summaryrefslogtreecommitdiff
path: root/Master
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2006-01-11 23:53:27 +0000
committerKarl Berry <karl@freefriends.org>2006-01-11 23:53:27 +0000
commit67d7baf003ddae4c3f71801f38fdfdc170ee4f9c (patch)
treec0ac89099680078223bbbfaaa1310d2f5dd91a6b /Master
parentbf5ce78902dc39cc6812e1cec515b9285810e545 (diff)
trunk/Master/texmf-dist/source/latex/fltpoint
git-svn-id: svn://tug.org/texlive/trunk@291 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master')
-rw-r--r--Master/texmf-dist/source/latex/fltpoint/fltpoint.dtx1791
-rw-r--r--Master/texmf-dist/source/latex/fltpoint/fltpoint.ins8
2 files changed, 1799 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/fltpoint/fltpoint.dtx b/Master/texmf-dist/source/latex/fltpoint/fltpoint.dtx
new file mode 100644
index 00000000000..e2cd2ed5af8
--- /dev/null
+++ b/Master/texmf-dist/source/latex/fltpoint/fltpoint.dtx
@@ -0,0 +1,1791 @@
+% \iffalse META-COMMENT
+%
+% The fltpoint package for use with TeX / LaTeX
+% Current Version: 1.1b, dated 2004/11/12
+% Copyright 2000-2004
+% Eckhart Guthoehrlein
+% e-mail <e_w_g@web.de>
+%
+% This program may be distributed and/or modified under the
+% conditions of the LaTeX Project Public License, either version 1.2
+% of this license or (at your option) any later version.
+% The latest version of this license is in
+% http://www.latex-project.org/lppl.txt
+% and version 1.2 or later is part of all distributions of LaTeX
+% version 1999/12/01 or later.
+%
+% This program consists of the files 'fltpoint.dtx', 'fltpoint.ins'
+% and 'README_fltpoint.txt'.
+%
+% The package provides simple arithmetic with TeX. It should work with
+% all formats and has been tested with plain TeX and LaTeX.
+%
+% Run TeX over fltpoint.ins to produce the docstripped version
+% of the file. The documentation can be typeset by running
+% LaTeX over fltpoint.dtx.
+%
+% Comments and bug-reports are welcome under the above
+% e-mail address.
+%
+% \fi ^^A end meta-comment
+% \CheckSum{1150}
+% \CharacterTable
+% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
+% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
+% Digits \0\1\2\3\4\5\6\7\8\9
+% Exclamation \! Double quote \" Hash (number) \#
+% Dollar \$ Percent \% Ampersand \&
+% Acute accent \' Left paren \( Right paren \)
+% Asterisk \* Plus \+ Comma \,
+% Minus \- Point \. Solidus \/
+% Colon \: Semicolon \; Less than \<
+% Equals \= Greater than \> Question mark \?
+% Commercial at \@ Left bracket \[ Backslash \\
+% Right bracket \] Circumflex \^ Underscore \_
+% Grave accent \` Left brace \{ Vertical bar \|
+% Right brace \} Tilde \~}
+%
+%
+% \DoNotIndex{\def,\edef,\xdef,\gdef,\let,\global,\the,^^A
+% \newcount,\if,\ifx,\else,\fi,\ifnum,\catcode,^^A
+% \@,\expandafter,\csname,\endcsname,\number^^A
+% \relax,\end,\advance,\multiply,\divide,\endinput^^A
+% \iterate,\body,\repeat,\iiterate,\ibody,\irepeat,^^A
+% \xiterate,\xbody,\xrepeat.
+% \,,\active,\AlsoImplementation,\AtBegin\Document,
+% \begin,\CodelineIndex,\CommaCheck,\CommaOrdinary,
+% \CommaPunct,\DeclareOption,\DisableCrossrefs,
+% \DocInput,\documentclass,\EnableCrossrefs,\endinput,
+% \futurelet,\long,\mathchardef,\mathcode,\mbox,
+% \NeedsTeXFormat,\newcommand,\noexpand,\number,
+% \obeyspaces,\OnlyDescription,\ProcessOptions,
+% \ProvidesPackage,\RecordChanges,\rightarrow,
+% \space,\tt,\usepackage}
+%
+% \MakeShortVerb{\"}
+%
+% \changes{v1.0a}{2000/08/23}{First public release}
+% \changes{v1.0b}{2000/08/25}{Some spaces sneaked into the output.
+% Fixed.}
+% \changes{v1.0c}{2000/09/05}{Changes necessary for
+% the \texttt{rccol} package.}
+% \changes{v1.1}{2001/11/17}{Cleanup to freeze development.}
+% \changes{v1.1b}{2004/11/12}{Some more freezing cleanup.}
+% \GetFileInfo{fltpoint.sty}
+% \title{The \texttt{fltpoint} package\thanks{This
+% file has version number \fileversion{} dated \filedate.}}
+% \author{Eckhart Guth\"ohrlein\thanks{Send comments
+% or bug-reports to the author via e-mail
+% \texttt{<e\_w\_g@web.de>}.}}
+% \date{Printed \today}
+% \maketitle
+%
+% \begin{abstract}
+% This package provides commands for simple
+% arithmetic with generic \TeX. At the moment, there is support for the
+% basic operations addition, subtraction, multiplication and division as
+% well as for rounding numbers to a given precision.
+% \end{abstract}
+%
+% \newif\ifmulticols
+% \IfFileExists{multicol.sty}{\multicolstrue}{}
+% \ifmulticols
+% \addtocontents{toc}{\protect\begin{multicols}{2}}
+% \fi
+% ^^A{\parskip0mm\tableofcontents}
+%
+% \section{Introduction}
+% The need for calculations inside \TeX\ was encountered when working on
+% some macros to convert positions on a linear scale into angle values,
+% since integer values proved not to be sufficiently exact. Although
+% the capabilities of this package are currently rather limited,
+% they may be of some use if you do not need more than the
+% provided functions. The \texttt{rccol} package may serve as an
+% example application; it uses the rounding facilities of this package.
+%
+% \section{User interface}
+% The user commands are divided into two categories:
+% the normal and the register commands. Each command
+% is available in those two variants, as decribed below.
+% At first, we have to agree about the syntax for floating
+% point numbers.
+%
+% \subsection{Syntax of floating point numbers}
+% In the syntax descriptions below, \meta{fp number}
+% will be used to denote a number according to the following
+% syntax.
+% \begin{flushleft}
+% $\mbox{\meta{fp number}}:=\mbox{\meta{opt signs}}
+% \mbox{\meta{opt digits}}\mbox{\meta{opt dot}}
+% \mbox{\meta{opt digits}}$
+% \end{flushleft}
+% \meta{opt signs} may be any number of `"+"' and/or `"-"'
+% characters, where each `"-"' toggles the sign of
+% the number. \meta{opt digits} may be any number
+% of characters `"0"'\dots `"9"', and \meta{opt dot}
+% is the optional decimal sign. For example, the
+% following inputs for \meta{fp number} are valid,
+% resulting into the specified numbers.
+% \fpexample{100}, \fpexample{010,98700}, \fpexample{-,99},
+% \fpexample{-+-+0001,}, \fpexample{}, \fpexample{---,50}.
+% As you can see, leading and trailing zeros are removed
+% as far as possible, and an `empty number' (omitting anything
+% optional) is understood as zero.
+%
+% There is no syntax checking, so if you do not obey the
+% rules above, you are likely to encounter strange error
+% messages, as well as everything might work properly in
+% some cases.
+% Of course, it is also possible to
+% use a macro as \meta{fp number} if it expands to a
+% string satisfying the syntax rules.
+%
+% \subsection{Standard operations}
+% \DescribeMacro\fpAdd\DescribeMacro\fpSub
+% \DescribeMacro\fpMul\DescribeMacro\fpDiv
+% The standard commands for binary operations have the following
+% common syntax:
+% \begin{flushleft}
+% "\fp"\meta{bOp}"{"\meta{command sequence}"}{"\meta{fp number}"}"^^A
+% "{"\meta{fp number}"}".
+% \end{flushleft}
+% This will perform the operation specified by \meta{bOp}
+% with the two given numbers, saving the result in
+% \meta{command sequence}. Possibilities for
+% \meta{bOp} are `"Add"', `"Sub"', `"Mul"' and `"Div"',
+% specifying addition, subtraction, multiplication,
+% and division. Example:
+% \begin{flushleft}
+% "\fpAdd{\exmplsum}{100,0}{-99,1}"\\
+% "\fpMul{\exmplprod}{5}{\exmplsum}"
+% \end{flushleft}
+% \fpAdd{\exmplsum}{100,0}{-99,1}^^A
+% \fpMul{\exmplprod}{5}{\exmplsum}^^A
+% After this, the results of the computations will
+% be stored in the macros "\exmplsum" and "\exmplprod",
+% expanding to \exmplsum\ and \exmplprod.
