diff options
author | Karl Berry <karl@freefriends.org> | 2007-09-28 18:52:09 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2007-09-28 18:52:09 +0000 |
commit | b76bd590ae0a6d1fadac72c841e88b8e02ca6ae0 (patch) | |
tree | 412bdd654168374a445229746ab62080a272044f /Master | |
parent | 06cb469ce2c4a637d5751a35f9c4d295361c6c63 (diff) |
pst-diffraction (27sep07)
git-svn-id: svn://tug.org/texlive/trunk@5058 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master')
12 files changed, 923 insertions, 275 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/Changes b/Master/texmf-dist/doc/generic/pst-diffraction/Changes index 94384ed2e46..570ea66d998 100755 --- a/Master/texmf-dist/doc/generic/pst-diffraction/Changes +++ b/Master/texmf-dist/doc/generic/pst-diffraction/Changes @@ -1,4 +1,6 @@ pst-diffraction.tex -------- +2.02 2007-09-25 - add IIID option for all macros + - new option showFunc 2.01 2007-09-13 first CTAN version diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/README b/Master/texmf-dist/doc/generic/pst-diffraction/README index 707444a3f9e..e642ddc6fb1 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/README +++ b/Master/texmf-dist/doc/generic/pst-diffraction/README @@ -31,13 +31,20 @@ be sure that you - do not load another package after pst-diffraction, which loads the old keyval.sty or pst-key.tex +You can run the documentation with +make DE +make E +make FR + +or for all make all ;-) this will take a lot of time, because +the images are very big. If you like to get the documentation file in another format run -latex pst-diffraction-docE.tex -bibtex pst-diffraction-docE -latex pst-diffraction-docE.tex -dvips pst-diffraction-docE.dvi +latex pst-diffraction-docX.tex +bibtex pst-diffraction-docX +latex pst-diffraction-docX.tex +dvips pst-diffraction-docX.dvi to get a PostScript file. But pay attention, that the pst-diffraction files are saved in the above mentioned way, before you run diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib index 69cdd1245a2..737b6dbba99 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib @@ -89,7 +89,7 @@ } @Book{diffraction, - author = {Bouasse, H. and Carrière, Z.}, + author = {Bouasse, H. and Carri\`ere, Z.}, title = {Diffraction}, publisher={Delagrave}, year ={1923}, @@ -98,3 +98,22 @@ } +@book{tutorial, + title = {The New Physical Optics Notebook Tutorials in Fourier Optics}, + isbn ={0819401307}, + author ={Reynolds, George O. and Develis, John B. and Parrent, George B. and Thompson, Bria}, + url = {\url{http://www.langtoninfo.co.uk/de/showitem.asp?isbn=0819401307}}, + year= 1989, + publisher = {Society of {P}hoto {O}ptical} +} + +@Manual{Fresnel, + Title = {Augustin Fresnel}, + Author = {Manuel Luque}, + Organization = {}, + Address = {\url{http://melusine.eu.org/syracuse/mluque/fresnel/augustin/fresnel.html}}, + Note = {}, + year = 2004 +} + + diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf Binary files differindex 31ba9b23925..08199e91ec2 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex index 15e73c2bc07..27f528fcff0 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex @@ -1,4 +1,4 @@ -\documentclass[dvips,ngerman,a4paper]{article} +\documentclass[ngerman,a4paper]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage[bmargin=2cm,tmargin=2cm]{geometry} @@ -11,12 +11,25 @@ \usepackage{ccfonts} \usepackage[euler-digits]{eulervm} \usepackage[scaled=0.85]{luximono} +\usepackage{xspace} \def\UrlFont{\small\ttfamily} +\newcommand*\psp{\texttt{pspicture}\xspace} \makeatletter \def\verbatim@font{\small\normalfont\ttfamily} \makeatother +\usepackage{showexpl} +\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstset{wide=true,language=PSTricks, + morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}} + + \usepackage{prettyref} \usepackage{fancyhdr} +\usepackage{multicol} + \usepackage{babel} \usepackage[colorlinks,linktocpage]{hyperref} @@ -38,7 +51,7 @@ \title{\texttt{pst-diffraction}\\[6pt] \mbox{}\\[1cm] Beugungsmuster für Beugung an kreisförmigen, rechteckigen und dreieckigen -Öffnungen +Öffnungen\\[10pt] ---\\[10pt] {\normalsize v. \PSTfileversion (\PSTfiledate)}} \author{% @@ -66,6 +79,8 @@ Beiträge und Anmerkungen lieferten: Julien Cubizolles. \begin{pspicture}(0,-3)(12,3) \pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2} \pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P} +\pspolygon[linestyle=none,fillstyle=vlines, + hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2) % lentille L' \pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{% \code{0.5 0.83333 scale} @@ -76,8 +91,6 @@ Beiträge und Anmerkungen lieferten: Julien Cubizolles. \code{1 1.5 scale} \psarc(4.5,0){4.176}{-16.699}{16.699} \psarc(12.5,0){4.176}{163.30}{196.699}} -\pspolygon[linestyle=none,fillstyle=vlines, - hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2) \uput[90](4,1){$L'$}\uput[90](8.5,2){$L$} \psdot(S)\uput[180](S){S} \psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5) @@ -117,11 +130,11 @@ Es gibt drei Befehle, jeweils einen für rechteckige, kreisförmige und dreieckige Öffnungen: -\begin{verbatim} +\begin{lstlisting}[style=syntax] \psdiffractionRectangle[<Optionen>] \psdiffractionCircular[<Optionen>] \psdiffractionTriangle[<Optionen>] -\end{verbatim} +\end{lstlisting} \section{Die