POL@tmp}%
- {\xintScalarMul
- {\@nameuse{POL@arrayA\the\count\tw@}}%
- {\@nameuse{POL@arrayB\the\numexpr\count@+\@ne-\count\tw@}}%
- }%
- }%
- \ifnum\count\tw@<\count@
- \repeat
- \expandafter\let\csname POL@arrayC\the\count@\endcsname\POL@tmp
-}%
-\def\POL@@mul@phaseIIloopbody{%
- \advance\count@\@ne
- \def\POL@tmp{0[0]}%
- \count\tw@\count@
- \advance\count\tw@-\@nameuse{POL@arrayB0} %
- \xintloop
- \ifnum\count\tw@<\count@
- \advance\count\tw@\@ne
- \edef\POL@tmp{%
- \xintScalarAdd
- {\POL@tmp}%
- {\xintScalarMul
- {\@nameuse{POL@arrayA\the\count\tw@}}%
- {\@nameuse{POL@arrayB\the\numexpr\count@+\@ne-\count\tw@}}%
- }%
- }%
- \repeat
- \expandafter\let\csname POL@arrayC\the\count@\endcsname\POL@tmp
-}%
-\def\POL@@mul@phaseIIIloopbody{%
- \advance\count@\@ne
- \def\POL@tmp{0[0]}%
- \count\tw@\count@
- \advance\count\tw@-\@nameuse{POL@arrayB0} %
- \xintloop
- \advance\count\tw@\@ne
- \edef\POL@tmp{%
- \xintScalarAdd{\POL@tmp}%
- {\xintScalarMul
- {\@nameuse{POL@arrayA\the\count\tw@}}%
- {\@nameuse{POL@arrayB\the\numexpr\count@+\@ne-\count\tw@}}%
- }%
- }%
- \ifnum\@nameuse{POL@arrayA0}>\count\tw@
- \repeat
- \expandafter\let\csname POL@arrayC\the\count@\endcsname\POL@tmp
-}%
-
-%% POWERS (SCALAR EXPONENT...)
-\def\POL@pow #1#2{%
- \POL@polglobalfalse
- \begingroup
- \protected\def\POL@result{#1}%
- #1%
- \expandafter
- \endgroup
- \expandafter\def\expandafter\POL@A\expandafter{\POL@result}%
- \unless\ifPOL@pol
- \edef\POL@A{\xintScalarPow{#1}{#2}}% no error check
- \xintiiifZero{\POL@A}%
- {\protected\def\POL@result{-1.\POL@empty{0/1[0]}}}%
- {\protected\edef\POL@result{0.\POL@empty{\POL@A}}}%
- \else
- \edef\POL@B{\numexpr\xintNum{#2}\relax}% no check on exponent >= 0
- \ifcase\POL@B
- \protected\def\POL@result{0.\POL@empty{1/1[0]}}%
- \or
- \let\POL@result\POL@A
- \else
- \POL@@pow@check
- \fi
- \fi
- \POL@polglobaltrue
-}%
-\def\POL@@pow@check {%
-% no problem here with leftover tokens!
-% should I have used that I-don't-care technique more elsewhere?
- \ifnum\@ne>\POL@A
- % polynomial is a constant, must get rid of dot and \empty (\POL@empty)
- \edef\POL@A{\expandafter\xintScalarPow\romannumeral`^^@%
- \expandafter\xint_gob_til_dot\POL@A{\POL@B}}%
- \xintiiifZero{\POL@A}%
- {\protected\def\POL@result{-1.\POL@empty{0/1[0]}}}%
- {\protected\edef\POL@result{0.\POL@empty{\POL@A}}}%
- \else
- \ifnum\@ne=\POL@A
- % perhaps a constant times X, check constant term
- \xintiiifZero
- {\expandafter\xint_firstoftwo\romannumeral`^^@%
- \expandafter\xint_gob_til_dot\POL@A}
- {\protected\edef\POL@result
- {\the\POL@B.% here at least 2.
