diff options
author | Karl Berry <karl@freefriends.org> | 2021-06-05 21:12:21 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2021-06-05 21:12:21 +0000 |
commit | e569a310b7d78697a9db82995fc816217b36bebe (patch) | |
tree | aa072440b6654b9068936aed6ac0d80c599ae7f2 /Master/texmf-dist | |
parent | 699e8be56281642c1b62552f1bf11121eaff7319 (diff) |
profcollege (5jun21)
git-svn-id: svn://tug.org/texlive/trunk@59480 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist')
-rw-r--r-- | Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf | bin | 2781147 -> 2784308 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip | bin | 1682253 -> 1684520 bytes | |||
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex | 157 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex | 144 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex | 152 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex | 164 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex | 89 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex | 201 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty | 1132 |
9 files changed, 1333 insertions, 706 deletions
diff --git a/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf Binary files differindex ee0a252f025..778b60dcfe9 100644 --- a/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf +++ b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf diff --git a/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip Binary files differindex 4660c7255de..61754d90037 100644 --- a/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip +++ b/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip diff --git a/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex b/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex index 38493f89966..b26d06486ab 100644 --- a/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex +++ b/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex @@ -6,39 +6,43 @@ \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3} \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% }% }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d + \xintifboolexpr{#3==0}{%ax+b=d \EquaBase[#1]{#2}{}{}{#5}% }{%ax+b=d$ Ici \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{%ICI ? + }{% \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } } + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -47,7 +51,7 @@ }{} \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. }{} } } @@ -64,45 +68,50 @@ \EquaTroisComposition[#1]{#4}{#5}{#2}{}% \fi \else - \xintifboolexpr{#2=0}{%b=cx + \xintifboolexpr{#2==0}{%b=cx \EquaBase[#1]{#4}{}{}{#3} }{% - \xintifboolexpr{#4=0}{%ax+b=0 + \xintifboolexpr{#4==0}{%ax+b=0 \EquaDeuxComposition[#1]{#2}{#3}{}{0} }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==0}{%ax=ax + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% }% }{%% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} \begin{align*} - \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{0}\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{0-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=0\tikzmark{F-\theNbequa}%\mathcolor{Ccompo}{0}\tikzmark{F-\theNbequa}%\\ + \xintifboolexpr{#3==0}{}{\\ + \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{0-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{ \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -111,30 +120,35 @@ }{} } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} + } \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} - }{%ax+b=cx+d avec a<c % Autre cas délicat + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + }{%ax+b=cx avec a<c % Autre cas délicat \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{ \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -144,7 +158,7 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% }% }% }% @@ -152,13 +166,12 @@ \fi }% - \newcommand{\ResolEquationComposition}[5][]{% \useKVdefault[ClesEquation]% \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#4==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% @@ -168,56 +181,61 @@ \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}% }% }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d + \xintifboolexpr{#4==0}{%ax+b=0x+d \EquaDeuxComposition[#1]{#2}{#3}{}{#5}% } {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx + \xintifboolexpr{#3==0}{% + \xintifboolexpr{#5==0}{%ax=cx \EquaTroisComposition[#1]{#2}{0}{#4}{}% }% {%ax=cx+d \EquaTroisComposition[#1]{#4}{#5}{#2}{}% }% }% - {\xintifboolexpr{#5=0}{%ax+b=cx + {\xintifboolexpr{#5==0}{%ax+b=cx \EquaTroisComposition[#1]{#2}{#3}{#4}{}% }% {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==#5}{%b=d + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% }% }{ %% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{} \begin{align*} - \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{ \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -227,34 +245,39 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{} }{%ax+b=cx+d avec a<c % Autre cas délicat \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}% \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ - \mathcolor{Ccompo}{\num{\fpeval{#3-#5}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\mathcolor{Ccompo}{\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ + \mathcolor{Ccompo}{\num{\fpeval{#3-#5}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{ \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -264,7 +287,7 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{}% }% }% diff --git a/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex b/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex index 8bce1eb7c80..a4be58b450b 100644 --- a/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex +++ b/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex @@ -6,17 +6,22 @@ \ifx\bla#2\bla%on teste si le paramètre #2 est vide: % si oui, on est dans le cas b=cx. Eh bien on échange :) % Mais attention si les deux paramètres a et c sont vides... - \EquaBase[#1]{#4}{}{}{#3} + \EquaBaseLaurent[#1]{#4}{}{}{#3} \else % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#5==0}{% L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \xintifboolexpr{#5==0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else \begin{align*}% - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{#2}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{#2}}}}&=\xintifboolexpr{#2=1}{\num{#5}}{\color{Cdecomp}\frac{\color{black}\num{#5}}{\num{#2}}} - \xintifboolexpr{#2=1}{}{\\\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}}%\\ + \xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{#2}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{#2}}}}&=\xintifboolexpr{#2==1}{\num{#5}}{\color{Cdecomp}\frac{\color{black}\num{#5}}{\num{#2}}} + \xintifboolexpr{#2==1}{}{\\\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{#5/#2}}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{#5}{#2}% \ifboolKV[ClesEquation]{Simplification}{% @@ -24,7 +29,7 @@ }{} }{} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% }{} } } @@ -37,24 +42,29 @@ \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide \EquaDeuxLaurent[#1]{#4}{#5}{#2}{#3} \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% }% }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d + \xintifboolexpr{#3==0}{%ax+b=d \EquaBaseLaurent[#1]{#2}{}{}{#5}% }{%ax+b=d$ Ici \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}%\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -63,7 +73,7 @@ }{} } \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. }{} } } @@ -79,29 +89,34 @@ \EquaTroisLaurent[#1]{#4}{#5}{#2}{}% \fi \else - \xintifboolexpr{#2=0}{%b=cx + \xintifboolexpr{#2==0}{%b=cx \EquaBaseLaurent[#1]{#4}{}{}{#3} }{% - \xintifboolexpr{#4=0}{%ax+b=0 + \xintifboolexpr{#4==0}{%ax+b=0 \EquaDeuxLaurent[#1]{#2}{#3}{}{0} }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==0}{%ax=ax + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% }% }{%% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -110,17 +125,22 @@ }{} } \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} }{%ax+b=cx avec a<c % Autre cas délicat \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\\ \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=0\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}&=0\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}\\ + \xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -129,7 +149,7 @@ }{} } \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% }% }% }% @@ -140,9 +160,9 @@ \newcommand{\ResolEquationLaurent}[5][]{% \useKVdefault[ClesEquation]% \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#4==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% @@ -152,39 +172,44 @@ \EquaDeuxLaurent[#1]{#4}{#5}{}{#3}% }% }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d + \xintifboolexpr{#4==0}{%ax+b=0x+d \EquaDeuxLaurent[#1]{#2}{#3}{}{#5}% } {%ax+b=cx+d - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx + \xintifboolexpr{#3==0}{% + \xintifboolexpr{#5==0}{%ax=cx \EquaTroisLaurent[#1]{#2}{0}{#4}{}% }% {%ax=cx+d \EquaTroisLaurent[#1]{#4}{#5}{#2}{}% }% }% - {\xintifboolexpr{#5=0}{%ax+b=cx + {\xintifboolexpr{#5==0}{%ax+b=cx \EquaTroisLaurent[#1]{#2}{#3}{#4}{}% }% {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==#5}{%b=d + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% }% }{%% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\ \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ + \xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -193,20 +218,25 @@ }{} } \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{} }{%ax+b=cx+d avec a<c % Autre cas délicat \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}% - &=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText} + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}% + &=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText} \\ \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ - \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\ + \xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -215,7 +245,7 @@ }{} } \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{}% }% }% diff --git a/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex b/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex index 1137140d28a..8bc7bb339f2 100644 --- a/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex +++ b/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex @@ -9,28 +9,28 @@ \EquaBaseL[#1]{#4}{}{}{#3} \else % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#5==0}{% L'équation $0\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \xintifboolexpr{#5==0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else \begin{align*}% - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ - \xintifboolexpr{#2=1}{}{% + \xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ + \xintifboolexpr{#2==1}{}{% \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\} \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\ + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{#5/#2}}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{#5}{#2}% \ifboolKV[ClesEquation]{Simplification}{% \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\ }{} }{} - %\ifboolKV[ClesEquation]{Fleches}{% - %\stepcounter{Nbequa}}% - %{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{} - %} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% }{} } } @@ -43,26 +43,30 @@ \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide \EquaDeuxL[#1]{#4}{#5}{#2}{#3} \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% }% }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d + \xintifboolexpr{#3==0}{%ax+b=d \EquaBaseL[#1]{#2}{}{}{#5}% }{%ax+b=d$ Ici \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ - \phantom{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ + \phantom{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\ \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ } + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -72,7 +76,7 @@ }{} }{} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. }{} } } @@ -89,32 +93,36 @@ \EquaTroisL[#1]{#4}{#5}{#2}{}% \fi \else - \xintifboolexpr{#2=0}{%b=cx + \xintifboolexpr{#2==0}{%b=cx \EquaBaseL[#1]{#4}{}{}{#3} }{% - \xintifboolexpr{#4=0}{%ax+b=0 + \xintifboolexpr{#4==0}{%ax+b=0 \EquaDeuxL[#1]{#2}{#3}{}{0} }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==0}{%ax=ax + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% }% }{%% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ - \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ - \xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ + \phantom{\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ + \xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ } + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -124,18 +132,22 @@ }{} }{} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} }{%ax+b=cx+d avec a<c % Autre cas délicat \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\ \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{% + \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ - } + } + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -145,7 +157,7 @@ }{} }{} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% }% }% }% @@ -157,9 +169,9 @@ \newcommand{\ResolEquationL}[5][]{% \useKVdefault[ClesEquation]% \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#4==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% @@ -169,65 +181,73 @@ \EquaDeuxL[#1]{#4}{#5}{}{#3}% }% }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d + \xintifboolexpr{#4==0}{%ax+b=0x+d \EquaDeuxL[#1]{#2}{#3}{}{#5}% } {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx + \xintifboolexpr{#3==0}{% + \xintifboolexpr{#5==0}{%ax=cx \EquaTroisL[#1]{#2}{0}{#4}{}% }% {%ax=cx+d \EquaTroisL[#1]{#4}{#5}{#2}{}% }% }% - {\xintifboolexpr{#5=0}{%ax+b=cx + {\xintifboolexpr{#5==0}{%ax+b=cx \EquaTroisL[#1]{#2}{#3}{#4}{}% }% {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==#5}{%b=d + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% }% }{ %% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c \begin{align*} - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{\phantom{{}={}}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{\phantom{{}+{}}\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{{}={}\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ - \xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{\Coeffb>0}{\phantom{{}+{}}\num{\Coeffb}}{{}-{}\num{\fpeval{0-\Coeffb}}}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ - \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\phantom{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{\phantom{{}+{}}\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{{}={}\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\ + \xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{\Coeffb>0}{\phantom{{}+{}}\num{\Coeffb}}{{}-{}\num{\fpeval{0-\Coeffb}}}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 + \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\phantom{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ + \phantom{\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ } + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% \ifthenelse{\boolean{Simplification}}{\\% - \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\SSimplifie{\Coeffb}{\Coeffa}%\\ + \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\SSimplifie{\Coeffb}{\Coeffa}%\\ }{} }{} }{} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{} }{%ax+b=cx+d avec a<c % Autre cas délicat \begin{align*}% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\xintifboolexpr{#4<0}{\phantom{={}}}{}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{{}-{}\num{#5}}{{}+{}\num{\fpeval{0-#5}}}}&\phantom{{}={}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ - \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{{}-{}\num{#5}}{{}+{}\num{\fpeval{0-#5}}}}&\phantom{{}={}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ + \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\xintifboolexpr{\Coeffa<0}{\phantom{{}={}}}{\phantom{=}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\ \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ } + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -235,7 +255,7 @@ }{} }{} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{}% }% }% diff --git a/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex b/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex index f3ffd9453dc..a03f2d74424 100644 --- a/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex +++ b/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex @@ -9,13 +9,13 @@ \EquaBase[#1]{#4}{}{}{#3} \else % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#5==0}{% L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \xintifboolexpr{#5==0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\tikzmark{C-\theNbequa}\\ + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\tikzmark{C-\theNbequa}\\ \tikzmark{B-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}\tikzmark{D-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% @@ -26,6 +26,11 @@ \Rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}% }{}% }%% + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{#5/#2}}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{#5}{#2}% \ifboolKV[ClesEquation]{Simplification}{% @@ -37,7 +42,7 @@ {\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{} } \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.