+%
+% \DescribeMacro\fpNeg\DescribeMacro\fpAbs
+% Similar to the binary operations, the unary operations
+% share the common syntax
+% \begin{flushleft}
+% "\fp"\meta{uOp}"{"\meta{command sequence}"}{"\meta{fp number}"}".
+% \end{flushleft}
+% Possibilities for \meta{uOp} are `"Abs"' and `"Neg"',
+% meaning absolute amount and negation.
+%
+% \DescribeMacro\fpRound
+% With "\fpRound{"\meta{command sequence}"}{"\meta{fp number}^^A
+% "}{"\meta{precision}"}",
+% a number can be rounded to the desired precision (a power of ten).
+% The result
+% is saved in \meta{command sequence} as usual.
+%
+% \subsection{Register operations}
+% You may use register variants of all operations,
+% which means that you perform the operation on
+% a register which contains a number. A register is
+% referred to using its name; the name may
+% contain any characters including digits.
+%
+% \DescribeMacro\fpRegSet\DescribeMacro\fpRegGet
+% Registers are initialized by assigning them values,
+% using "\fpRegSet". They can be read out into
+% command sequences using "\fpRegGet".
+% \begin{flushleft}
+% "\fpRegSet{"\meta{reg name}"}{"\meta{fp number}"}"\\
+% "\fpRegGet{"\meta{reg name}"}{"\meta{command sequence}"}"
+% \end{flushleft}
+%
+% \DescribeMacro\fpRegAdd\DescribeMacro\fpRegSub
+% \DescribeMacro\fpRegMul\DescribeMacro\fpRegDiv
+% The binary operations need two register names.
+% After execution, the first register will hold
+% the result of the specified computation,
+% performed with its former value and the
+% value of the second register.
+% \begin{flushleft}
+% "\fp"\meta{bOp}"{"\meta{reg name 1}"}{"\meta{reg name 2}"}"
+% \end{flushleft}
+% \DescribeMacro\fpRegAbs\DescribeMacro\fpRegNeg
+% Consequently, the unary operations only need
+% the name of the register.
+% \begin{flushleft}
+% "\fp"\meta{uOp}"{"\meta{reg name}"}"
+% \end{flushleft}
+% \DescribeMacro\fpRegRound
+% Rounding of registers is also possible.
+% \begin{flushleft}
+% "\fpRegRound{"\meta{reg name}"}{"\meta{precision}"}"
+% \end{flushleft}
+% \DescribeMacro\fpRegCopy
+% Furthermore, there is one binary operation only available for
+% registers, this is "\fpRegCopy" which assigns the
+% value of \meta{reg name 2} to register \meta{reg name 1}.
+%
+% For example, consider the following statements.
+% \begin{flushleft}
+% "\fpRegSet{test1}{36} \fpRegSet{test2}{-3}"\\
+% "\fpRegDiv{test1}{test2} \fpRegMul{test1}{test1}"\\
+% "\fpRegGet{test1}{\fpresult}"
+% \end{flushleft}
+% \fpRegSet{test1}{36}\fpRegSet{test2}{-3}^^A
+% \fpRegDiv{test1}{test2}\fpRegMul{test1}{test1}^^A
+% \fpRegGet{test1}{\fpresult}^^A
+% After this, "test1" will hold the value \fpresult, which
+% "\fpresult" will expand to.
+%
+%
+% \subsection{Configuration and Parameters}
+%
+% \DescribeMacro\fpAccuracy
+% The macro "\fpAccuracy" takes one argument (a number),
+% determining the number of digits after the decimal sign,
+% i.\,e., the accuracy of the computations.
+% The default value is five.
+% At the moment, the name promises too much.
+% The command only affects "\fpDiv" and "\fpRegDiv".
+%
+% \DescribeMacro\fpDecimalSign
+% With "\fpDecimalSign{"\meta{character}"}" you can chose any character
+% for use as the decimal sign. Normally, this will be either
+% a point or a comma; the default is a comma.
+% You can furthermore use the package options
+% \texttt{comma} or \texttt{point}.
+% The support for options like \texttt{english} or \texttt{german}
+% has been removed. It will not be added again, and there will be no
+% detection of packages like \texttt{babel} or \texttt{german}.
+% In my view, a comma is the better choice regardless of the language
+% in question (and it is the \textsc{iso} standard). On the other hand,
+% many people think that a point should be used even in German texts.
+% So, you have to make an explicit decision.
+%
+% \section{Final Remarks}
+% After the first release, I intended to include the features listed
+% below in the near future.
+% Unfortunately, I didn't have time to do so, and maybe I will
+% never have, since I am currently not interested in extending this
+% package. If I continued the development some day, the
+% first extensions might be what is listed here.
+% \begin{itemize}
+% \item Extend syntax to support numbers like $1,7\mathrm{E}{-}1$ or
+% $2,765\cdot 10^5$ in input and output.
+% \item Formatted, customizable output.
+% \item User access to the comparison of registers.
+% \item A better concept for chosing the accuracy of the computations.
+% \item More operations like $\mathrm{e}^x$, $\sqrt{x}$, $\sin x$,
+% $\ln x$\ldots
+% \end{itemize}
+%
+% Some users have pointed out that the terminus \lq floating-point\rq\
+% is not strictly correct for what is provided by the package. Alas! I
+% happily stick to the package name.
+%
+% If you encounter needs not satisfied by this package, you may
+% wait for the unlikely event of an extension from my part, or you can
+% have a look at the following packages and see if they do what you want:
+% \begin{itemize}
+% \item {\tt fp} by Michael Mehlich for calculations,
+% \item {\tt numprint} by Harald Harders for formatted printing of
+% numbers.
+% \end{itemize}
+% Finally, the license of this package is LPPL, so feel free to do
+% it yourself.
+%
+% \StopEventually{%
+% \ifmulticols
+% \addtocontents{toc}{\protect\end{multicols}}
+% \fi}
+% \section{Implementation}
+%
+% \subsection{General ideas}
+% The main idea was to represent numbers internally by storing their
+% digits in an array/record-like construction (to be referred to as
+% an array or as a register from now on) whose numbering
+% reflects the decimal position factor of the digit, with
+% some information about the range of the numbering
+% and the sign of the number.
+% An array consists of a couple of command sequences,
+% sharing a common name followed by an element number.
+% E.\,g., `$120.3$' means $1\cdot 10^2+2\cdot 10^1+
+% 0\cdot 10^0+3\cdot 10^{-1}$. So, if the number is to be stored
+% in the array "\exmpl", the command sequences
+% "\exmpl@2", "\exmpl@1", "\exmpl@0" and "\exmpl@-1"
+% will be defined as `"1"', `"2"', `"0"' and `"3"', respectively.
+% The sign information `"+"' will be stored in "\exmpl@sig".
+% "\exmpl@ul" (`upper limit') will be `"2"', "\exmpl@ll" (`lower
+% limit') will be `"-1"'.
+%
+% The computations are performed as
+% you do it with paper and pencil.
+% E.\,g., for an addition, all corresponding digits
+% are summed, taking over anything
+% exceeding ten to the next pair of digits.
+% Thus, there is no limit to the range of numbers or to the
+% number of digits after the decimal sign, except
+% \TeX's memory and, probably the limiting factor, your patience.
+%
+% Initially, the computations were not performed inside of
+% groups, and side-effects were avoided using more
+% counters and constructions like "\xloop" etc.
+% This may make more efficient use of \TeX, as far as speed
+% and save stack usage is concerned, but I think that further
+% extensions will be much simpler now without the
+% need to worry about possible side-effects and the surprising
+% result when, once again, something happens you simply
+% did not think of. Furthermore, this provides
+% a simple mechanism of removing temporary stuff
+% from the memory.
+%
+% But now, let's reveal the code\dots
+%
+%
+% \subsection{Driver file}
+% The driver file can be generated from \texttt{fltpoint.dtx}
+% and then be used to produce the documentation (if you don't like
+% to run \LaTeX\ directly over the \texttt{dtx}-file).
+% \begin{macrocode}
+%<*deccomma>
+\mathchardef\CommaOrdinary="013B
+\mathchardef\CommaPunct ="613B
+\mathcode`,="8000
+{\catcode`\,=\active
+ \gdef ,{\obeyspaces\futurelet\next\CommaCheck}}
+\def\CommaCheck{\if\space\next\CommaPunct\else\CommaOrdinary\fi}
+%</deccomma>
+%<*driver>
+\documentclass{ltxdoc}
+\usepackage{deccomma,fltpoint}
+%\OnlyDescription
+\AlsoImplementation
+\EnableCrossrefs % disable if index is ready
+\CodelineIndex
+\RecordChanges
+%\DisableCrossrefs
+\newcommand{\fpexample}[1]{%
+ \fpRegSet{fptemp}{#1}%
+ \fpRegGet{fptemp}{\fptemp}%
+ $\mbox{\tt`#1'}\rightarrow\fptemp$}
+\begin{document}
+ \DocInput{fltpoint.dtx}
+\end{document}
+%</driver>
+% \end{macrocode}
+%
+%
+% \subsection{\LaTeX\ package definitions}
+% If used as a \LaTeX\ package, the usual \LaTeX\ preliminaries
+% and some option declarations are necessary.