Farbe} @@ -161,117 +174,242 @@ verwendet, \texttt{[colorMode=1]} liefert das zugehörige Negativ. Die Optionen CMYK-Farbmodell bzw. RGB-Farbmodell. Defaultmä"sig sind folgende Werte voreingestellt: -\begin{itemize} - \item \texttt{[a=0.2e-3]} in m ; - \item \texttt{[k=1]} ; - \item \texttt{[f=5]} in m ; - \item \texttt{[lambda=650]} in nm ; - \item \texttt{[pixel=0.5]} ; - \item \texttt{[contrast=38]}, Maximalwert ; - \item \texttt{[colorMode=3]}. -\end{itemize} -\begin{center} -\begin{pspicture}(-4,-4)(4,4) +\begin{tabular}{@{}lll@{}} +\texttt{[a=0.2e-3]} in m; & \texttt{[k=1]}; & \texttt{[f=5]} in m;\\ +\texttt{[lambda=650]} in nm; & \texttt{[pixel=0.5]}; & \texttt{[contrast=38]}, Maximalwert;\\ +\texttt{[colorMode=3]}; & \texttt{[IIID=false]}. +\end{tabular} + +\bigskip +\noindent +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionRectangle[f=2.5] -\uput[270](0,-3.5){$\backslash$\texttt{psdiffractionRectangle[f=2.5]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-2,-4.5)(2,4.5) +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionRectangle[f=2.5] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} +\end{lstlisting} + + + +\noindent\begin{pspicture}(-2,-4)(2,4) \psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\uput[270](0,-4.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,colorMode=0]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-2.5)(4,3) +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2,-4)(2,4) +\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\end{lstlisting} + + + +\noindent +\begin{pspicture}(-2.5,-2.5)(3.5,3) \psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\uput[270](0,-2){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-1)(4,1) -\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\uput[270](0,-0.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=20,f=10,lambda=450]}} +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] \end{pspicture} -\end{center} +\begin{lstlisting}[style=example] +\begin{pspicture}(-2.5,-2.5)(3.5,3) +\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\end{lstlisting} + + +\noindent +\begin{pspicture}(-3.5,-1)(3.5,1) +\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-1)(3.5,1) +\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\end{lstlisting} \section{Beugung an zwei rechteckigen Blendenöffnungen} -%\begin{shaded} -%Diese Simulation wurde von Julien -%\textsc{Cubizolles} erstellt. -%\end{shaded} +\begin{shaded} +Der Code für diese Simulation wurde von Julien \textsc{Cubizolles} erstellt. +\end{shaded} Man kann auch das Beugungsmuster zweier kongruenter Rechtecke (so nebeneinander angeordnet, da"s ihre Grundlinie auf der $x$-Achse liegt) erstellen, indem man zusätzlich zu den Angaben für den Fall nur eines Rechtecks die Option \texttt{[twoSlit]} angibt. Defaultmä"sig ist \texttt{[twoSlit]} deaktiviert. Den Abstand zwischen den beiden Rechtecken kann man über die Option $s$ einstellen. Sie wird, wenn nichts anderes angegeben -wird, mit dem Wert -$\texttt{12e-3}\,\mathrm{m}$ belegt. +wird, mit dem Wert $12e^{-3}\,\mathrm{m}$ belegt. + \begin{center} +\noindent \begin{pspicture}(-4,-1)(4,1) \psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\uput[270](0,-0.5){$\backslash -$\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]}} \end{pspicture} \end{center} -\clearpage + +\begin{lstlisting}[style=example] +\begin{pspicture}(-4,-1)(4,1) +\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + +\begin{center} +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{center} + +\begin{lstlisting}[pos=t,style=example,wide=false] +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Beugung an einer kreisförmigen Blendenöffnung} Der Lochradius wird über den Buchstaben \texttt{r} angesprochen, beispielsweise \texttt{[r=1e-3]}. Der Default ist $r=1$ mm. Im ersten Quadranten wird der Graph der Intensitätsverteilung abgebildet (das Maximum in der Mitte wird abgeschnitten, -falls es über den oberen Rand der \texttt{pspicture}-Umgebung hinausgeht). +falls es über den oberen Rand der \psp-Umgebung hinausgeht). \begin{center} -\begin{pspicture}(-5,-5)(5,5) +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,lambda=520]}} +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] \end{pspicture} \end{center} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +\end{lstlisting} + + + + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Beugung an zwei kreisförmigen Blendenöffnungen} Es ist nur der Fall gleich gro"ser Radien vorgesehen, diesen gemeinsamen Radius spezifiziert man wie vorher über \texttt{[r=\dots]}. Au"serdem muss man den halben Abstand der beiden Kreismitten festlegen vermöge \texttt{[d=\dots]}, beispielsweise \texttt{[d=3e-3]}. Zusätzlich muss man die Option -\texttt{[twoHole]} verwenden.