% }{} } } @@ -50,29 +55,29 @@ \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide \EquaDeuxSoustraction[#1]{#4}{#5}{#2}{#3} \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% }% }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d + \xintifboolexpr{#3==0}{%ax+b=d \EquaBase[#1]{#2}{}{}{#5}% }{%ax+b=d$ Ici \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa} - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa} + \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% @@ -85,6 +90,11 @@ }{} } } + %%decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -93,7 +103,7 @@ }{} \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. }{} } } @@ -110,41 +120,41 @@ \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}% \fi \else - \xintifboolexpr{#2=0}{%b=cx + \xintifboolexpr{#2==0}{%b=cx \EquaBase[#1]{#4}{}{}{#3} }{% - \xintifboolexpr{#4=0}{%ax+b=0 + \xintifboolexpr{#4==0}{%ax+b=0 \EquaDeuxSoustraction[#1]{#2}{#3}{}{0} }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==0}{%ax=ax + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% }% }{%% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\ }{} - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\ }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ %eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} + \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} % eric - \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% @@ -154,7 +164,12 @@ \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} - } + } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + % %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -164,23 +179,23 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} }{%ax+b=cx+d avec a<c % Autre cas délicat \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ }{} - \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} }{} % eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{} + \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{} % eric - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% @@ -191,6 +206,11 @@ \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + % %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -200,7 +220,7 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% }% }% }% @@ -212,9 +232,9 @@ \newcommand{\ResolEquationSoustraction}[5][]{% \useKVdefault[ClesEquation]% \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#4==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% @@ -224,52 +244,52 @@ \EquaDeuxSoustraction[#1]{#4}{#5}{}{#3}% }% }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d + \xintifboolexpr{#4==0}{%ax+b=0x+d \EquaDeuxSoustraction[#1]{#2}{#3}{}{#5}% } {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx + \xintifboolexpr{#3==0}{% + \xintifboolexpr{#5==0}{%ax=cx \EquaTroisSoustraction[#1]{#2}{0}{#4}{}% }% {%ax=cx+d \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}% }% }% - {\xintifboolexpr{#5=0}{%ax+b=cx + {\xintifboolexpr{#5==0}{%ax+b=cx \EquaTroisSoustraction[#1]{#2}{#3}{#4}{}% }% {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==#5}{%b=d + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% }% }{ %% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ }{} - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ % eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} + \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{} % eric - \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% @@ -280,6 +300,11 @@ \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + % %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -289,30 +314,30 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{} }{%ax+b=cx+d avec a<c % Autre cas délicat \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ }{} - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ \ifboolKV[ClesEquation]{Decomposition}{% - \num{#3}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ + \num{#3}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\ }{}% - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ % eric - \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{} + \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{} % eric - \xintifboolexpr{\Coeffa=1}{}{\\} + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% @@ -323,6 +348,11 @@ \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + % %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -332,7 +362,7 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{}% }% }% diff --git a/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex b/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex index 3cc345c5242..f8313606e1e 100644 --- a/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex +++ b/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex @@ -14,14 +14,19 @@ \fi \else % si non, on est dans le cas ax=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#5=0}{% + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#5==0}{% L'équation $0\times\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\times\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}% }{%\else - \xintifboolexpr{#5=0}{L'équation $\num{#2}\times\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else + \xintifboolexpr{#5==0}{L'équation $\num{#2}\times\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else \begin{align*}% - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ + \xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\ \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{#5/#2}}% + }{}% +% %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{#5}{#2}% \ifboolKV[ClesEquation]{Simplification}{% @@ -41,24 +46,29 @@ \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3} \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% }% }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d + \xintifboolexpr{#3==0}{%ax+b=d \EquaBaseSymbole[#1]{#2}{}{}{#5}% }{%ax+b=d$ Ici \begin{align*} - \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ - \ifboolKV[ClesEquation]{Bloc}{\Fdash{$\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\}{}% - \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ + \ifboolKV[ClesEquation]{Bloc}{\Fdash{$\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\}{}% + \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\ + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \\ \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -83,14 +93,14 @@ \EquaTroisSymbole[#1]{#4}{#5}{#2}{}% \fi \else - \xintifboolexpr{#2=0}{%b=cx + \xintifboolexpr{#2==0}{%b=cx \EquaBaseSymbole[#1]{#4}{}{}{#3} }{% - \xintifboolexpr{#4=0}{%ax+b=0 + \xintifboolexpr{#4==0}{%ax+b=0 \EquaDeuxSymbole[#1]{#2}{#3}{}{0} }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==0}{%ax=ax L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% {%ax+b=ax L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% @@ -103,8 +113,13 @@ \xdef\Coeffa{\fpeval{#2-#4}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ \ifboolKV[ClesEquation]{Bloc}{\Fdash{\mathcolor{Csymbole}{$\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\}{} \xdef\Coeffb{\fpeval{0-#3}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -118,8 +133,13 @@ \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\ \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\\ \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}% \\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -135,14 +155,13 @@ \fi }% - \newcommand{\ResolEquationSymbole}[5][]{% \useKVdefault[ClesEquation]% \setKV[ClesEquation]{#1}% \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false} - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#4==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% @@ -152,24 +171,24 @@ \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3}% }% }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d + \xintifboolexpr{#4==0}{%ax+b=0x+d \EquaDeuxSymbole[#1]{#2}{#3}{}{#5}% } {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx + \xintifboolexpr{#3==0}{% + \xintifboolexpr{#5==0}{%ax=cx \EquaTroisSymbole[#1]{#2}{0}{#4}{}% }% {%ax=cx+d \EquaTroisSymbole[#1]{#4}{#5}{#2}{}% }% }% - {\xintifboolexpr{#5=0}{%ax+b=cx + {\xintifboolexpr{#5==0}{%ax+b=cx \EquaTroisSymbole[#1]{#2}{#3}{#4}{}% }% {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% {%b<>d L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% @@ -185,8 +204,13 @@ \Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\ }{}% \xdef\Coeffb{\fpeval{#5-#3}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 + \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -204,8 +228,13 @@ \num{#3}&=\Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ }{}% \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}%\\ - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\ + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% diff --git a/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex b/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex index 3b4cc18f275..80399dd3f40 100644 --- a/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex +++ b/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex @@ -6,39 +6,44 @@ \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3} \else%cas ax+b=d - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% }% }{%ELSE - \xintifboolexpr{#3=0}{%ax+b=d + \xintifboolexpr{#3==0}{%ax+b=d \EquaBase[#1]{#2}{}{}{#5}% }{%ax+b=d$ Ici \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{% + \xintifboolexpr{\Coeffa==1}{% }{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{%ICI ? + }{% \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -47,7 +52,7 @@ }{} \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$. }{} } } @@ -64,46 +69,51 @@ \EquaTroisTerme[#1]{#4}{#5}{#2}{}% \fi \else - \xintifboolexpr{#2=0}{%b=cx + \xintifboolexpr{#2==0}{%b=cx \EquaBase[#1]{#4}{}{}{#3} }{% - \xintifboolexpr{#4=0}{%ax+b=0 + \xintifboolexpr{#4==0}{%ax+b=0 \EquaDeuxTerme[#1]{#2}{#3}{}{0} - }{%ax+b=cx - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=0}{%ax=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% - {%ax+b=ax - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% - }% - }{%% Cas délicat - \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c - \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} - \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=0\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} - \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% - }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 - \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ - \ifboolKV[ClesEquation]{Fleches}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ - \ifboolKV[ClesEquation]{FlecheDiv}{% - \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{} - } - \ifboolKV[ClesEquation]{Entier}{% + }{%ax+b=cx + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==0}{%ax=ax + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}% + {%ax+b=ax + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.% + }% + }{%% Cas délicat + \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c + \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} + \begin{align*} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=0\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} + \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% + }{} + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 + \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ + \ifboolKV[ClesEquation]{Fleches}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{% + \ifboolKV[ClesEquation]{FlecheDiv}{% + \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{} + } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% + \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\ @@ -112,29 +122,34 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{} }{%ax+b=cx+d avec a<c % Autre cas délicat \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa} + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{ \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -144,7 +159,7 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}% }% }% }% @@ -155,9 +170,9 @@ \newcommand{\ResolEquationTerme}[5][]{% \useKVdefault[ClesEquation]% \setKV[ClesEquation]{#1}% - \xintifboolexpr{#2=0}{% - \xintifboolexpr{#4=0}{% - \xintifboolexpr{#3=#5}{%b=d + \xintifboolexpr{#2==0}{% + \xintifboolexpr{#4==0}{% + \xintifboolexpr{#3==#5}{%b=d L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}% {%b<>d L'équation $\num{#3}=\num{#5}$ n'a aucune solution.% @@ -167,56 +182,61 @@ \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3}% }% }{% - \xintifboolexpr{#4=0}{%ax+b=0x+d + \xintifboolexpr{#4==0}{%ax+b=0x+d \EquaDeuxTerme[#1]{#2}{#3}{}{#5}% } {%ax+b=cx+d$ - \xintifboolexpr{#3=0}{% - \xintifboolexpr{#5=0}{%ax=cx + \xintifboolexpr{#3==0}{% + \xintifboolexpr{#5==0}{%ax=cx \EquaTroisTerme[#1]{#2}{0}{#4}{}% }% {%ax=cx+d \EquaTroisTerme[#1]{#4}{#5}{#2}{}% }% }% - {\xintifboolexpr{#5=0}{%ax+b=cx + {\xintifboolexpr{#5==0}{%ax+b=cx \EquaTroisTerme[#1]{#2}{#3}{#4}{}% }% {%ax+b=cx+d -- ici - \xintifboolexpr{#2=#4}{% - \xintifboolexpr{#3=#5}{%b=d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% + \xintifboolexpr{#2==#4}{% + \xintifboolexpr{#3==#5}{%b=d + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}% {%b<>d - L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% + L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.% }% }{ %% Cas délicat \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} \begin{align*} - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#5>0}{\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\tikzmark{F-\theNbequa}\\ - \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#5>0}{\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\tikzmark{F-\theNbequa}\\ + \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{ \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -226,34 +246,39 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{} }{%ax+b=cx+d avec a<c % Autre cas délicat \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{} \begin{align*}% - \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ - \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ - \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ - \num{#3}\mathcolor{Cterme}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\\ - \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ - \xintifboolexpr{\Coeffa=1}{}{\\} + \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\ + \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\ + \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\ + \num{#3}\mathcolor{Cterme}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\\ + \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\ + \xintifboolexpr{\Coeffa==1}{}{\\} \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$} \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}% }{} - \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1 \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\ \ifboolKV[ClesEquation]{Fleches}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - }{ + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + }{% \ifboolKV[ClesEquation]{FlecheDiv}{% \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% - \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% + \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}% }{} } + %% decimal + \ifboolKV[ClesEquation]{Decimal}{% + \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}% + }{}% + %%% \ifboolKV[ClesEquation]{Entier}{% \SSimpliTest{\Coeffb}{\Coeffa}% \ifboolKV[ClesEquation]{Simplification}{% @@ -263,7 +288,7 @@ } \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}} \end{align*} - \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% + \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.