summaryrefslogtreecommitdiff
path: root/Master
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2010-02-14 00:13:57 +0000
committerKarl Berry <karl@freefriends.org>2010-02-14 00:13:57 +0000
commit47988dce4e1e4623f5badc2237d4be68e95a2488 (patch)
tree1f1072305de7e8a961c10cba6abe192641bbb015 /Master
parent08fc1629b2ad79d9d2b0526b720745e58535b65f (diff)
pst-3d 1.10 (13feb10)
git-svn-id: svn://tug.org/texlive/trunk@17000 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master')
-rw-r--r--Master/texmf-dist/doc/generic/pst-3d/Changes8
-rw-r--r--Master/texmf-dist/doc/generic/pst-3d/README31
-rw-r--r--Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib118
-rw-r--r--Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdfbin0 -> 139593 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex783
-rw-r--r--Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdfbin241664 -> 0 bytes
-rw-r--r--Master/texmf-dist/dvips/pst-3d/pst-3d.pro87
-rw-r--r--Master/texmf-dist/source/generic/pst-3d/Makefile69
-rw-r--r--Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx1608
-rw-r--r--Master/texmf-dist/source/generic/pst-3d/pst-3d.ins38
-rw-r--r--Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex186
-rw-r--r--Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty49
12 files changed, 1140 insertions, 1837 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-3d/Changes b/Master/texmf-dist/doc/generic/pst-3d/Changes
index a2c24e3fd3e..8c550140a25 100644
--- a/Master/texmf-dist/doc/generic/pst-3d/Changes
+++ b/Master/texmf-dist/doc/generic/pst-3d/Changes
@@ -1,5 +1,11 @@
pst-3d.tex --------
+1.10 2010/02/13 - created a pro file
+ - add macro \pstAffinTransform
1.00 2005/09/08 - using the extended pst-xkey instead of the old pst-key package;
- creating a dtx file
- - new LaTeX wrapper file to load pstricks.sty first (hv)
+ - new \LaTeX\ wrapper file to load pstricks.sty first (hv)
0.90 2001/02/16 - First public release. (tvz)
+
+
+pst-3d.pro --------
+0.01 2010/02/13 - first public version \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-3d/README b/Master/texmf-dist/doc/generic/pst-3d/README
index 83be46e3043..5d8fbf534e9 100644
--- a/Master/texmf-dist/doc/generic/pst-3d/README
+++ b/Master/texmf-dist/doc/generic/pst-3d/README
@@ -1,26 +1,9 @@
-%% Package `pst-3d.tex'
-%%
-%% Timothy Van Zandt <tvz@nwu.edu> (tvz)
-%% Herbert Voss <voss@pstricks.de> (hv)
-%%
-%% September 08, 2005
-%%
-%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks
-%% It is a basic macro for all other 3D related packages
-%%
-%%
-%%
+Save the files pst-3d.sty|tex|pro in a directory, which is part of your
+local TeX tree.
+Then do not forget to run texhash to update this tree.
+For more information see the documentation of your LATEX distribution
+on installing packages into your LATEX distribution or the
+TeX Frequently Asked Questions:
+(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages).
-To install the package run
-latex pst-3d.ins
-
-and install the generated packages in a directory, which is in
-the search path of TeX
-
-This version of pst-3d uses the extended version of the keyval
-package. So be sure that you
-- have installed xkeyval with the special pst-xkey.tex
- (CTAN: tex-archive/macros/latex/contrib/xkeyval/)
-- do not load another package after pst-3d, which loads
- the old keyval.sty or pst-key.tex
diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib
new file mode 100644
index 00000000000..721cd671185
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.bib
@@ -0,0 +1,118 @@
+@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} }
+
+@Book{PostScript,
+ Author = {Kollock, Nikolai G.},
+ Title = {PostScript richtig eingesetzt: vom Konzept zum
+ praktischen Einsatz},
+ Publisher = {IWT},
+ Address = {Vaterstetten},
+ year = 1989,
+}
+
+@Manual{pstricks,
+ Title = {PSTricks - {\PS} macros for Generic TeX},
+ Author = {Timothy Van Zandt},
+ Organization = {},
+ Address = {\url{http://www.tug.org/application/PSTricks}},
+ Note = {},
+ year = 1993,
+}
+
+
+@Manual{pdftricks,
+ Title = {PSTricks Support for pdf},
+ Author = {Herbert Voss},
+ Organization = {},
+ Address = {\url{http://PSTricks.de/pdf/pdfoutput.phtml}},
+ Note = {},
+ year = 2002,
+}
+
+@Manual{miwi,
+ Title = {References for \TeX{} and Friends},
+ Author = {Michael Wiedmann and Peter Karp},
+ Organization = {},
+ Address = {\url{http://www.miwie.org/tex-refs/}},
+ Note = {},
+ year = 2003,
+}
+
+
+@Manual{vue3d:2002,
+ Title = {Vue en 3D},
+ Author = {Manuel Luque},
+ Organization = {},
+ Address = {\url{http://members.aol.com/Mluque5130/vue3d16112002.zip}},
+ Note = {},
+ year = 2002,
+}
+
+@Article{dtk02.2:jackson.voss:plot-funktionen,
+ author = {Laura E. Jackson and Herbert Vo{\ss}},
+ title = {Die {P}lot-{F}unktionen von {\texttt{pst-plot}}},
+ journal = dtk,
+ year = 2002,
+ volume = {2/02},
+ altvolume = 2,
+ altnumber = 14,
+ month = jun,
+ pages = {27--34},
+ annote = bretter,
+ keywords = {},
+ abstract = { Im letzten Heft wurden die mathematischen Funktionen von
+ \PS~im Zusammenhang mit dem {\LaTeX}-Paket
+ \texttt{pst-plot} zum Zeichnen von Funktionen beschrieben
+ und durch Beispiele erl{\"a}utert. In diesem Teil werden
+ die bislang nur erw{\"a}hnten Plot-Funktionen f{\"u}r
+ externe Daten behandelt. }
+}
+
+@Article{dtk02.1:voss:mathematischen,
+ author = {Herbert Vo{\ss}},
+ title = {Die mathematischen {F}unktionen von {P}ostscript},
+ journal = dtk,
+ year = 2002,
+ volume = {1/02},
+ altvolume = 1,
+ altnumber = 14,
+ month = mar,
+ pages = {40-47},
+ annote = bretter,
+ keywords = {},
+ abstract = { \PS, faktisch genauso alt wie {\TeX}, ist im
+ Verh{\"a}ltnis dazu allgemein noch weniger bekannt, wenn es
+ darum geht zu beurteilen, was es denn nun im eigentlichen
+ Sinne ist. Au{\ss}erdem wird h{\"a}ufig vergessen, dass
+ sich mit den \PS-Funktionen viele Dinge erledigen lassen,
+ bei denen sonst auf externe Programme zur{\"u}ckgegriffen
+ wird. Dies wird im Folgenden f{\"u}r die mathematischen
+ Funktionen im Zusammenhang mit dem Paket \texttt{pst-plot}
+ gezeigt. }
+}
+
+@Book{companion,
+ author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Denis Roegel and Herbert Vo{\ss}},
+ title = {The {\LaTeX} {G}raphics {C}ompanion},
+ publisher = {{Addison-Wesley Publishing Company}},
+ edition = second,
+ year = {2007},
+ address = {Reading, Mass.}
+}
+
+@Book{PSTricks2,
+ author = {Herbert Vo\ss},
+ title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX},
+ edition = {4.},
+ publisher = {DANTE -- Lehmanns},
+ year = {2007},
+ address = {Heidelberg/Hamburg}
+}
+
+@Book{LaTeXRef,
+ author = {Herbert Vo\ss},
+ title = {\LaTeX\ Referenz},
+ edition = {1.},
+ publisher = {DANTE -- Lehmanns},
+ year = {2007},
+ address = {Heidelberg/Hamburg}
+}
diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdf b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdf
new file mode 100644
index 00000000000..2ac82497d40
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex
new file mode 100644
index 00000000000..0211848e590
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-3d/pst-3d-doc.tex
@@ -0,0 +1,783 @@
+%% $Id: pst-3d-doc.tex 289 2010-02-13 14:35:35Z herbert $
+\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
+ headexclude,footexclude,oneside,dvipsnames,svgnames]{pst-doc}
+\listfiles
+
+\usepackage[utf8]{inputenc}
+\usepackage{pst-3d}
+\SpecialCoor
+\let\pstFV\fileversion
+\let\belowcaptionskip\abovecaptionskip
+%
+\makeatletter
+\renewcommand*\l@subsection{\bprot@dottedtocline{2}{1.5em}{3.6em}}
+\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4.5em}}
+\makeatother
+\def\bgImage{}
+\lstset{explpreset={pos=l,width=-99pt,overhang=0pt,hsep=\columnsep,vsep=\bigskipamount,rframe={}},
+ escapechar=?}
+\def\textat{\char064}%
+\usepackage{shortvrb}
+\MakeShortVerb{|}
+\def\la{<}
+\def\ra{>}
+\def\arc{\mathrm{arc}}
+\def\sign{\mathrm{sign}}
+\def\PiCTeX{\texttt{PiCTeX}}
+\def\endmacro{}
+
+\begin{document}
+\title{\texttt{pst-3d}\\basic three dimension functions \\\small v.\pstFV}
+\docauthor{Herbert Vo\ss}
+\author{Timothy Van Zandt\\Herbert Vo\ss}
+\date{\today}
+
+\maketitle
+
+\begin{abstract}
+This version of \LPack{pst-3d} uses the extended keyval handling
+of \LPack{pst-xkey}.
+
+\vfill
+\noindent
+Thanks to:
+\end{abstract}
+
+\clearpage
+\tableofcontents
+
+\clearpage
+
+\section[PostScript]{PostScript functions \nxLps{SetMatrixThreeD},\nxLps{ProjThreeD}, and \nxLps{SetMatrixEmbed}}
+ \xLps{SetMatrixThreeD}\xLps{ProjThreeD}\xLps{SetMatrixEmbed}
+The \Index{viewpoint} for 3D coordinates is given by three angles: $\alpha$, $\beta$ and
+ $\gamma$. $\alpha$ and $\beta$ determine the direction from which one is
+ looking. $\gamma$ then determines the orientation of the observing.
+
+ When $\alpha$, $\beta$ and $\gamma$ are all zero, the observer is looking
+ from the negative part of the $y$-axis, and sees the $xz$-plane the way in
+ 2D one sees the $xy$ plan. Hence, to convert the 3D coordinates to their 2D
+ project, $\la x, y, z\ra$ map to $\la x, z\ra$.
+
+ When the orientation is different, we rotate the coordinates, and then
+ perform the same projection.
+
+ We move up to latitude $\beta$, over to longitude $\alpha$, and then rotate
+ by $\gamma$. This means that we first rotate around $y$-axis by $\gamma$,
+ then around $x$-axis by $\beta$, and the around $z$-axis by $\alpha$.
+
+ Here are the matrices:
+ \begin{eqnarray*}
+ R_z(\alpha) & = & \left[
+ \begin{array}{ccc}
+ \cos \alpha & -\sin \alpha & 0 \\
+ \sin \alpha & cos \alpha & 0 \\
+ 0 & 0 & 1
+ \end{array} \right] \\
+ R_x(\beta) & = & \left[
+ \begin{array}{ccc}
+ 1 & 0 & 0 \\
+ 0 & \cos \beta & \sin \beta \\
+ 0 & -\sin \beta & \cos \beta
+ \end{array} \right] \\
+ R_y(\gamma) & = & \left[
+ \begin{array}{ccc}
+ \cos \gamma & 0 & -\sin \gamma \\
+ 0 & 1 & 0 \\
+ \sin \gamma & 0 & \cos \gamma
+ \end{array} \right]
+ \end{eqnarray*}
+
+ The rotation of a coordinate is then performed by the matrix $R_z(\alpha)
+ R_x(\beta) R_y(\gamma)$. The first and third columns of the matrix are the
+ basis vectors of the plan upon which the 3D coordinates are project (the old
+ basis vectors were $\la 1, 0, 0\ra$ and $\la 0, 0, 1$\ra; rotating these
+ gives the first and third columns of the matrix).
+
+ These new basis vectors are:
+ \begin{eqnarray*}
+ \tilde{x} & = & \left[
+ \begin{array}{c}
+ \cos\alpha \cos\gamma - \sin\beta \sin\alpha \sin\gamma \\
+ \sin\alpha \cos\gamma + \sin\beta \cos\alpha \sin\gamma \\
+ \cos\beta \sin\gamma
+ \end{array} \right] \\
+ \tilde{z} & = & \left[
+ \begin{array}{c}
+ -\cos\alpha \sin\gamma - \sin\beta \sin\alpha \cos\gamma \\
+ -\sin\alpha \sin\gamma + \sin\beta \cos\alpha \cos\gamma \\
+ \cos\beta \cos\gamma
+ \end{array} \right]
+ \end{eqnarray*}
+
+ Rather than specifying the angles $\alpha$ and $\beta$, the user gives a
+ vector indicating where the viewpoint is. This new viewpoint is the rotation
+ o the old viewpoint. The old viewpoint is $\la 0, -1, 0\ra$, and so the new
+ viewpoint is
+ \[
+ R_z(\alpha) R_x(\beta) \left[ \begin{array}{c} 0\\-1\\0 \end{array} \right]
+ \, = \,
+ \left[ \begin{array}{c}
+ \cos\beta \sin\alpha \\
+ -\cos\beta \cos\alpha \\
+ \sin\beta
+ \end{array} \right]
+ \, = \,
+ \left[ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right]
+ \]
+ Therefore,
+ \begin{eqnarray*}
+ \alpha & = & \arc\tan (v_1 / -v_2) \\
+ \beta & = & \arc\tan (v_3 \sin\alpha / v_1)
+ \end{eqnarray*}
+ Unless $p_1=p_2=0$, in which case $\alpha=0$ and $\beta=\sign(p_3)90$, or
+ $p_1=p_3=0$, in which case $\beta=0$.
+
+
+
+The syntax of \Lps{SetMatrixThreeD} is
+ $v_1$ $v_2$ $v_3$ $\gamma$ SetMatrixThreeD
+
+\Lps{SetMatrixThreeD} first computes
+ \[
+ \begin{array}{ll}
+ a=\sin\alpha & b=\cos\alpha\\
+ c=\sin\beta & d=\cos\beta\\
+ e=\sin\gamma & f=\cos\gamma
+ \end{array}
+ \]
+ and then sets \Lps{Matrix3D} to |[|$\tilde{x}$ $\tilde{z}$|]|.
+
+
+\begin{lstlisting}
+/SetMatrixThreeD {
+ dup sin /e ED cos /f ED
+ /p3 ED /p2 ED /p1 ED
+ p1 0 eq
+ { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def
+ p3 p2 abs
+ }
+ { p2 0 eq
+ { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def
+ p3 p1 abs
+ }
+ { p1 dup mul p2 dup mul add sqrt dup
+ p1 exch div /a ED
+ p2 exch div neg /b ED
+ p3 p1 a div
+ }
+ ifelse
+ }
+ ifelse
+ atan dup sin /c ED cos /d ED
+ /Matrix3D
+ [
+ b f mul c a mul e mul sub
+ a f mul c b mul e mul add
+ d e mul
+ b e mul neg c a mul f mul sub
+ a e mul neg c b mul f mul add
+ d f mul
+ ] def
+} def
+\end{lstlisting}
+
+The syntax of \Lps{ProjThreeD} is $x$ $y$ $z$ \Lps{ProjThreeD} $x'$ $y'$
+where $x'=\la x, y, z\ra \cdot \tilde{x}$ and $y'=\la x, y, z\ra \cdot
+\tilde{z}$.
+
+\begin{lstlisting}
+/ProjThreeD {
+ /z ED /y ED /x ED
+ Matrix3D aload pop
+ z mul exch y mul add exch x mul add
+ 4 1 roll
+ z mul exch y mul add exch x mul add
+ exch
+} def
+\end{lstlisting}
+
+ To embed 2D $\la x, y\ra$ coordinates in 3D, the user specifies the normal
+ vector and an angle. If we decompose this normal vector into an angle, as
+ when converting 3D coordinates to 2D coordinates, and let $\hat\alpha$,
+ $\hat\beta$ and $\hat\gamma$ be the three angles, then when these angles are
+ all zero the coordinate $\la x, y\ra$ gets mapped to $\la x, 0, y\ra$, and
+ otherwise $\la x, y\ra$ gets mapped to
+ \[
+ R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)
+ \left[ \begin{array}{c} x \\ 0 \\ y \end{array} \right]
+ \, = \,
+ \left[ \begin{array}{c}
+ \hat{x}_1 x + \hat{z}_1 y\\
+ \hat{x}_2 x + \hat{z}_2 y\\
+ \hat{x}_3 x + \hat{z}_3 y
+ \end{array} \right]
+ \]
+ where $\hat{x}$ and $\hat{z}$ are the first and third columns of
+ $R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)$.