\\ -Der Bildaufbau kann in diesem Fall etwas länger dauern\dots +\texttt{[twoHole]} verwenden. Der Bildaufbau kann in diesem Fall etwas länger dauern\dots -\begin{center} -\begin{pspicture}(-5,-5)(5,4) +\begin{pspicture}(-3,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\uput[270](0,-4){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-6,-6)(6,6) +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +\end{lstlisting} + + +\hspace*{-1cm}% +\begin{pspicture}(-3,-3)(3.5,4) \psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3)(3.5,4) +\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +\end{lstlisting} Nicht in jedem Fall ergibt sich im mittleren Kreis ein Streifenmuster. Die Anzahl $N$ der Streifen im Inneren ist gegeben durch $N=2,44\frac{d}{r}$. Man kann diesen Effekt also erst für $N\geq2$ bzw. ab $d=\frac{2r}{1,22}$ beobachten (siehe \url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). -\begin{center} -\begin{pspicture}(-5,-6)(5,5) + + +\hspace*{-1cm}% +\begin{pspicture}(-3,-3.5)(3,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\uput[270](0,-5){$\backslash$ -\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +\end{lstlisting} + -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Brechung an einer dreieckigen Blendenöffnung} Es ist nur der Fall eines gleichseitigen Dreiecks vorgesehen. Als Option gibt man dessen Höhe \texttt{[h]} an, welche sich bekanntlich über $h=\frac{\sqrt{3}}{2}s$ aus der Seitenlänge $s$ @@ -283,29 +421,63 @@ des Dreiecks berechnet. Ein Schwarzweissbild erhält man mit \texttt{[colorMode= \pcline{|-|}(-0.732,-1)(0,-1) \Aput{$h$} \end{pspicture} - -\vspace{1cm} -$\backslash$\texttt{psdiffractionTriangle[f=10,h=1e-3,contrast=38,colorMode=]} +\end{center} \makebox[\linewidth]{% -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\uput[270](0,-2.5){default color mode (>1)} \end{pspicture} \quad -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=1}} \end{pspicture} \quad -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=0}} \end{pspicture}} -\end{center} +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} + + +\makebox[\linewidth]{% +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture}} +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} %\section{Credits} diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf Binary files differindex 30c9587ce01..f68036fd2ac 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex index 6ff5cacf745..1dc2d35e4c3 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex @@ -1,5 +1,5 @@ \documentclass[dvips,english,a4paper]{article} -\usepackage[latin9]{inputenc}% +\usepackage[utf8]{inputenc}% \usepackage[T1]{fontenc} \usepackage[bmargin=2cm,tmargin=2cm]{geometry} % @@ -11,12 +11,22 @@ \usepackage{ccfonts} \usepackage[euler-digits]{eulervm} \usepackage[scaled=0.85]{luximono} +\usepackage{xspace} +\newcommand*\psp{\texttt{pspicture}\xspace} \def\UrlFont{\small\ttfamily} \makeatletter \def\verbatim@font{\small\normalfont\ttfamily} \makeatother -\usepackage{prettyref} +\usepackage{prettyref,multicol} \usepackage{fancyhdr} +\usepackage{showexpl} +\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstset{wide=true,language=PSTricks, + morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}} + \usepackage{babel} \usepackage[colorlinks,linktocpage]{hyperref} @@ -114,11 +124,11 @@ of the light (the associated color will be given automatically by the package). There are three commands, for rectangular, circular and triangular openings respectively: -\begin{verbatim} +\begin{lstlisting}[style=syntax] \psdiffractionRectangle[<Optionen>] \psdiffractionCircular[<Optionen>] \psdiffractionTriangle[<Optionen>] -\end{verbatim} +\end{lstlisting} \section{The color} @@ -155,61 +165,137 @@ the option \texttt{[colorMode=1]} provides the associated negative pattern. The CMYK and RGB color model respectively. By default the settings are as follows: -\begin{itemize} - \item \texttt{[a=0.2e-3]} in m ; - \item \texttt{[k=1]} ; - \item \texttt{[f=5]} in m ; - \item \texttt{[lambda=650]} in nm ; - \item \texttt{[pixel=0.5]} ; - \item \texttt{[contrast=38]}, maximal value ; - \item \texttt{[colorMode=3]}. -\end{itemize} -\begin{center} -\begin{pspicture}(-4,-4)(4,4) + +\begin{tabular}{@{}lll@{}} +\texttt{[a=0.2e-3]} in m; & \texttt{[k=1]}; & \texttt{[f=5]} in m;\\ +\texttt{[lambda=650]} in nm; & \texttt{[pixel=0.5]}; & \texttt{[contrast=38]}, greates value;\\ +\texttt{[colorMode=3]}; & \texttt{[IIID=false]}. +\end{tabular} + +\bigskip +\noindent +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionRectangle[f=2.5] -\uput[270](0,-3.5){$\backslash$\texttt{psdiffractionRectangle[f=2.5]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-2,-4.5)(2,4.5) +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionRectangle[f=2.5] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} +\end{lstlisting} + + + +\noindent\begin{pspicture}(-2,-4)(2,4) \psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\uput[270](0,-4.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,colorMode=0]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-2.5)(4,3) +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2,-4)(2,4) +\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\end{lstlisting} + + + +\noindent +\begin{pspicture}(-2.5,-2.5)(3.5,3) \psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\uput[270](0,-2){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-1)(4,1) +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2.5,-2.5)(3.5,3) +\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\end{lstlisting} + + +\noindent +\begin{pspicture}(-3.5,-1)(3.5,1) \psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\uput[270](0,-0.