% }{}% }% }% diff --git a/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty b/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty index 563ce3af328..e32797a1cfd 100644 --- a/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty +++ b/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty @@ -3,7 +3,7 @@ % or later, see http://www.latex-project.org/lppl.txtf \NeedsTeXFormat{LaTeX2e} -\ProvidesPackage{ProfCollege}[2021/05/15 v0.99-b Aide pour l'utilisation de LaTeX au collège] +\ProvidesPackage{ProfCollege}[2021/06/04 v0.99-d Aide pour l'utilisation de LaTeX au collège] \RequirePackage{verbatim} @@ -16,7 +16,7 @@ locale=FR, detect-all,% output-decimal-marker={,},% - group-four-digits% + group-minimum-digits=4% } \DeclareSIUnit{\kmh}{\km\per\hour} @@ -29,7 +29,7 @@ \DeclareSIUnit{\jour}{j} \DeclareSIUnit{\quintal}{q} \DeclareSIUnit{\octet}{o} -\DeclareSIUnit{\fahrenheit}{\degree F} +\DeclareSIUnit{\fahrenheit}{\text{\textdegree}F} \DeclareSIUnit{\EuRo}{€} \RequirePackage[table,svgnames]{xcolor}%Gestion des couleurs @@ -139,7 +139,7 @@ %encadrer avec des "sommets arrondis" \newsavebox{\logobox} -\newcommand{\Logo}[2]{% +\newcommand\Logo[2]{% \setbox1=\hbox{\includegraphics[scale=#2]{#1}} \begin{tikzpicture}% \clip[rounded corners=5mm] (0,0) rectangle (\wd1,\ht1); @@ -486,7 +486,7 @@ %%% % Labyrinthe %%% -\setKVdefault[Labyrinthe]{Lignes=6,Colonnes=3,Longueur=4,Hauteur=2,Passages=false,EcartH=1,EcartV=1,CouleurF=gray!50,Texte=\color{black},SensImpose=false,Slop} +\setKVdefault[Labyrinthe]{Lignes=6,Colonnes=3,Longueur=4,Hauteur=2,Passages=false,EcartH=1,EcartV=1,CouleurF=gray!50,Texte=\color{yellow},SensImpose=false,Slop} \tikzset{FDirect/.style={-stealth}} \tikzset{FIndirect/.style={stealth-}} @@ -510,10 +510,10 @@ \xdef\TotalLaby{\fpeval{3*\useKV[Labyrinthe]{Colonnes}-2}}% }% \xdef\CouleurF{\useKV[Labyrinthe]{CouleurF}}% - \xdef\MotifTexte{\useKV[Labyrinthe]{Texte}}% - \xintifboolexpr{\ListeLabylen=\fpeval{\useKV[Labyrinthe]{Lignes}*\useKV[Labyrinthe]{Colonnes}}}{% + \xdef\MotifTexte{\noexpand\useKV[Labyrinthe]{Texte}}% + \xintifboolexpr{\ListeLabylen==\fpeval{\useKV[Labyrinthe]{Lignes}*\useKV[Labyrinthe]{Colonnes}}}{% \begin{tikzpicture}[remember picture]% - % on dessine les cadres +% % on dessine les cadres \foreach \compteurv in {1,...,\useKV[Labyrinthe]{Lignes}}{% \foreach \compteurh in {1,...,\useKV[Labyrinthe]{Colonnes}}{% \xdef\ColorFill{\ListeLaby[\fpeval{\useKV[Labyrinthe]{Colonnes}*(\compteurv-1)+\compteurh},2]}% @@ -529,19 +529,19 @@ \foreach \compteurh in {1,...,\useKV[Labyrinthe]{Colonnes}}{% \ifboolKV[Labyrinthe]{Passages}{% \xdef\NomNode{\noexpand\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)},1]}% - \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)},2]>0}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)},2]=1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)},2]=2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}}% + \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)},2]>0}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)},2]==1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)},2]==2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}}% \draw[\CouleurF,line width=3pt,\NomStyle] (A-\compteurh-\compteurv) -- node[fill=white,midway,inner sep=2pt]{\MotifTexte\NomNode}(A-\compteurh-\fpeval{\compteurv+1});}{}% }{% \draw[\CouleurF,line width=3pt,FBidirect] (A-\compteurh-\compteurv) -- (A-\compteurh-\fpeval{\compteurv+1});% }% }% }% - % horizontales +% % horizontales \foreach \compteurv in {1,...,\useKV[Labyrinthe]{Lignes}}{% \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% \ifboolKV[Labyrinthe]{Passages}{% \xdef\NomNode{\noexpand\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\compteurh},1]}% - \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\compteurh},2]>0}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\compteurh},2]=1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\compteurh},2]=2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}}% + \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\compteurh},2]>0}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\compteurh},2]==1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\compteurh},2]==2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}}% \draw[\CouleurF,line width=3pt,\NomStyle](A-\compteurh-\compteurv) -- node[fill=white,midway,\LabySlop,inner sep=2pt]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\compteurv);}{} }{% \draw[\CouleurF,line width=3pt,FBidirect](A-\compteurh-\compteurv) -- (A-\fpeval{\compteurh+1}-\compteurv);% @@ -553,7 +553,7 @@ \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% \ifboolKV[Labyrinthe]{Passages}{% \xdef\NomNode{\noexpand\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-2)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+2},1]}% - \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-2)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+2},2]>0}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-2)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+2},2]=1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-2)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+2},2]=2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}}% + \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-2)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+2},2]>0}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-2)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+2},2]==1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-2)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+2},2]==2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}}% \draw[\CouleurF,line width=3pt,\NomStyle] (A-\compteurh-\compteurv) -- node[fill=white,near start,\LabySlop,inner sep=2pt]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\fpeval{\compteurv-1}); }{} }{% @@ -561,18 +561,17 @@ }% }% }% -% % diagonales directes +%% % diagonales directes \foreach \compteurv in {1,...,\fpeval{\useKV[Labyrinthe]{Lignes}-1}}{% \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% \ifboolKV[Labyrinthe]{Passages}{% \xdef\NomNode{\noexpand\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+1},1]}% \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+1},2]>0}{% - \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+1},2]=1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+1},2]=2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}} + \xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+1},2]==1}{\xdef\NomStyle{FDirect}}{\xintifboolexpr{\ListeLabySol[\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+3*(\compteurh-1)+1},2]==2}{\xdef\NomStyle{FIndirect}}{\xdef\NomStyle{FBidirect}}} \draw[\CouleurF,line width=3pt,\NomStyle] (A-\compteurh-\compteurv) -- node[fill=white,near start,\LabySlop,inner sep=2pt]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\fpeval{\compteurv+1}); }{}% }{% \draw[\CouleurF,line width=3pt,FBidirect] (A-\compteurh-\compteurv) -- node[fill=white,near start,\LabySlop]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\fpeval{\compteurv+1}); -% }{}% }% }% }% @@ -590,7 +589,7 @@ \foreach \compteurv in {1,...,\useKV[Labyrinthe]{Lignes}}{% \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% \ifboolKV[Labyrinthe]{Passages}{% - \xdef\NomNode{\ListeLabySol[1,\fpeval{\TotalLaby*(\compteurv-1)+\compteurh}]}% + \xdef\NomNode{\noexpand\ListeLabySol[1,\fpeval{\TotalLaby*(\compteurv-1)+\compteurh}]}% \draw[\CouleurF,line width=3pt,stealth-stealth] (A-\compteurh-\compteurv) -- node[fill=white,midway]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\compteurv); }{% @@ -607,18 +606,19 @@ \foreach \compteurv in {1,...,\fpeval{\useKV[Labyrinthe]{Lignes}-1}}{% \foreach \compteurh in {1,...,\fpeval{\useKV[Labyrinthe]{Colonnes}-1}}{% \ifboolKV[Labyrinthe]{Passages}{% - \xdef\NomNode{\ListeLabySol[1,\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+2*(\compteurh-1)+1}]}% + \xdef\NomNode{\noexpand\ListeLabySol[1,\fpeval{\TotalLaby*(\compteurv-1)+\useKV[Labyrinthe]{Colonnes}+2*(\compteurh-1)+1}]}% \draw[\CouleurF,line width=3pt,stealth-stealth] (A-\compteurh-\compteurv) -- node[fill=white,midway]{\MotifTexte\NomNode}(A-\fpeval{\compteurh+1}-\fpeval{\compteurv+1}); }{% \draw[\CouleurF,line width=3pt,stealth-stealth] (A-\compteurh-\compteurv) -- (A-\fpeval{\compteurh+1}-\fpeval{\compteurv+1}); }% }% }% - % fin des fl\`eches +% % fin des fl\`eches } - \end{tikzpicture} - }{\textbf{! Le nombre d'informations n'est pas compatible avec les - d\'efinitions de {\ttfamily Colonnes} et {\ttfamily Lignes} !}}% + \end{tikzpicture} + }{ + \textbf{! Le nombre d'informations n'est pas compatible avec les + d\'efinitions de {\ttfamily Colonnes} et {\ttfamily Lignes} !}}% } %%% @@ -758,7 +758,7 @@ }{% \setsepchar[*]{,*/}% \readlist\ListeCalc{#2}% - \foreachitem\compteur\in\ListeCalc{\xintifboolexpr{\listlen\ListeCalc[\compteurcnt]=2}{\Longstack{{\tiny\ListeCalc[\compteurcnt,1]} \KN{\ListeCalc[\compteurcnt,2]}}}{\Longstack{{\tiny\ListeCalc[\compteurcnt,2]} \KY{\ListeCalc[\compteurcnt,3]}}}% + \foreachitem\compteur\in\ListeCalc{\xintifboolexpr{\listlen\ListeCalc[\compteurcnt]==2}{\Longstack{{\tiny\ListeCalc[\compteurcnt,1]} \KN{\ListeCalc[\compteurcnt,2]}}}{\Longstack{{\tiny\ListeCalc[\compteurcnt,2]} \KY{\ListeCalc[\compteurcnt,3]}}}% }% }% \setstackgap{L}{\baselineskip}% @@ -991,11 +991,11 @@ \begin{tikzpicture}% \begin{scope}[start chain=transition going right,node distance=-\pgflinewidth]% \foreach \s in {1,...,\ListeFlashlen}{% - \xintifboolexpr{\s = 1}{% + \xintifboolexpr{\s == 1}{% \node[arrow,on chain] {\Huge\bfseries\ListeFlash[\s]};% \ifboolKV[ClesFlash]{Pause}{\pause}{}% }{% - \xintifboolexpr{\s = \ListeFlashlen}{% + \xintifboolexpr{\s == \ListeFlashlen}{% \node[arrow,on chain] {\Huge\bfseries?