+
+ Now add on a 3D-origin:
+ \[
+ \left[ \begin{array}{c}
+ \hat{x}_1 x + \hat{z}_1 y + x_0\\
+ \hat{x}_2 x + \hat{z}_2 y + y_0\\
+ \hat{x}_3 x + \hat{z}_3 y + z_0
+ \end{array} \right]
+ \]
+
+ Now when we project back onto 2D coordinates, we get
+ \begin{eqnarray*}
+ x' & = & \tilde{x}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) +
+ \tilde{x}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) +
+ \tilde{x}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\
+ & = &
+ (\tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) x\\
+ + (\tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) y\\
+ + \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0
+ y' & = & \tilde{z}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) +
+ \tilde{z}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) +
+ \tilde{z}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\
+ & = &
+ (\tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) x\\
+ + (\tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) y\\
+ + \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0
+ \end{eqnarray*}
+ Hence, the transformation matrix is:
+ \[
+ \left[ \begin{array}{c}
+ \tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) \\
+ \tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) \\
+ \tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) \\
+ \tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) \\
+ \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0 \\
+ \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0
+ \end{array} \right]
+ \]
+
+The syntax of \Lps{SetMatrixEmbed} is
+ $x_0$ $y_0$ $z_0$ $\hat{v_1}$ $\hat{v_2}$ $\hat{v_3}$ $\hat{\gamma}$
+ $v_1$ $v_2$ $v_3$ $\gamma$ \Lps{SetMatrixEmbed}
+
+\Lps{SetMatrixEmbed} first sets |<x1 x2 x3 y1 y2 y3>| to the basis vectors for
+ the viewpoint projection (the tilde stuff above). Then it sets |Matrix3D| to
+ the basis vectors for the embedded plane. Finally, it sets the
+ transformation matrix to the matrix given above.
+
+\begin{lstlisting}
+/SetMatrixEmbed {
+ SetMatrixThreeD
+ Matrix3D aload pop
+ /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED
+ SetMatrixThreeD
+ [
+ Matrix3D aload pop
+ z3 mul exch z2 mul add exch z1 mul add 4 1 roll
+ z3 mul exch z2 mul add exch z1 mul add
+ Matrix3D aload pop
+ x3 mul exch x2 mul add exch x1 mul add 4 1 roll
+ x3 mul exch x2 mul add exch x1 mul add
+ 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy
+ x3 mul exch x2 mul add exch x1 mul add 4 1 roll
+ z3 mul exch z2 mul add exch z1 mul add
+ ]
+ concat
+} def
+\end{lstlisting}
+
+
+\section{Keywords}
+\subsection{\nxLkeyword{viewpoint}}
+
+\begin{lstlisting}
+\let\pssetzlength\pssetylength
+\define@key[psset]{pst-3d}{viewpoint}{%
+ \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
+ \let\psk@viewpoint\pst@tempg}
+\def\psset@@viewpoint#1 #2 #3 #4\@nil{%
+ \begingroup
+ \pssetxlength\pst@dima{#1}%
+ \pssetylength\pst@dimb{#2}%
+ \pssetzlength\pst@dimc{#3}%
+ \xdef\pst@tempg{%
+ \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}%
+ \endgroup}
+\psset[pst-3d]{viewpoint=1 -1 1}
+\end{lstlisting}
+
+\subsection{\nxLkeyword{viewangle}}
+
+\begin{lstlisting}
+\define@key[psset]{pst-3d}{viewangle}{\pst@getangle{#1}\psk@viewangle}
+\psset[pst-3d]{viewangle=0}
+\end{lstlisting}
+
+\subsection{\nxLkeyword{normal}}
+
+\begin{lstlisting}
+\define@key[psset]{pst-3d}{normal}{%
+ \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
+ \let\psk@normal\pst@tempg}
+\psset[pst-3d]{normal=0 0 1}
+\end{lstlisting}
+
+
+\subsection{\nxLkeyword{embedangle}}
+\begin{lstlisting}
+\define@key[psset]{pst-3d}{embedangle}{\pst@getangle{#1}\psk@embedangle}
+\psset[pst-3d]{embedangle=0}
+\end{lstlisting}
+
+
+\section{Transformation matrix}
+
+\begin{lstlisting}
+/TMSave {
+ tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if end
+ /TMatrix [ TMatrix CM ] cvx def
+} def
+/TMRestore { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/TMChange {
+ TMSave
+ /cp [ currentpoint ] cvx def % ??? Check this later.
+ CM
+} def
+\end{lstlisting}
+ Set standard coor. system , with |pt| units and origin at \Index{currentpoint}.
+ This let's us rotate, or whatever, around \TeX's current point, without
+ having to worry about strange coordinate systems that the dvi-to-ps
+ driver might be using.
+\begin{lstlisting}
+CP T STV
+\end{lstlisting}
+
+ Let M = old matrix (on stack), and M' equal current matrix. Then
+ go from M' to M by applying M Inv(M').
+\begin{lstlisting}
+CM matrix invertmatrix % Inv(M')
+matrix concatmatrix % M Inv(M')
+\end{lstlisting}
+ Now modify transformation matrix:
+\begin{lstlisting}
+exch exec
+\end{lstlisting}
+Now apply M Inv(M')
+\begin{lstlisting}
+concat cp moveto
+\end{lstlisting}
+
+
+\section{Macros}
+\subsection{\nxLcs{ThreeDput}}
+
+\begin{lstlisting}
+\def\ThreeDput{\pst@object{ThreeDput}}
+\def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}}
+\def\ThreeDput@ii(#1,#2,#3){%
+ \pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}}
+\def\ThreeDput@iii(#1,#2,#3){%
+ \begingroup
+ \use@par
+ \if@star\pst@starbox\fi
+ \pst@makesmall\pst@hbox
+ \pssetxlength\pst@dima{#1}%
+ \pssetylength\pst@dimb{#2}%
+ \pssetzlength\pst@dimc{#3}%
+ \leavevmode
+ \hbox{%
+ \pst@Verb{%
+ { \pst@number\pst@dima
+ \pst@number\pst@dimb
+ \pst@number\pst@dimc
+ \psk@normal
+ \psk@embedangle
+ \psk@viewpoint
+ \psk@viewangle
+ \tx@SetMatrixEmbed
+ } \tx@TMChange}%
+ \box\pst@hbox
+ \pst@Verb{\tx@TMRestore}}%
+ \endgroup
+ \ignorespaces}
+\end{lstlisting}
+
+\section{Arithmetic}\label{Arithmetic}
+
+ {\verb+\pst@divide+}
+ This is adapted from Donald Arseneau's |shapepar.sty|.
+ Syntax:
+ \begin{verbatim}
+ \pst@divide{<numerator>}{<denominator>}{<command>}
+ \pst@@divide{<numerator>}{<denominator>}
+ \end{verbatim}
+ <numerator> and <denominator> should be dimensions. |\pst@divide| sets
+ <command> to <num>/<den> (in points). |\pst@@divide| sets |\pst@dimg| to
+ <num>/<den>.
+ \begin{lstlisting}
+ \def\pst@divide#1#2#3{%
+ \pst@@divide{#1}{#2}%
+ \pst@dimtonum\pst@dimg{#3}}
+ \def\pst@@divide#1#2{%
+ \pst@dimg=#1\relax
+ \pst@dimh=#2\relax
+ \pst@cntg=\pst@dimh
+ \pst@cnth=67108863
+ \pst@@@divide\pst@@@divide\pst@@@divide\pst@@@divide
+ \divide\pst@dimg\pst@cntg}
+ \end{lstlisting}
+ The number 16 is the level of uncertainty. Use a lower power of 2 for more
+ accuracy (2 is most precise). But if you change it, you must change the
+ repetions of |\pst@@@divide| in |\pst@@divide| above:
+ \[
+ \mbox{precision}^{\mbox{repetitions}} = 65536
+ \]
+ (E.g., $16^4 = 65536$).
+\begin{lstlisting}
+ \def\pst@@@divide{%
+ \ifnum
+ \ifnum\pst@dimg<\z@-\fi\pst@dimg<\pst@cnth
+ \multiply\pst@dimg\sixt@@n
+ \else
+ \divide\pst@cntg\sixt@@n
+ \fi}
+\end{lstlisting}
+
+ {\verb+\pst@pyth+}
+ Syntax:
+ \begin{verbatim}
+ \pst@pyth{<dim1>}{<dim2>}{<dimen register>}
+ \end{verbatim}
+ <dimen register> is set to $((dim1)^2+(dim2)^2)^{1/2}$.
+
+ The algorithm is copied from \PiCTeX, by Michael Wichura (with permission).
+ Here is his description:
+ \begin{quote}
+ Suppose $x>0$, $y>0$. Put $s = x+y$. Let $z = (x^2+y^2)^{1/2}$. Then $z =
+ s\times f$, where
+ \[
+ f = (t^2 + (1-t)^2)^{1/2} = ((1+\tau^2)/2)^{1/2}
+ \]
+ and $t = x/s$ and $\tau = 2(t-1/2)$.
+ \end{quote}
+ \begin{lstlisting}
+\def\pst@pyth#1#2#3{%
+ \begingroup
+ \pst@dima=#1\relax
+ \ifnum\pst@dima<\z@\pst@dima=-\pst@dima\fi % dima=abs(x)
+ \pst@dimb=#2\relax
+ \ifnum\pst@dimb<\z@\pst@dimb=-\pst@dimb\fi % dimb=abs(y)
+ \advance\pst@dimb\pst@dima % dimb=s=abs(x)+abs(y)
+ \ifnum\pst@dimb=\z@
+ \global\pst@dimg=\z@ % dimg=z=sqrt(x^2+y^2)
+ \else
+ \multiply\pst@dima 8\relax % dima= 8abs(x)
+ \pst@@divide\pst@dima\pst@dimb % dimg =8t=8abs(x)/s
+ \advance\pst@dimg -4pt % dimg = 4tau = (8t-4)
+ \multiply\pst@dimg 2
+ \pst@dimtonum\pst@dimg\pst@tempa
+ \pst@dima=\pst@tempa\pst@dimg % dima=(8tau)^2
+ \advance\pst@dima 64pt % dima=u=[64+(8tau)^2]/2
+ \divide\pst@dima 2\relax % =(8f)^2
+ \pst@dimd=7pt % initial guess at sqrt(u)
+ \pst@@pyth\pst@@pyth\pst@@pyth % dimd=sqrt(u)
+ \pst@dimtonum\pst@dimd\pst@tempa
+ \pst@dimg=\pst@tempa\pst@dimb
+ \global\divide\pst@dimg 8 % dimg=z=(8f)*s/8
+ \fi
+ \endgroup
+ #3=\pst@dimg}
+\def\pst@@pyth{% dimd = g <-- (g + u/g)/2
+ \pst@@divide\pst@dima\pst@dimd
+ \advance\pst@dimd\pst@dimg
+ \divide\pst@dimd 2\relax}
+ \end{lstlisting}
+
+
+ {\verb+\pst@sinandcos+}
+ Syntax:
+ \begin{verbatim}
+ \pst@sinandcos{<dim>}{<int>}
+ \end{verbatim}
+ <dim>, in |sp| units, should equal 100,000 times the angle, in degrees
+ between 0 and 90. <int> should equal the angle's quadrant (0, 1, 2 or 3).
+ |\pst@dimg| is set to $\sin(\theta)$ and |\pst@dimh| is set to
+ $\cos(\theta)$ (in pt's).
+
+ The algorithms uses the usual McLaurin expansion.
+ \begin{lstlisting}
+\def\pst@sinandcos#1{%
+ \begingroup
+ \pst@dima=#1\relax
+ \pst@dima=.366022\pst@dima %Now 1pt=1/32rad
+ \pst@dimb=\pst@dima % dimb->32sin(angle) in pts
+ \pst@dimc=32\p@ % dimc->32cos(angle) in pts
+ \pst@dimtonum\pst@dima\pst@tempa
+ \pst@cntb=\tw@
+ \pst@cntc=-\@ne
+ \pst@cntg=32
+ \loop
+ \ifnum\pst@dima>\@cclvi % 256
+ \pst@dima=\pst@tempa\pst@dima
+ \divide\pst@dima\pst@cntg
+ \divide\pst@dima\pst@cntb
+ \ifodd\pst@cntb
+ \advance\pst@dimb \pst@cntc\pst@dima
+ \pst@cntc=-\pst@cntc
+ \else
+ \advance\pst@dimc by \pst@cntc\pst@dima
+ \fi
+ \advance\pst@cntb\@ne
+ \repeat
+ \divide\pst@dimb\pst@cntg
+ \divide\pst@dimc\pst@cntg
+ \global\pst@dimg\pst@dimb
+ \global\pst@dimh\pst@dimc
+ \endgroup}
+ \end{lstlisting}
+
+
+ {\verb+\pst@getsinandcos+}
+ |\pst@getsinandcos| normalizes the angle to be in the first quadrant, sets
+ |\pst@quadrant| to 0 for the first quadrant, 1 for the second, 2 for the
+ third, and 3 for the fourth, invokes |\pst@sinandcos|, and sets |\pst@sin|
+ to the sine and |\pst@cos| to the cosine.