- \POL@empty
- \romannumeral\xintreplicate{\POL@B}{{0/1[0]}}%
- {\xintScalarPow
- {\expandafter\xint_secondoftwo\romannumeral`^^@%
- \expandafter\xint_gob_til_dot\POL@A}%
- {\POL@B}}}}%
- {\POL@@pow}% not constant times X, use general recursion
- \else
- \POL@@pow% general recursion
- \fi\fi
-}%
-\def\POL@@pow@recurse#1#2{%
- \begingroup
- #1%
- \expandafter
- \endgroup
- \expandafter\def\expandafter\POL@A\expandafter{\POL@result}%
- \edef\POL@B{\numexpr\xintNum{#2}\relax}%
- \ifcase\POL@B
- \POL@thisshouldneverhappen
- \or
- \let\POL@result\POL@A
- \else
- \expandafter\POL@@pow
- \fi
-}%
-\def\POL@@pow {%
- \let\POL@pow@exp\POL@B
- \let\POL@B\POL@A
- \POL@@mul
- \let\POL@sqA\POL@result
- \ifodd\POL@pow@exp\space
- \expandafter\POL@@pow@odd
- \the\numexpr(\POL@pow@exp+\@ne)/\tw@-\@ne\expandafter.%
- \else
- \expandafter\POL@@pow@even
- \the\numexpr(\POL@pow@exp+\@ne)/\tw@-\@ne\expandafter.%
- \fi
-}%
-\def\POL@@pow@even#1.{%
- \expandafter\POL@@pow@recurse\expandafter
- {\expandafter\def\expandafter\POL@result\expandafter{\POL@sqA}}%
- {#1}%
-}%
-\def\POL@@pow@odd#1.{%
- \expandafter\POL@@pow@odd@i\expandafter{\POL@A}{#1}%
-}%
-\def\POL@@pow@odd@i #1#2{%
- \expandafter\POL@@pow@recurse\expandafter
- {\expandafter\def\expandafter\POL@result\expandafter{\POL@sqA}}%
- {#2}%
- \expandafter\POL@mul\expandafter
- {\expandafter\def\expandafter\POL@result\expandafter
- {\POL@result}\POL@polglobaltrue}%
- {\protected\def\POL@result{#1}\POL@polglobaltrue}%
-}%
-
-%% DIVISION
-%% no check on divisor being non-zero
-\def\POL@div {\POL@get\POL@A\POL@div@b}%
-\def\POL@div@b{\POL@get\POL@B\POL@div@c}%
-\def\POL@div@c{%
- \POL@polglobaltrue
- \expandafter\POL@split\POL@A;\POL@degA\POL@polA
- \expandafter\POL@split\POL@B;\POL@degB\POL@polB
- \ifnum\POL@degA<\POL@degB\space
- \@namedef{POL@arrayQ1}{0/1[0]}%
- \def\POL@degQ{-1}%
- \else
- \xintAssignArray\POL@polA\to\POL@arrayR
- \xintAssignArray\POL@polB\to\POL@arrayB
- \POL@@div
- \fi
- \count@\numexpr\POL@degQ+\@ne\relax
- \POL@resultfromarray Q%
-}%
-\def\POL@@div{%
- \xintAssignArray\POL@polA\to\POL@arrayR
- \xintAssignArray\POL@polB\to\POL@arrayB
- \edef\POL@B@leading{\csname POL@arrayB\the\numexpr\POL@degB+\@ne\endcsname}%
- \edef\POL@degQ{\the\numexpr\POL@degA-\POL@degB}%
- \count@\numexpr\POL@degA+\@ne\relax
- \count\tw@\numexpr\POL@degQ+\@ne\relax
- \xintloop
- \POL@@div@loopbody
- \ifnum\count\tw@>\z@
- \repeat
- %%\expandafter\def\csname POL@arrayR0\endcsname{1}%
- \xintloop
- \xintiiifZero{\csname POL@arrayR\the\count@\endcsname}%
- {\iftrue}%
- {\iffalse}%
- \advance\count@\m@ne
- \repeat
- \edef\POL@degR{\the\numexpr\count@-\@ne}%
-}%
-\def\POL@@div@loopbody{%
- \edef\POL@@div@ratio{%
- \xintScalarDiv{\csname POL@arrayR\the\count@\endcsname}%
- {\POL@B@leading}}%
- \expandafter\let\csname POL@arrayQ\the\count\tw@\endcsname
- \POL@@div@ratio
- \advance\count@\m@ne
- \advance\count\tw@\m@ne
- \count4 \count@
- \count6 \POL@degB\space
- \xintloop