};% }{% \node[arrow,on chain] {\ListeFlash[\s]};% @@ -2428,10 +2428,10 @@ %%% % QCM %%% -\setKVdefault[ClesQCM]{Reponses=3,Solution=false,Stretch=1,Largeur=2cm,Couleur=gray!15,Titre=false,Nom=R\'eponse,NomV=Vrai,NomF=Faux,Alph=false,AlphT=false,VF=false,Depart=1,Alterne=false,Noms={A/B/C},Multiple=false} -\newlength{\LargeurQCM} -\newcounter{QuestionQCM} -\newcounter{TitreQCM} +\setKVdefault[ClesQCM]{Reponses=3,Solution=false,Stretch=1,Largeur=2cm,Couleur=gray!15,Titre=false,Nom=R\'eponse,NomV=Vrai,NomF=Faux,Alph=false,AlphT=false,VF=false,Depart=1,Alterne=false,Noms={A/B/C},Multiple=false}% +\newlength{\LargeurQCM}% +\newcounter{QuestionQCM}% +\newcounter{TitreQCM}% \newcommand\QCM[2][]{% \useKVdefault[ClesQCM]% \setKV[ClesQCM]{#1}% @@ -2454,7 +2454,7 @@ \hline% \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% - &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{\ListeQCM[##1,\fpeval{##2+1}]=1}{$\boxtimes$}{$\square$}}{$\square$}% + &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{\ListeQCM[##1,\fpeval{##2+1}]==1}{$\boxtimes$}{$\square$}}{$\square$}% }\\ }% \hline% @@ -2471,7 +2471,7 @@ \hline% \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% - &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{##2=\ListeQCM[##1,2]}{$\boxtimes$}{$\square$}}{$\square$}% + &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{##2==\ListeQCM[##1,2]}{$\boxtimes$}{$\square$}}{$\square$}% }\\ }% \hline% @@ -2489,7 +2489,7 @@ \hline% \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% - &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xdef\NumeroReponse{\fpeval{\useKV[ClesQCM]{Reponses}+2}}\xintifboolexpr{##2=\ListeQCM[##1,\NumeroReponse]}{\cellcolor{\useKV[ClesQCM]{Couleur}}}{}}{}\ListeQCM[##1,##2+1]% + &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xdef\NumeroReponse{\fpeval{\useKV[ClesQCM]{Reponses}+2}}\xintifboolexpr{##2==\ListeQCM[##1,\NumeroReponse]}{\cellcolor{\useKV[ClesQCM]{Couleur}}}{}}{}\ListeQCM[##1,##2+1]% }\\ }% \hline% @@ -2498,7 +2498,7 @@ }% } -\newcommand\QCMVar[2][]{% +\newcommand\QCMPfC[2][]{% \useKVdefault[ClesQCM]% \setKV[ClesQCM]{#1}% \setcounter{QuestionQCM}{\fpeval{\useKV[ClesQCM]{Depart}-1}}% @@ -2520,7 +2520,7 @@ \hline% \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% - &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{\ListeQCM[##1,\fpeval{##2+1}]=1}{$\boxtimes$}{$\square$}}{$\square$}% + &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{\ListeQCM[##1,\fpeval{##2+1}]==1}{$\boxtimes$}{$\square$}}{$\square$}% }\\ }% \hline% @@ -2537,7 +2537,7 @@ \hline% \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% - &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{##2=\ListeQCM[##1,2]}{$\boxtimes$}{$\square$}}{$\square$}% + &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xintifboolexpr{##2==\ListeQCM[##1,2]}{$\boxtimes$}{$\square$}}{$\square$}% }\\ }% \hline% @@ -2555,7 +2555,7 @@ \hline% \xintFor* ##1 in {\xintSeq {1}{\ListeQCMlen}}\do{% \stepcounter{QuestionQCM}\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Alph}{\textbf{\Alph{QuestionQCM}}/}{\textbf{\theQuestionQCM/}}~\ListeQCM[##1,1]\xintFor* ##2 in {\xintSeq {1}{\useKV[ClesQCM]{Reponses}}}\do{% - &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xdef\NumeroReponse{\fpeval{\useKV[ClesQCM]{Reponses}+2}}\xintifboolexpr{##2=\ListeQCM[##1,\NumeroReponse]}{\cellcolor{\useKV[ClesQCM]{Couleur}}}{}}{}\ListeQCM[##1,##2+1]% + &\ifboolKV[ClesQCM]{Alterne}{\modulo{\theQuestionQCM}{2}\ifnum\remainder=0\cellcolor{gray!15}\fi}{}\ifboolKV[ClesQCM]{Solution}{\xdef\NumeroReponse{\fpeval{\useKV[ClesQCM]{Reponses}+2}}\xintifboolexpr{##2==\ListeQCM[##1,\NumeroReponse]}{\cellcolor{\useKV[ClesQCM]{Couleur}}}{}}{}\ListeQCM[##1,##2+1]% }\\ }% \hline% @@ -3106,7 +3106,7 @@ \ifboolKV[ClesPythagore]{Perso}{\RedactionPythagore}{\ifboolKV[ClesPythagore]{Egalite}{Comme le triangle $#2$ est rectangle en $\NomB$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee :}{Dans le triangle $#2$ rectangle en $\NomB$, le th\'eor\`eme de Pythagore permet d'\'ecrire :% }% }% - \xintifboolexpr{#3<#4 || #3=#4}{%\ifnum#3<#4% + \xintifboolexpr{#3<#4 || #3==#4}{%\ifnum#3<#4% \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% \begin{align*} @@ -3138,7 +3138,7 @@ % On d\'emarre la r\'esolution \ifboolKV[ClesPythagore]{Perso}{\RedactionPythagore}{\ifboolKV[ClesPythagore]{Egalite}{Comme le triangle $#2$ est rectangle en $\NomB$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee :}{Dans le triangle $#2$ rectangle en $\NomB$, le th\'eor\`eme de Pythagore permet d'\'ecrire :% }}% - \xintifboolexpr{#3<#4 || #3=#4}{%\ifnum#3<#4% + \xintifboolexpr{#3<#4 || #3==#4}{%\ifnum#3<#4% \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% \begin{align*} \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ @@ -3548,14 +3548,14 @@ \def\LETTRE{\useKV[ClesDistributivite]{Lettre}}% \ensuremath{% % partie du x^2 - \xintifboolexpr{#2=0}{}{\xintifboolexpr{#2=1}{}{\xintifboolexpr{#2=-1}{-}{\num{#2}}}\LETTRE^2}% + \xintifboolexpr{#2==0}{}{\xintifboolexpr{#2==1}{}{\xintifboolexpr{#2==-1}{-}{\num{#2}}}\LETTRE^2}% % partie du x - \xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}\xintifboolexpr{#3=1}{}{\num{#3}}}{% - \xintifboolexpr{#2=0}{\xintifboolexpr{#3=-1}{-}{\num{#3}}}{\xintifboolexpr{#3=-1}{-}{-\num{\fpeval{abs(#3)}}}}% + \xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\xintifboolexpr{#2==0}{}{+}\xintifboolexpr{#3==1}{}{\num{#3}}}{% + \xintifboolexpr{#2==0}{\xintifboolexpr{#3==-1}{-}{\num{#3}}}{\xintifboolexpr{#3==-1}{-}{-\num{\fpeval{abs(#3)}}}}% }\LETTRE}% % partie du nombre - \xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{}{+}}{+}\num{#4}}{% - \xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{\num{#4}}{-\num{\fpeval{abs(#4)}}}}{-\num{\fpeval{abs(#4)}}}}}% + \xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{\xintifboolexpr{#2==0}{\xintifboolexpr{#3==0}{}{+}}{+}\num{#4}}{% + \xintifboolexpr{#2==0}{\xintifboolexpr{#3==0}{\num{#4}}{-\num{\fpeval{abs(#4)}}}}{-\num{\fpeval{abs(#4)}}}}}% % }% }% @@ -3582,11 +3582,11 @@ \DistriEchange[#1]{#2}{#3}{#4}{#5}% }{% \ifboolKV[ClesDistributivite]{Remarquable}{% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==1}{% \ifx\bla#4\bla(\Affichage{0}{#2}{#3})^2\else(\Affichage{0}{#2}{#3})(\Affichage{0}{#4}{#5})\fi% }{} - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{\ifx\bla#4\bla\xintifboolexpr{#3>0}{\xintifboolexpr{#2=1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2=1}{}{)}^2+2\times\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesDistributivite]{Lettre}\times\num{#3}+\num{#3}^2}{\xintifboolexpr{#2=1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2=1}{}{)}^2-2\times\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesDistributivite]{Lettre}\times\num{\fpeval{0-#3}}+\num{\fpeval{0-#3}}^2}\else\xintifboolexpr{#2=1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2=1}{}{)}^2-\num{#3}^2\fi}{} - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==2}{\ifx\bla#4\bla\xintifboolexpr{#3>0}{\xintifboolexpr{#2==1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2==1}{}{)}^2+2\times\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesDistributivite]{Lettre}\times\num{#3}+\num{#3}^2}{\xintifboolexpr{#2==1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2==1}{}{)}^2-2\times\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesDistributivite]{Lettre}\times\num{\fpeval{0-#3}}+\num{\fpeval{0-#3}}^2}\else\xintifboolexpr{#2==1}{}{(\num{#2}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#2==1}{}{)}^2-\num{#3}^2\fi}{} + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==3}{% \xintifboolexpr{\theNbCalculDistri>1}{\setcounter{NbCalculDistri}{0}}{}% \stepcounter{NbCalculDistri}% \ifx\bla#4\bla% @@ -3601,9 +3601,9 @@ \xdef\Multi{\fpeval{-\Multi}}% \xdef\Multim{\fpeval{-\Multim}}% \xdef\Multil{\fpeval{-\Multil}}% - \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% - \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + \xintifboolexpr{\Multi==0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim==0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% }{% \Affichage{\Multi}{\Multim}{\Multil}% } @@ -3621,9 +3621,9 @@ \xdef\Multi{\fpeval{-\Multi}}% \xdef\Multim{\fpeval{-\Multim}}% \xdef\Multil{\fpeval{-\Multil}}% - \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% - \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + \xintifboolexpr{\Multi==0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim==0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% }{% \Affichage{\Multi}{\Multim}{\Multil}% } @@ -3633,17 +3633,17 @@ }{}% }{% \ifboolKV[ClesDistributivite]{Numerique}{% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=0}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==0}{% \num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}\multido{\i=2+1}{4}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}% }{% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=-1}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==-1}{% \Distri[Numerique,Etape=3]{#2}{#3}{#4}{#5}\multido{\i=2+-1}{2}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}=\num{\fpeval{(#2+#3)*(#4+#5)}}% }{% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{\num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}}{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{\num{\fpeval{#2+#3}}\times(\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#5)}})}{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{\num{#3}\times\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{#3}\times\num{\fpeval{abs(#5)}}}{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{\num{\fpeval{#3*#4}}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#3*#5)}}}{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=5}{\num{\fpeval{#3*#4+#3*#5}}}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==1}{\num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==2}{\num{\fpeval{#2+#3}}\times(\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#5)}})}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==3}{\num{#3}\times\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{#3}\times\num{\fpeval{abs(#5)}}}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==4}{\num{\fpeval{#3*#4}}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#3*#5)}}}{}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==5}{\num{\fpeval{#3*#4+#3*#5}}}{}% }% }% }{% @@ -3655,58 +3655,58 @@ \NomLettre&=\Distri[Etape=\NomFin]{#2}{#3}{#4}{#5}% }{% % Etape 1 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{% - \xintifboolexpr{#2=0}{% - }{\xintifboolexpr{#3=0}{}{(}}\Tikzmark{\Affichage[#1]{0}{#2}{0}}% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==1}{% + \xintifboolexpr{#2==0}{% + }{\xintifboolexpr{#3==0}{}{(}}\Tikzmark{\Affichage[#1]{0}{#2}{0}}% \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{+(}}{}% - \xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#3)}}}% + \xintifboolexpr{#3>0}{\xintifboolexpr{#2==0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#3)}}}% \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{)}}{}% - \xintifboolexpr{#2=0}{}{\xintifboolexpr{#3=0}{}{)}}% + \xintifboolexpr{#2==0}{}{\xintifboolexpr{#3==0}{}{)}}% % \ifboolKV[ClesDistributivite]{AideMul}{\times}{}%on aide dans le cas double \xdef\Multi{\fpeval{#4*#5}}%affichage auto si (a+b)xk % - \xintifboolexpr{\Multi=0}{\times% + \xintifboolexpr{\Multi==0}{\times% \xintifboolexpr{#4<0}{(}{\xintifboolexpr{#5<0}{(}{}}}{(}% \Tikzmark{\Affichage[#1]{0}{#4}{0}}% \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{+(}}{}% - \xintifboolexpr{#5>0}{\xintifboolexpr{#4=0}{}{+}}{\xintifboolexpr{#5<0}{\xintifboolexpr{#4=0}{{-}}{-}}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#5)}}}% + \xintifboolexpr{#5>0}{\xintifboolexpr{#4==0}{}{+}}{\xintifboolexpr{#5<0}{\xintifboolexpr{#4==0}{{-}}{-}}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#5)}}}% \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{)}}{}% - \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{\Multi==0}{% \xintifboolexpr{#4<0}{)}{\xintifboolexpr{#5<0}{)}{}}}{)}% \ifboolKV[ClesDistributivite]{Fleches}{% \xdef\Multi{\fpeval{#2*#3*#4*#5}}% - \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{\Multi==0}{% \xdef\Multij{\fpeval{#2*#3}}%\relax - \xintifboolexpr{\Multij=0}{\xintifboolexpr{#2=0}{\DrawArrowSimple{1}}{\DrawArrowSimple{0}}}{\xintifboolexpr{#4=0}{\DrawArrowSimpleRenverse{3}}{\DrawArrowSimpleRenverse{2}}}% + \xintifboolexpr{\Multij==0}{\xintifboolexpr{#2==0}{\DrawArrowSimple{1}}{\DrawArrowSimple{0}}}{\xintifboolexpr{#4==0}{\DrawArrowSimpleRenverse{3}}{\DrawArrowSimpleRenverse{2}}}% }{% \DrawArrow% }% }{}\setcounter{NbDistri}{0}% }{} % Etape 2 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==2}{% \xdef\Multi{\fpeval{#2*#4}}% - \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{\Multi==0}{}{% \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% } \xdef\Multij{\fpeval{#2*#5}}% - \xintifboolexpr{\Multij=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multij==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% }% \xdef\Multik{\fpeval{#3*#4}}% - \xintifboolexpr{\Multik=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multik==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% }% \xdef\Multil{\fpeval{#3*#5}}% - \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{\Multil==0}{}{+% \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% }% }{}% % Etape 3 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==3}{% \stepcounter{NbCalculDistri}% \xdef\Multi{\fpeval{#2*#4}}% \xdef\Multij{\fpeval{#2*#5}}% @@ -3716,17 +3716,17 @@ %% expressions \`a d\'evelopper \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\Affichage{\Multi}{0}{0})}{\Affichage{\Multi}{0}{0}}}{\Affichage{\Multi}{0}{0}}% \ifboolKV[ClesDistributivite]{Reduction}{\mathunderline{DCReduction}{% - \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{{}+}\xintifboolexpr{\Multij<0}{(}{}\Affichage{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% - \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\Affichage{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multij==0}{}{\xintifboolexpr{\Multi==0}{}{{}+}\xintifboolexpr{\Multij<0}{(}{}\Affichage{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik==0}{}{\xintifboolexpr{\Multil==0}{\xintifboolexpr{#2==0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\Affichage{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% }% }{% - \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\Affichage{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% - \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{\xintifboolexpr{#2=0}{}{+}}\xintifboolexpr{\Multik<0}{(}{}\Affichage{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multij==0}{}{\xintifboolexpr{\Multi==0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\Affichage{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik==0}{}{\xintifboolexpr{\Multil==0}{\xintifboolexpr{#2==0}{}{+}}{\xintifboolexpr{#2==0}{}{+}}\xintifboolexpr{\Multik<0}{(}{}\Affichage{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% }% - \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}% + \xintifboolexpr{\Multil==0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}% }{}% % Etape 4 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==4}{% \xdef\Multi{\fpeval{#2*#4}}% \xdef\Multij{\fpeval{#2*#5}}% \xdef\Multik{\fpeval{#3*#4}}% @@ -3740,15 +3740,15 @@ \xdef\Multi{\fpeval{-\Multi}}% \xdef\Multim{\fpeval{-\Multim}}% \xdef\Multil{\fpeval{-\Multil}}% - \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% - \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + \xintifboolexpr{\Multi==0}{}{\xintifboolexpr{\Multi<0}{(}{}\Affichage{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim==0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\Affichage{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\Affichage{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% }{% \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\Affichage{\Multi}{0}{0})}{\Affichage{\Multi}{0}{0}}}{\Affichage{\Multi}{0}{0}}% - \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim==0}{}{% \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% }% - \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil<0}{-\Affichage{0}{0}{\fpeval{-\Multil}}}{+\Affichage{0}{0}{\Multil}}}% + \xintifboolexpr{\Multil==0}{}{\xintifboolexpr{\Multil<0}{-\Affichage{0}{0}{\fpeval{-\Multil}}}{+\Affichage{0}{0}{\Multil}}}% } \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+#2*#4}}\xdef\SommeB{\fpeval{\SommeB+#2*#5+#3*#4}}\xdef\SommeC{\fpeval{\SommeC+#3*#5}}}{}% \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-#2*#4}}\xdef\SommeB{\fpeval{\SommeB-#2*#5-#3*#4}}\xdef\SommeC{\fpeval{\SommeC-#3*#5}}}{}% @@ -3773,14 +3773,14 @@ \def\LETTRE{\useKV[ClesDistributivite]{Lettre}}% \ensuremath{% % partie du nombre - \xintifboolexpr{#2=0}{}{\num{#2}}% + \xintifboolexpr{#2==0}{}{\num{#2}}% % partie du x - \xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}\xintifboolexpr{#3=1}{}{\num{#3}}}{% - \xintifboolexpr{#2=0}{\xintifboolexpr{#3=-1}{-}{\num{#3}}}{\xintifboolexpr{#3=-1}{-}{-\num{\fpeval{abs(#3)}}}} + \xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\xintifboolexpr{#2==0}{}{+}\xintifboolexpr{#3==1}{}{\num{#3}}}{% + \xintifboolexpr{#2==0}{\xintifboolexpr{#3==-1}{-}{\num{#3}}}{\xintifboolexpr{#3==-1}{-}{-\num{\fpeval{abs(#3)}}}} }\LETTRE}% % partie