+ \begin{lstlisting}
+\def\pst@getsinandcos#1{%
+ \pst@dimg=100000sp
+ \pst@dimg=#1\pst@dimg
+ \pst@dimh=36000000sp
+ \pst@cntg=0
+ \loop
+ \ifnum\pst@dimg<\z@
+ \advance\pst@dimg\pst@dimh
+ \repeat
+ \loop
+ \ifnum\pst@dimg>\pst@dimh
+ \advance\pst@dimg-\pst@dimh
+ \repeat
+ \pst@dimh=9000000sp
+ \def\pst@tempg{%
+ \ifnum\pst@dimg<\pst@dimh\else
+ \advance\pst@dimg-\pst@dimh
+ \advance\pst@cntg\@ne
+ \ifnum\pst@cntg>\thr@@ \advance\pst@cntg-4 \fi
+ \expandafter\pst@tempg
+ \fi}%
+ \pst@tempg
+ \chardef\pst@quadrant\pst@cntg
+ \ifdim\pst@dimg=\z@
+ \def\pst@sin{0}%
+ \def\pst@cos{1}%
+ \else
+ \pst@sinandcos\pst@dimg
+ \pst@dimtonum\pst@dimg\pst@sin
+ \pst@dimtonum\pst@dimh\pst@cos
+ \fi}
+ \end{lstlisting}
+
+
+ \section{Tilting}
+
+ {\verb+\pstilt+}
+ \begin{lstlisting}
+\def\pstilt#1{\pst@makebox{\pstilt@{#1}}}
+\def\pstilt@#1{%
+ \begingroup
+ \leavevmode
+ \pst@getsinandcos{#1}%
+ \hbox{%
+ \ifcase\pst@quadrant
+ \kern\pst@cos\dp\pst@hbox
+ \pst@dima=\pst@cos\ht\pst@hbox
+ \ht\pst@hbox=\pst@sin\ht\pst@hbox
+ \dp\pst@hbox=\pst@sin\dp\pst@hbox
+ \or
+ \kern\pst@sin\ht\pst@hbox
+ \pst@dima=\pst@sin\dp\pst@hbox
+ \ht\pst@hbox=\pst@cos\ht\pst@hbox
+ \dp\pst@hbox=\pst@cos\dp\pst@hbox
+ \or
+ \kern\pst@cos\ht\pst@hbox
+ \pst@dima=\pst@sin\dp\pst@hbox
+ \pst@dimg=\pst@sin\ht\pst@hbox
+ \ht\pst@hbox=\pst@sin\dp\pst@hbox
+ \dp\pst@hbox=\pst@dimg
+ \or
+ \kern\pst@sin\dp\pst@hbox
+ \pst@dima=\pst@sin\ht\pst@hbox
+ \pst@dimg=\pst@cos\ht\pst@hbox
+ \ht\pst@hbox=\pst@cos\dp\pst@hbox
+ \dp\pst@hbox=\pst@dimg
+ \fi
+ \pst@Verb{%
+ { [ 1 0
+ \pst@cos\space \ifnum\pst@quadrant>\@ne neg \fi
+ \pst@sin\space
+ \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
+ \ifodd\pst@quadrant exch \fi
+ 0 0
+ ] concat
+ } \tx@TMChange}%
+ \box\pst@hbox
+ \pst@Verb{\tx@TMRestore}%
+ \kern\pst@dima}%
+ \endgroup}
+ \end{lstlisting}
+
+
+ {\verb+\psTilt+}
+ \begin{lstlisting}
+\def\psTilt#1{\pst@makebox{\psTilt@{#1}}}
+\def\psTilt@#1{%
+ \begingroup
+ \leavevmode
+ \pst@getsinandcos{#1}%
+ \hbox{%
+ \ifodd\pst@quadrant
+ \pst@@divide{\dp\pst@hbox}{\pst@cos\p@}%
+ \ifnum\pst@quadrant=\thr@@\kern\else\pst@dima=\fi\pst@sin\pst@dimg
+ \pst@@divide{\ht\pst@hbox}{\pst@cos\p@}%
+ \ifnum\pst@quadrant=\@ne\kern\else\pst@dima=\fi\pst@sin\pst@dimg
+ \else
+ \ifdim\pst@sin\p@=\z@
+ \@pstrickserr{\string\psTilt\space angle cannot be 0 or 180}\@ehpa
+ \def\pst@sin{.7071}%
+ \def\pst@cos{.7071}%
+ \fi
+ \pst@@divide{\dp\pst@hbox}{\pst@sin\p@}%
+ \ifnum\pst@quadrant=\z@\kern\else\pst@dima=\fi\pst@cos\pst@dimg
+ \pst@@divide{\ht\pst@hbox}{\pst@sin\p@}%
+ \ifnum\pst@quadrant=\tw@\kern\else\pst@dima=\fi\pst@cos\pst@dimg
+ \fi
+ \ifnum\pst@quadrant>\@ne
+ \pst@dimg=\ht\pst@hbox
+ \ht\pst@hbox=\dp\pst@hbox
+ \dp\pst@hbox=\pst@dimg
+ \fi
+ \pst@Verb{%
+ { [ 1 0
+ \pst@cos\space \pst@sin\space
+ \ifodd\pst@quadrant exch \fi
+ \tx@Div
+ \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
+ \ifnum\pst@quadrant>\@ne -1 \else 1 \fi
+ 0 0
+ ] concat
+ } \tx@TMChange}%
+ \box\pst@hbox
+ \pst@Verb{\tx@TMRestore}%
+ \kern\pst@dima}%
+ \endgroup}
+ \end{lstlisting}
+
+
+ {\verb+\psset@Tshadowsize,\psTshadowsize+}
+\begin{lstlisting}
+\define@key[psset]{pst-3d}{Tshadowsize}{%
+ \pst@checknum{#1}\psTshadowsize}
+\psset[pst-3d]{Tshadowsize=1}
+\end{lstlisting}
+
+
+{\verb+\psset@Tshadowangle,\psk@Tshadowangle+}
+\begin{lstlisting}
+\define@key[psset]{pst-3d}{Tshadowangle}{%
+ \pst@getangle{#1}\psk@Tshadowangle}
+\psset[pst-3d]{Tshadowangle=60}
+\end{lstlisting}
+
+
+ {\verb+\psset@Tshadowcolor,\psTshadowcolor+}
+\begin{lstlisting}
+\define@key[psset]{pst-3d}{Tshadowcolor}{%
+ \pst@getcolor{#1}\psTshadowcolor}
+\psset[pst-3d]{Tshadowcolor=lightgray}
+\end{lstlisting}
+
+
+ {\verb+\psshadow+}
+\begin{lstlisting}
+\def\psshadow{\def\pst@par{}\pst@object{psshadow}}
+\def\psshadow@i{\pst@makebox{\psshadow@ii}}
+\def\psshadow@ii{%
+ \begingroup
+ \use@par
+ \leavevmode
+ \pst@getsinandcos{\psk@Tshadowangle}%
+ \hbox{%
+ \lower\dp\pst@hbox\hbox{%
+ \pst@Verb{%
+ { [ 1 0
+ \pst@cos\space \psTshadowsize mul
+ \ifnum\pst@quadrant>\@ne neg \fi
+ \pst@sin\space \psTshadowsize mul
+ \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
+ \ifodd\pst@quadrant exch \fi
+ 0 0
+ ] concat
+ } \tx@TMChange}}%
+ \hbox to\z@{{\@nameuse{\psTshadowcolor}\copy\pst@hbox\hss}}%
+ \pst@Verb{\tx@TMRestore}%
+ \box\pst@hbox}%
+ \endgroup}
+ \end{lstlisting}
+
+\section{Affin Transformations}
+
+\begin{BDef}
+\Lcs{psAffinTransform}\OptArgs\Largb{transformation matrix}\Largb{object}
+\end{BDef}
+
+\begin{LTXexample}[width=3cm]
+\pspicture(3,6)\psset{linewidth=4pt,arrows=->}
+\psline(0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo}
+\psAffinTransform{0.5 0 0 2 0 0}{\color{red}%
+ \psline[linecolor=red](0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo}}%
+\endpspicture
+\end{LTXexample}
+
+The transformation matrix must be a list of 6 values divided by a space.
+For a translation modify the last two values of $1 0 0 1 dx dy$. The values for
+$dx$ and $dy$ must be of the unit pt! For a rotation
+we have the transformation matrix
+
+\begin{align}
+\left[\begin{aligned} \cos(\alpha) & \sin(\alpha) & 0 \\
+-\sin(\alpha) & \cos(\alpha) & 0 \\
+0 & 0 & 1\end{aligned}\right]
+\end{align}
+
+For \Lcs{psAffinTransform} the four values have to be modifies \texttt{a cos a sin a sin neg a cos 0 0}.
+Tilting can be done with $sx 0 0 sy 0 0$. All effects can be combined.
+
+\begin{LTXexample}[width=3cm]
+\pspicture(3,6)\psset{linewidth=4pt,arrows=->}
+\psline(0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo}
+\psAffinTransform{0.5 0.8 0.3 2 20 -20}{\color{red}%
+ \psline[linecolor=red](0,0)(1.5,0)(3,3)\rput*(2.25,1.5){foo}}%
+\endpspicture
+\end{LTXexample}
+
+
+\clearpage
+\section{List of all optional arguments for \texttt{pst-3d}}
+
+\xkvview{family=pst-3d,columns={key,type,default}}
+
+
+
+
+
+\nocite{*}
+\bgroup
+\RaggedRight
+\bibliographystyle{plain}
+\bibliography{pst-3d-doc}
+\egroup
+
+\printindex
+
+
+
+
+
+\end{document}
diff --git a/Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdf b/Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdf
deleted file mode 100644
index c7d3ba8d7e8..00000000000
--- a/Master/texmf-dist/doc/generic/pst-3d/pst-3d.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/dvips/pst-3d/pst-3d.pro b/Master/texmf-dist/dvips/pst-3d/pst-3d.pro
new file mode 100644
index 00000000000..de7afcf7e42
--- /dev/null
+++ b/Master/texmf-dist/dvips/pst-3d/pst-3d.pro
@@ -0,0 +1,87 @@
+%% $Id: pst-3d.pro 247 2010-01-04 22:45:42Z herbert $
+% PostScript prologue for pst-3d.tex.
+% Version 0.01, 2010/01/01
+%
+/tx@3Ddict 300 dict def
+tx@3Ddict begin
+%
+/SetMatrixThreeD {
+ dup sin /e ED cos /f ED
+ /p3 ED /p2 ED /p1 ED
+ p1 0 eq
+ { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def
+ p3 p2 abs
+ }
+ { p2 0 eq
+ { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def
+ p3 p1 abs
+ }
+ { p1 dup mul p2 dup mul add sqrt dup
+ p1 exch div /a ED
+ p2 exch div neg /b ED
+ p3 p1 a div
+ }
+ ifelse
+ }
+ ifelse
+ atan dup sin /c ED cos /d ED
+ /Matrix3D
+ [
+ b f mul c a mul e mul sub
+ a f mul c b mul e mul add
+ d e mul
+ b e mul neg c a mul f mul sub
+ a e mul neg c b mul f mul add
+ d f mul
+ ] def
+} def
+%
+/ProjThreeD {
+ /z ED /y ED /x ED
+ Matrix3D aload pop
+ z mul exch y mul add exch x mul add
+ 4 1 roll
+ z mul exch y mul add exch x mul add
+ exch
+} def
+%
+/SetMatrixEmbed {
+ SetMatrixThreeD
+ Matrix3D aload pop
+ /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED
+ SetMatrixThreeD
+ [
+ Matrix3D aload pop
+ z3 mul exch z2 mul add exch z1 mul add 4 1 roll
+ z3 mul exch z2 mul add exch z1 mul add
+ Matrix3D aload pop
+ x3 mul exch x2 mul add exch x1 mul add 4 1 roll
+ x3 mul exch x2 mul add exch x1 mul add
+ 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy
+ x3 mul exch x2 mul add exch x1 mul add 4 1 roll
+ z3 mul exch z2 mul add exch z1 mul add
+ ]
+ concat
+} def
+%
+/TMSave {
+ tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if
+ /TMatrix [ TMatrix CM ] cvx def
+} def
+%
+/TMRestore { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+%
+/TMChange {
+ TMSave
+ /cp [ currentpoint ] cvx def % ??? Check this later.
+ CM
+ CP T STV
+ CM matrix invertmatrix % Inv(M')
+ matrix concatmatrix % M Inv(M')
+ exch exec
+ concat cp moveto
+} def
+%
+end % of tx@3Ddict
+%%
+%% End of file `pst-3d.pro'.
diff --git a/Master/texmf-dist/source/generic/pst-3d/Makefile b/Master/texmf-dist/source/generic/pst-3d/Makefile
new file mode 100644
index 00000000000..0c3e4ce9a8c
--- /dev/null
+++ b/Master/texmf-dist/source/generic/pst-3d/Makefile
@@ -0,0 +1,69 @@
+# `Makefile' for `pst-3d.pdf', hv, 2007/03/17
+
+.SUFFIXES : .tex .ltx .dvi .ps .pdf .eps
+
+PACKAGE = pst-3d
+
+MAIN = $(PACKAGE)-doc
+
+LATEX = latex
+
+TDS = ~/PSTricks/PSTricks-TDS
+
+ARCHNAME = $(MAIN)-$(shell date +%y%m%d)
+
+ARCHFILES = $(PACKAGE).sty $(PACKAGE).tex $(PACKAGE).pro $(MAIN).tex README Changes Makefile
+
+all : doc clean
+doc: $(MAIN).pdf
+
+$(MAIN).pdf : $(MAIN).ps
+ GS_OPTIONS=-dAutoRotatePages=/None ps2pdf $<
+
+$(MAIN).ps : $(MAIN).dvi
+ dvips $<
+
+$(MAIN).dvi : $(MAIN).tex
+ $(LATEX) $<
+ $(LATEX) $<
+ if ! test -f $(basename $<).glo ; then touch $(basename $<).glo; fi
+ if ! test -f $(basename $<).idx ; then touch $(basename $<).idx; fi
+ makeindex -s gglo.ist -t $(basename $<).glg -o $(basename $<).gls \
+ $(basename $<).glo
+ makeindex -t $(basename $<).ilg -o $(basename $<).ind \
+ $(basename $<).idx
+ bibtex $(basename $<)
+ $(LATEX) $<
+ $(LATEX) $<
+
+clean :
+ $(RM) $(addprefix $(MAIN), .log .aux .glg .glo .gls .ilg .idx .ind .tmp .toc .out .blg .Roessler .bbl )
+ $(RM) $(addprefix $(MAIN), .dvi .ps)
+
+veryclean : clean
+ $(RM) $(addprefix $(MAIN), .pdf .bbl .blg)
+
+arch :
+ zip $(ARCHNAME).zip $(ARCHFILES)
+
+tds:
+ cp -u Changes $(TDS)/doc/generic/$(PACKAGE)/
+ cp -u README $(TDS)/doc/generic/$(PACKAGE)/
+ cp -u $(MAIN).pdf $(TDS)/doc/generic/$(PACKAGE)/
+#
+ cp -u Changes $(TDS)/tex/latex/$(PACKAGE)/
+ cp -u $(PACKAGE).sty $(TDS)/tex/latex/$(PACKAGE)/
+#
+ cp -u Changes $(TDS)/tex/generic/$(PACKAGE)/
+ cp -u $(PACKAGE).tex $(TDS)/tex/generic/$(PACKAGE)/
+#
+ cp -u Changes $(TDS)/dvips/$(PACKAGE)/
+ cp -u $(PACKAGE).pro $(TDS)/dvips/$(PACKAGE)/
+ cp -u $(PACKAGE).pro ~/Links/dvips-local/
+#
+ cp -u Changes $(TDS)/source/$(PACKAGE)/
+ cp -u $(MAIN).tex $(TDS)/source/$(PACKAGE)/
+ cp -u $(MAIN).bib $(TDS)/source/$(PACKAGE)/
+ cp -u Makefile $(TDS)/source/$(PACKAGE)/
+
+# EOF
diff --git a/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx b/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx
deleted file mode 100644
index 291524ae593..00000000000
--- a/Master/texmf-dist/source/generic/pst-3d/pst-3d.dtx
+++ /dev/null
@@ -1,1608 +0,0 @@
-% \iffalse meta-comment, etc.
-%%
-%% Package `pst-3d.dtx'
-%%
-%% Timothy Van Zandt <tvz@nwu.edu> (tvz)
-%% Herbert Voss <voss@pstricks.de> (hv)
-%%
-%% September 03, 2005
-%%
-%% This file is under the LaTeX Project Public License
-%% See CTAN archives in directory macros/latex/base/lppl.txt.
-%%
-%% DESCRIPTION:
-%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks
-%%
-% \fi
-% \iffalse
-%<*driver>
-\documentclass{ltxdoc}
-\GetFileInfo{pst-3d.dtx}
-\usepackage[T1]{fontenc}
-\usepackage{textcomp,fancyvrb}
-\usepackage{graphics,showexpl}
-\usepackage{amsmath,array}
-\usepackage{multido}
-\usepackage{pstricks,pst-node,pst-plot}
-\usepackage{pst-3d}
-\AtBeginDocument{
-% \OnlyDescription % comment out for implementation details
- \EnableCrossrefs
- \RecordChanges
- \CodelineIndex}
-\AtEndDocument{
- \PrintChanges
- \PrintIndex}
-\hbadness=7000 % Over and under full box warnings
-\hfuzz=3pt
-\begin{document}
- \DocInput{pst-3d.dtx}
-\end{document}
-%</driver>
-% \fi
-%
-% \changes{v1.00}{2005/09/08}{%
-% using the extended pst-xkey instead of the old pst-key package;
-% creating a dtx file;
-% new \LaTeX\ wrapper file (hv)}
-% \changes{v0.90}{2001/02/16}{First public release. (tvz)}
-%
-% \DoNotIndex{\!,\",\#,\$,\%,\&,\',\(,\+,\*,\,,\-,\.,\/,\:,\;,\<,\=,\>,\?}
-% \DoNotIndex{\@,\@B,\@K,\@cTq,\@f,\@fPl,\@ifnextchar,\@nameuse,\@oVk}
-% \DoNotIndex{\[,\\,\],\^,\_,\ }
-% \DoNotIndex{\^,\\^,\\\^,$\^$,$\\^$,$\\^$}
-% \DoNotIndex{\0,\2,\4,\5,\6,\7,\8,}
-% \DoNotIndex{\A,\a}
-% \DoNotIndex{\B,\b,\Bc,\begin,\Bq,\Bqc}
-% \DoNotIndex{\C,\c,\catcode,\cJA,\CodelineIndex,\csname}
-% \DoNotIndex{\D,\def,\define@key,\Df,\divide,\DocInput,\documentclass,\pst@addfams}
-% \DoNotIndex{\eCN,\edef,\else,\eHd,\eMcj,\EnableCrossrefs,\end,\endcsname}
-% \DoNotIndex{\endCenterExample,\endExample,\endinput,\endpsclip}
-% \DoNotIndex{\PrintIndex,\PrintChanges,\ProvidesFile}
-% \DoNotIndex{\endpspicture,\endSideBySideExample,\Example}
-% \DoNotIndex{\F,\f,\FdUrr,\fi,\filedate,\fileversion,\FV@Environment}
-% \DoNotIndex{\FV@UseKeyValues,\FV@XRightMargin,\FVB@Example,\fvset}
-% \DoNotIndex{\G,\g,\GetFileInfo,\gr,\GradientLoaded,\gsFKrbK@o,\gsj,\gsOX}
-% \DoNotIndex{\hbadness,\hfuzz,\HLEmphasize,\HLMacro,\HLMacro@i}
-% \DoNotIndex{\HLReverse,\HLReverse@i,\hqcu,\HqY}
-% \DoNotIndex{\I,\i,\ifx,\input,\Ir,\IU}
-% \DoNotIndex{\j,\jl,\JT,\JVodH}
-% \DoNotIndex{\K,\k,\kfSlL}
-% \DoNotIndex{\L,\let}
-% \DoNotIndex{\message,\mHNa,\mIU}
-% \DoNotIndex{\N,\nB,\newcmykcolor,\newdimen,\newif,\nW}
-% \DoNotIndex{\O,\oCDJDo,\ocQhVI,\OnlyDescription,\oRKJ}
-% \DoNotIndex{\P,\p,\ProvidesPackage,\psframe,\pslinewidth,\psset}
-% \DoNotIndex{\PstAtCode,\PSTricksLoaded}
-% \DoNotIndex{\q,\Qr,\qssRXq,\qu,\qXjFQp,\qYL}
-% \DoNotIndex{\R,\r,\RecordChanges,\relax,\RlaYI,\rN,\Rp,\rp,\RPDXNn,\rput}
-% \DoNotIndex{\S,\scalebox,\SgY,\SideBySide@Example,\SideBySideExample}
-% \DoNotIndex{\SgY,\sk,\Sp,\space,\sZb}
-% \DoNotIndex{\T,\the,\tw@}
-% \DoNotIndex{\u,\UiSWGEf@,\uJi,\usepackage,\uVQdMM,\UYj}
-% \DoNotIndex{\VerbatimEnvironment,\VerbatimInput,\VrC@}
-% \DoNotIndex{\WhZ,\WjKCYb,\WNs}
-% \DoNotIndex{\XkN,\XW}
-% \DoNotIndex{\Z,\ZCM,\Ze}
-% \DoNotIndex{\addtocounter,\advance,\alph,\arabic,\AtBeginDocument,\AtEndDocument}
-% \DoNotIndex{\AtEndOfPackage,\begingroup,\bfseries,\bgroup,\box,\csname}
-% \DoNotIndex{\else,\endcsname,\endgroup,\endinput,\expandafter,\fi}
-% \DoNotIndex{\TeX,\z@,\p@,\@one,\xdef,\thr@@,\string,\sixt@@n,\reset,\or,\multiply,\repeat,\RequirePackage}
-% \DoNotIndex{\@cclvi,\@ne,\@ehpa,\@nil,\copy,\dp,\global,\hbox,\hss,\ht,\ifodd,\ifdim,\ifcase,\kern}
-% \DoNotIndex{\chardef,\loop,\leavevmode,\ifnum,\lower}
-% \setcounter{IndexColumns}{2}
-%
-% \let\pstIIIDFileVersion\fileversion
-% \let\pstIIIDFileDate\filedate
-% \newcommand{\PstIIIDPackage}{`\textsf{pst-3d}'}
-% \newcommand{\PstIIIDMacro}{\cs{Pst3d}}
-%
-% ^^A From ltugboat.cls
-%
-% ^^A Typeset the name of an environment
-% \providecommand\env[1]{\textsf{#1}}
-% \providecommand\clsname[1]{\textsf{#1}}
-% \providecommand\pkgname[1]{\textsf{#1}}
-% \providecommand\optname[1]{\textsf{#1}}
-% \providecommand\progname[1]{\textsf{#1}}
-%
-% ^^A A list of options for a package/class
-% \newenvironment{optlist}{\begin{description}%
-% \renewcommand\makelabel[1]{%
-% \descriptionlabel{\mdseries\optname{##1}}}%
-% \itemsep0.25\itemsep}%
-% {\end{description}}
-%
-% \makeatletter
-%
-% ^^A Utility macros
-%
-% ^^A Example macros - adapted from the `fvrb-ex' package
-% ^^A ---------------------------------------------------
-%
-% ^^A Take care that we use here the four /?_Z characters as escape
-% ^^A characters, so we can't use these characters in the examples!