- \ifnum\count6>\z@
- \expandafter\edef\csname POL@arrayR\the\count4\endcsname
- {\xintScalarSub
- {\csname POL@arrayR\the\count4\endcsname}%
- {\xintScalarMul
- {\POL@@div@ratio}%
- {\csname POL@arrayB\the\count6\endcsname}}}%
- \advance\count4 \m@ne
- \advance\count6 \m@ne
- \repeat
-}%
-
-%% MINUS SIGN AS UNARY OPERATOR
-\def\POL@opp #1{%
- \POL@polglobalfalse
- \begingroup
- \protected\def\POL@result{#1}%
- #1%
- \expandafter
- \endgroup
- \expandafter\def\expandafter\POL@A\expandafter{\POL@result}%
- \unless\ifPOL@pol
- \edef\POL@A{\xintScalarOpp{#1}}%
- \xintiiifZero{\POL@A}%
- {\protected\def\POL@result{-1.\POL@empty{0/1[0]}}}%
- {\protected\edef\POL@result{0.\POL@empty{\POL@A}}}%
- \else
- \edef\POL@B{0.\POL@empty{-1/1[0]}}%
- \POL@@mul
- \fi
- \POL@polglobaltrue
-}%
-
-
-%% EXPANDABLE MACROS
-\def\POL@eval@fork#1\At#2#3\krof{#2}%
-\newcommand\PolEval[3]{\romannumeral`^^@\POL@eval@fork
- #2\PolEvalAt
- \At\PolEvalAtExpr\krof {#1}{#3}%
-}%
-\newcommand\PolEvalAt[2]
- {\xintpraw{\csname XINT_expr_polfunc_#1\endcsname{#2}}}%
-\newcommand\POL@eval[2]
- {\csname XINT_expr_polfunc_#1\endcsname{#2}}%
-\newcommand\PolEvalAtExpr[2]{\xinttheexpr #1(#2)\relax}%
-%
-\newcommand\PolEvalReduced[3]{\romannumeral`^^@\POL@eval@fork
- #2\PolEvalReducedAt
- \At\PolEvalReducedAtExpr\krof {#1}{#3}%
-}%
-\newcommand\PolEvalReducedAt[2]{%
- \xintpraw % in order not to print denominator if the latter equals 1
- {\xintIrr{\csname XINT_expr_polfunc_#1\endcsname{#2}}[0]}%
-}%
-\newcommand\PolEvalReducedAtExpr[2]{%
- \xintpraw
- {\expandafter\xintIrr\romannumeral`^^@\xintthebareeval#1(#2)\relax[0]}%
-}%
-%
-\newcommand\PolFloatEval[3]{\romannumeral`^^@\POL@eval@fork
- #2\PolFloatEvalAt
- \At\PolFloatEvalAtExpr\krof {#1}{#3}%
-}%
-\newcommand\PolFloatEvalAt[2]
- {\xintpfloat{\csname XINT_flexpr_polfunc_#1\endcsname{#2}}}%
-\newcommand\PolFloatEvalAtExpr[2]{\xintthefloatexpr #1(#2)\relax}%
-
-
-\newcommand\PolSturmIntervalIndex[3]{\the\numexpr\POL@eval@fork
+\def\PolSturmIntervalIndex#1#2#3{\the\numexpr\POL@eval@fork
#2\PolSturmIntervalIndexAt
\At\PolSturmIntervalIndexAtExpr\krof {#1}{#3}%
}%
-\newcommand\PolSturmIntervalIndexAtExpr[2]
- {\PolSturmIntervalIndexAt{#1}{\xinttheexpr#2\relax}}%
-\newcommand\PolSturmIntervalIndexAt[2]
- {\expandafter\POL@sturm@index@at\romannumeral`^^@#2!{#1}\xint_bye\relax}%
+\def\PolSturmIntervalIndexAtExpr#1#2{%
+ \PolSturmIntervalIndexAt{#1}{\xinttheexpr#2\relax}%
+}%
+% ! is of catcode 11 in all of polexpr
+\def\PolSturmIntervalIndexAt#1#2{%
+ \expandafter\POL@sturm@index@at\romannumeral`&&@#2!{#1}\xint_bye\relax
+}%
\def\POL@sturm@index@at#1!#2%
{%
\expandafter\POL@sturm@index@at@iloop
- \romannumeral`^^@\PolSturmNbOfIsolatedZeros{#2}!{#2}{#1}%
+ \romannumeral`&&@\PolSturmNbOfIsolatedZeros{#2}!{#2}{#1}%
}%
% implementation is sub-optimal as it should use some kind of binary tree
% search rather than comparing to the intervals from right to left as here
@@ -2906,19 +1667,18 @@
}%
{}%
}%