+% \begin{macrocode}
+%<*package>
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{fltpoint}[2004/11/12 v1.1b floating point arithmetic]
+\DeclareOption{comma}{\AtBeginDocument{\fpDecimalSign,}}
+\DeclareOption{point}{\AtBeginDocument{\fpDecimalSign.}}
+\ProcessOptions*\relax
+\input{fltpoint}
+%</package>
+% \end{macrocode}
+%
+% \iffalse
+%<*fltmain>
+% \fi
+% \subsection{Private letters}
+%
+% \begin{macro}{\atcatcode}
+% `"@"' is used for private command sequences. Its catcode is saved
+% in "\atcatcode" to be restored just before "\endinput".
+% \begin{macrocode}
+\edef\atcatcode{\the\catcode`\@}
+\catcode`\@=11
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{\LaTeX\ or not?}
+%
+% Check for \LaTeX, otherwise provide the "\@ifnextchar" mechanism
+% copied from the \LaTeX\ source, see there for explanation.
+% \begin{macrocode}
+\ifx\documentclass\relax
+\long\def\@ifnextchar#1#2#3{%
+ \let\reserved@d=#1%
+ \def\reserved@a{#2}%
+ \def\reserved@b{#3}%
+ \futurelet\@let@token\@ifnch}
+\def\@ifnch{%
+ \ifx\@let@token\@sptoken
+ \let\reserved@c\@xifnch
+ \else
+ \ifx\@let@token\reserved@d
+ \let\reserved@c\reserved@a
+ \else
+ \let\reserved@c\reserved@b
+ \fi
+ \fi
+ \reserved@c}
+\def\:{\let\@sptoken= } \:
+\def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
+\fi
+% \end{macrocode}
+% \subsection{Additional loop structures}
+%
+% \begin{macro}{\iloop}
+% \begin{macro}{\xloop}
+% To be able to nest loop structures without the need for
+% hiding the inner loop(s) in grouped blocks, the constructions
+% "\iloop...\irepeat" and "\xloop...\xrepeat" are defined
+% analogously to \PlainTeX's "\loop...\repeat".
+% "\iloop" will be used `internally' by macros which are
+% to be used in ordinary "\loop"s or in "\xloop"s.
+% "\xloop" will be used
+% `externally', surrounding ordinary "\loop"s.
+% \begin{macrocode}
+\def\iloop#1\irepeat{\def\ibody{#1}\iiterate}
+\def\iiterate{\ibody\let\inext=\iiterate\else\let\inext=\relax\fi
+ \inext}
+\def\xloop#1\xrepeat{\def\xbody{#1}\xiterate}
+\def\xiterate{\xbody\let\xnext\xiterate\else\let\xnext\relax\fi\xnext}
+% \end{macrocode}
+% The following assignments are necessary to make
+% "\loop"\dots"\if"\dots"\repeat"
+% constructions skippable inside another "\if".
+% \begin{macrocode}
+\let\repeat\fi
+\let\irepeat\fi
+\let\xrepeat\fi
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+%
+% \subsection{Allocation of registers}
+%
+% \begin{macro}{\fp@loopcount}
+% \begin{macro}{\fp@loopcountii}
+% \begin{macro}{\fp@result}
+% \begin{macro}{\fp@carryover}
+% \begin{macro}{\fp@tempcount}
+% \begin{macro}{\fp@tempcountii}
+% Several count registers are needed. I have tried to keep this
+% number small, which means that, at some points, I may have chosen a
+% less logical or less readable usage of counts.
+% Nevertheless, I do not claim to have minimized the number
+% as far as possible\dots
+%
+% "\fp@loopcount" and "\fp@loopcountii" are often, but not always, used
+% for "\loop"s, "\fp@loopcountii" sometimes just stores the finishing
+% number. "\fp@result" and "\fp@carryover"
+% are used to store the intermediate results of computations.
+% "\fp@tempcount" and "\fp@tempcountii" are scratch registers
+% whose values should not be considered to be the same
+% after the use of any macro, except the simple array
+% accession abbreviations starting whith "\ar@", as explained below.
+% \begin{macrocode}
+\newcount\fp@loopcount
+\newcount\fp@loopcountii
+\newcount\fp@result
+\newcount\fp@carryover
+\newcount\fp@tempcount
+\newcount\fp@tempcountii
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Communication between macros and groups}
+%
+% \begin{macro}{\fp@setparam}
+% \begin{macro}{\fp@param}
+% To pass information from one macro to another, or from
+% inside a group to the outer world, the construction
+% "\fp@setparam{"\meta{information}"}" is used. It saves
+% \meta{information} globally in the command sequence "\fp@param".
+% This mechanism is used, e.\,g., by "\fp@regcomp",
+% "\fp@getdigit" to pass their result to the calling macro,
+% or by "\fp@regadd" etc.\ to make \meta{information} survive the end
+% of the current group. Since "\xdef" is used, \meta{information}
+% will be fully expanded.
+% \begin{macrocode}
+\def\fp@setparam#1{\xdef\fp@param{#1}}%
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Array accession}
+%
+% \begin{macro}{\ar@set}
+% \begin{macro}{\ar@get}
+% \begin{macro}{\ar@setsig}
+% \begin{macro}{\ar@getsig}
+% \begin{macro}{\ar@setul}
+% \begin{macro}{\ar@getul}
+% \begin{macro}{\ar@setll}
+% \begin{macro}{\ar@getll}
+% The idea of arrays using command sequences like
+% "\exmpl@-1" means typing a lot of unreadable
+% "\expandafter"s and "\csname"s, so the following
+% abbreviations were introduced. They take the base name of
+% the array as the first argument, if needed followed by
+% an element number, for the "set"-commands followed by
+% the third argument to be the (new) value.
+% No checks are performed if the element number
+% is inside the boundaries of the array, nor anything
+% else to ensure the validity of the operation.
+%
+% "\ar@set" is used to save digits.
+% "\ar@setsig", "\ar@setul" and "\ar@setll" set sign,
+% upper and lower limit of the array.
+% "\ar@get", "\ar@getsig", "\ar@getul" and "\ar@getll"
+% are used to access the respective command sequences.
+% \begin{macrocode}
+\def\ar@set#1#2#3{\expandafter\edef\csname#1@\number#2\endcsname{%
+ \number#3}}
+\def\ar@get#1#2{\csname#1@\number#2\endcsname}
+\def\ar@setsig#1#2{\expandafter\edef\csname#1@sig\endcsname{#2}}
+\def\ar@getsig#1{\csname#1@sig\endcsname}
+\def\ar@getul#1{\csname#1@ul\endcsname}
+\def\ar@getll#1{\csname#1@ll\endcsname}
+\def\ar@setul#1#2{\expandafter\edef\csname#1@ul\endcsname{\number#2}}
+\def\ar@setll#1#2{\expandafter\edef\csname#1@ll\endcsname{\number#2}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Miscellaneous}
+%
+% \begin{macro}{\fp@settomax}
+% The macro "\fp@settomax" assigns the maximum of the two
+% numbers given as "#2" and "#3" to the counter "#1".
+% \begin{macrocode}
+\def\fp@settomax#1#2#3{%
+ \ifnum#2<#3\relax
+ #1=#3\relax
+ \else
+ #1=#2\relax
+ \fi
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@settomin}
+% The macro "\fp@settomin" does the same with the minimum.
+% \begin{macrocode}
+\def\fp@settomin#1#2#3{%
+ \ifnum#2<#3\relax
+ #1=#2\relax
+ \else
+ #1=#3\relax
+ \fi
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@modulo}
+% The macro "\fp@modulo" computes the result of $\mbox{\#1}\bmod
+% \mbox{\#2}$ and saves it in "\fp@param".
+% \begin{macrocode}
+\def\fp@modulo#1#2{%
+ \fp@tempcount=#1\relax
+ \fp@tempcountii=#1\relax
+ \divide\fp@tempcountii#2\relax
+ \multiply\fp@tempcountii#2\relax
+ \advance\fp@tempcount-\fp@tempcountii
+ \edef\fp@param{\number\fp@tempcount}}
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{Setting and getting register contents}
+%
+% \begin{macro}{\fp@regread}
+% \begin{macro}{\fp@regread@raw}
+% The macro "\fp@regread" reads the string or command sequence
+% (after expansion) given as "#2" into register "#1".