-%
-% ^^A To highlight some verbatim sequences (comments, macro names, etc.)
-% \def\HLEmphasize#1{\textit{#1}}
-% \newcommand{\BS}{\texttt{\symbol{`\\}}}
-% \def\HLMacro#1{\BS{}def\HLMacro@i#1\@nil}
-% \def\HLMacro@i#1def#2\@nil{\HLReverse{#2}}
-% \def\HLReverse#1{{\setlength{\fboxsep}{1pt}\HLReverse@i{#1}}}
-% \def\HLReverse@i#1{\colorbox{black}{\textcolor{white}{\textbf{#1}}}}
-%
-% \def\Example{\FV@Environment{}{Example}}
-% \def\endExample{%
-% \end{VerbatimOut}
-% \Below@Example{\input{\jobname.tmp}}
-% \endgroup}
-%
-% \def\CenterExample{\FV@Environment{}{Example}}
-% \def\endCenterExample{%
-% \end{VerbatimOut}
-% \begin{center}
-% \Below@Example{\input{\jobname.tmp}}
-% \end{center}
-% \endgroup}
-%
-% \def\SideBySideExample{\FV@Environment{}{Example}}
-% \def\endSideBySideExample{%
-% \end{VerbatimOut}
-% \SideBySide@Example{\input{\jobname.tmp}}
-% \endgroup}
-%
-% \def\FVB@Example{%
-% \begingroup
-% \FV@UseKeyValues
-% \parindent=0pt
-% \multiply\topsep by 2
-% \VerbatimEnvironment
-% \begin{VerbatimOut}[gobble=4,codes={\catcode`\Z=12}]{\jobname.tmp}}
-%
-% \def\Below@Example#1{%
-% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_,frame=single,
-% numbers=left,numbersep=3pt]{\jobname.tmp}
-% \catcode`\%=14\relax
-% \catcode`\Z=9\relax
-% ^^A We suppress the effect of the highlighting macros
-% \catcode`/=0\relax
-% \catcode`?=1\relax
-% \catcode`_=2\relax
-% \def\HLEmphasize##1{##1}%
-% \def\HLMacro##1{##1}%
-% \def\HLReverse##1{##1}%
-% #1
-% \par}
-%
-% \def\SideBySide@Example#1{%
-% \vskip 1mm
-% \@tempdimb=\FV@XRightMargin
-% \advance\@tempdimb -5mm
-% \begin{minipage}[c]{\@tempdimb}
-% \fvset{xrightmargin=0pt}
-% \catcode`\%=14\relax
-% \catcode`\Z=9\relax
-% ^^A We suppress the effect of the highlighting macros
-% \catcode`/=0\relax
-% \catcode`?=1\relax
-% \catcode`_=2\relax
-% \def\HLEmphasize##1{##1}%
-% \def\HLMacro##1{##1}%
-% \def\HLReverse##1{##1}%
-% #1
-% \end{minipage}%
-% \@tempdimb=\textwidth
-% \advance\@tempdimb -\FV@XRightMargin
-% \advance\@tempdimb 5mm
-% \begin{minipage}[c]{\@tempdimb}
-% \VerbatimInput[gobble=0,commentchar=Z,commandchars=/?_,
-% frame=single,numbers=left,numbersep=3pt,
-% xleftmargin=5mm,xrightmargin=0pt]{\jobname.tmp}
-% \end{minipage}
-% \vskip 1mm}
-%
-% ^^A End of example macros from `fvrb-ex'
-%
-% ^^A Customizations of the "Verbatim" environment
-% \RecustomVerbatimEnvironment{Verbatim}{Verbatim}%
-% {gobble=4,frame=single,numbers=left,numbersep=3pt,commandchars=/?_}
-%
-% ^^A For the possible index and changes log
-% \setlength{\columnseprule}{0.6pt}
-%
-%
-% \def\PiCTeX{PiC\TeX}
-% \def\arc{\texttt{arc}}
-% \def\sign{\texttt{sign}}
-%
-% ^^A Beginning of the documentation itself
-%
-% \title{The \PstIIIDPackage{} package\\Tilting and other pseudo-3D tricks with PSTricks}
-% \author{Timothy Van Zandt\\
-% Herbert Vo\ss}
-% \date{Version \pstIIIDFileVersion\ \pstIIIDFileDate\ \\
-% {\small Documentation revised \today\ (hv)}}
-%
-% \maketitle
-%
-% \begin{abstract}
-% \texttt{pst-3d} provides basic macros for shadows, tilting and
-% three dimensional representations of text or graphical objects.
-% \end{abstract}
-%
-% \clearpage
-% \tableofcontents
-%
-% \section{introduction}
-%
-% The base package \texttt{pstricks} already disposes of some macros with which three
-% dimensional effects can be obtained.
-% There are several packages though which support the creation of three
-% dimensional objects or functions. A compilation is shown in
-% table~\ref{tab:pst3d:pakete}. Here already several of the packages overlap, for
-% parallel developments are nothing unusual in the \TeX{} world. Although
-% \verb+pst-3d+ is one of the older packages, it shall be dealt with nevertheless,
-% for it also contains the preliminary stage of the 3D representations, that is
-% shadow creation and tilting.
-%
-% \begin{table}[htb]
-% \caption{Summary of all 3D packages}\label{tab:pst3d:pakete}
-% \centering
-% \begin{tabular}{ll}
-% \emph{package} & \emph{content}\\\hline
-% \texttt{pst-3d} & basic 3D operations\\
-% \texttt{pst-3dplot} & Three dimensional plots\\
-% \texttt{pst-fr3d} & Three dimensional framed Boxes\\
-% \texttt{pst-gr3d} & 3D grids\\
-% \texttt{pst-map3dII}& 3D Geographical Projection\\
-% \texttt{pst-ob3d} & Three dimensional basic objects\\
-% \texttt{pst-vue3d} & Three dimensional views\\
-% \end{tabular}
-% \end{table}
-%
-%
-% \section{Shadow}\label{sec:pst3d:schattenwurf}
-% \verb+pst-3d+ defines the macro \verb+\psshadow+ with the following syntax:
-% \begin{verbatim}
-% \psshadow[<parameters>]{<material>]
-% \end{verbatim}
-% As parameters the ones given in table~\ref{tab:pst-3d:schattenparameter} are
-% available next to all previously defined, if they have a meaning for the
-% material to be shadowed. This can be anything text-like, text, rules and
-% mathematical expressions in inline mode.
-%
-% \medskip
-% \begin{SideBySideExample}[xrightmargin=.35\linewidth]
-% \newgray{gray75}{.75}
-% \psset{Tshadowcolor=gray75}
-% \psshadow{\huge Shadow}\\[10pt]
-% \psshadow{\huge $f(x)=x^2$}\\[15pt]
-% \psshadow[Tshadowsize=2.5]{%
-% \rule{2cm}{10pt}}
-% \end{SideBySideExample}
-%
-% \subsection{Parameters}\label{subsec:pst3d:schattenparameter}
-% Table~\ref{tab:pst-3d:schattenparameter} shows a compilation of the used
-% parameters.
-%
-%
-%
-%
-% \begin{table}[htb]
-% \caption{Summary of all \texttt{shadow} parameters}\label{tab:pst-3d:schattenparameter}
-% \centering
-% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l}
-% \textrm{\emph{name}} & \textrm{\emph{values}} & \textrm{\emph{default}}\\\hline
-% Tshadowangle & <angle> & 60\\
-% Tshadowcolor & <colour> & lightgray\\
-% Tshadowsize & <value> & 1
-% \end{tabular}
-% \end{table}
-%
-%
-% \subsubsection{\texttt{Tshadowangle}}\label{subsubsec:pst3d:tshadowangle}
-% \verb+Tshadowangle+ denotes the angle of the shadow,
-% referring to the perpendicular of the paper plane. The angle of $90$° therewith
-% corresponds to the text itself. Negative angles cause the shadow to arise
-% from the paper plane.
-
-% \medskip
-% \begin{SideBySideExample}[xrightmargin=.25\linewidth]
-% \newgray{gray75}{.75}
-% \psset{Tshadowcolor=gray75}
-% \psshadow{\huge shadow}\\[5pt]
-% \psshadow[Tshadowangle=30]{\huge shadow}\\[5pt]
-% \psshadow[Tshadowangle=70]{\huge shadow}\\[5pt]
-% \psshadow[Tshadowangle=-30]{\huge shadow}
-% \end{SideBySideExample}
-%
-% \medskip
-% \begin{itemize}
-% \item Angular values of $0$° and $180$° are not allowed.
-% \end{itemize}
-%
-%
-%
-% \subsubsection{\texttt{Tshadowcolor}}\label{subsubsec:pst3d:tshadowcolor}
-% \verb+Tshadowcolor+ deontes the shadow colour.
-%
-% \begin{SideBySideExample}[xrightmargin=.25\linewidth]
-% \psshadow{\huge shadow}\\[5pt]
-% \psshadow[Tshadowcolor=red]{\huge shadow}\\[5pt]
-% \psshadow[Tshadowcolor=green]{\huge shadow}\\[5pt]
-% \psshadow[Tshadowcolor=blue]{\huge shadow}
-% \end{SideBySideExample}
-%
-%
-% \subsubsection{\texttt{Tshadowsize}}\label{subsubsec:pst3d:tshadowsize}
-% \verb+Tshadowsize+ determines the size of the
-% shadow\index{shadow!size} as a scaling factor\index{scaling factor}.
-%
-% \begin{SideBySideExample}[xrightmargin=.25\linewidth]
-% \psshadow{\Huge shadow}\\[5pt]
-% \psshadow[Tshadowsize=0.5]{\Huge shadow}\\[10pt]
-% \psshadow[Tshadowsize=1.5]{\Huge shadow}\\[20pt]
-% \psshadow[Tshadowsize=2.5]{\Huge shadow}
-% \end{SideBySideExample}
-%
-%
-%
-%
-%
-% \section{Tilting}\label{sec:pst3d:kippen}
-% With the tilting of objects the
-% perspective views of three dimensional objects can be simulated. \verb+pst-3d+
-% defines two macros for this.
-%
-% \begin{verbatim}
-% \pstilt[<parameters>]{<angle>}{<material>}
-% \psTilt[<parameters>]{<angle>}{<material>}
-% \end{verbatim}
-%
-% Figure~\ref{fig:pst3d:demo} shows the difference between these two macros.
-% Principally everything can be given as argument to those macros and therewith
-% tilted. With vertical material, as distinguished formulae, eventually the
-% argument has to be put into a \verb+\parbox+ before (see
-% example),
-%
-% \begin{figure}[htb]
-% \centering
-% \bgroup
-% \begin{pspicture}(0,-0.2)(9,3)
-% \psline[linestyle=dashed](0,2)(9,2)
-% \psline{->}(9,0)
-% \def\Bar{\psframe*[linecolor=lightgray](0,0)(0.5,2)}
-% \rput(0.5,0){\Bar}
-% \psset{arrowscale=2,linewidth=0.1pt,tbarsize=2mm}
-% \psline{|<->|}(0.25,0)(0.25,2)\rput*{90}(0.25,1){\small 2cm}
-% \rput(2,0){\psTilt{30}{\Bar}}
-% \psarc{->}(2.2,0){2}{0}{26}\rput(4.5,0.5){30°}
-% \pnode(2,0.3){A}\pnode(5.3,2.25){B}
-% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 4cm}
-% \rput(6,0){\pstilt{30}{\Bar}}
-% \psarc{->}(6.2,0){2}{0}{26}\rput(8.5,0.5){30°}
-% \pnode(6,0.3){A}\pnode(7.65,1.25){B}
-% \ncline{|<->|}{A}{B}\ncput*[nrot=:U]{\small 2cm}
-% \uput[90](0.5,2.5){\cs{Bar}}
-% \uput[90](3.75,2.5){\cs{psTilt\{30\}\{\textbackslash Bar\}}}
-% \uput[90](7.25,2.5){\cs{pstilt\{30\}\{\textbackslash Bar\}}}
-% \end{pspicture}
-% \egroup
-% \caption{Demonstration of the difference between \cs{pstilt} and \cs{psTilt}}\label{fig:pst3d:demo}
-% \end{figure}
-%
-% \medskip
-% \begin{itemize}
-% \item Angular values of $0$\textdegree\ and $180$\textdegree\ are not allowed.
-% \end{itemize}
-%
-% \subsection{\cs{pstilt}}\label{subsec:pst3d:pstilt}
-% \verb+\pstilt+ tilts objects that their original height appears
-% as new length of the tilted object, wherewith the object becomes smaller. The
-% hynotenuse of the triangle from nadir, height and perpendicular now corresponds
-% to the old height (see figure~\ref{fig:pst3d:demo}). At this the length is
-% calculated from the middle of the base side.
-%
-%
-% \medskip\noindent
-% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
-% \def\Bar{\psframe(0,0)(0.25,2)}
-% \begin{pspicture}(5,2)
-% \multido{\nA=15+15}{11}{\rput(2.5,0){%
-% \pstilt{\nA}{\Bar}}}
-% \end{pspicture}
-% \end{SideBySideExample}
-%
-%
-%
-% \medskip\noindent
-% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
-% \pstilt{60}{%
-% \begin{pspicture}(-0.5,-0.5)(2,2)
-% \psaxes[axesstyle=frame](2,2)
-% \end{pspicture}}
-% \end{SideBySideExample}
-%
-%
-% \medskip\noindent
-% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
-% \newpsstyle{TCyan}{%
-% fillstyle=vlines,hatchcolor=cyan,
-% hatchwidth=0.1\pslinewidth,%
-% hatchsep=1.5\pslinewidth}
-% \begin{pspicture}(2,4)
-% \rput[lb](0,0){\pstilt{45}{%
-% \psframe[linestyle=dashed,%
-% fillstyle=solid,fillcolor=red](2,4)}}
-% \psframe[style=TCyan](0,0)(2,4)
-% \end{pspicture}
-% \end{SideBySideExample}
-%
-%
-% \medskip
-% With the package \verb+rotating+ macros to rotate text are
-% provided, to achieve slant table headings for example. It is more difficult when
-% they are provided with a frame. With \cs{pstilt} or \cs{psTilt} this is no
-% problem. The program listing given below only shows the application of
-% \cs{pstilt} for the macro only has to be replaced by \cs{psTilt} to obtain the
-% other example.