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=20,f=10,lambda=450]}} \end{pspicture} -\end{center} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-1)(3.5,1) +\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\end{lstlisting} \section{Diffraction from two rectangular apertures} -%\begin{shaded} -%This simulation was provided by Julien -%\textsc{Cubizolles}. -%\end{shaded} +\begin{shaded} +This simulation was provided by Julien +\textsc{Cubizolles}. +\end{shaded} It is also possible to render the diffraction pattern of two congruent rectangles (placed parallel such that their base is located on the $x$-axis) by using the option \texttt{[twoSlit]}. By default this option is deactivated. The distance of the two rectangles is specified by the option $s$. -The default for $s$ is $\texttt{12e-3}\,\mathrm{m}$. +The default for $s$ is $12e^{-3}\,\mathrm{m}$. + + \begin{center} +\noindent \begin{pspicture}(-4,-1)(4,1) \psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\uput[270](0,-0.5){$\backslash -$\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]}} \end{pspicture} \end{center} -\clearpage + +\begin{lstlisting}[style=example] +\begin{pspicture}(-4,-1)(4,1) +\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + +\begin{center} +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{center} + +\begin{lstlisting}[pos=t,style=example,wide=false] +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + + @@ -218,14 +304,19 @@ $\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit, The radius of the circular opening can be chosen via the letter \texttt{r}, e.g. \texttt{[r=1e-3]}. The default is $r=1$ mm. In the first quadrant PSTricks displays the graph of the intensity distribution (the maximum in the center will be -cropped if its height exceeds the margin of the \texttt{pspicture}-environment). +cropped if its height exceeds the margin of the \psp-environment). -\begin{center} -\begin{pspicture}(-5,-5)(5,5) +\hspace*{-1cm}% +\begin{LTXexample}[pos=t,style=example,wide=false] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,lambda=520]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +\end{LTXexample} + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Diffraction from two circular apertures} @@ -236,30 +327,71 @@ Furthermore one has to give the half distance of the circles measured from their \texttt{[twoHole]} has to be used.\\ The rendering process could take some time in this case\dots -\begin{center} -\begin{pspicture}(-5,-5)(5,4) + +\begin{pspicture}(-3,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\uput[270](0,-4){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-6,-6)(6,6) +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +\end{lstlisting} + + +\hspace*{-1cm}% +\begin{pspicture}(-3,-3)(3.5,4) \psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3)(3.5,4) +\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +\end{lstlisting} Not in every case bands occur in the central circle. The number $N$ of those inner bands is given by $N=2.44\frac{d}{r}$. Thus this effect is not observable until $N\geq2$ -or $d=\frac{2r}{1.22}$ (see \url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). +or $d=\frac{2r}{1.22}$ (see +\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). -\begin{center} -\begin{pspicture}(-5,-6)(5,5) +\hspace*{-1cm}% +\begin{pspicture}(-3,-3.5)(3,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\uput[270](0,-5){$\backslash$ -\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +\end{lstlisting} + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -271,34 +403,70 @@ its side by $h=\frac{\sqrt{3}}{2}s$. A black and white picture can be obtained b option \texttt{[colorMode=0]}. + \begin{center} \begin{pspicture}(-1,-1)(1,1) \pspolygon*(0,0)(1;150)(1;210) \pcline{|-|}(-0.732,-1)(0,-1) \Aput{$h$} \end{pspicture} - -\vspace{1cm} -$\backslash$\texttt{psdiffractionTriangle[f=10,h=1e-3,contrast=38,colorMode=]} +\end{center} \makebox[\linewidth]{% -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\uput[270](0,-2.5){default color mode (>1)} \end{pspicture} \quad -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=1}} \end{pspicture} \quad -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=0}} \end{pspicture}} -\end{center} +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} + + +\makebox[\linewidth]{% +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture}} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf Binary files differindex 17c89328f41..5059c652a5e 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex index f7203cd4c19..0f59dfe1556 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex @@ -1,4 +1,4 @@ -\documentclass[dvips,a4paper]{article} +\documentclass[frenchb,dvips,a4paper]{article} \usepackage[latin9]{inputenc}% \usepackage[T1]{fontenc} \usepackage[bmargin=2cm,tmargin=2cm]{geometry} @@ -11,13 +11,26 @@ \usepackage{ccfonts} \usepackage[euler-digits]{eulervm} \usepackage[scaled=0.85]{luximono} +\usepackage{xspace} +\newcommand*\psp{\texttt{pspicture}\xspace} \def\UrlFont{\small\ttfamily} \makeatletter \def\verbatim@font{\small\normalfont\ttfamily} \makeatother -\usepackage{prettyref} +\usepackage{prettyref,multicol} \usepackage{fancyhdr} +\usepackage{showexpl} +\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstset{wide=true,language=PSTricks, + morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}} + +\usepackage{babel} +\usepackage[colorlinks,linktocpage]{hyperref} + \pagestyle{fancy} \def\Lcs#1{{\ttfamily\textbackslash #1}} \lfoot{\small\ttfamily\jobname.tex} @@ -118,17 +131,18 @@ divers paramètres du montage. Il y a trois commandes, l'une pour les ouvertures rectangulaires, l'autre pour les ouvertures circulaires et la dernière pour une ouverture triangulaire. -\begin{verbatim} +\begin{lstlisting}[style=syntax] \psdiffractionRectangle[<liste de paramètres>] \psdiffractionCircular[<liste de paramètres>] \psdiffractionTriangle[<liste de paramètres>] -\end{verbatim} +\end{lstlisting} + Nous allons passer en revue ces différentes commandes et leurs paramètres. \section{La couleur de la radiation} La longueur d'onde est définie par le paramètres \texttt{[lambda=632]} (si l'on veut du rouge de longueur d'onde~:~ $\lambda=632$~nm), cette valeur est donc en~nm. La conversion de la longueur d'onde dans le système \texttt{rgb} est une adaptation en -postscript de celle qu'on trouve sur~: +postscript de celle qu'on trouve sur~:\\ \url{http://www.physics.sfasu.edu/astro/color.html}. @@ -154,97 +168,230 @@ negativ avec \texttt{[colorMode=1]} ou cmyk couleur avec \texttt{[colorMode=2]} rgb avec \texttt{[colorMode=3]}. Par défaut les paramètres ont les valeurs suivantes : -\begin{itemize} - \item \texttt{[a=0.2e-3]} en m ; - \item \texttt{[k=1]} ; - \item \texttt{[f=5]} en m ; - \item \texttt{[lambda=650]} en nm ; - \item \texttt{[pixel=0.5]} ; - \item \texttt{[contrast=38]}, valeur maximale ; - \item \texttt{[colorMode=3]}. -\end{itemize} -\begin{center} -\begin{pspicture}(-4,-4)(4,4) +\begin{tabular}{@{}lll@{}} +\texttt{[a=0.2e-3]} en m; & \texttt{[k=1]}; & \texttt{[f=5]} en m;\\ +\texttt{[lambda=650]} en nm; & \texttt{[pixel=0.5]}; & \texttt{[contrast=38]}, valeur maximale;\\ +\texttt{[colorMode=3]}; & \texttt{[IIID=false]}. +\end{tabular} + +\bigskip +\noindent +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionRectangle[f=2.5] -\uput[270](0,-3.5){$\backslash$\texttt{psdiffractionRectangle[f=2.5]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-2,-4.5)(2,4.5) +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionRectangle[f=2.5] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} +\end{lstlisting} + + + +\noindent\begin{pspicture}(-2,-4)(2,4) \psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\uput[270](0,-4.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,colorMode=0]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-2.5)(4,3) +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2,-4)(2,4) +\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\end{lstlisting} + + + +\noindent +\begin{pspicture}(-2.5,-2.5)(3.5,3) \psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\uput[270](0,-2){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-1)(4,1) +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2.5,-2.5)(3.5,3) +\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\end{lstlisting} + + +\noindent +\begin{pspicture}(-3.5,-1)(3.5,1) \psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\uput[270](0,-0.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=20,f=10,lambda=450]}} \end{pspicture} -\end{center} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-1)(3.5,1) +\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\end{lstlisting} \section{Diffraction par deux ouverture rectangulaire} -%\begin{shaded} -%This simulation was provided by Julien -%\textsc{Cubizolles}. -%\end{shaded} +\begin{shaded} +This simulation was provided by Julien \textsc{Cubizolles}. +\end{shaded} + \begin{center} +\noindent \begin{pspicture}(-4,-1)(4,1) \psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\uput[270](0,-0.5){$\backslash -$\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]}} \end{pspicture} \end{center} +\begin{lstlisting}[style=example] +\begin{pspicture}(-4,-1)(4,1) +\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + +\begin{center} +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{center} + +\begin{lstlisting}[pos=t,style=example,wide=false] +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + \section{Diffraction par une ouverture circulaire} On donnera le rayon du trou : \texttt{[r=1e-3]}, $r=1$ mm par défaut. Les variations de l'intensité sont superposées à la figure de diffraction dans le premier quadrant (le maximum au centre a été écrêté). + + \begin{center} -\begin{pspicture}(-5,-5)(5,5) +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,lambda=520]}} +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] \end{pspicture} \end{center} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +\end{lstlisting} + + + \section{Diffraction par deux trous circulaires} Les deux trous sont identiques, outre le rayon commun des trous on fixera la demi-distance entre les centres des deux trous avec : \texttt{[d]} et