+% The main work is done by the subroutine
+% "\fp@readchars", where "\fp@tempcount" is used to indicate
+% the current position. "\fp@arrayname" is used to pass
+% "#1" to "\fp@readchars".
+% \begin{macrocode}
+\def\fp@regread#1#2{%
+ \fp@regread@raw{#1}{#2}%
+ \fp@cleanreg{#1}}
+\def\fp@regread@raw#1#2{%
+% \end{macrocode}
+% Initialize "\fp@tempcount".
+% Initialize "\fp@arrayname".
+% Make "#1" positive by default.
+% \begin{macrocode}
+ \fp@tempcount=0
+ \edef\fp@arrayname{#1}%
+ \ar@setsig{#1}{+}%
+% \end{macrocode}
+% Now call "\fp@readchars" with "#2" fully expanded,
+% followed by a decimal sign. The decimal sign is necessary because
+% "\fp@readchars" expects at least one decimal sign to occur in the
+% given string, so if "#2" is, say, "100", this will make it
+% readable. On the other hand, a superficial decimal sign at the end
+% of a number like $1.34$ will be ignored.
+% \begin{macrocode}
+ \edef\fp@scratch{#2\fp@decimalsign}%
+ \expandafter\fp@readchars\fp@scratch\end
+% \end{macrocode}
+% If the first character of "#2" has been a decimal sign, the upper
+% limit will be wrong, no pre-point digits will be present.
+% This does not conform the internal syntax and is
+% corrected now.
+% \begin{macrocode}
+ \ifnum\ar@getul{#1}=-1
+ \ar@setul{#1}{0}%
+ \ar@set{#1}{0}{0}%
+ \fi
+% \end{macrocode}
+% The $n$ digits before the decimal sign (if any) have been
+% read in from left to right, assigning positions from
+% $0\ldots n$, so they have to be swapped to
+% their correct positions. This is done with two counters,
+% one starting as $0$, the other as $n$, using
+% "\fp@scratch" for temporary storage.
+% \begin{macrocode}
+ \fp@tempcount=0
+ \fp@tempcountii=\ar@getul{#1}\relax
+ \iloop
+ \ifnum\fp@tempcount<\fp@tempcountii
+ \edef\fp@scratch{\ar@get{#1}{\fp@tempcountii}}%
+ \ar@set{#1}{\fp@tempcountii}{\ar@get{#1}{\fp@tempcount}}%
+ \ar@set{#1}{\fp@tempcount}{\fp@scratch}%
+ \advance\fp@tempcount by 1
+ \advance\fp@tempcountii by -1
+ \irepeat
+}% end \fp@regread@raw
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\fp@readchars}
+% As mentioned above, this subroutine is called by
+% "\fp@regread" to do the actual work of reading
+% the given number character after character into the register
+% passed using "\fp@arrayname". It will stop if it sees
+% an \fbox{\tt end} token.
+% \begin{macrocode}
+\def\fp@readchars#1{%
+ \ifx#1\end
+% \end{macrocode}
+% If the condition is true, the token read before has been the final
+% one. So at the end, do not call "\fp@readchars" any more, and use
+% the current value of "\fp@tempcount" to assign the correct
+% lower limit to the register.
+% \begin{macrocode}
+ \let\inext=\relax
+ \ifnum\fp@tempcount<0
+ \advance\fp@tempcount by 1
+ \ar@setll{\fp@arrayname}{\fp@tempcount}%
+ \else
+ \ar@setll{\fp@arrayname}{0}%
+ \fi
+ \else % \ifx#1\end
+% \end{macrocode}
+% If the condition is false, further characters will
+% follow, so "\fp@readchars" will have to be called
+% again after finishing this character.
+% \begin{macrocode}
+ \let\inext=\fp@readchars
+% \end{macrocode}
+% Now check the character and perform the respective actions.
+% \begin{macrocode}
+ \ifx#1+%
+% \end{macrocode}
+% An optional `"+"' has been encountered, nothing to do.
+% \begin{macrocode}
+ \else
+ \ifx#1-%
+% \end{macrocode}
+% `"-"' sign, toggle sign.
+% \begin{macrocode}
+ \if\ar@getsig{\fp@arrayname}-%
+ \ar@setsig{\fp@arrayname}{+}%
+ \else
+ \ar@setsig{\fp@arrayname}{-}%
+ \fi
+ \else
+ \if\noexpand#1\fp@decimalsign%
+% \end{macrocode}
+% A decimal sign has been encountered. So, if it is the first
+% one, switch to reading afterpoint digits, otherwise ignore it.
+% \begin{macrocode}
+ \ifnum\fp@tempcount>-1
+ \advance\fp@tempcount by -1
+ \ar@setul{\fp@arrayname}{\fp@tempcount}%
+ \fp@tempcount=-1
+ \fi
+ \else
+% \end{macrocode}
+% None of the above characters was encountered, so assume
+% a digit, and read it into the current position. Then step
+% "\fp@tempcount" by $+1$ if prepoint digits are read in,
+% or by $-1$ if the decimal sign has already been seen.
+% \begin{macrocode}
+ \ar@set{\fp@arrayname}{\fp@tempcount}{#1}%
+ \ifnum\fp@tempcount<0
+ \advance\fp@tempcount by -1
+ \else
+ \advance\fp@tempcount by 1
+ \fi
+ \fi% end \if\noexpand#1\fp@decimalsign
+ \fi% end \ifx#1-
+ \fi% end \ifx#1+
+ \fi% end \ifx#1\end
+% \end{macrocode}
+% That's all, call "\inext".
+% \begin{macrocode}
+ \inext
+}% end \fp@readchars
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regget}
+% The macro "\fp@regget" is used to read the contents of the
+% register "#1" into the command sequence "#2".
+% \begin{macrocode}
+\def\fp@regget#1#2{%
+% \end{macrocode}
+% First, we get the sign of the number. If negative,
+% "#2" is initialized as `"-"', otherwise as empty.
+% \begin{macrocode}
+ \if\ar@getsig{#1}-%
+ \def#2{-}%
+ \else
+ \def#2{}%
+ \fi
+% \end{macrocode}
+% Then we set up "\fp@tempcount" as the counter for an "\iloop",
+% starting at the upper limit of "#1".
+% \begin{macrocode}
+ \fp@tempcount=\ar@getul{#1}\relax
+ \iloop
+% \end{macrocode}
+% If the "\fp@tempcount" is $-1$, we have to append a decimal sign.
+% \begin{macrocode}
+ \ifnum\fp@tempcount=-1
+ \edef#2{#2\fp@decimalsign}%
+ \fi
+% \end{macrocode}
+% Now append the corresponding digit.
+% \begin{macrocode}
+ \edef#2{#2\ar@get{#1}{\fp@tempcount}}%
+% \end{macrocode}
+% And repeat if the lower limit of "#1" is not yet reached.
+% \begin{macrocode}
+ \ifnum\fp@tempcount>\ar@getll{#1}\relax
+ \advance\fp@tempcount by -1
+ \irepeat
+}% end \def\fp@regget
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@cleanreg}
+% The macro "\fp@cleanreg" will clean up the given register.
+% This means that leading and trailing zeros will be
+% removed, and that $-0$ will be turned into $+0$
+% to be recognised as equal later on.
+% \begin{macrocode}
+\def\fp@cleanreg#1{%
+% \end{macrocode}
+% First, we will iterate until all leading zeros
+% have been removed, except for digit $0$ that it is
+% expected to be `"0"' for all numbers $n$ with $-1<n<1$.
+% \begin{macrocode}
+ \fp@tempcount=\ar@getul{#1}\relax
+ \iloop
+ \ifnum\fp@tempcount>0
+ \ifnum\ar@get{#1}{\fp@tempcount}=0
+% \end{macrocode}
+% If this is true, the first digit is a zero and is `removed'
+% by changing the upper limit. It is not necessary to
+% erase it by setting the array element to "\empty" or something
+% like that, because it will not be looked at any more.
+% \begin{macrocode}
+ \advance\fp@tempcount by -1
+ \ar@setul{#1}{\fp@tempcount}%
+ \else
+% \end{macrocode}
+% So the condition is false, the first digit is not a zero
+% and the following ones need not to be looked at.
+% \begin{macrocode}
+ \fp@tempcount=0
+ \fi
+ \irepeat
+% \end{macrocode}
+% Similarly, the trailing zeros are removed.