-
-% \begin{SideBySideExample}[xrightmargin=.3\linewidth]
-% \begin{tabular}{l}
-% \pstilt{60}{%
-% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline
-% \psrotateleft{column 1\ }
-% & \psrotateleft{column 2\ }
-% & \psrotateleft{column 3\ }
-% \end{tabular}}\\
-% \begin{tabular}{|p{1em}|p{1em}|p{1em}|}\hline
-% 1 & 2 & 3 \\\hline
-% 4 & 5 & 6 \\\hline
-% \end{tabular}
-% \end{tabular}
-% \end{SideBySideExample}
-%
-%
-% \subsection{\cs{psTilt}}\label{subsec:pst3d:psTilt}
-% \verb+\psTilt+ tilts objects that their original height is
-% preserved, so that the object could become infinitely long in theory (see
-% figure~\ref{fig:pst3d:demo}).
-%
-%
-% \medskip\noindent
-% \begin{CenterExample}
-% \begin{pspicture}(5,2)
-% \def\Bar{\psframe(0,0)(0.25,2)}
-% \multido{\nA=15+15}{11}{\rput(2.5,0){%
-% \psTilt{\nA}{\Bar}}}
-% \end{pspicture}
-% \end{CenterExample}
-%
-%
-%
-% \medskip\noindent
-% \begin{SideBySideExample}[xrightmargin=.4\linewidth]
-% \psTilt{60}{%
-% \begin{pspicture}(-0.5,-0.5)(2,2)
-% \psaxes[axesstyle=frame](2,2)
-% \end{pspicture}}
-% \end{SideBySideExample}
-%
-%
-% \medskip\noindent
-% \begin{SideBySideExample}[xrightmargin=.475\linewidth]
-% \newpsstyle{TCyan}{%
-% fillstyle=vlines,hatchcolor=cyan,
-% hatchwidth=0.1\pslinewidth,%
-% hatchsep=1.5\pslinewidth}
-% \begin{pspicture}(2,4)
-% \rput[lb](0,0){\psTilt{45}{%
-% \psframe[linestyle=dashed,%
-% fillstyle=solid,%
-% fillcolor=red](2,4)}}
-% \psframe[style=TCyan](0,0)(2,4)
-% \end{pspicture}
-% \end{SideBySideExample}
-%
-%
-% \section[Three dimensional representations]{%
-% Three dimensional representations\protect\footnote{Some of the examples were created by Manuel Luque.}}\label{sec:pst3d:3d}
-%
-%
-% \verb+pst-3d+ only supports parallel projections, so that geometrical objects
-% such as spheres or cylinders can only be displayed restricted. Although
-% \verb+pst-3d+ principally only defines one single macro for the 3D
-% projection, the package is very efficient in its
-% application and is also used as a base for other packages.\cite{pst-3dplot}\cite{pst-vue3d}
-%
-% \subsection{\cs{ThreeDput}}\label{subsec:pst3d:threedput}
-% \verb+pst-3d+ only defines this single macro, which can be
-% used to arbitrarily display line or area shaped objects in the three dimensional
-% space in the end though.
-%
-% \begin{verbatim}
-% \ThreeDput[<parameters>]{<material>}
-% \ThreeDput[<parameters>](<x,y,z>){<material>}
-% \end{verbatim}
-%
-% Without a specification of coordinates, $(0,0,0)$ is taken as origin of
-% ordinates as a rule. As ``material''{} anything is understood that can be put
-% into a box. If it is vertical material in the \TeX{} sense, it has to be put in
-% a \verb+\parbox+ or \verb+minipage+ before.
-%
-% To simplify the specified source code, the macro \verb+\IIIDKOSystem+ is used in
-% the following, which draws the coordinate axes with the grid and is not
-% specified in the following anymore.
-%
-%
-% \makeatletter
-% \newgray{gray75}{0.75}\newgray{gray80}{0.80}newgray{gray85}{0.85}
-% \newgray{gray90}{0.90}\newgray{gray95}{0.95}
-% \def\xyPlain#1{%
-% \ThreeDput[normal=0 0 1](0,0,0){%
-% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)%
-% \psline{->}(0,0)(0,#1)\psline{->}(0,0)(#1,0)%
-% \ifdim\psk@gridlabels pt>\z@
-% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi}}
-% \def\xzPlain#1{%
-% \ThreeDput[normal=0 -1 0](0,0,0){%
-% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)%
-% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0)%
-% \ifdim\psk@gridlabels pt>\z@%
-% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}%
-% \fi}}
-% \def\yzPlain#1{%
-% \ThreeDput[normal=1 0 0](0,0,0){%
-% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)%
-% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)%
-% \ifdim\psk@gridlabels pt>\z@%
-% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}%
-% \fi}}
-% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}}
-% \def\IIIDKOSystem@i[#1]#2{%
-% \psset{#1}%
-% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}}
-% \makeatother
-%
-% \medskip\noindent
-% \begin{CenterExample}
-% \makeatletter
-% \def\xyPlain#1{%
-% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane
-% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)
-% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)
-% \ifdim\psk@gridlabels pt>\z@
-% \uput[180]{0.2}(0,#1){$y$}\uput[-90]{0.2}(#1,0){$x$}\fi }}
-% \def\xzPlain#1{%
-% \ThreeDput[normal=0 -1 0](0,0,0){% xz-plane
-% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)
-% \psline{->}(0,0)(0,5) \psline{->}(0,0)(#1,0)
-% \ifdim\psk@gridlabels pt>\z@
-% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$x$}%
-% \fi }}
-% \def\yzPlain#1{%
-% \ThreeDput[normal=1 0 0](0,0,0){% yz-plane
-% \psgrid[subgriddiv=0,gridcolor=lightgray](0,0)(#1,#1)
-% \psline{->}(0,0)(0,#1) \psline{->}(0,0)(#1,0)
-% \ifdim\psk@gridlabels pt>\z@
-% \uput[180]{0.2}(0,#1){$z$}\uput[-90]{0.2}(#1,0){$y$}%
-% \fi }}
-% \def\IIIDKOSystem{\@ifnextchar[{\IIIDKOSystem@i}{\IIIDKOSystem@i[]}}
-% \def\IIIDKOSystem@i[#1]#2{%
-% \psset{#1}%
-% \xyPlain{#2}\xzPlain{#2}\yzPlain{#2}}
-% \makeatother
-% \newgray{gray75}{0.75}
-% \newgray{gray80}{0.8}
-% \newgray{gray85}{0.85}
-% \newgray{gray95}{0.95}
-% \begin{pspicture}(0,-1.25)(5,6)
-% \psset{viewpoint=1 -1 0.75}
-% \IIIDKOSystem{5}
-% \ThreeDput{\psframe*[linecolor=gray80](3,3)}
-% \ThreeDput(1.5,1.5,0){\Huge below}
-% \ThreeDput(0,0,1.5){\psframe*[linecolor=gray75](3,3)}
-% \ThreeDput(1.5,1.5,1.5){\Huge center}
-% \ThreeDput(0,0,3){\psframe*[linecolor=gray85](3,3)}
-% \ThreeDput(1.5,1.5,3){\Huge above}
-% \xzPlain{5}
-% \ThreeDput(4,4,0){\psframe*[linecolor=gray95](-1,-1)(1,1)}
-% \ThreeDput(4,4,0){\psdot[dotscale=3]}
-% \end{pspicture}
-% \end{CenterExample}
-%
-%
-% The coordinates of \verb+ThreeDput+ refer to the centre of the object, which
-% does not necessarily need to be the geometrical centre.
-% \begin{verbatim}
-% \psframe(2,2)% centre bottom left (0,0)
-% \psframe(-1,-1(1,1)% centre in the middle (0,0)
-% arbitrary text% centre in the middle of the base line
-% \end{verbatim}
-%
-% In the above example the smaller square with its centre $(0,0)$ has been set
-% exactly to the coordinated $(4,4,0)$.
-% The macro \verb+ThreeDput+ can be manifoldly applied, which is performed
-% especially by the package \verb+pst-vue3d+\cite{pst-vue3d}. By
-% specifying the normal vector $\vec{n}$ and a point $P(x,y,z)$ of the stright
-% line and/or the plane the posture in space can be determined definitely. Areas
-% can be provided with different levels of brightness to increase the spatial
-% impression.
-%
-%
-%
-% \medskip\noindent
-% \begin{CenterExample}
-% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95}
-% \begin{pspicture}(-4.5,-3.5)(3,4.75)
-% \psset{viewpoint=1 1.5 1}
-% \IIIDKOSystem[gridlabels=0pt,gridcolor=lightgray,subgriddiv=0]{5}%
-% \ThreeDput[normal=0 0 1]{% xy-plane
-% \psline[linewidth=3pt,linecolor=blue]{->}(4,4)(4,5.5)%
-% \uput[90](4,5.5){\color{blue}$\vec{n}-{A}$}}%
-% \ThreeDput[normal=0 -1 0]{% xz-plane
-% \psline[linewidth=3pt,linecolor=green]{->}(4,0)(5.5,0)%
-% \uput[90](5.5,0){\psscalebox{-1 1}{%
-% \textcolor{green}{$\vec{n}-B$}}}}%
-% \ThreeDput[normal=1 0 0]{% yz-plane
-% \psline[linewidth=3pt,linecolor=red]{->}(0,4)(0,5.5)%
-% \uput[0](0,5.5){$\vec{n}-{top}$}}% cube and axes
-% \ThreeDput[normal=0 0 1](0,0,4){%
-% \psframe*[linecolor=gray75](4,4)\rput(2,2){\Huge\textbf{TOP}}}%
-% \ThreeDput[normal=0 1 0](4,4,0){%
-% \psframe*[linecolor=gray95](4,4)\rput(2,2){\Huge\textbf{side A}}}%
-% \ThreeDput[normal=1 0 0](4,0,0){%
-% \psframe*[linecolor=gray85](4,4)\rput(2,2){\Huge\textbf{side B}}}%
-% \ThreeDput[normal=0 0 1](0,0,4){%
-% \psline(4,0)\uput[90](3,0){$X-top$}\psline(0,4)\uput[0](0,3){$Y-top$}}%
-% \ThreeDput[normal=0 1 0](4,4,0){%
-% \psline(4,0)\uput[90](3,0){$X-A$}\psline(0,4)\uput[0](0,3){$Y-A$}}%
-% \ThreeDput[normal=1 0 0](4,0,0){%
-% \psline(4,0)\uput[90](3,0){$X-B$}\psline(0,4)\uput[0](0,3){$Y-B$}}%
-% \end{pspicture}
-% \end{CenterExample}
-%
-%
-% \subsection{3D parameters}\label{subsec:pst3d:3dParameter}
-% Table~\ref{tab:pst-3d:3dparameter} shows a compilation of
-% the parameters which can be used to influence 3D representations.
-%
-% \begin{table}[htb]
-% \caption{Summary of all 3D parameters}\label{tab:pst-3d:3dparameter}
-% \begin{tabular}{>{\ttfamily}l>{\ttfamily}l>{\ttfamily}l}
-% \textrm{name} & \textrm{values} & \textrm{default}\\\hline
-% viewpoint & <valuex valuey valuez> & 1 -1 1\\
-% viewangle & <angle> & 0\\
-% normal & <valuex valuey valuez> & 0 0 1\\
-% embedangle & <angle> & 0
-% \end{tabular}
-% \end{table}
-%
-% \subsubsection{\texttt{viewpoint}}\label{subsubsec:pst3d:viewpoint}
-% The viewing direction to the 3D object influences the
-% representation essentially. With \verb+viewpoint+ the $(x,y,z)$ coordinates
-% which denote the vector of the viewing direction are specified. Because of the
-% parallel projection the length of this vector is unimportant, so that
-% \verb+(10.5 1.5)+ and \verb+(2 1 3)+ yield the same representations.
-% Figure~\ref{fig:pst3d:viewpoint} shows who somebody would regard this
-% representation, whereat the representation itself is of course regarded from
-% another point in this case, otherwise one had to look directly onto the vector.
-%
-%
-% \SpecialCoor
-% \def\oeil{%
-% \pscurve(1;160)(0.8;180)(1;200)
-% \pscustom{\gsave\psarc(0,0){1}{165}{195}
-% \pscurve(1;195)(0.85;180)(1;165)
-% \fill[fillstyle=solid,fillcolor=blue]\grestore}
-% \pscurve[linewidth=.4pt](1;195)(0.85;180)(1;165)
-% {\psset{linewidth=2pt}
-% \psarc(0,1){1}{180}{270}
-% \psarc(0,-1){1}{90}{180}}
-% \psarc(0,0){1}{150}{210}
-% \psset{linewidth=4pt,linecolor=gray}
-% \pscurve(-.5,3.5)(-1,3)(-1.2,2.5)(-1.3,2)(-1.4,1)(-1.35,0.5)(-1.2,-.2)(-1.35,-.5)
-% (-1.4,-1)(-1.5,-1.5)(-1.8,-2)(-1.8,-2.3)(-1.65,-2.5)(-1.35,-2.55)(-.95,-2.8)
-% (-.95,-3.35)(-1,-3.65)(-.8,-4)(-.4,-4.1)
-% \pscurve(-.8,-4)(-.8,-4.2)(-.5,-4.5)(-.4,-5)(-.25,-5.5)(0,-5.8)(.5,-6)}
-%
-%
-% \begin{figure}[htb]
-% \centering
-% \begin{pspicture}(-5,-1)(5,6)
-% \psset{viewpoint=3 5 2}
-% \psset{unit=2}
-% \ThreeDput[normal=0 0 1](0,0,0){%
-% \psline{->}(0,0)(2,0)
-% \uput[90](2,0){$x$}
-% \qdisk(1,0.5){2pt}
-% \psline(1,0)(1,0.5)\psline(1,0.5)(0,0.5)
-% \psline[linestyle=dotted](0,0)(1,0.5)
-% \psset{fillstyle=solid,fillcolor=lightgray,linestyle=none}
-% \psframe(1,0)(1.15,.15)
-% \psframe(0,.5)(.15,.65)}
-% \ThreeDput[normal=1 0 0](0,0,0){%
-% \psline{->}(0,0)(2,0)
-% \uput[90](2,0){$y$}
-% \psline{->}(0,0)(0,2)
-% \uput[180](0,2){$z$}
-% \uput[90](0.5,0){0.5}
-% \uput[180](0,1.5){1.5}
-% \uput[135](0,0){0}
-% \rput(1.2,1.5){\large 3D representations}}
-% \ThreeDput[normal=0 1 0](0,0,0){%
-% \uput[90](-2,0){$x$}
-% \uput[90](-1,0){1}
-% \rput(-1.5,1){\texttt{pst-3d}}}
-% \ThreeDput[normal=.5 -1 0](0,0,0){%
-% \psframe[linestyle=none,fillstyle=hlines,hatchwidth=0.1pt,
-% hatchsep=2pt,hatchcolor=gray90](0,0)(1.118,1.5)
-% \psline[linewidth=3pt,linecolor=red,arrowinset=0]{->}(0,0)(1.118,1.5)
-% \psline[linestyle=dashed](0,0)(2.236,3)
-% \psline(1.118,0)(1.118,1.5)
-% \psline(1.118,1.5)(0,1.5)
-% \rput{53.3}(2.5348,3.4009){\psscalebox{0.2}{\oeil}}}
-% \end{pspicture}
-% \caption{Definition of the \texttt{viewpoints}}\label{fig:pst3d:viewpoint}
-% \end{figure}
-%
-%
-% For figure~\ref{fig:pst3d:viewpoint} a viewpoint of \verb+viewpoint=3 5 2+ was
-% defined. If one desires to regard it for instance from the $y$ axis from a
-% larger height, \verb+viewpoint=0 1 3+ could be chosen. The viewer has moved one
-% unit in $y$ direction and four units in $z$ direction from the centre (origin)
-% and regards everything from there.
-%
-%
-% \medskip
-% \begin{itemize}
-% \item The \verb+viewpoint+ principally \textbf{has} to be defined with
-% values not equal to zero, for this would lead to a division by zero.
-% Specifications of $0.001$ for a coordinate are already sufficing to
-% escape the division by zero and blind out the coordinate.
-% \end{itemize}
-%
-% A good value for the viewpoint would be \verb+viewpoint=1 1 0.5+ for instance,
-% which corresponds to a horizontal rotation by 45° and a vertical by ca. 20°.
-% Another meaningful point is also \verb+viewpoint=1.5 1 0.5+, which now
-% corresponds to a horizontal rotation by 33° and the same vertical rotation. Both
-% can be seen in the examples below.