- % catcode of ! is 11 in polexpr.sty
+ % attention that catcode of ! is 11 in polexpr.sty
\expandafter\POL@sturm@index@at@iloop\the\numexpr#1-\@ne !{#2}{#3}%
}%
-
-
+%
\def\POL@leq@fork#1\LessThanOrEqualTo#2#3\krof{#2}%
-\newcommand\PolSturmNbOfRootsOf[3]{\romannumeral`^^@\POL@leq@fork
+\def\PolSturmNbOfRootsOf#1#2#3{\romannumeral`&&@\POL@leq@fork
#2\PolNbOfRootsLessThanOrEqualTo
\LessThanOrEqualTo\PolNbOfRootsLessThanOrEqualToExpr\krof {#1}{#3}%
}%
-\newcommand\PolNbOfRootsLessThanOrEqualToExpr[2]
+\def\PolNbOfRootsLessThanOrEqualToExpr#1#2
{\PolNbOfRootsLessThanOrEqualTo{#1}{\xinttheexpr#2\relax}}%
-\newcommand\PolNbOfRootsLessThanOrEqualTo[1]{%
+\def\PolNbOfRootsLessThanOrEqualTo#1{%
\ifnum\PolSturmNbOfIsolatedZeros{#1}=\z@
\expandafter\xint_firstofthree\expandafter0%
\else
@@ -2927,7 +1687,7 @@
}%
\def\PolNbOfRootsLessThanOrEqualTo@ #1#2%
{%
- \expandafter\POL@nbofrootsleq@prep\romannumeral`^^@#2!{#1}%
+ \expandafter\POL@nbofrootsleq@prep\romannumeral`&&@#2!{#1}%
}%
\def\POL@nbofrootsleq@prep#1!#2%
{%
@@ -2959,16 +1719,16 @@
\def\POL@nbofrootsleq@return #1!#2!#3!#4!#5{\the\numexpr #1\relax}%
\def\POL@nbofrootsleq@rightmost\expandafter\POL@nbofrootsleq@iloop
\the\numexpr\@ne+#1!#2!#3!#4{#1}%
-
-
-\newcommand\PolSturmNbWithMultOfRootsOf[3]
-{\the\numexpr0\POL@leq@fork
+%
+\def\PolSturmNbWithMultOfRootsOf#1#2#3{%
+ \the\numexpr0\POL@leq@fork
#2\PolNbWithMultOfRootsLessThanOrEqualTo
\LessThanOrEqualTo\PolNbWithMultOfRootsLessThanOrEqualToExpr\krof {#1}{#3}%
}%
-\newcommand\PolNbWithMultOfRootsLessThanOrEqualToExpr[2]
- {\PolNbWithMultOfRootsLessThanOrEqualTo{#1}{\xinttheexpr#2\relax}}%
-\newcommand\PolNbWithMultOfRootsLessThanOrEqualTo[1]{%
+\def\PolNbWithMultOfRootsLessThanOrEqualToExpr#1#2{%
+ \PolNbWithMultOfRootsLessThanOrEqualTo{#1}{\xinttheexpr#2\relax}%
+}%
+\def\PolNbWithMultOfRootsLessThanOrEqualTo#1{%
\ifnum\PolSturmNbOfIsolatedZeros{#1}=\z@
\expandafter\POL@nbwmofroots@noroots
\else
@@ -2978,7 +1738,7 @@
\def\POL@nbwmofroots@noroots#1#2{\relax}%
\def\PolNbWithMultOfRootsLessThanOrEqualTo@ #1#2%
{%
- \expandafter\POL@nbwmofrootsleq@prep\romannumeral`^^@#2!{#1}%
+ \expandafter\POL@nbwmofrootsleq@prep\romannumeral`&&@#2!{#1}%
}%
\def\POL@nbwmofrootsleq@prep#1!#2%
{%
@@ -3012,153 +1772,4 @@
#1!#2!#3!{#4}%
}%
\def\POL@nbwmofrootsleq@return #1!#2!#3!#4!#5{#1\relax}%
-
-
-\newcommand\PolLeadingCoeff[1]{%
- \romannumeral`^^@\expandafter\expandafter\expandafter\xintlastitem
- \expandafter\expandafter\expandafter
- {\csname POLuserpol@#1\endcsname}%
-}%
-%
-\newcommand\PolNthCoeff[2]{\romannumeral`^^@%
- \expandafter\POL@nthcoeff
- \romannumeral0\xintnthelt{\ifnum\numexpr#2<\z@#2\else(#2)+1\fi}%
- {\expandafter\expandafter\expandafter
- \xint_gob_til_dot\csname POLuserpol@#1\endcsname}@%
-}%
-\def\POL@nthcoeff#1@{\if @#1@\expandafter\xint_firstoftwo
- \else\expandafter\xint_secondoftwo\fi
- {0/1[0]}{#1}}%
-%
-% returns -1 for zero polynomial for context of numerical expression
-% should it return -\infty?