+% \begin{macrocode}
+ \fp@tempcount=\ar@getll{#1}\relax
+ \iloop
+ \ifnum\fp@tempcount<0
+ \ifnum\ar@get{#1}{\fp@tempcount}=0
+ \advance\fp@tempcount by 1
+ \ar@setll{#1}{\fp@tempcount}%
+ \else
+ \fp@tempcount=0
+ \fi
+ \irepeat
+% \end{macrocode}
+% Now check if the number is zero, using
+% $(\mbox{x@ll}=\mbox{x@ul})\wedge(\mbox{x@0}=0)\Longleftrightarrow
+% \rm x=0$, and set the sign to `"+"' if this is the case.
+% \begin{macrocode}
+ \ifnum\ar@getll{#1}=\ar@getul{#1}\relax
+ \ifnum\ar@get{#1}{0}=0\relax
+ \ar@setsig{#1}{+}%
+ \fi
+ \fi
+}% end \fp@regclean
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@getdigit}
+% The macro "\fp@getdigit" will return the digit number "#2" of
+% register "#1" using "\fp@setparam". If "#2" is outside the
+% boundaries of the array, `"0"' is returned. (Which is not only
+% sensible, but also mathematically correct.)
+% \begin{macrocode}
+\def\fp@getdigit#1#2{%
+ \ifnum#2<\ar@getll{#1}\relax
+ \fp@setparam0%
+ \else
+ \ifnum#2>\ar@getul{#1}\relax
+ \fp@setparam0%
+ \else
+ \fp@setparam{\ar@get{#1}{#2}}%
+ \fi
+ \fi
+}% end \fp@getdigit
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@shiftright}
+% The macro "\fp@shiftright" takes register "#1" and shifts the decimal
+% sign "#2" digits to the right ("#2" may be negative or zero, too,
+% so there is no need for a "\fp@shiftleft").
+% The digits are read into "\fp@shiftnum", inserting the decimal
+% sign at the new place. Then, "\fp@shiftnum" is read
+% into "#1" via "\fp@regread".
+% \begin{macrocode}
+\def\fp@shiftright#1#2{%
+% \end{macrocode}
+% First, save the value of "#2" in "\fp@shiftamount".
+% This makes it possible to say, e.\,g.,
+% "\fpshiftright{exmpl}{\fp@tempcount}" without side-effects.
+% \begin{macrocode}
+ \edef\fp@shiftamount{\number#2}%
+% \end{macrocode}
+% Now, determine the start position.
+% The maximum of the upper limit and "-\fp@shiftamount" is used
+% in order to allow the decimal sign of, e.\,g.,
+% $1.1$ to be shifted $-5$ digits to the right.
+% \begin{macrocode}
+ \fp@settomax{\fp@tempcount}{\ar@getul{#1}}{-\fp@shiftamount}%
+% \end{macrocode}
+% Similarly, determine the stop position.
+% \begin{macrocode}
+ \fp@settomin{\fp@tempcountii}{\ar@getll{#1}}{-\fp@shiftamount}%
+% \end{macrocode}
+% Now, initialize "\fp@shiftnum" and begin the "\iloop".
+% Read digit after digit using "\fp@getdigit", therefore
+% getting a `"0"' outside the boundaries. Insert the
+% decimal sign at the new position given by
+% "-\fp@shiftamount".
+% \begin{macrocode}
+ \def\fp@shiftnum{}%
+ \iloop
+ \fp@getdigit{#1}{\fp@tempcount}%
+ \edef\fp@shiftnum{\fp@shiftnum\fp@param}%
+ \ifnum\fp@tempcount=-\fp@shiftamount\relax
+ \edef\fp@shiftnum{\fp@shiftnum\fp@decimalsign}%
+ \fi
+ \ifnum\fp@tempcount>\fp@tempcountii
+ \advance\fp@tempcount by -1
+ \irepeat
+% \end{macrocode}
+% Finally, assign the value to "#1".
+% \begin{macrocode}
+ \fp@regread{#1}{\fp@shiftnum}%
+}% end \fp@shiftright
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@firstnonzero}
+% The macro "\fp@firstnonzero" returns the first non-zero
+% digit of register "#1" via "\fp@setparam".
+% \begin{macrocode}
+\def\fp@firstnonzero#1{%
+% \end{macrocode}
+% If "#1" is zero, the "\iloop" below will run infinitely,
+% so this case has to be checked separately by comparing
+% "#1" to the internal register "@0" which holds zero.
+% `"0"' is returned if "#1" is zero.
+% \begin{macrocode}
+ \fp@regcomp{#1}{@0}%
+ \if\fp@param=%
+ \fp@setparam0%
+% \end{macrocode}
+% Otherwise, each digit is checked, starting at the upper limit,
+% and the position of first digit differing from zero is
+% returned in "\fp@param".
+% \begin{macrocode}
+ \else
+ \fp@tempcount=\ar@getul{#1}\relax%
+ \fp@tempcountii=\ar@getll{#1}\relax%
+ \iloop
+ \ifnum\ar@get{#1}{\fp@tempcount}>0
+ \fp@setparam{\number\fp@tempcount}%
+ \fp@tempcount=\fp@tempcountii
+ \fi
+ \ifnum\fp@tempcount>\fp@tempcountii
+ \advance\fp@tempcount by -1
+ \irepeat
+ \fi
+}% end \fp@firstnonzero
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{Comparison of registers}
+%
+% \begin{macro}{\fp@regcomp}
+% The macro "\fp@regcomp" compares the two specified registers.
+% It saves the result of the comparison (either `"<"', `">"',
+% or `"="') in "\fp@param". First, it checks whether the
+% two numbers have the same sign or not. If not,
+% the comparison is very easy, otherwise "\fp@regcomp@main"
+% is called to do the work.
+% \begin{macrocode}
+\def\fp@regcomp#1#2{%
+ {%
+ \if\ar@getsig{#1}-%
+ \if\ar@getsig{#2}-%
+ \fp@regcomp@main{#1}{#2}<>%
+ \else
+ \fp@setparam{<}%
+ \fi
+ \else
+ \if\ar@getsig{#2}-%
+ \fp@setparam{>}%
+ \else
+ \fp@regcomp@main{#1}{#2}><%
+ \fi
+ \fi
+ }%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regcomp@main}
+% The macro "\fp@regcomp@main" takes four parameters:
+% The two registers to be compared, and two tokens
+% to be used as result. This is needed because
+% if, e.\,g., two numbers have the same sign and
+% are equal for all positions greater than
+% $10^2$, and number~1 has `"9"' at position $10^2$ and number~2
+% has `"5"', then the result must be `"<"' if $n_1<n_2<0$,
+% but `">"' if $n_1>n_2>0$.
+%
+% First, the range of digits to compare is determined.
+% Then, each pair of digits is compared. If different,
+% "\fp@param" is set and the loop is terminated by
+% setting the loop counter to the stop position.
+% If the digits are equal and there are no more digits
+% to compare, the numbers are equal.
+% \begin{macrocode}
+\def\fp@regcomp@main#1#2#3#4{%
+ \fp@settomax{\fp@loopcount}{\ar@getul{#1}}{\ar@getul{#2}}%
+ \fp@settomin{\fp@loopcountii}{\ar@getll{#1}}{\ar@getll{#2}}%
+ \loop
+ \fp@getdigit{#1}{\fp@loopcount}%
+ \fp@tempcount=\fp@param\relax
+ \fp@getdigit{#2}{\fp@loopcount}%
+ \fp@tempcountii=\fp@param\relax
+ \ifnum\fp@tempcount<\fp@tempcountii
+ \fp@setparam{#4}%
+ \fp@loopcount=\fp@loopcountii
+ \else
+ \ifnum\fp@tempcount>\fp@tempcountii
+ \fp@setparam{#3}%
+ \fp@loopcount=\fp@loopcountii
+ \else
+ \ifnum\fp@loopcount=\fp@loopcountii
+ \fp@setparam{=}%
+ \fi
+ \fi
+ \fi
+ \ifnum\fp@loopcount>\fp@loopcountii
+ \advance\fp@loopcount by -1
+ \repeat
+}% end \fp@regcomp@main
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{Unary Operations}
+%
+% \begin{macro}{\fp@regabs}
+% The macro "\fp@regabs" turns register "#1" into its amount.
+% This is rather trivial: just set the sign to `"+"'.
+% \begin{macrocode}
+\def\fp@regabs#1{%
+ \ar@setsig{#1}{+}%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regneg}
+% The macro "\fp@regneg" negates register "#1". It checks
+% whether the actual sign is `"+"' or `"-"' and sets it
+% to its opposite, except that nothing is done if the
+% number is zero.
+% \begin{macrocode}
+\def\fp@regneg#1{%
+ \if\ar@getsig{#1}-%
+ \ar@setsig{#1}{+}%
+ \else
+ \fp@regcomp{#1}{@0}%
+ \if\fp@param=%
+ \else
+ \ar@setsig{#1}{-}%
+ \fi
+ \fi
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@reground}
+% The macro "\fp@reground" rounds register "#1" with a target accuracy
+% given as "#2" (as a power of ten).