-%
-% \medskip
-% \begin{CenterExample}
-% \begin{pspicture}(-3,-2.5)(-3,4)
-% \psset{unit=0.75}
-% \psset{viewpoint=1 1 0.5}
-% \IIIDKOSystem{5}
-% \end{pspicture}\hfill
-% \begin{pspicture}(-3,-2.5)(2.2,4)
-% \psset{unit=0.75}
-% \psset{viewpoint=1 1.5 0.5}
-% \psset{gridlabels=6pt}
-% \IIIDKOSystem{5}
-% \end{pspicture}
-% \end{CenterExample}
-%
-%
-% \subsubsection{\texttt{viewangle}}\label{subsubsec:pst3d:viewangle}
-% Additional to the \verb+viewpoint+ option one can rotate the object by another
-% option called \verb+viewangle+. This could also be done by the macro \verb+\rotatebox+,
-% but \verb+viewangle+ has some advantages .
-%
-%
-% \bigskip\noindent
-% \begin{CenterExample}
-% \begin{pspicture}(-1,-2.5)(4,4)
-% \psset{unit=0.7,viewpoint=1 1 0.5,viewangle=20}
-% \IIIDKOSystem{5}
-% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)}
-% \ThreeDput(2,2,0){\Huge Unten}
-% \end{pspicture}
-% \begin{pspicture}(-3,-2.5)(1,4)
-% \psset{unit=0.7,viewpoint=1 1.5 0.5,viewangle=-30}
-% \IIIDKOSystem{5}
-% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)}
-% \ThreeDput(2,2,0){\Huge Unten}
-% \end{pspicture}
-% \end{CenterExample}
-%
-%
-% \subsubsection{\texttt{normal}}\label{subsubsec:pst3d:normal}
-% \verb+normal+ denotes the direction of the normal
-% vector which is perpendicular to a corresponding area.
-% Therewith the posture of an object in three dimensional space is definitely
-% determined by the normal vector.
-%
-% \medskip\noindent
-% \begin{CenterExample}
-% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95}
-% \begin{pspicture}(-3.5,-2.5)(-3,5)
-% \psset{viewpoint=1 1.5 0.5}
-% \IIIDKOSystem{5}
-% \ThreeDput(0,0,0){\psframe*[linecolor=gray80](4,4)}
-% \ThreeDput(2,2,0){\huge\psrotatedown{xy-plane}}
-% \ThreeDput[normal=0 -1 0](0,0,0){\psframe*[linecolor=gray85](4,4)}
-% \ThreeDput[normal=0 1 0](2,0,2){\huge xz-plane}
-% \ThreeDput[normal=1 0 0](0,0,0){\psframe*[linecolor=gray90](4,4)}
-% \ThreeDput[normal=1 0 0](0,2,2){\huge yz-plane}
-% \ThreeDput[normal=0 0 1](0,0,0){% xy-plane
-% \psline{->}(0,0)(0,5)\psline{->}(0,0)(5,0)}
-% \ThreeDput[normal=0 1 0](0,0,0){\psline{->}(0,0)(0,5)}
-% \end{pspicture}
-% \end{CenterExample}
-%
-%
-% Without a assignment through the normal vector the above example could not have
-% been created that easily. Let us step through the code for a better
-% understanding.
-%
-% \begin{description}
-% \item[\cs{psset\{viewpoint=1 1.5 0.5\}}:] the
-% \verb+viewpoint+ is set to the point $P(1,1.5,0.5)$.
-% \item[\cs{IIIDKOSystem\{5\}}:] first the coordinate system with the grid is
-% drawn, so that axes and grid remain visible on the areas, which makes a
-% better optical allocation possible.
-% \item[\cs{ThreeDput(0,0,0)\{\textbackslash psframe*[linecolor=gray80](4,4)\}}:]
-% puts a square with a side length of four into the origin of ordinates with
-% the lower left edge. Since no normal vector is specified here, the default
-% value $\vec{n}=(0,0,1)$ is taken, wherewith the area is positioned in the
-% first quadrant of the $xy$ plane.
-% \item[\cs{ThreeDput(2,2,0)\{\textbackslash huge\textbackslash psrotatedown\{xy-plane\}\}}:]
-% puts the text rotated by $180$° centric to the point $(2,2,0)$ in the
-% \verb+xy-plane+.
-% \item[\cs{ThreeDput[normal=0 -1 0](0,0,0)\{\textbackslash psframe*[linecolor=gray85](4,4)\}}:]
-% puts a square with a side length of four in the origin of ordinates with the
-% lower left edge. Since the normal vector is the ``negative''{} $y$ axis, the
-% square is positioned in the first quadrant of the $xz$ plane. With
-% \verb+normal=0 1 0+ it would have been the second quadrant.
-% \item[\cs{ThreeDput[normal=0 1 0](2,0,2)\{\textbackslash huge xz-plane\}}:]
-% puts the text in the \verb+xy-plane+ centric to the point $(2,0,2)$. Because
-% the $xz$ plane is regarded from the back from the viewpoint, the normal
-% vector of the area has to be reversed, otherwise the text would be read from
-% the ``back''{}.
-% \item[\cs{ThreeDput[normal=1 0 0](0,0,0)\{\textbackslash psframe*[linecolor=gray90](4,4)\}}:]
-% puts a square with a side length of four in the origin of ordinates with the
-% lower left edge. The unit vector is the ``positive''{} $x$ axis, therefore
-% the square is positioned in the first quadrant of the $yz$ plane.
-% \item[\cs{ThreeDput[normal=1 0 0](0,2,2)\{\textbackslash huge yz-plane\}}:]
-% puts the text in the \verb+yz-plane+ centric to the point $(0,2,2)$. Since
-% the text is written at the ``positive''{} side of the area, the normal
-% vector stays the same.
-% \item[\cs{ThreeDput[normal=0 0 1](0,0,0)}:] the coordinate axes have been
-% overwritten by the three areas and are redrawn now, first the $xy$ axes.
-% \item[\cs{ThreeDput[normal=0 1 0](0,0,0)}:] and now the $z$ axis is drawn.
-% \end{description}
-%
-% \subsubsection{\texttt{embedangle}}\label{subsubsec:pst3d:embedangle}
-% With \verb+viewangle+ a rotation perpendicular to the plane
-% of the viewer could be made. With \verb+embedangle+ a rotation perpendicular to
-% the normal vector can be made. The counting of the angles is made in the
-% mathematical sense, counterclockwise.
-%
-% \medskip
-% \begin{CenterExample}
-% \newgray{gray75}{0.75}\newgray{gray85}{0.85}\newgray{gray95}{0.95}
-% \def\tBlack#1#2{%
-% \psframe[style=#2](2,2)
-% \rput(1,1){\textcolor{#1}{\textbf{PSTricks}}}}
-% \newpsstyle{SolidYellow}{fillstyle=solid,fillcolor=yellow}
-% \newpsstyle{TransparencyRed}{fillstyle=vlines,hatchcolor=red,
-% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth}
-% \newpsstyle{TransparencyBlue}{fillstyle=vlines,hatchcolor=gray75,%
-% hatchwidth=0.1\pslinewidth,hatchsep=1\pslinewidth}
-% \begin{pspicture}(-1.2,-1.75)(4.8,3.7)
-% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)}
-% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}}
-% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}}
-% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}}
-% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}}
-% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)}
-% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)}
-% \end{pspicture}
-% \psset{viewpoint=1 1 100}
-% \begin{pspicture}(-2.5,-4.5)(2.8,1.7)
-% \ThreeDput{\psgrid[subgriddiv=0](-2,0)(4,3)}
-% \ThreeDput(-1,0,0){\tBlack{black}{SolidYellow}}
-% \ThreeDput(2,0,0){\tBlack{black}{SolidYellow}}
-% \ThreeDput[embedangle=50](-1,0,0){\tBlack{gray}{TransparencyRed}}
-% \ThreeDput[embedangle=50](2,0,0){\tBlack{gray}{TransparencyBlue}}
-% \ThreeDput[normal=0 1 0](-1,0,0){\psline[linewidth=0.1,linecolor=red](0,4)}
-% \ThreeDput[normal=0 1 0](2,0,0){\psline[linewidth=0.1,linecolor=blue](0,4)}
-% \end{pspicture}
-% \end{CenterExample}
-%
-%
-% \StopEventually{}
-%
-% ^^A .................... End of the documentation part ....................
-%
-% \section{Driver file}
-%
-% The next bit of code contains the documentation driver file for \TeX{},
-% i.e., the file that will produce the documentation you are currently
-% reading. It will be extracted from this file by the \texttt{docstrip}
-% program.
-%
-%
-% \section{\PstIIIDPackage{} \LaTeX{} wrapper}
-%
-% \begin{macrocode}
-%<*latex-wrapper>
-%%
-\RequirePackage{pstricks}
-\ProvidesPackage{pst-3d}[2005/09/02 package wrapper for
- pst-3d.tex (hv)]
-\input{pst-3d.tex}
-\ProvidesFile{pst-3d.tex}
- [\filedate\space v\fileversion\space `PST-3d' (tvz)]
-%</latex-wrapper>
-% \end{macrocode}
-%
-% \section{\PstIIIDPackage{} code}
-%
-%<*pst-3d>
-%
-% \verb+pst-3d+ Require the basic \verb+pstricks+ package and for the key value
-% operations the \verb+pst-xkey+ package.
-%
-% \begin{macrocode}
-\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi
-\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % (hv 2005-09-03)
-% \end{macrocode}
-%
-% Catcodes changes.
-%
-% \begin{macrocode}
-\edef\PstAtCode{\the\catcode`\@}
-\catcode`\@=11\relax
-% \end{macrocode}
-%
-% Add the key-family name to the xkeyval package
-%
-% \begin{macrocode}
-\pst@addfams{pst-3d}
-% \end{macrocode}
-%
-\def\fileversion{1.00}
-\def\filedate{2005/09/03}
-\message{`PST-3d' v\fileversion, \filedate\space (tvz)}
-%
-% Mark the package as loaded
-%
-% \begin{macrocode}
-\csname PSTthreeDLoaded\endcsname
-\let\PSTthreeDLoaded\endinput
-% \end{macrocode}
-%
-% \subsection{Basic 3D transformations}
-%
-% \begin{macro}{\tx@SetMatrixThreeD}
-% Viewpoint for 3D coordinates is given by three angles: $\alpha$, $\beta$ and
-% $\gamma$. $\alpha$ and $\beta$ determine the direction from which one is
-% looking. $\gamma$ then determines the orientation of the observing.
-% When $\alpha$, $\beta$ and $\gamma$ are all zero, the observer is looking
-% from the negative part of the $y$-axis, and sees the $xz$-plane the way in
-% 2D one sees the $xy$ plan. Hence, to convert the 3D coordinates to their 2D
-% project, $\langle x, y, z\rangle$ map to $\langle x, z\rangle$.
-% When the orientation is different, we rotate the coordinates, and then
-% perform the same projection.
-% We move up to latitude $\beta$, over to longitude $\alpha$, and then rotate
-% by $\gamma$. This means that we first rotate around $y$-axis by $\gamma$,
-% then around $x$-axis by $\beta$, and the around $z$-axis by $\alpha$.
-%
-% Here are the matrices:
-% \begin{eqnarray*}
-% R_z(\alpha) & = & \left[
-% \begin{array}{ccc}
-% \cos \alpha & -\sin \alpha & 0 \\
-% \sin \alpha & cos \alpha & 0 \\
-% 0 & 0 & 1
-% \end{array} \right] \\
-% R_x(\beta) & = & \left[
-% \begin{array}{ccc}
-% 1 & 0 & 0 \\
-% 0 & \cos \beta & \sin \beta \\
-% 0 & -\sin \beta & \cos \beta
-% \end{array} \right] \\
-% R_y(\gamma) & = & \left[
-% \begin{array}{ccc}
-% \cos \gamma & 0 & -\sin \gamma \\
-% 0 & 1 & 0 \\
-% \sin \gamma & 0 & \cos \gamma
-% \end{array} \right]
-% \end{eqnarray*}
-%
-% The rotation of a coordinate is then performed by the matrix $R_z(\alpha)
-% R_x(\beta) R_y(\gamma)$. The first and third columns of the matrix are the
-% basis vectors of the plan upon which the 3D coordinates are project (the old
-% basis vectors were $\langle 1, 0, 0\rangle$ and $\langle 0, 0, 1\rangle$; rotating these
-% gives the first and third columns of the matrix).
-%
-% These new base vectors are:
-% \begin{eqnarray*}
-% \tilde{x} & = & \left[
-% \begin{array}{c}
-% \cos\alpha \cos\gamma - \sin\beta \sin\alpha \sin\gamma \\
-% \sin\alpha \cos\gamma + \sin\beta \cos\alpha \sin\gamma \\
-% \cos\beta \sin\gamma
-% \end{array} \right] \\
-% \tilde{z} & = & \left[
-% \begin{array}{c}
-% -\cos\alpha \sin\gamma - \sin\beta \sin\alpha \cos\gamma \\
-% -\sin\alpha \sin\gamma + \sin\beta \cos\alpha \cos\gamma \\
-% \cos\beta \cos\gamma
-% \end{array} \right]
-% \end{eqnarray*}
-%
-% Rather than specifying the angles $\alpha$ and $\beta$, the user gives a
-% vector indicating where the viewpoint is. This new viewpoint is the rotation
-% o the old viewpoint. The old viewpoint is $\langle 0, -1, 0\rangle$, and so the new
-% viewpoint is
-% \[
-% R_z(\alpha) R_x(\beta) \left[ \begin{array}{c} 0\\-1\\0 \end{array} \right]
-% \, = \,
-% \left[ \begin{array}{c}
-% \cos\beta \sin\alpha \\
-% -\cos\beta \cos\alpha \\
-% \sin\beta
-% \end{array} \right]
-% \, = \,
-% \left[ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right]
-% \]
-% Therefore,
-% \begin{eqnarray*}
-% \alpha & = & \arc\tan (v_1 / -v_2) \\
-% \beta & = & \arc\tan (v_3 \sin\alpha / v_1)
-% \end{eqnarray*}
-% Unless $p_1=p_2=0$, in which case $\alpha=0$ and $\beta=\sign(p_3)90$, or
-% $p_1=p_3=0$, in which case $\beta=0$.
-%
-% The syntax of \verb+SetMatrixThreeD+ is
-% \[
-% v_1\ v_2\ v_3\ \gamma\ \mathrm{SetMatrixThreeD}
-% \]
-% \verb+SetMatrixThreeD+ first computes
-% \[
-% \begin{array}{ll}
-% a=\sin\alpha & b=\cos\alpha\\
-% c=\sin\beta & d=\cos\beta\\
-% e=\sin\gamma & f=\cos\gamma
-% \end{array}
-% \]
-% and then sets \verb+Matrix3D+ to \verb+[+$\tilde{x}$ $\tilde{z}$\verb+]+.
-%
-% \begin{macrocode}
-\pst@def{SetMatrixThreeD}<%
- dup sin /e ED cos /f ED
- /p3 ED /p2 ED /p1 ED
- p1 0 eq
- { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def
- p3 p2 abs
- }
- { p2 0 eq
- { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def
- p3 p1 abs
- }
- { p1 dup mul p2 dup mul add sqrt dup
- p1 exch div /a ED
- p2 exch div neg /b ED
- p3 p1 a div
- }
- ifelse
- }
- ifelse
- atan dup sin /c ED cos /d ED
- /Matrix3D
- [
- b f mul c a mul e mul sub
- a f mul c b mul e mul add
- d e mul
- b e mul neg c a mul f mul sub
- a e mul neg c b mul f mul add
- d f mul
- ] def>
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\tx@ProjThreeD}
-% The syntax of the macro \verb+tx@ProjThreeD+ is
-% \[
-% x\ y\ z\ \mathrm{ProjThreeD}\ x'\ y'
-% \]
-% where $x'=\langle x, y, z\rangle \cdot \tilde{x}$ and $y'=\langle x, y, z\rangle \cdot
-% \tilde{z}$.
-%
-% \begin{macrocode}
-\pst@def{ProjThreeD}<%
- /z ED /y ED /x ED
- Matrix3D aload pop
- z mul exch y mul add exch x mul add
- 4 1 roll
- z mul exch y mul add exch x mul add
- exch>
-% \end{macrocode}
-%
-% To embed 2D $\langle x, y\rangle$ coordinates in 3D, the user specifies the normal
-% vector and an angle. If we decompose this normal vector into an angle, as
-% when converting 3D coordinates to 2D coordinates, and let $\hat\alpha$,
-% $\hat\beta$ and $\hat\gamma$ be the three angles, then when these angles are
-% all zero the coordinate $\langle x, y\rangle$ gets mapped to $\langle x, 0, y\rangle$, and
-% otherwise $\langle x, y\rangle$ gets mapped to
-% \[
-% R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)
-% \left[ \begin{array}{c} x \\ 0 \\ y \end{array} \right]
-% \, = \,
-% \left[ \begin{array}{c}
-% \hat{x}_1 x + \hat{z}_1 y\\
-% \hat{x}_2 x + \hat{z}_2 y\\
-% \hat{x}_3 x + \hat{z}_3 y
-% \end{array} \right]
-% \]
-% where $\hat{x}$ and $\hat{z}$ are the first and third columns of $R_z(\hat\alpha) R_x(\hat\beta) R_y(\hat\gamma)$.