pour ce cas de figure on activera l'option \texttt{[twoHole]}. On notera que les temps de calculs d'allongent\ldots -\begin{center} -\begin{pspicture}(-5,-5)(5,4) + + +\begin{pspicture}(-3,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\uput[270](0,-4){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-6,-6)(6,6) +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +\end{lstlisting} + + +\hspace*{-1cm}% +\begin{pspicture}(-3,-3)(3.5,4) \psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3)(3.5,4) +\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +\end{lstlisting} + Le cas limite d'obtention de franges se vérifie avec $\displaystyle d -=\frac{a}{1.22}$. Voir~: +=\frac{a}{1.22}$. Voir~:\\ +\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). -\url{http://www.unice.fr\DeptPhys\optique\optique.html}. -\begin{center} -\begin{pspicture}(-5,-6)(5,5) +\hspace*{-1cm}% +\begin{pspicture}(-3,-3.5)(3,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +\end{lstlisting} + + \section{Diffraction par un trou triangulaire équilatéral} Le triangle équilatéral est défini par sa hauteur \texttt{[h]} en m. Pour le @@ -253,33 +400,70 @@ triangle, on peut obtenir la figure en niveaux de gris avec l'option \textsc{Airy}, on la trouve dans le livre d'Henri \textsc{Bouasse} sur la diffraction, pages 114 et 115. + \begin{center} \begin{pspicture}(-1,-1)(1,1) \pspolygon*(0,0)(1;150)(1;210) \pcline{|-|}(-0.732,-1)(0,-1) \Aput{$h$} \end{pspicture} - -\vspace{1cm} -$\backslash$\texttt{psdiffractionTriangle[f=10,h=1e-3,contrast=38,colorMode=]} +\end{center} \makebox[\linewidth]{% -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\uput[270](0,-2.5){default color mode (>1)} \end{pspicture} -% -\begin{pspicture}(-3,-3)(3,3) +\quad +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=1}} \end{pspicture} -% -\begin{pspicture}(-3,-3)(3,3) +\quad +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=0}} \end{pspicture}} -\end{center} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} + + +\makebox[\linewidth]{% +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture}} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} diff --git a/Master/texmf-dist/source/generic/pst-diffraction/Makefile b/Master/texmf-dist/source/generic/pst-diffraction/Makefile index e23675a5e5c..1d4650b7c1b 100644 --- a/Master/texmf-dist/source/generic/pst-diffraction/Makefile +++ b/Master/texmf-dist/source/generic/pst-diffraction/Makefile @@ -1,28 +1,29 @@ - # `Makefile' for `pst-diffraction.pdf', hv, 2007/03/17 .SUFFIXES : .tex .ltx .dvi .ps .pdf .eps PACKAGE = pst-diffraction -MAIN = $(PACKAGE)-docE - LATEX = latex -ARCHNAME = $(MAIN)-$(shell date +%y%m%d) +ARCHNAME = $(PACKAGE)-$(shell date +%y%m%d) +ARCHFILES = $(PACKAGE).sty *.tex $(PACKAGE).pro *.tex README Changes Makefile + +all : DE E FR clean -ARCHFILES = $(PACKAGE).sty $(PACKAGE).tex $(PACKAGE).pro $(MAIN).tex README Changes Makefile +DE : $(PACKAGE)-docDE.pdf +E : $(PACKAGE)-docE.pdf +FR : $(PACKAGE)-docFR.pdf -all : doc clean -doc: $(MAIN).pdf +doc : $(MAIN).pdf -$(MAIN).pdf : $(MAIN).ps +%.pdf : %.ps GS_OPTIONS=-dAutoRotatePages=/None ps2pdf $< -$(MAIN).ps : $(MAIN).dvi +%.ps : %.dvi dvips $< -$(MAIN).dvi : $(MAIN).tex +%.dvi : %.tex $(LATEX) $< $(LATEX) $< if ! test -f $(basename $<).glo ; then touch $(basename $<).glo; fi @@ -36,11 +37,17 @@ $(MAIN).dvi : $(MAIN).tex $(LATEX) $< clean : - $(RM) $(addprefix $(MAIN), .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) - $(RM) $(addprefix $(MAIN), .dvi .ps) + $(RM) $(addprefix $(PACKAGE)-docDE, .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) + $(RM) $(addprefix $(PACKAGE)-docDE, .dvi .ps) + $(RM) $(addprefix $(PACKAGE)-docE, .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) + $(RM) $(addprefix $(PACKAGE)-docE, .dvi .ps) + $(RM) $(addprefix $(PACKAGE)-docFR, .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl ) + $(RM) $(addprefix $(PACKAGE)-docFR, .dvi .ps) veryclean : clean - $(RM) $(addprefix $(MAIN), .pdf .bbl .blg) + $(RM) $(addprefix $(PACKAGE)-docDE, .pdf .bbl .blg) + $(RM) $(addprefix $(PACKAGE)-docE, .pdf .bbl .blg) + $(RM) $(addprefix $(PACKAGE)-docFR, .pdf .bbl .blg) arch : zip $(ARCHNAME).zip $(ARCHFILES) diff --git a/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex b/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex index d00c540e315..842e2721544 100644 --- a/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex +++ b/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex @@ -22,10 +22,11 @@ \let\PSTDiffractionLoaded\endinput % Require PSTricks \ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi +\ifx\PSTThreeDplotLoaded\endinput\else\input pst-3dplot.tex\fi \ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi % -\def\fileversion{2.10b}% -\def\filedate{2007/09/07}% +\def\fileversion{2.02}% +\def\filedate{2007/09/25}% \message{`PST-diffraction v\fileversion, \filedate\space (ML,hv)}% \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax \pst@addfams{pst-diff} @@ -35,6 +36,7 @@ \define@key[psset]{pst-diff}{r}{\def\psk@Diffraction@Circular@r{#1 }} % rayon du trou en m \define@key[psset]{pst-diff}{d}{\def\psk@Diffraction@Circular@d{#1 }} % demi-distance entre les trous