-\newcommand\PolDegree[1]{\romannumeral`^^@\expandafter\expandafter\expandafter
- \POL@degree\csname POLuserpol@#1\endcsname;}%
-\def\POL@degree #1.#2;{#1}%
-%
-\newcommand\PolToList[1]{\romannumeral`^^@\expandafter\expandafter\expandafter
- \xint_gob_til_dot\csname POLuserpol@#1\endcsname}%
-%
-\newcommand\PolToCSV[1]{\romannumeral0\xintlistwithsep{, }{\PolToList{#1}}}%
-
-
-\newcommand\PolToExprCmd[1]{\xintPRaw{\xintRawWithZeros{#1}}}%
-\newcommand\PolToFloatExprCmd[1]{\xintFloat{#1}}%
-\let\PolToExprTermPrefix\PolTypesetCmdPrefix
-\newcommand\PolToExprOneTermStyleA[2]{%
- \ifnum#2=\z@
- \PolToExprCmd{#1}%
- \else
- \xintifOne{\xintiiAbs{#1}}
- {\xintiiifSgn{#1}{-}{}{}}% + from \PolToExprTermPrefix
- {\PolToExprCmd{#1}\PolToExprTimes}%
- \fi
- \ifcase\xintiiAbs{#2} %<-- space here mandatory
- \or\PolToExprVar
- \else\PolToExprVar^\xintiiAbs{#2}%
- \fi
-}%
-\let\PolToExprOneTerm\PolToExprOneTermStyleA
-\newcommand\PolToExprOneTermStyleB[2]{%
- \ifnum#2=\z@
- \xintNumerator{#1}%
- \else
- \xintifOne{\xintiiAbs{\xintNumerator{#1}}}
- {\xintiiifSgn{#1}{-}{}{}}% + from \PolToExprTermPrefix
- {\xintNumerator{#1}\PolToExprTimes}%
- \fi
- \ifcase\xintiiAbs{#2} %<-- space here mandatory
- \or\PolToExprVar
- \else\PolToExprVar^\xintiiAbs{#2}%
- \fi
- \xintiiifOne{\xintDenominator{#1}}{}{/\xintDenominator{#1}}%
-}%
-\newcommand\PolToFloatExprOneTerm[2]{%
- \ifnum#2=\z@
- \PolToFloatExprCmd{#1}%
- \else
- \PolToFloatExprCmd{#1}\PolToExprTimes
- \fi
- \ifcase\xintiiAbs{#2} %<-- space here mandatory
- \or\PolToExprVar
- \else\PolToExprVar^\xintiiAbs{#2}%
- \fi
-}%
-\newcommand\PolToExprTimes{*}%
-\newcommand\PolToExprVar{x}%
-\newcommand\PolToExpr[1]{%
- \if*\noexpand#1\expandafter\xint_firstoftwo\else
- \expandafter\xint_secondoftwo\fi
- \PolToExprAscending\PolToExprDescending{#1}}%
-\newcommand\PolToFloatExpr[1]{%
- \if*\noexpand#1\expandafter\xint_firstoftwo\else
- \expandafter\xint_secondoftwo\fi
- \PolToFloatExprAscending\PolToFloatExprDescending{#1}}%
-\newcommand\PolToExprAscending[2]{%
- \expandafter\POL@toexpr\csname POLuserpol@#2\endcsname
- \PolToExprOneTerm\POL@toexprA}%
-\newcommand\PolToFloatExprAscending[2]{%
- \expandafter\POL@toexpr\csname POLuserpol@#2\endcsname
- \PolToFloatExprOneTerm\POL@toexprA}%