-%
-% Now add on a 3D-origin:
-% \[
-% \left[ \begin{array}{c}
-% \hat{x}_1 x + \hat{z}_1 y + x_0\\
-% \hat{x}_2 x + \hat{z}_2 y + y_0\\
-% \hat{x}_3 x + \hat{z}_3 y + z_0
-% \end{array} \right]
-% \]
-%
-% Now when we project back onto 2D coordinates, we get
-% \begin{align*}
-% x' & = \tilde{x}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) +
-% \tilde{x}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) +
-% \tilde{x}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\
-% & =
-% (\tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) x
-% + (\tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) y
-% + \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0\\
-% y' & = \tilde{z}_1(\hat{x}_1 x + \hat{z}_1 y + x_0) +
-% \tilde{z}_2(\hat{x}_2 x + \hat{z}_2 y + y_0) +
-% \tilde{z}_3(\hat{x}_3 x + \hat{z}_3 y + z_0)\\
-% & =
-% (\tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) x
-% + (\tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) y
-% + \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0
-% \end{align*}
-% Hence, the transformation matrix is:
-% \[
-% \left[ \begin{array}{c}
-% \tilde{x}_1\hat{x}_1 + \tilde{x}_2\hat{x}_2 + \tilde{x}_3\hat{x}_3) \\
-% \tilde{z}_1\hat{x}_1 + \tilde{z}_2\hat{x}_2 + \tilde{z}_3\hat{x}_3) \\
-% \tilde{x}_1\hat{z}_1 + \tilde{x}_2\hat{z}_2 + \tilde{x}_3\hat{z}_3) \\
-% \tilde{z}_1\hat{z}_1 + \tilde{z}_2\hat{z}_2 + \tilde{z}_3\hat{z}_3) \\
-% \tilde{x}_1 x_0 + \tilde{x}_2 y_0 + \tilde{z}_3 z_0 \\
-% \tilde{z}_1 x_0 + \tilde{z}_2 y_0 + \tilde{z}_3 z_0
-% \end{array} \right]
-% \]
-% \end{macro}
-% \begin{macro}{\tx@SetMatrixEmbed}
-% The syntax of \verb+SetMatrixEmbed+ is
-% \begin{align*}
-% x_0\ y_0\ z_0\ \hat{v_1}\ \hat{v_2}\ \hat{v_3}\ \hat{\gamma}\\
-% v_1\ v_2\ v_3\ \gamma\ \mathrm{setMatrixEmbed}
-% \end{align*}
-% \verb+SetMatrixEmbed+ first sets \verb+<x1 x2 x3 y1 y2 y3>+ to the basis vectors for
-% the viewpoint projection (the tilde stuff above). Then it sets \verb+Matrix3D+ to
-% the basis vectors for the embedded plane. Finally, it sets the
-% transformation matrix to the matrix given above.
-%
-% \begin{macrocode}
-\pst@def{SetMatrixEmbed}<%
- \tx@SetMatrixThreeD
- Matrix3D aload pop
- /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED
- \tx@SetMatrixThreeD
- [
- Matrix3D aload pop
- z3 mul exch z2 mul add exch z1 mul add 4 1 roll
- z3 mul exch z2 mul add exch z1 mul add
- Matrix3D aload pop
- x3 mul exch x2 mul add exch x1 mul add 4 1 roll
- x3 mul exch x2 mul add exch x1 mul add
- 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy
- x3 mul exch x2 mul add exch x1 mul add 4 1 roll
- z3 mul exch z2 mul add exch z1 mul add
- ]
- concat>
-% \end{macrocode}
-% \end{macro}
-%
-% \subsection{Parameter}
-%
-% \begin{macro}{\psk@viewpoint}
-% First we need a macro \verb+\pssetzlength+ for the third coordinate. It is adopted from
-% the definition of the y-axes:
-% \begin{macrocode}
-\let\pssetzlength\pssetylength
-% \end{macrocode}
-% The viewpoint is set by its three coordinates $(x\ y\ z)$. It is preset
-% to $x=1$, $y=-1$ and $z=1$.
-% \begin{macrocode}
-\define@key[psset]{pst-3d}{viewpoint}{%
- \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
- \let\psk@viewpoint\pst@tempg}
-\def\psset@@viewpoint#1 #2 #3 #4\@nil{%
- \begingroup
- \pssetxlength\pst@dima{#1}%
- \pssetylength\pst@dimb{#2}%
- \pssetzlength\pst@dimc{#3}%
- \xdef\pst@tempg{%
- \pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}%
- \endgroup}
-\psset[pst-3d]{viewpoint=1 -1 1}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\psk@viewangle}
-% \begin{macrocode}
-\define@key[psset]{pst-3d}{viewangle}{%
- \pst@getangle{#1}\psk@viewangle}
-\psset[pst-3d]{viewangle=0}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\psk@normal}
-% \begin{macrocode}
-\define@key[psset]{pst-3d}{normal}{%
- \pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
- \let\psk@normal\pst@tempg}
-\psset[pst-3d]{normal=0 0 1}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\psk@embedangle}
-% \begin{macrocode}
-\define@key[psset]{pst-3d}{embedangle}{%
- \pst@getangle{#1}\psk@embedangle}
-\psset[pst-3d]{embedangle=0}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\psTshadowsize}
-% \begin{macrocode}
-\define@key[psset]{pst-3d}{Tshadowsize}{%
- \pst@checknum{#1}\psTshadowsize}
-\psset[pst-3d]{Tshadowsize=1}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\psk@Tshadowangle}
-% \begin{macrocode}
-\define@key[psset]{pst-3d}{Tshadowangle}{%
- \pst@getangle{#1}\psk@Tshadowangle}
-\psset[pst-3d]{Tshadowangle=60}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\psTshadowcolor}
-% \begin{macrocode}
-\define@key[psset]{pst-3d}{Tshadowcolor}{%
- \pst@getcolor{#1}\psTshadowcolor}
-\psset[pst-3d]{Tshadowcolor=lightgray}
-% \end{macrocode}
-% \end{macro}
-%
-
-% \subsection{\texttt{PostScript} code}
-%
-% \begin{macro}{\tx@TMSave}
-% \begin{macrocode}
-\pst@def{TMSave}<%
- tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if
- /TMatrix [ TMatrix CM ] cvx def>
-% \end{macrocode}
-% \end{macro}
-% \begin{macro}{\tx@TMRestore}
-% \begin{macrocode}
-\pst@def{TMRestore}<%
- CP /TMatrix [ TMatrix setmatrix ] cvx def moveto>
-%
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\tx@TMChange}
-% The syntax:
-% \begin{verbatim}
-% {<Proc for modifying tm>} TMChange
-% \end{verbatim}
-% \begin{macrocode}
-\pst@def{TMChange}<%
- \tx@TMSave
- /cp [ currentpoint ] cvx def % ??? Check this later.
- CM
-% \end{macrocode}
-%
-% Set ''standard`` coordinate system , with \verb+pt+ units and origin at currentpoint.
-% This let's us rotate, or whatever, around \TeX's current point, without
-% having to worry about strange coordinate systems that the dvi-to-ps
-% driver might be using.
-% \begin{macrocode}
- CP T \tx@STV
-% \end{macrocode}
-% Let M = old matrix (on stack), and M' equal current matrix. Then
-% go from M' to M by applying M Inv(M').
-% \begin{macrocode}
- CM matrix invertmatrix % Inv(M')
- matrix concatmatrix % M Inv(M')
-% \end{macrocode}
-% Now modify transformation matrix:
-% \begin{macrocode}
- exch exec
-% \end{macrocode}
-% Now apply M Inv(M')
-% \begin{macrocode}
- concat cp moveto>
-% \end{macrocode}
-% \end{macro}
-%
-% \subsection{Three dimensional operations}
-%
-% There is only one macro which collects all the basic operations for three dimansional representation
-% of a text or graphic object.
-%
-% \begin{macro}{\ThreeDput}
-% \begin{macrocode}
-\def\ThreeDput{\def\pst@par{}\pst@object{ThreeDput}}
-\def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}}
-\def\ThreeDput@ii(#1,#2,#3){%
- \pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}}
-\def\ThreeDput@iii(#1,#2,#3){%
- \begingroup
- \use@par
- \if@star\pst@starbox\fi
- \pst@makesmall\pst@hbox
- \pssetxlength\pst@dima{#1}%
- \pssetylength\pst@dimb{#2}%
- \pssetzlength\pst@dimc{#3}%
- \leavevmode
- \hbox{%
- \pst@Verb{%
- { \pst@number\pst@dima
- \pst@number\pst@dimb
- \pst@number\pst@dimc
- \psk@normal
- \psk@embedangle
- \psk@viewpoint
- \psk@viewangle
- \tx@SetMatrixEmbed
- } \tx@TMChange}%
- \box\pst@hbox
- \pst@Verb{\tx@TMRestore}}%
- \endgroup
- \ignorespaces}
-% \end{macrocode}
-% \end{macro}
-%
-%
-% \subsection{Arithmetic\label{Arithmetic}}
-%
-% \begin{macro}{\pst@sinandcos}
-% Syntax:
-% \begin{LVerbatim}
-% \pst@sinandcos{<dim>}{<int>}
-% \end{LVerbatim}
-% <dim>, in "sp" units, should equal 100,000 times the angle, in degrees
-% between 0 and 90. <int> should equal the angle's quadrant (0, 1, 2 or 3).
-% \verb+\pst@dimg+ is set to $\sin(\theta)$ and \verb+\pst@dimh+ is set to
-% $\cos(\theta)$ (in pt's).
-%
-% The algorithms uses the usual McLaurin expansion.
-% \begin{macrocode}
-\def\pst@sinandcos#1{%
- \begingroup
- \pst@dima=#1\relax
- \pst@dima=.366022\pst@dima %Now 1pt=1/32rad
- \pst@dimb=\pst@dima % dimb->32sin(angle) in pts
- \pst@dimc=32\p@ % dimc->32cos(angle) in pts
- \pst@dimtonum\pst@dima\pst@tempa
- \pst@cntb=\tw@
- \pst@cntc=-\@ne
- \pst@cntg=32
- \loop
- \ifnum\pst@dima>\@cclvi % 256
- \pst@dima=\pst@tempa\pst@dima
- \divide\pst@dima\pst@cntg
- \divide\pst@dima\pst@cntb
- \ifodd\pst@cntb
- \advance\pst@dimb \pst@cntc\pst@dima
- \pst@cntc=-\pst@cntc
- \else
- \advance\pst@dimc by \pst@cntc\pst@dima
- \fi
- \advance\pst@cntb\@ne
- \repeat
- \divide\pst@dimb\pst@cntg
- \divide\pst@dimc\pst@cntg
- \global\pst@dimg\pst@dimb
- \global\pst@dimh\pst@dimc
- \endgroup}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\pst@getsinandcos}
-% \verb+\pst@getsinandcos+ normalizes the angle to be in the first quadrant, sets
-% \verb+\pst@quadrant+ to 0 for the first quadrant, 1 for the second, 2 for the
-% third, and 3 for the fourth, invokes \verb+\pst@sinandcos+, and sets \verb+\pst@sin+
-% to the sine and \verb+\pst@cos+ to the cosine.
-% \begin{macrocode}
-\def\pst@getsinandcos#1{%
- \pst@dimg=100000sp
- \pst@dimg=#1\pst@dimg
- \pst@dimh=36000000sp
- \pst@cntg=0
- \loop
- \ifnum\pst@dimg<\z@
- \advance\pst@dimg\pst@dimh
- \repeat
- \loop
- \ifnum\pst@dimg>\pst@dimh
- \advance\pst@dimg-\pst@dimh
- \repeat
- \pst@dimh=9000000sp
- \def\pst@tempg{%
- \ifnum\pst@dimg<\pst@dimh\else
- \advance\pst@dimg-\pst@dimh
- \advance\pst@cntg\@ne
- \ifnum\pst@cntg>\thr@@ \advance\pst@cntg-4 \fi
- \expandafter\pst@tempg
- \fi}%
- \pst@tempg
- \chardef\pst@quadrant\pst@cntg
- \ifdim\pst@dimg=\z@
- \def\pst@sin{0}%
- \def\pst@cos{1}%
- \else
- \pst@sinandcos\pst@dimg
- \pst@dimtonum\pst@dimg\pst@sin
- \pst@dimtonum\pst@dimh\pst@cos
- \fi%
-}
-% \end{macrocode}
-% \end{macro}
-%
-% \subsection{Tilting}
-%
-% \begin{macro}{\pstilt}
-% \begin{macrocode}
-\def\pstilt#1{\pst@makebox{\pstilt@{#1}}}
-\def\pstilt@#1{%
- \begingroup
- \leavevmode
- \pst@getsinandcos{#1}%
- \hbox{%
- \ifcase\pst@quadrant
- \kern\pst@cos\dp\pst@hbox
- \pst@dima=\pst@cos\ht\pst@hbox
- \ht\pst@hbox=\pst@sin\ht\pst@hbox
- \dp\pst@hbox=\pst@sin\dp\pst@hbox
- \or
- \kern\pst@sin\ht\pst@hbox
- \pst@dima=\pst@sin\dp\pst@hbox
- \ht\pst@hbox=\pst@cos\ht\pst@hbox
- \dp\pst@hbox=\pst@cos\dp\pst@hbox
- \or
- \kern\pst@cos\ht\pst@hbox
- \pst@dima=\pst@sin\dp\pst@hbox
- \pst@dimg=\pst@sin\ht\pst@hbox
- \ht\pst@hbox=\pst@sin\dp\pst@hbox
- \dp\pst@hbox=\pst@dimg
- \or
- \kern\pst@sin\dp\pst@hbox
- \pst@dima=\pst@sin\ht\pst@hbox
- \pst@dimg=\pst@cos\ht\pst@hbox
- \ht\pst@hbox=\pst@cos\dp\pst@hbox
- \dp\pst@hbox=\pst@dimg
- \fi
- \pst@Verb{%
- { [ 1 0
- \pst@cos\space \ifnum\pst@quadrant>\@ne neg \fi
- \pst@sin\space
- \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
- \ifodd\pst@quadrant exch \fi
- 0 0
- ] concat
- } \tx@TMChange}%
- \box\pst@hbox
- \pst@Verb{\tx@TMRestore}%
- \kern\pst@dima}%
- \endgroup}
-% \end{macrocode}
-% \end{macro}
-%
-% \begin{macro}{\psTilt}
-% \begin{macrocode}
-\def\psTilt#1{\pst@makebox{\psTilt@{#1}}}
-\def\psTilt@#1{%
- \begingroup
- \leavevmode
- \pst@getsinandcos{#1}%
- \hbox{%
- \ifodd\pst@quadrant
- \pst@@divide{\dp\pst@hbox}{\pst@cos\p@}%
- \ifnum\pst@quadrant=\thr@@\kern\else\pst@dima=\fi\pst@sin\pst@dimg
- \pst@@divide{\ht\pst@hbox}{\pst@cos\p@}%
- \ifnum\pst@quadrant=\@ne\kern\else\pst@dima=\fi\pst@sin\pst@dimg
- \else
- \ifdim\pst@sin\p@=\z@
- \@pstrickserr{\string\psTilt\space angle cannot be 0 or 180}\@ehpa
- \def\pst@sin{.7071}%
- \def\pst@cos{.7071}%
- \fi
- \pst@@divide{\dp\pst@hbox}{\pst@sin\p@}%
- \ifnum\pst@quadrant=\z@\kern\else\pst@dima=\fi\pst@cos\pst@dimg
- \pst@@divide{\ht\pst@hbox}{\pst@sin\p@}%
- \ifnum\pst@quadrant=\tw@\kern\else\pst@dima=\fi\pst@cos\pst@dimg
- \fi
- \ifnum\pst@quadrant>\@ne
- \pst@dimg=\ht\pst@hbox
- \ht\pst@hbox=\dp\pst@hbox
- \dp\pst@hbox=\pst@dimg
- \fi
- \pst@Verb{%
- { [ 1 0
- \pst@cos\space \pst@sin\space
- \ifodd\pst@quadrant exch \fi
- \tx@Div
- \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
- \ifnum\pst@quadrant>\@ne -1 \else 1 \fi
- 0 0
- ] concat
- } \tx@TMChange}%
- \box\pst@hbox
- \pst@Verb{\tx@TMRestore}%
- \kern\pst@dima}%
- \endgroup}
-% \end{macrocode}
-% \end{macro}
-%
-%
-% \subsection{Shadow}
-%
-% \begin{macro}{\psshadow}
-% \begin{macrocode}
-\def\psshadow{\pst@object{psshadow}}
-\def\psshadow@i{\pst@makebox{\psshadow@ii}}
-\def\psshadow@ii{%
- \begingroup
- \use@par
- \leavevmode
- \pst@getsinandcos{\psk@Tshadowangle}%
- \hbox{%
- \lower\dp\pst@hbox\hbox{%
- \pst@Verb{%
- { [ 1 0
- \pst@cos\space \psTshadowsize mul
- \ifnum\pst@quadrant>\@ne neg \fi
- \pst@sin\space \psTshadowsize mul
- \ifnum\pst@quadrant>\z@\ifnum\pst@quadrant<\thr@@ neg \fi\fi
- \ifodd\pst@quadrant exch \fi
- 0 0
- ] concat
- } \tx@TMChange}}%
- \hbox to\z@{% patch 2 (hv), to get it run with xcolor _and_ TeX
- \pst@Verb{ gsave \pst@usecolor\psTshadowcolor}%
- \copy\pst@hbox
- \pst@Verb{ grestore}\hss}%
-% \hbox to\z@{{\@nameuse{\psTshadowcolor}\copy\pst@hbox\hss}}%
- \pst@Verb{\tx@TMRestore}%
- \box\pst@hbox}%
- \endgroup}
-% \end{macrocode}
-% \end{macro}
-%
-% \subsection{Closing}
-%
-% Catcodes restoration.