+% \begin{macrocode}
+\def\fp@reground#1#2{%
+% \end{macrocode}
+% Fist, if the desired accuracy is smaller than the lower limit of
+% "#1", nothing has to be done.
+% \begin{macrocode}
+ \ifnum#2>\ar@getll{#1}\relax
+ {%
+% \end{macrocode}
+% Otherwise, we check the following digit. If it is greater than four,
+% we have to advance digit "#2" before truncating the number. This
+% means adding $10^{\mathtt{\#2}}$ for positive "#1" and subtracting
+% $10^{\mathtt{\#2}}$ for negative "#1".
+% \begin{macrocode}
+ \fp@tempcount=#2\relax
+ \advance\fp@tempcount by -1
+ \fp@getdigit{#1}{\fp@tempcount}%
+ \ifnum\fp@param>4
+ \fp@regcopy{fp@temp}{@1}%
+ \fp@shiftright{fp@temp}{#2}%
+ \fp@regcomp{#1}{@0}%
+ \if\fp@param<%
+ \fp@regneg{fp@temp}%
+ \fi
+ \fp@regadd{#1}{fp@temp}%
+ \fi
+% \end{macrocode}
+% Afterwards, we set the lower limit to "#2". If "#2" is greater than
+% zero,
+% we set the lower limit and all digits~$n$ with $0\leq n<\texttt{\#2}$
+% to zero. Then we read the number using
+% "\fp@regget", make it globally available and read it into "#1"
+% after finishing the local group.
+% \begin{macrocode}
+ \ifnum#2>0
+ \fp@loopcount=#2\relax
+ \iloop
+ \ifnum\fp@loopcount>0
+ \advance\fp@loopcount by -1
+ \ar@set{#1}{\fp@loopcount}{0}%
+ \irepeat
+ \ar@setll{#1}{0}%
+ \else
+ \ar@setll{#1}{#2}%
+ \fi
+ \fp@regget{#1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+ \fp@regread{#1}{\fp@param}%
+ \fi
+} % end \fp@reground
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{Binary operations}
+%
+% \begin{macro}{\fp@regcopy}
+% The macro "\fp@regcopy" assigns the value of register
+% "#2" to register "#1". This is done simply by reading
+% register "#2" into a scratch control sequence
+% and then reading this into register "#1".
+% \begin{macrocode}
+\def\fp@regcopy#1#2{%
+ \fp@regget{#2}{\fp@scratch}%
+ \fp@regread{#1}{\fp@scratch}%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regadd}
+% The macro "\fp@regadd" adds the value of register "#2" to
+% register "#1".
+% \begin{macrocode}
+\def\fp@regadd#1#2{%
+ {%
+% \end{macrocode}
+% First, check whether the two numbers have the same sign.
+% \begin{macrocode}
+ \if\ar@getsig{#1}\ar@getsig{#2}%
+% \end{macrocode}
+% If the two numbers have the same sign, the addition can be
+% done by adding each two corresponding digits and a possible
+% carryover, starting at $\min(\mbox{ll1},\mbox{ll2})$,
+% ending at $\max(\mbox{ul1},\mbox{ul2})$. Those values
+% are saved in "\fp@add@start" and "\fp@add@finish".
+% \begin{macrocode}
+ \fp@settomin{\fp@loopcount}{\ar@getll{#1}}{\ar@getll{#2}}%
+ \edef\fp@add@start{\number\fp@loopcount}%
+ \fp@settomax{\fp@tempcount}{\ar@getul{#1}}{\ar@getul{#2}}%
+ \edef\fp@add@finish{\number\fp@tempcount}%
+% \end{macrocode}
+% Initialize "\fp@carryover".
+% \begin{macrocode}
+ \fp@carryover=0
+% \end{macrocode}
+% Now start the main loop. Each digit is computed
+% in counter "\fp@result" as the
+% sum of the corresponding digits plus the carryover from
+% the previous pair. If the sum is greater than 10,
+% it is reduced by 10 and "\fp@carryover" is set to 1.
+% (No sum greater than 19 is possible.)
+% \begin{macrocode}
+ \loop
+ \fp@getdigit{#1}{\fp@loopcount}%
+ \fp@result=\fp@param\relax
+ \fp@getdigit{#2}{\fp@loopcount}%
+ \advance\fp@result by \fp@param\relax
+ \advance\fp@result by \fp@carryover
+ \ifnum\fp@result>9
+ \fp@carryover=1
+ \advance\fp@result by -10
+ \else
+ \fp@carryover=0
+ \fi
+ \ar@set{#1}{\fp@loopcount}{\fp@result}%
+ \ifnum\fp@loopcount<\fp@add@finish\relax
+ \advance\fp@loopcount by 1
+ \repeat
+% \end{macrocode}
+% If the last pair had a carryover, take it into account.
+% Then adjust the lower and upper limit of the result.
+% \begin{macrocode}
+ \ifnum\fp@carryover>0
+ \advance\fp@loopcount by 1
+ \ar@set{#1}{\fp@loopcount}{\fp@carryover}%
+ \fi
+ \ar@setll{#1}{\fp@add@start}%
+ \ar@setul{#1}{\fp@loopcount}%
+% \end{macrocode}
+% Finally, save the result in "\fp@param" to make it survive
+% the endgroup character after "\fi".
+% \begin{macrocode}
+ \fp@regget{#1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+% \end{macrocode}
+% That's it. But if the two numbers have different signs,
+% the situation is a bit more complicated. In this case,
+% the amounts of "#1" and "#2" are saved in two temporary registers
+% ("fp@tempi" and "fp@tempii"). The smaller one is subtracted
+% from the larger one, and the sign of the result is
+% adjusted according to the sign of "#1" and "#2".
+% This is done by the subroutine "\fp@regadd@sub", which also takes
+% care of saving the result in "\fp@param".
+% \begin{macrocode}
+ \else % \if sign
+ \fp@regcopy{fp@tempi}{#1}%
+ \fp@regcopy{fp@tempii}{#2}%
+ \fp@regabs{fp@tempi}%
+ \fp@regabs{fp@tempii}%
+ \fp@regcomp{fp@tempi}{fp@tempii}%
+ \if\fp@param>%
+ \fp@regadd@sub{#1}{fp@tempi}{fp@tempii}%
+ \else
+ \fp@regadd@sub{#2}{fp@tempii}{fp@tempi}%
+ \fi
+ \fi % end \if sign
+% \end{macrocode}
+% Now end the group to keep everything local, and read
+% the result in "\fp@param" into register "#1".
+% \begin{macrocode}
+ }%
+ \fp@regread{#1}{\fp@param}%
+}% end \fp@regadd
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regadd@sub}
+% The macro "\fp@regadd@sub" is a subroutine of
+% "\fp@regadd".
+% \begin{macrocode}
+\def\fp@regadd@sub#1#2#3{%
+% \end{macrocode}
+% First, subtract "#3" from "#2". The restriction $\mbox{\tt\#2}>
+% \mbox{\tt\#3}$ is ensured by the calling "\fp@regadd".
+% \begin{macrocode}
+ \fp@regsub@restricted{#2}{#3}%
+% \end{macrocode}
+% "#1" is the original number of which "#2" is the amount.
+% So, if it is negative, the final result also has to be negative.
+% This is done by the following four lines.
+% \begin{macrocode}
+ \fp@regcomp{#1}{@0}%
+ \if\fp@param<%
+ \fp@regneg{#2}%
+ \fi
+% \end{macrocode}
+% Now, the final result is stored in "#2". Make it
+% globally available using "\fp@setparam".
+% \begin{macrocode}
+ \fp@regget{#2}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+}% end \fp@regadd@sub
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regsub@restricted}
+% The macro "\fp@regsub@restricted" does the actual
+% work of subtracting "#2" from "#1", provided that
+% "#1" is greater than "#2". It is called by
+% "\fp@regadd@sub" and by "\fp@regdiv".
+% \begin{macrocode}
+\def\fp@regsub@restricted#1#2{%
+% \end{macrocode}
+% First, we start a group to keep counters etc.\ local.
+% Then, we determine the start and end position for the
+% loop, as above for "\fp@regadd".
+% \begin{macrocode}
+ {%
+ \fp@settomin{\fp@loopcount}{\ar@getll{#1}}{\ar@getll{#2}}%
+ \edef\fp@lowermin{\number\fp@loopcount}%
+ \fp@settomax{\fp@tempcount}{\ar@getul{#1}}{\ar@getul{#2}}%
+ \edef\fp@uppermin{\number\fp@tempcount}%
+% \end{macrocode}
+% Now subtract the corresponding digits, taking into
+% account a possible carryover.