en m \define@key[psset]{pst-diff}{h}{\def\psk@Diffraction@Triangle@h{#1 }} % hauteur du triangle en m +\define@key[psset]{pst-diff}{scale}{\def\psk@Diffraction@Triangle@scale{#1 }} % hauteur du triangle en m \define@key[psset]{pst-diff}{s}{\def\psk@Diffraction@Slit@s{#1 }} % distance entre les fentes \define@key[psset]{pst-diff}{lambda}{\pst@checknum{#1}\psk@Diffraction@Slit@Lambda }% en nm \define@key[psset]{pst-diff}{f}{\pst@checknum{#1}\psk@Diffraction@Slit@F }% focus en m @@ -55,13 +57,16 @@ \fi% \edef\psk@Diffraction@Slit@contrast{\the\pst@cnta\space}} % +\define@boolkey[psset]{pst-diff}[Pst@Diffraction@]{showFunc}[true]{} +\define@boolkey[psset]{pst-diff}[Pst@Diffraction@]{IIID}[true]{} \define@boolkey[psset]{pst-diff}[Pst@Diffraction@Circular@]{twoHole}[true]{} \define@boolkey[psset]{pst-diff}[Pst@Diffraction@Rectangular@]{twoSlit}[true]{} % \psset[pst-diff]{a=0.2e-3,f=5,k=1,r=1e-3, d=6e-3,s=12e-3,h=0.5e-3, lambda=650,pixel=0.5, - contrast=38,gamma=0.8,twoHole=false,twoSlit=false,colorMode=3} + contrast=38,gamma=0.8,twoHole=false,twoSlit=false,colorMode=3, scale=1, + IIID=false, showFunc=false} % % load the pstricks-add.pro only, if not already done \ifx\PSTricksAddLoaded\endinput\else\pstheader{pstricks-add.pro}\fi @@ -88,17 +93,28 @@ % +- 4 fois le premier minimum /bornexpt 1 widthSlit div focus mul ondeLongueur mul 2845 mul def /borneypt 1 heightSlit div focus mul ondeLongueur mul 2845 mul def + \ifPst@Diffraction@IIID + \psk@ThreeDplot@zMax dup \tx@ScreenCoor pop /zScale ED + tx@3DPlotDict begin \variablesIIID end + \fi % Les calculs commencent... - borneypt 4 mul neg pixel 4 borneypt mul { - /ordonneept exch def + /yEnd borneypt 4 mul def + yEnd neg pixel yEnd { + /ordonneept ED % y en m /ordonnee ordonneept 2845 div def /argumenty ordonnee heightSlit mul ondeLongueur div focus div def /argumentyRad argumenty Pi mul def /argumentyDeg argumenty 180 mul def - /sincy argumentyRad 0 eq {1}{argumentyDeg sin argumentyRad div} ifelse def - bornexpt 4 mul neg pixel 4 bornexpt mul { - /abscissept exch def + /sincy argumentyRad 0 eq { 1 }{ argumentyDeg sin argumentyRad div } ifelse def + /xEnd bornexpt 4 mul def + /OldIntensity 0 def + xEnd neg pixel xEnd { + /abscissept ED + \ifPst@Diffraction@IIID + abscissept pixel sub ordonneept OldIntensity + tx@3DPlotDict begin Conv3D2D end moveto + \fi % go to first point % x en m /abscisse abscissept 2845 div def /argumentx abscisse widthSlit mul ondeLongueur div focus div def @@ -107,11 +123,12 @@ /argumentxDeg argumentx 180 mul def /argumentcosxDeg argumentcosx 180 mul def % sinus cardinal - /sincx argumentxRad 0 eq {1} { argumentxDeg sin argumentxRad div } ifelse def + /sincx argumentxRad 0 eq { 1 } { argumentxDeg sin argumentxRad div } ifelse def % 1 1e\psk@Diffraction@Slit@contrast sincx dup mul sincy dup mul \ifPst@Diffraction@Rectangular@twoSlit mul argumentcosxDeg cos dup mul \fi - mul neg exp sub + mul neg exp sub dup + /intensity ED dup dup Red mul 3 -1 roll Green mul 3 -1 roll Blue mul \ifcase\psk@Diffraction@colorMode \tx@RGBtoGRAY neg 1 add setgray \or @@ -121,11 +138,18 @@ % % newpath abscissept ordonneept 1 0 360 arc closepath fill stroke % 30 juillet 2004 - newpath - abscissept pixel 2 div sub ordonneept pixel 2 div sub moveto - pixel 0 rlineto - 0 pixel rlineto - pixel neg 0 rlineto closepath fill stroke + \ifPst@Diffraction@IIID + abscissept ordonneept intensity zScale mul tx@3DPlotDict begin Conv3D2D end + lineto stroke % draw line in specific color + /OldIntensity intensity def + \else +% newpath % done by stroke + abscissept pixel 2 div sub ordonneept pixel 2 div sub + moveto + pixel 0 rlineto + 0 pixel rlineto + pixel neg 0 rlineto closepath fill stroke + \fi } for } for }% \addto@pscode @@ -145,6 +169,10 @@ /d \psk@Diffraction@Circular@d def \psk@Diffraction@Slit@Lambda tx@addDict begin wavelengthToRGB Red Green Blue end /Blue ED /Green ED /Red ED + \ifPst@Diffraction@IIID + \psk@ThreeDplot@zMax dup \tx@ScreenCoor pop /zScale ED + tx@3DPlotDict begin \variablesIIID end + \fi % 0 0 translate %% Handbook of mathematical functions %% ED. M.ABRAMOWITZ & I.A. STEGUN @@ -204,29 +232,29 @@ % 05 08 2004 \ifPst@Diffraction@Circular@twoHole R_limite 10 ge { /R_limite 10 def } if - newpath - R_limite neg 1.2 mul cm dup moveto - R_limite 2.4 mul cm 0 rlineto - 0 R_limite 2.4 mul cm rlineto - R_limite neg 2.4 mul cm 0 rlineto - closepath - \ifnum\psk@Diffraction@colorMode=\z@ 1 \else 0 \fi - setgray fill +% newpath +% R_limite neg 1.2 mul cm dup moveto +% R_limite 2.4 mul cm 0 rlineto +% 0 R_limite 2.4 mul cm rlineto +% R_limite neg 2.4 mul cm 0 rlineto +% closepath +% \ifnum\psk@Diffraction@colorMode=\z@ 1 \else 0 \fi +% setgray fill R_limite neg cm 1 R_limite cm { /xPts exch def /x { xPts 2845 div } bind def + /OldIntensity 0 def R_limite neg cm 1 R_limite cm { /yPts exch def + \ifPst@Diffraction@IIID + xPts 1 sub yPts OldIntensity + tx@3DPlotDict begin Conv3D2D end moveto + \fi % go to first point /y { yPts 2845 div } bind def /R { x dup mul y dup mul add sqrt } bind def % R en m /m Coeff R mul def - newpath - xPts 0.5 sub yPts 0.5 sub moveto - 1 0 rlineto - 0 1 rlineto - 1 neg 0 rlineto - closepath fill 1 1e38 m J1Card Facteur x mul cos dup mul mul