-\newcommand\PolToExprDescending[1]{%
- \expandafter\POL@toexpr\csname POLuserpol@#1\endcsname
- \PolToExprOneTerm\POL@toexprD}%
-\newcommand\PolToFloatExprDescending[1]{%
- \expandafter\POL@toexpr\csname POLuserpol@#1\endcsname
- \PolToFloatExprOneTerm\POL@toexprD}%
-%
-\def\POL@toexpr#1#2#3{\expandafter\POL@toexpr@
- \expandafter#3\expandafter#2#1\relax}%
-\def\POL@toexpr@#1#2#3.{%
- \ifnum#3<\z@
- #2{0/1[0]}{0}\expandafter\xint_gobble_v
- \else
- \expandafter#1%
- \fi {#3}#2}%
-%
-\def\POL@toexprA #1#2\POL@empty#3{%
- \ifpoltoexprall\expandafter\POL@toexprall@b
- \else\expandafter\POL@toexpr@b
- \fi {#3}#2{0}1.%
-}%
-\def\POL@toexprD #1#2#3\relax{% #3 has \empty (\POL@empty) to prevent brace removal
- \expandafter\POL@toexprD@a\expandafter#2%
- \the\numexpr #1\expandafter.\romannumeral0\xintrevwithbraces{#3}\relax
-}%
-\def\POL@toexprD@a #1#2.#3{%
- \ifpoltoexprall\expandafter\POL@toexprall@b
- \else\expandafter\POL@toexpr@b
- \fi{#3}#1{-#2}\the\numexpr\@ne+-#2.%
-}%
-\def\POL@toexpr@b #1#2#3{%
- \xintiiifZero{#1}%
- {\expandafter\POL@toexpr@loop\expandafter\POL@toexpr@b}%
- {#2{#1}{#3}%
- \expandafter\POL@toexpr@loop\expandafter\POL@toexpr@c}%
- \expandafter#2%
-}%
-\def\POL@toexpr@c #1#2#3{%
- \xintiiifZero{#1}%
- {}%
- {\PolToExprTermPrefix{#1}#2{#1}{#3}}%
- \expandafter\POL@toexpr@loop\expandafter\POL@toexpr@c
- \expandafter#2%
-}%
-\def\POL@toexprall@b #1#2#3{%
- #2{#1}{#3}%
- \expandafter\POL@toexpr@loop\expandafter\POL@toexprall@c
- \expandafter#2%
-}%
-\def\POL@toexprall@c #1#2#3{%
- \PolToExprTermPrefix{#1}#2{#1}{#3}%
- \expandafter\POL@toexpr@loop\expandafter\POL@toexprall@c
- \expandafter#2%
-}%
-\def\POL@toexpr@loop#1#2#3.#4{%
- \if\relax#4\expandafter\xint_gob_til_dot\fi
- #1{#4}#2{#3}\the\numexpr\@ne+#3.%
-}%
-
-
-\POL@restorecatcodes
\endinput
diff --git a/Master/tlpkg/libexec/ctan2tds b/Master/tlpkg/libexec/ctan2tds
index 76dba200a16..72e2dcbed4c 100755
--- a/Master/tlpkg/libexec/ctan2tds
+++ b/Master/tlpkg/libexec/ctan2tds
@@ -2130,6 +2130,7 @@ $standardtex
'plnfss', '\.tex|\.pfd',
'plstmary', '^stmary.tex',
'pmx', 'pmx\.tex|' . $standardtex,
+ 'polexpr', 'polexpr.*\.tex|' . $standardtex,
'poormanlog', 'poormanlog\.tex|' . $standardtex,
'poster-mac', 'poster\.tex|' . $standardtex,
'poetrytex', 'poetrytex\.sty$', # not -style