+% \begin{macrocode}
+ \fp@carryover=0
+ \loop
+ \fp@getdigit{#1}{\fp@loopcount}%
+ \fp@result=\fp@param\relax
+ \fp@getdigit{#2}{\fp@loopcount}%
+ \advance\fp@result by -\fp@param\relax
+ \advance\fp@result by \fp@carryover
+% \end{macrocode}
+% If the result is $<0$, add 10 to the result
+% and set the carryover to $-1$.
+% \begin{macrocode}
+ \ifnum\fp@result<0
+ \fp@carryover=-1
+ \advance\fp@result by 10
+ \else
+ \fp@carryover=0
+ \fi
+% \end{macrocode}
+% Now save the result and repeat if there are further
+% digits.
+% \begin{macrocode}
+ \ar@set{#1}{\fp@loopcount}{\fp@result}%
+ \ifnum\fp@loopcount<\fp@uppermin\relax
+ \advance\fp@loopcount by 1
+ \repeat
+% \end{macrocode}
+% If there is a carryover for the last two digits,
+% take it into account.
+% \begin{macrocode}
+ \ifnum\fp@carryover=-1
+ \advance\fp@loopcount by 1
+ \ar@set{#1}{\fp@loopcount}{-1}%
+ \fi
+% \end{macrocode}
+% Now adjust the upper and lower limit of the result,
+% and save it in "\fp@param".
+% \begin{macrocode}
+ \ar@setll{#1}{\fp@lowermin}%
+ \ar@setul{#1}{\fp@loopcount}%
+ \fp@regget{#1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+% \end{macrocode}
+% Finally, assign the result to "#1" inside the current group.
+% \begin{macrocode}
+ \fp@regread{#1}{\fp@param}%
+}% end \fp@regsub@restricted
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\fp@regsub}
+% The macro "\fp@regsub" subtracts register "#2" from
+% register "#1". This is done by negating "#2" inside
+% a group and calling "\fp@regadd".
+% \begin{macrocode}
+\def\fp@regsub#1#2{%
+ {%
+ \fp@regneg{#2}%
+ \fp@regadd{#1}{#2}%
+ \fp@regget{#1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+ \fp@regread{#1}{\fp@param}%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regmul}
+% The macro "\fp@regmul" multiplies the value
+% of register "#1" with the value of register "#2".
+% \begin{macrocode}
+\def\fp@regmul#1#2{%
+ {%
+% \end{macrocode}
+% First, we initialize the temporary register "fp@temp1"
+% as zero; it will be used to hold the results so far.
+% Then we start the outer "\xloop" which will
+% run through all digits of "#2", beginning at the lower limit.
+% \begin{macrocode}
+ \fp@regcopy{fp@temp1}{@0}%
+ \fp@loopcountii=\ar@getll{#2}\relax
+ \xloop
+% \end{macrocode}
+% Then we initialize the inner loop, which multplies the
+% current digit of "#2" with "#1" digit after digit,
+% saving the result in "\fp@newnum".
+% \begin{macrocode}
+ \fp@loopcount=\ar@getll{#1}\relax
+ \fp@carryover=0
+ \def\fp@newnum{}%
+ \loop
+ \fp@result=\ar@get{#2}{\fp@loopcountii}\relax
+ \multiply\fp@result by \ar@get{#1}{\fp@loopcount}\relax
+ \advance\fp@result by \fp@carryover
+% \end{macrocode}
+% If the result is greater than~9, we set the carryover
+% as $(\mbox{\tt\bslash fp@result}\bmod 10)$ and
+% the result to $(\mbox{\tt\bslash fp@result}\mathop{\mbox{div}}10)$.
+% \begin{macrocode}
+ \ifnum\fp@result>9
+ \fp@carryover=\fp@result
+ \divide\fp@carryover by 10
+ \fp@tempcount=\fp@carryover
+ \multiply\fp@tempcount by 10
+ \advance\fp@result by -\fp@tempcount
+ \else
+ \fp@carryover=0
+ \fi
+ \edef\fp@newnum{\number\fp@result\fp@newnum}%
+ \ifnum\fp@loopcount<\ar@getul{#1}\relax
+ \advance\fp@loopcount by 1
+ \repeat
+ \edef\fp@newnum{\number\fp@carryover\fp@newnum}%
+ \fp@regread{fp@temp2}{\fp@newnum}%
+% \end{macrocode}
+% Now "fp@temp2" holds the partial result for this digit of
+% "#2". We have to multiply it with $10^n$, if $n$ is the
+% number of digits of "#2" completed so far.
+% This is done by calling "\fp@shiftright" with $-n$ as
+% second argument.
+% \begin{macrocode}
+ \fp@tempcount=\fp@loopcountii
+ \advance\fp@tempcount by -\number\ar@getll{#2}\relax
+ \fp@shiftright{fp@temp2}{\fp@tempcount}%
+% \end{macrocode}
+% Now we add "fp@temp2" to the results so far and iterate
+% if there are further digits.
+% \begin{macrocode}
+ \fp@regadd{fp@temp1}{fp@temp2}%
+ \ifnum\fp@loopcountii<\ar@getul{#2}\relax
+ \advance\fp@loopcountii by 1
+ \xrepeat
+% \end{macrocode}
+% The final result of the multiplication will have
+% as much afterpoint digits as "#1" and "#2" have together.
+% Adjust this.
+% \begin{macrocode}
+ \fp@tempcount=\ar@getll{#1}\relax
+ \advance\fp@tempcount by \ar@getll{#2}\relax
+ \fp@shiftright{fp@temp1}{\fp@tempcount}%
+% \end{macrocode}
+% If "#1" and "#2" have different signs, the result is negative,
+% otherwise positive.
+% \begin{macrocode}
+ \if\ar@getsig{#1}\ar@getsig{#2}%
+ \else
+ \fp@regneg{fp@temp1}%
+ \fi
+% \end{macrocode}
+% Finally, save the result via "\fp@setparam" and assign it
+% to "#1" after the end of the group.
+% \begin{macrocode}
+ \fp@regget{fp@temp1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+ \fp@regread{#1}{\fp@param}%
+} % end \fp@regmul
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@regdiv}
+% The macro "\fp@regdiv" divides register "#1" by register "#2".
+% It works by repeated subtraction.
+% \begin{macrocode}
+\def\fp@regdiv#1#2{%
+ {%
+% \end{macrocode}
+% The amount of the two numbers is read into the two
+% temporary registers "fp@temp1" and "fp@temp2".
+% \begin{macrocode}
+ \fp@regcopy{fp@temp1}{#1}%
+ \fp@regcopy{fp@temp2}{#2}%
+ \fp@regabs{fp@temp1}%
+ \fp@regabs{fp@temp2}%
+% \end{macrocode}
+% First, we determine the initial shift for "fp@temp2".
+% This is the shift which will make "fp@temp2" have as many
+% digits before the decimal sign as "fp@temp1".
+% "\fp@firstnonzero" is used, because the upper limit
+% need not be the first non-zero digit.
+% \begin{macrocode}
+ \fp@firstnonzero{fp@temp1}%
+ \fp@loopcountii=\fp@param\relax
+ \fp@firstnonzero{fp@temp2}%
+ \advance\fp@loopcountii by -\fp@param\relax
+ \fp@shiftright{fp@temp2}{\fp@loopcountii}%
+% \end{macrocode}
+% Now we initialize "\fp@divnum" which will hold the result.
+% If "\fp@loopcountii" is smaller than zero, i.\,e., if
+% the first digit of the result that will be computed
+% is after the decimal sign, we have to
+% initialize "\fp@divnum" with the decimal sign as well
+% as with an appropriate number of zeros following it.
+% \begin{macrocode}
+ \def\fp@divnum{}%
+ \ifnum\fp@loopcountii<0
+ \fp@tempcount=\fp@loopcountii
+ \loop
+ \ifnum\fp@tempcount<-1
+ \edef\fp@divnum{0\fp@divnum}%
+ \advance\fp@tempcount by 1
+ \repeat
+ \edef\fp@divnum{\fp@decimalsign\fp@divnum}%
+ \fi
+% \end{macrocode}
+% The main loop follows. Each digit is determined by
+% subtracting the divisor $n$ times from the dividend until
+% the result is smaller than the divisor.
+% This is done only if "\fp@loopcountii" plus one
+% is greater than "-\fp@accuracy".
+% If the divisor is equal to the dividend, the division is complete
+% and the "\xloop" is terminated. Therefore, "\fp@accuracy" is locally
+% set to `"0"', so that possibly following zeros are computed
+% until the digit representing $10^0$.
+% At the end, the divisor is divided
+% by 10, and the next digit follows.