-%
-% \begin{macrocode}
-\catcode`\@=\PstAtCode\relax
-% \end{macrocode}
-%
-%</pst-3d>
-%
-\endinput
-%%
-%% END pst-3d.tex
diff --git a/Master/texmf-dist/source/generic/pst-3d/pst-3d.ins b/Master/texmf-dist/source/generic/pst-3d/pst-3d.ins
deleted file mode 100644
index 4e3e1e54e90..00000000000
--- a/Master/texmf-dist/source/generic/pst-3d/pst-3d.ins
+++ /dev/null
@@ -1,38 +0,0 @@
-%% `pst-3d.ins'
-%%
-%% Docstrip installation instruction file for docstyle `pst-lens'
-%%
-%% Timothy Van Zandt <tvz@nwu.edu> (tvz)
-%% Herbert Voss <voss@pstricks.de> (hv)
-%%
-%% December 31, 2005
-
-\def\batchfile{pst-3d.ins}
-\input docstrip.tex
-\keepsilent
-\Msg{*** Generating the `pst-3d' package ***}
-\askforoverwritefalse
-\generate{\file{pst-3d.tex}{\from{pst-3d.dtx}{pst-3d}}}
-\generate{\file{pst-3d.sty}{\from{pst-3d.dtx}{latex-wrapper}}}
-%
-\ifToplevel{%
-\Msg{***********************************************************}
-\Msg{*}
-\Msg{* To finish the installation you have to move the files}
-\Msg{* pst-3d.sty and pst-3d.tex in a directory/folder searched by TeX.}
-\Msg{*}
-\Msg{* To produce the documentation, run the file `pst-3d.dtx'}
-\Msg{* through LaTeX.}
-\Msg{*}
-\Msg{* If you require the commented code, desactivating the}
-\Msg{* OnlyDescription macro, you must recompile, execute:}
-\Msg{* `makeindex -s gind.ist pst-3d'}
-\Msg{* `makeindex -s gglo.ist -o pst-3d.gls pst-3d.glo'}
-\Msg{* and recompile.}
-\Msg{*}
-\Msg{***********************************************************}
-}
-
-\endinput
-%%
-%% End of file `pst-3d.ins'
diff --git a/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex b/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex
index 9c84eebdf73..ec28ebb0aa1 100644
--- a/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex
+++ b/Master/texmf-dist/tex/generic/pst-3d/pst-3d.tex
@@ -1,106 +1,47 @@
-%%
+%% $Id: pst-3d.tex 289 2010-02-13 14:35:35Z herbert $
%% This is file `pst-3d.tex',
-%% generated with the docstrip utility.
-%%
-%% The original source files were:
%%
-%% pst-3d.dtx (with options: `pst-3d')
-%%
%% IMPORTANT NOTICE:
-%%
-%% For the copyright see the source file.
-%%
-%% Any modified versions of this file must be renamed
-%% with new filenames distinct from pst-3d.tex.
-%%
-%% For distribution of the original source see the terms
-%% for copying and modification in the file pst-3d.dtx.
-%%
-%% This generated file may be distributed as long as the
-%% original source files, as listed above, are part of the
-%% same distribution. (The sources need not necessarily be
-%% in the same archive or directory.)
%%
-%% Package `pst-3d.dtx'
+%% Package `pst-3d.tex'
%%
%% Timothy Van Zandt <tvz@nwu.edu> (tvz)
-%% Herbert Voss <voss@pstricks.de> (hv)
-%%
-%% September 03, 2005
-%%
-%% This file is under the LaTeX Project Public License
-%% See CTAN archives in directory macros/latex/base/lppl.txt.
+%% Herbert Voss <hvoss _at_ tug.org> (hv)
+%%
+%% This program can be redistributed and/or modified under the terms
+%% of the LaTeX Project Public License Distributed from CTAN archives
+%% in directory macros/latex/base/lppl.txt.
%%
%% DESCRIPTION:
%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks
%%
-
-
+%
+\csname PSTthreeDLoaded\endcsname
+\let\PSTthreeDLoaded\endinput
\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi
-\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % (hv 2005-09-03)
+\ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi % (hv 2005-09-03)
+%
+\def\fileversion{1.10}
+\def\filedate{2010/02/13}
+\message{`PST-3d' v\fileversion, \filedate\space (tvz)}
+%
\edef\PstAtCode{\the\catcode`\@}
\catcode`\@=11\relax
\pst@addfams{pst-3d}
-\def\fileversion{1.00}
-\def\filedate{2005/09/03}
-\message{`PST-3d' v\fileversion, \filedate\space (tvz)}
-\csname PSTthreeDLoaded\endcsname
-\let\PSTthreeDLoaded\endinput
-\pst@def{SetMatrixThreeD}<%
- dup sin /e ED cos /f ED
- /p3 ED /p2 ED /p1 ED
- p1 0 eq
- { /a 0 def /b p2 0 le { 1 } { -1 } ifelse def
- p3 p2 abs
- }
- { p2 0 eq
- { /a p1 0 lt { -1 } { 1 } ifelse def /b 0 def
- p3 p1 abs
- }
- { p1 dup mul p2 dup mul add sqrt dup
- p1 exch div /a ED
- p2 exch div neg /b ED
- p3 p1 a div
- }
- ifelse
- }
- ifelse
- atan dup sin /c ED cos /d ED
- /Matrix3D
- [
- b f mul c a mul e mul sub
- a f mul c b mul e mul add
- d e mul
- b e mul neg c a mul f mul sub
- a e mul neg c b mul f mul add
- d f mul
- ] def>
-\pst@def{ProjThreeD}<%
- /z ED /y ED /x ED
- Matrix3D aload pop
- z mul exch y mul add exch x mul add
- 4 1 roll
- z mul exch y mul add exch x mul add
- exch>
-\pst@def{SetMatrixEmbed}<%
- \tx@SetMatrixThreeD
- Matrix3D aload pop
- /z3 ED /z2 ED /z1 ED /x3 ED /x2 ED /x1 ED
- \tx@SetMatrixThreeD
- [
- Matrix3D aload pop
- z3 mul exch z2 mul add exch z1 mul add 4 1 roll
- z3 mul exch z2 mul add exch z1 mul add
- Matrix3D aload pop
- x3 mul exch x2 mul add exch x1 mul add 4 1 roll
- x3 mul exch x2 mul add exch x1 mul add
- 3 -1 roll 3 -1 roll 4 -1 roll 8 -3 roll 3 copy
- x3 mul exch x2 mul add exch x1 mul add 4 1 roll
- z3 mul exch z2 mul add exch z1 mul add
- ]
- concat>
+
+%% prologue for postcript
+%
+\pstheader{pst-3d.pro}%
+%
+\def\tx@SetMatrixThreeD{ tx@3Ddict begin SetMatrixThreeD end }
+\def\tx@ProjThreeD{ tx@3Ddict begin ProjThreeD end }
+\def\tx@SetMatrixEmbed{ tx@3Ddict begin SetMatrixEmbed end }
+\def\tx@TMSave{ tx@3Ddict begin TMSave end }
+\def\tx@TMRestore{ tx@3Ddict begin TMRestore end }
+\def\tx@TMChange{ tx@3Ddict begin TMChange end }
+%
\let\pssetzlength\pssetylength
-\define@key[psset]{pst-3d}{viewpoint}{%
+\define@key[psset]{pst-3d}{viewpoint}[1 -1 1]{%
\pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
\let\psk@viewpoint\pst@tempg}
\def\psset@@viewpoint#1 #2 #3 #4\@nil{%
@@ -112,55 +53,36 @@
\pst@number\pst@dima \pst@number\pst@dimb \pst@number\pst@dimc}%
\endgroup}
\psset[pst-3d]{viewpoint=1 -1 1}
-\define@key[psset]{pst-3d}{viewangle}{%
- \pst@getangle{#1}\psk@viewangle}
+\define@key[psset]{pst-3d}{viewangle}[0]{\pst@getangle{#1}\psk@viewangle}
\psset[pst-3d]{viewangle=0}
-\define@key[psset]{pst-3d}{normal}{%
+\define@key[psset]{pst-3d}{normal}[0 0 1]{%
\pst@expandafter\psset@@viewpoint#1 {} {} {} \@nil
\let\psk@normal\pst@tempg}
\psset[pst-3d]{normal=0 0 1}
-\define@key[psset]{pst-3d}{embedangle}{%
- \pst@getangle{#1}\psk@embedangle}
+\define@key[psset]{pst-3d}{embedangle}[0]{\pst@getangle{#1}\psk@embedangle}
\psset[pst-3d]{embedangle=0}
-\define@key[psset]{pst-3d}{Tshadowsize}{%
- \pst@checknum{#1}\psTshadowsize}
+\define@key[psset]{pst-3d}{Tshadowsize}[1]{\pst@checknum{#1}\psTshadowsize}
\psset[pst-3d]{Tshadowsize=1}
-\define@key[psset]{pst-3d}{Tshadowangle}{%
- \pst@getangle{#1}\psk@Tshadowangle}
+\define@key[psset]{pst-3d}{Tshadowangle}[60]{\pst@getangle{#1}\psk@Tshadowangle}
\psset[pst-3d]{Tshadowangle=60}
-\define@key[psset]{pst-3d}{Tshadowcolor}{%
- \pst@getcolor{#1}\psTshadowcolor}
+\define@key[psset]{pst-3d}{Tshadowcolor}[lightgray]{\pst@getcolor{#1}\psTshadowcolor}
\psset[pst-3d]{Tshadowcolor=lightgray}
-
-\pst@def{TMSave}<%
- tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } def } if
- /TMatrix [ TMatrix CM ] cvx def>
-\pst@def{TMRestore}<%
- CP /TMatrix [ TMatrix setmatrix ] cvx def moveto>
-\pst@def{TMChange}<%
- \tx@TMSave
- /cp [ currentpoint ] cvx def % ??? Check this later.
- CM
- CP T \tx@STV
- CM matrix invertmatrix % Inv(M')
- matrix concatmatrix % M Inv(M')
- exch exec
- concat cp moveto>
-\def\ThreeDput{\def\pst@par{}\pst@object{ThreeDput}}
+%
+\def\ThreeDput{\pst@object{ThreeDput}}
\def\ThreeDput@i{\@ifnextchar({\ThreeDput@ii}{\ThreeDput@ii(\z@,\z@,\z@)}}
\def\ThreeDput@ii(#1,#2,#3){%
\pst@killglue\pst@makebox{\ThreeDput@iii(#1,#2,#3)}}
\def\ThreeDput@iii(#1,#2,#3){%
\begingroup
- \use@par
- \if@star\pst@starbox\fi
- \pst@makesmall\pst@hbox
- \pssetxlength\pst@dima{#1}%
- \pssetylength\pst@dimb{#2}%
- \pssetzlength\pst@dimc{#3}%
- \leavevmode
- \hbox{%
- \pst@Verb{%
+ \use@par
+ \if@star\pst@starbox\fi
+ \pst@makesmall\pst@hbox
+ \pssetxlength\pst@dima{#1}%
+ \pssetylength\pst@dimb{#2}%
+ \pssetzlength\pst@dimc{#3}%
+ \leavevmode
+ \hbox{%
+ \pst@Verb{%
{ \pst@number\pst@dima
\pst@number\pst@dimb
\pst@number\pst@dimc
@@ -174,6 +96,7 @@
\pst@Verb{\tx@TMRestore}}%
\endgroup
\ignorespaces}
+%
\def\pst@sinandcos#1{%
\begingroup
\pst@dima=#1\relax
@@ -202,6 +125,7 @@
\global\pst@dimg\pst@dimb
\global\pst@dimh\pst@dimc
\endgroup}
+%
\def\pst@getsinandcos#1{%
\pst@dimg=100000sp
\pst@dimg=#1\pst@dimg
@@ -234,6 +158,7 @@
\pst@dimtonum\pst@dimh\pst@cos
\fi%
}
+%
\def\pstilt#1{\pst@makebox{\pstilt@{#1}}}
\def\pstilt@#1{%
\begingroup
@@ -276,6 +201,7 @@
\pst@Verb{\tx@TMRestore}%
\kern\pst@dima}%
\endgroup}
+%
\def\psTilt#1{\pst@makebox{\psTilt@{#1}}}
\def\psTilt@#1{%
\begingroup
@@ -317,6 +243,7 @@
\pst@Verb{\tx@TMRestore}%
\kern\pst@dima}%
\endgroup}
+%
\def\psshadow{\pst@object{psshadow}}
\def\psshadow@i{\pst@makebox{\psshadow@ii}}
\def\psshadow@ii{%
@@ -343,6 +270,17 @@
\pst@Verb{\tx@TMRestore}%
\box\pst@hbox}%
\endgroup}
+%
+\def\psAffinTransform{\pst@object{psAffinTransform}}
+\def\psAffinTransform@i#1{
+ \begin@SpecialObj%
+ \pst@makebox{\psAffinTransform@ii{#1}}}%
+\def\psAffinTransform@ii#1{%
+ \pst@Verb{ { [#1] concat } \tx@TMChange }%
+ \box\pst@hbox \pst@Verb{ \tx@TMRestore }%
+ \end@SpecialObj}
+\makeatother
+%
\catcode`\@=\PstAtCode\relax
\endinput
%%
diff --git a/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty b/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty
index b57cd73cc61..920468451f3 100644
--- a/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty
+++ b/Master/texmf-dist/tex/latex/pst-3d/pst-3d.sty
@@ -1,48 +1,13 @@
-%%
-%% This is file `pst-3d.sty',
-%% generated with the docstrip utility.
-%%
-%% The original source files were:
-%%
-%% pst-3d.dtx (with options: `latex-wrapper')
-%%
-%% IMPORTANT NOTICE:
-%%
-%% For the copyright see the source file.
-%%
-%% Any modified versions of this file must be renamed
-%% with new filenames distinct from pst-3d.sty.
-%%
-%% For distribution of the original source see the terms
-%% for copying and modification in the file pst-3d.dtx.
-%%
-%% This generated file may be distributed as long as the
-%% original source files, as listed above, are part of the
-%% same distribution. (The sources need not necessarily be
-%% in the same archive or directory.)
-%%
-%% Package `pst-3d.dtx'
-%%
-%% Timothy Van Zandt <tvz@nwu.edu> (tvz)
-%% Herbert Voss <voss@pstricks.de> (hv)
-%%
-%% September 03, 2005
-%%
-%% This file is under the LaTeX Project Public License
-%% See CTAN archives in directory macros/latex/base/lppl.txt.
-%%
-%% DESCRIPTION:
-%% `pst-3d' is a PSTricks package for tilting and other pseudo-3D tricks
-%%
-
-
-%%
+%% $Id: pst-3d.sty 234 2009-12-30 22:03:29Z herbert $
\RequirePackage{pstricks}
-\ProvidesPackage{pst-3d}[2005/09/02 package wrapper for
+\ProvidesPackage{pst-3d}[2009/07/28 package wrapper for
pst-3d.tex (hv)]
\input{pst-3d.tex}
+\IfFileExists{pst-3d.pro}{%
+ \ProvidesFile{pst-3d.pro}
+ [2010/01/01 v. 0.01, PostScript prologue file (hv)]
+ \@addtofilelist{pst-3d.pro}}{}%
\ProvidesFile{pst-3d.tex}
- [\filedate\space v\fileversion\space `PST-3d' (tvz)]
+ [\filedate\space v\fileversion\space `PST-3d' (hv)]
\endinput
-%%
%% End of file `pst-3d.sty'.