neg exp sub + dup /intensity ED dup dup Red mul 3 -1 roll Green mul 3 -1 roll @@ -236,33 +264,76 @@ \tx@RGBtoGRAY setgray \or \tx@RGBtoCMYK setcmykcolor \else setrgbcolor \fi - stroke + \ifPst@Diffraction@IIID + xPts yPts intensity zScale mul tx@3DPlotDict begin Conv3D2D end + lineto stroke % draw line in specific color + /OldIntensity intensity def + \else + xPts 0.5 sub yPts 0.5 sub moveto + 1 0 rlineto + 0 1 rlineto + 1 neg 0 rlineto + closepath fill + stroke + \fi } for } for % - \else - newpath - R_limite neg 1.5 mul cm dup moveto - R_limite 3 mul cm 0 rlineto - 0 R_limite 3 mul cm rlineto - R_limite neg 3 mul cm 0 rlineto - closepath - \ifnum\psk@Diffraction@colorMode=\z@ 1 \else 0 \fi setgray fill - 0 0.01 R_limite { - /Rayon exch def - /m Coeff Rayon 0.01 mul mul def + \else % only one circular hole + \ifPst@Diffraction@IIID \else newpath - 0 0 Rayon cm 0 360 arc - 1 1e38 m J1Card neg exp sub Red mul % R - 1 1e38 m J1Card neg exp sub Green mul % G - 1 1e38 m J1Card neg exp sub Blue mul % B + R_limite neg %1.5 mul + cm dup moveto + R_limite 2 mul cm 0 rlineto + 0 R_limite 2 mul cm rlineto + R_limite neg 2 mul cm 0 rlineto + closepath + \fi + \ifnum\psk@Diffraction@colorMode=\z@ 1 \else 0 \fi setgray fill + /intensityOld 0 def + R_limite -0.001 0 { + /Radius exch def + /m Coeff Radius 0.01 mul mul def + 1 1e38 m J1Card neg exp sub + dup /intensity ED + dup dup + Red mul 3 -1 roll % R + Green mul 3 -1 roll % G + Blue mul % B \ifcase\psk@Diffraction@colorMode \tx@RGBtoGRAY neg 1 add setgray \or \tx@RGBtoGRAY setgray \or \tx@RGBtoCMYK setcmykcolor \else setrgbcolor \fi - stroke + \ifPst@Diffraction@IIID +% Radius cm 0 intensity zScale mul tx@3DPlotDict begin Conv3D2D end moveto + /notFilled true def + 0.1 setlinewidth + intensity intensityOld gt { + 0 1 360 { + /angle ED + Radius cm angle cos mul Radius cm angle sin mul intensity zScale mul + tx@3DPlotDict begin Conv3D2D end + angle 0 eq { moveto }{ lineto } ifelse % draw line in specific color + } for + notFilled { closepath fill /notFilled false def } if + stroke + /intensityOld intensity def + }{ + 0 1 360 { + /angle ED + Radius cm angle cos mul Radius cm angle sin mul intensityOld zScale mul + tx@3DPlotDict begin Conv3D2D end + angle 0 eq { moveto }{ lineto } ifelse % draw line in specific color + } for + closepath stroke + } ifelse % intensity intensityOld gt + \else + 0 0 Radius cm 0 360 arc + stroke + \fi } for + \ifPst@Diffraction@showFunc newpath 0 0 moveto R_limite 1.5 mul cm 0 rlineto @@ -274,9 +345,9 @@ newpath 0 0 J1Card 1000 mul moveto 0 0.01 R_limite { - /Rayon exch def - /m Coeff Rayon 0.01 mul mul def - Rayon cm m J1Card 1000 mul lineto + /Radius exch def + /m Coeff Radius 0.01 mul mul def + Radius cm m J1Card 1000 mul lineto } for \ifnum\psk@Diffraction@colorMode=\z@ 1 \else 0 \fi setgray \pst@number\pslinewidth setlinewidth @@ -311,6 +382,7 @@ newpath grille \fi + \fi }% \addto@pscode \end@SpecialObj% } @@ -335,6 +407,10 @@ % +- 4 fois le premier minimum /bornexpt 1 h div f mul L mul 2845 mul def /borneypt 1 h div f mul L mul 2845 mul def + \ifPst@Diffraction@IIID + \psk@ThreeDplot@zMax dup \tx@ScreenCoor pop /zScale ED + tx@3DPlotDict begin \variablesIIID end + \fi /P { 1 k y mul x p y mul sub mul div 1 k h mul x p y mul sub mul RadtoDeg cos sub @@ -354,18 +430,24 @@ /I { P dup mul Q dup mul add } def /I_max 0 store % Les calculs commencent... - borneypt 4 mul neg pixel 4 borneypt mul { + borneypt 4 mul \psk@Diffraction@Triangle@scale mul dup neg pixel 3 -1 roll { /ordonneept exch def % y en m /y ordonneept 2845 div def - bornexpt 4 mul neg pixel 4 bornexpt mul { + /OldIntensity 0 def + bornexpt 4 mul \psk@Diffraction@Triangle@scale mul dup neg pixel 3 -1 roll { /abscissept exch def + \ifPst@Diffraction@IIID + abscissept ordonneept OldIntensity + tx@3DPlotDict begin Conv3D2D end moveto + \fi % go to first point % x en m /x abscissept 2845 div def I_max I le { /I_max I def } if % 1.05 1e\psk@Diffraction@Slit@contrast I neg exp sub - dup dup + dup /intensity ED + dup dup Red mul 3 -1 roll Green mul 3 -1 roll Blue mul \ifcase\psk@Diffraction@colorMode \tx@RGBtoGRAY neg 1 add setgray \or @@ -373,10 +455,16 @@ \tx@RGBtoCMYK setcmykcolor \else setrgbcolor \fi % - newpath abscissept pixel 2 div sub ordonneept pixel 2 div sub moveto - pixel 0 rlineto - 0 pixel rlineto - pixel neg 0 rlineto closepath fill stroke + \ifPst@Diffraction@IIID + abscissept ordonneept intensity zScale mul tx@3DPlotDict begin Conv3D2D end + lineto stroke % draw line in specific color + /OldIntensity intensity def + \else + newpath abscissept pixel 2 div sub ordonneept pixel 2 div sub moveto + pixel 0 rlineto + 0 pixel rlineto + pixel neg 0 rlineto closepath fill stroke + \fi } for } for }% addto@pscode diff --git a/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty b/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty index 441908f3a57..ab4962f6bce 100644 --- a/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty +++ b/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty @@ -1,4 +1,5 @@ \RequirePackage{pstricks} +\RequirePackage{pst-3dplot} \RequirePackage{pst-xkey} \ProvidesPackage{pst-diffraction}[2009/09/04 package wrapper for pst-diffraction.tex (hv)] |