+% \begin{macrocode}
+ \xloop
+ \fp@tempcount=\fp@loopcountii
+ \advance\fp@tempcount by 1
+ \ifnum\fp@tempcount>-\fp@accuracy\relax
+ \fp@loopcount=0
+ \loop
+ \fp@regcomp{fp@temp2}{fp@temp1}%
+ \if\fp@param=%
+ \def\fp@accuracy{0}%
+ \gdef\fp@param{<}%
+ \fi
+ \if\fp@param<%
+ \fp@regsub@restricted{fp@temp1}{fp@temp2}%
+ \advance\fp@loopcount by 1
+ \repeat
+ \ifnum\fp@loopcountii=-1
+ \edef\fp@divnum{\fp@divnum\fp@decimalsign}%
+ \fi
+ \edef\fp@divnum{\fp@divnum\number\fp@loopcount}%
+ \fp@shiftright{fp@temp2}{-1}%
+ \advance\fp@loopcountii by -1
+ \xrepeat
+% \end{macrocode}
+% The sign of the result is set according to the
+% signs of "#1" and "#2".
+% \begin{macrocode}
+ \if\ar@getsig{#1}\ar@getsig{#2}%
+ \fp@regread{fp@temp1}{\fp@divnum}%
+ \else
+ \fp@regread{fp@temp1}{-\fp@divnum}%
+ \fi
+% \end{macrocode}
+% Now save the result in "\fp@param". After endgroup,
+% read it into "#1".
+% \begin{macrocode}
+ \fp@regget{fp@temp1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+ \fp@regread{#1}{\fp@param}%
+}
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \subsection{User interface}
+%
+% \begin{macro}{\fp@call@bin}
+% The macro "\fp@call@bin" is a common calling command
+% used by the user commands for binary operations. It reads
+% the values given in "#2" and "#3" into temporary registers,
+% performs the operation specified in "#4",
+% and finally assigns the result to the command sequence
+% given as "#1".
+% \begin{macrocode}
+\def\fp@call@bin#1#2#3#4{%
+ {%
+ \fp@regread{fp@user1}{#2}%
+ \fp@regread{fp@user2}{#3}%
+ \csname fp@reg#4\endcsname{fp@user1}{fp@user2}%
+ \fp@regget{fp@user1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+ \edef#1{\fp@param}%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpAdd}
+% As described above, the main work is done by "\fp@call@bin",
+% so this macro reduces to passing the parameters and
+% specifying the desired operation.
+% \begin{macrocode}
+\def\fpAdd#1#2#3{\fp@call@bin{#1}{#2}{#3}{add}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpSub}
+% Just like "\fpAdd".
+% \begin{macrocode}
+\def\fpSub#1#2#3{\fp@call@bin{#1}{#2}{#3}{sub}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpMul}
+% Just like "\fpAdd".
+% \begin{macrocode}
+\def\fpMul#1#2#3{\fp@call@bin{#1}{#2}{#3}{mul}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpDiv}
+% Just like "\fpAdd".
+% \begin{macrocode}
+\def\fpDiv#1#2#3{\fp@call@bin{#1}{#2}{#3}{div}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fp@call@un}
+% Similarly, the unary operations "\fpAbs" and "\fpNeg"
+% refer to the common macro "\fp@call@un".
+% \begin{macrocode}
+\def\fp@call@un#1#2#3{%
+ {%
+ \fp@regread{fp@user1}{#2}%
+ \csname fp@reg#3\endcsname{fp@user1}%
+ \fp@regget{fp@user1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+ \edef#1{\fp@param}%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpAbs}
+% Pass the information and specify the action.
+% \begin{macrocode}
+\def\fpAbs#1#2{\fp@call@un{#1}{#2}{abs}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpNeg}
+% Just like "\fpAbs".
+% \begin{macrocode}
+\def\fpNeg#1#2{\fp@call@un{#1}{#2}{neg}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRound}
+% This macro does not fit into the scheme, so it has to be defined
+% seperately.
+% \begin{macrocode}
+\def\fpRound#1#2#3{%
+ {%
+ \fpRegSet{fp@user1}{#2}%
+ \fpRegRound{fp@user1}{#3}%
+ \fpRegGet{fp@user1}{\fp@scratch}%
+ \fp@setparam\fp@scratch
+ }%
+ \edef#1{\fp@param}%
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegSet}
+% The register operations "\fpRegSet", "\fpRegGet",
+% "\fpRegAdd", "\fpRegSub", "\fpRegMul", "\fpRegDiv",
+% "\fpRegAbs", "\fpRegNeg", "\fpRegCopy" and "\fpRegRound"
+% have the same syntax as the internal variants, so their
+% definitions reduce to passing the parameters. The register name
+% is always given as the first parameter.
+% \begin{macrocode}
+\def\fpRegSet#1#2{\fp@regread{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegGet}
+% As described above.
+% \begin{macrocode}
+\def\fpRegGet#1#2{\fp@regget{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegAdd}
+% As described above.
+% \begin{macrocode}
+\def\fpRegAdd#1#2{\fp@regadd{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegSub}
+% As described above.
+% \begin{macrocode}
+\def\fpRegSub#1#2{\fp@regsub{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegMul}
+% As described above.
+% \begin{macrocode}
+\def\fpRegMul#1#2{\fp@regmul{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegDiv}
+% As described above.
+% \begin{macrocode}
+\def\fpRegDiv#1#2{\fp@regdiv{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegAbs}
+% As described above.
+% \begin{macrocode}
+\def\fpRegAbs#1{\fp@regabs{#1}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegNeg}
+% As described above.
+% \begin{macrocode}
+\def\fpRegNeg#1{\fp@regneg{#1}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegCopy}
+% As described above.
+% \begin{macrocode}
+\def\fpRegCopy#1#2{\fp@regcopy{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpRegRound}
+% As described above.
+% \begin{macrocode}
+\def\fpRegRound#1#2{\fp@reground{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\fpAccuracy}
+% \begin{macro}{\fp@accuracy}
+% The user command "\fpAccuracy" "\edef"s the internal
+% parameter "\fp@accuracy", which stores the maximum
+% number of digits after the decimal sign, i.\,e.,
+% the minimum for the lower limit of fp numbers.
+% At the moment, "\fp@accuracy" does not affect the accuracy
+% of any operation except "\fp@regdiv". In fact, it was
+% introduced when the definition of a termination condition
+% for the loop was not possible without an externally given limit.
+% "\fp@accuracy" is initialized to `"5"' digits after
+% the decimal sign.
+% \begin{macrocode}
+\def\fpAccuracy#1{\edef\fp@accuracy{#1}}
+\fpAccuracy{5}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\fpDecimalSign}
+% \begin{macro}{\fp@decimalsign}
+% The command "\fpDecimalSign" allows the user to select any character
+% for use as the decimal sign. The character is stored in
+% "\fp@decimalsign". Normally, the decimal sign will be either `"."' or
+% `","'; a comma is the default. (Take a look at ISO~31-0, part 3.3.2,
+% if you dislike this.)
+% \begin{macrocode}
+\def\fpDecimalSign#1{\edef\fp@decimalsign{#1}}
+\fpDecimalSign{,}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\fpThousandsep}
+% \begin{macro}{\fp@thousandsep}
+% Those macros are used to define and store a thousand seperator
+% used by "\fp@regoutput". By default, there is none.
+% \begin{macrocode}
+\def\fpThousandSep#1{\edef\fp@thousandsep{#1}}
+\fpThousandSep{}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsection{Constants}
+%
+% \begin{macro}{@0}
+% \begin{macro}{@1}
+% The number zero ist stored
+% in register "@0", the number one in register "@1".
+% \begin{macrocode}
+\fp@regread{@0}{0}
+\fp@regread{@1}{1}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+%
+% \subsection{Finish}
+% Finally, restore the catcode of `"@"' and "\endinput".
+% \begin{macrocode}
+\catcode`\@=\atcatcode\relax
+\endinput
+%</fltmain>
+% \end{macrocode}
+% \Finale
+% \PrintIndex
+% \PrintChanges
diff --git a/Master/texmf-dist/source/latex/fltpoint/fltpoint.ins b/Master/texmf-dist/source/latex/fltpoint/fltpoint.ins
new file mode 100644
index 00000000000..f8e4203913f
--- /dev/null
+++ b/Master/texmf-dist/source/latex/fltpoint/fltpoint.ins
@@ -0,0 +1,8 @@
+\input docstrip
+\keepsilent
+\usedir{tex/latex/fltpoint}
+\generate{\file{deccomma.sty}{\from{fltpoint.dtx}{deccomma}}}
+\generate{\file{fltpoint.sty}{\from{fltpoint.dtx}{package}}}
+\usedir{tex/generic/fltpoint}
+\generate{\file{fltpoint.tex}{\from{fltpoint.dtx}{fltmain}}}
+\endbatchfile