du x^2 - \xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{}{+}}{+}\xintifboolexpr{#4=1}{}{\num{#4}}}{% - \xintifboolexpr{#2=0}{\xintifboolexpr{#3=0}{\num{#4}}{-\num{\fpeval{abs(#4)}}}}{-\num{\fpeval{abs(#4)}}}}\LETTRE^2}% + \xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{\xintifboolexpr{#2==0}{\xintifboolexpr{#3==0}{}{+}}{+}\xintifboolexpr{#4==1}{}{\num{#4}}}{% + \xintifboolexpr{#2==0}{\xintifboolexpr{#3==0}{\num{#4}}{-\num{\fpeval{abs(#4)}}}}{-\num{\fpeval{abs(#4)}}}}\LETTRE^2}% }% }% @@ -3796,20 +3796,20 @@ \colorlet{DCFlechesh}{\useKV[ClesDistributivite]{CouleurFH}}% \colorlet{DCFlechesb}{\useKV[ClesDistributivite]{CouleurFB}}% \ifboolKV[ClesDistributivite]{Remarquable}{% - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{\ifx\bla#4\bla(\AffichageEchange{#2}{#3}{0})^2\else(\AffichageEchange{#2}{#3}{0})(\AffichageEchange{#4}{#5}{0})\fi + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==1}{\ifx\bla#4\bla(\AffichageEchange{#2}{#3}{0})^2\else(\AffichageEchange{#2}{#3}{0})(\AffichageEchange{#4}{#5}{0})\fi }{} - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==2}{% \ifx\bla#4\bla\xintifboolexpr{#3>0}{% - \num{#2}^2+2\times\num{#2}\times\xintifboolexpr{#3=1}{}{\num{#3}}\useKV[ClesDistributivite]{Lettre}+ - \xintifboolexpr{#3=1}{}{(\num{#3}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3=1}{}{)}^2% + \num{#2}^2+2\times\num{#2}\times\xintifboolexpr{#3==1}{}{\num{#3}}\useKV[ClesDistributivite]{Lettre}+ + \xintifboolexpr{#3==1}{}{(\num{#3}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3==1}{}{)}^2% }{% - \num{#2}^2-2\times\num{#2}\times\xintifboolexpr{#3=-1}{}{\num{\fpeval{0-#3}}}\useKV[ClesDistributivite]{Lettre}+ - \xintifboolexpr{#3=-1}{}{(\num{\fpeval{0-#3}}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3=-1}{}{)}^2% + \num{#2}^2-2\times\num{#2}\times\xintifboolexpr{#3==-1}{}{\num{\fpeval{0-#3}}}\useKV[ClesDistributivite]{Lettre}+ + \xintifboolexpr{#3==-1}{}{(\num{\fpeval{0-#3}}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3==-1}{}{)}^2% }% - \else\num{#2}^2-\xintifboolexpr{#3=1}{}{(\num{#3}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3=1}{}{)}^2% + \else\num{#2}^2-\xintifboolexpr{#3==1}{}{(\num{#3}}\useKV[ClesDistributivite]{Lettre}\xintifboolexpr{#3==1}{}{)}^2% \fi% }{} - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==3}{% \xintifboolexpr{\theNbCalculDistri>1}{\setcounter{NbCalculDistri}{0}}{}% \stepcounter{NbCalculDistri}% \ifx\bla#4\bla% @@ -3824,9 +3824,9 @@ \xdef\Multi{\fpeval{-\Multi}}% \xdef\Multim{\fpeval{-\Multim}}% \xdef\Multil{\fpeval{-\Multil}}% - \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\AffichageEchange{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% - \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\AffichageEchange{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + \xintifboolexpr{\Multi==0}{}{\xintifboolexpr{\Multi<0}{(}{}\AffichageEchange{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim==0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\AffichageEchange{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% }{% \AffichageEchange{\Multi}{\Multim}{\Multil}% } @@ -3844,9 +3844,9 @@ \xdef\Multi{\fpeval{-\Multi}}% \xdef\Multim{\fpeval{-\Multim}}% \xdef\Multil{\fpeval{-\Multil}}% - \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{(}{}\AffichageEchange{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% - \xintifboolexpr{\Multim=0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\AffichageEchange{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% + \xintifboolexpr{\Multi==0}{}{\xintifboolexpr{\Multi<0}{(}{}\AffichageEchange{\Multi}{0}{0}\xintifboolexpr{\Multi<0}{)}{}}% + \xintifboolexpr{\Multim==0}{}{\xintifboolexpr{\Multim>0}{+}{+(}\AffichageEchange{0}{\Multim}{0}\xintifboolexpr{\Multim<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{\xintifboolexpr{\Multil>0}{+}{+(}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}}% }{% \AffichageEchange{\Multi}{\Multim}{\Multil}% } @@ -3858,19 +3858,6 @@ }{}% }{% \ifboolKV[ClesDistributivite]{Numerique}{% - % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=0}{% - % \num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}\multido{\i=2+1}{4}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}% - % }{% - % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=-1}{% - % \Distri[Numerique,Etape=3]{#2}{#3}{#4}{#5}\multido{\i=2+-1}{2}{=\Distri[Numerique,Etape=\i]{#2}{#3}{#4}{#5}}=\num{\fpeval{(#2+#3)*(#4+#5)}}% - % }{% - % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{\num{\fpeval{#2+#3}}\times\num{\fpeval{#4+#5}}}{}% - % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{\num{\fpeval{#2+#3}}\times(\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#5)}})}{}% - % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{\num{#3}\times\num{#4}\xintifboolexpr{#5>0}{+}{-}\num{#3}\times\num{\fpeval{abs(#5)}}}{}% - % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{\num{\fpeval{#3*#4}}\xintifboolexpr{#5>0}{+}{-}\num{\fpeval{abs(#3*#5)}}}{}% - % \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=5}{\num{\fpeval{#3*#4+#3*#5}}}{}% - % }% - % }% }{% \ifboolKV[ClesDistributivite]{All}{% \xdef\NomLettre{\useKV[ClesDistributivite]{NomExpression}}% @@ -3881,126 +3868,126 @@ \NomLettre&=\DistriEchange[Echange=\ValeurEchange,Etape=\NomFin]{#2}{#3}{#4}{#5}% }{% % Etape 1 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=1}{% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1||\useKV[ClesDistributivite]{Echange}=3}{% - \xintifboolexpr{#2=0}{% - }{\xintifboolexpr{#3=0}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==1}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==1||\useKV[ClesDistributivite]{Echange}==3}{% + \xintifboolexpr{#2==0}{% + }{\xintifboolexpr{#3==0}{% }{(}}\Tikzmark{\Affichage[#1]{0}{0}{#2}}% \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{+(}}{}% - \xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{\fpeval{abs(#3)}}{0}}% + \xintifboolexpr{#3>0}{\xintifboolexpr{#2==0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{\fpeval{abs(#3)}}{0}}% \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{)}}{}% - \xintifboolexpr{#2=0}{% - }{\xintifboolexpr{#3=0}{% + \xintifboolexpr{#2==0}{% + }{\xintifboolexpr{#3==0}{% }{)}}% }{ - \xintifboolexpr{#2=0}{% - }{\xintifboolexpr{#3=0}{% + \xintifboolexpr{#2==0}{% + }{\xintifboolexpr{#3==0}{% }{(}}\Tikzmark{\Affichage[#1]{0}{#2}{0}}% \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{+(}}{}% - \xintifboolexpr{#3>0}{\xintifboolexpr{#2=0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#3)}}}% + \xintifboolexpr{#3>0}{\xintifboolexpr{#2==0}{}{+}}{\xintifboolexpr{#3<0}{-}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#3)}}}% \ifboolKV[ClesDistributivite]{AideAdda}{\mathcolor{DCAide}{)}}{}% - \xintifboolexpr{#2=0}{% - }{\xintifboolexpr{#3=0}{% + \xintifboolexpr{#2==0}{% + }{\xintifboolexpr{#3==0}{% }{)}}% }% % \ifboolKV[ClesDistributivite]{AideMul}{\times}{}%on aide dans le cas double \xdef\Multi{\fpeval{#4*#5}}%affichage auto si (a+b)xk % - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2||\useKV[ClesDistributivite]{Echange}=3}{% - \xintifboolexpr{\Multi=0}{\times% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==2||\useKV[ClesDistributivite]{Echange}==3}{% + \xintifboolexpr{\Multi==0}{\times% \xintifboolexpr{#4<0}{(}{\xintifboolexpr{#5<0}{(}{}}}{(}% \Tikzmark{\AffichageEchange[#1]{#4}{0}{0}}% \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{+(}}{}% - \xintifboolexpr{#5>0}{\xintifboolexpr{#4=0}{}{+}}{\xintifboolexpr{#5<0}{-}{}}\Tikzmark{\AffichageEchange[#1]{0}{\fpeval{abs(#5)}}{0}}% + \xintifboolexpr{#5>0}{\xintifboolexpr{#4==0}{}{+}}{\xintifboolexpr{#5<0}{-}{}}\Tikzmark{\AffichageEchange[#1]{0}{\fpeval{abs(#5)}}{0}}% \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{)}}{}% - \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{\Multi==0}{% \xintifboolexpr{#4<0}{)}{\xintifboolexpr{#5<0}{)}{}}}{)}% }{% - \xintifboolexpr{\Multi=0}{\times% + \xintifboolexpr{\Multi==0}{\times% \xintifboolexpr{#4<0}{(}{\xintifboolexpr{#5<0}{(}{}}}{(}% \Tikzmark{\Affichage[#1]{0}{#4}{0}}% \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{+(}}{}% - \xintifboolexpr{#5>0}{\xintifboolexpr{#4=0}{}{+}}{\xintifboolexpr{#5<0}{\xintifboolexpr{#4=0}{{-}}{-}}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#5)}}}% + \xintifboolexpr{#5>0}{\xintifboolexpr{#4==0}{}{+}}{\xintifboolexpr{#5<0}{\xintifboolexpr{#4==0}{{-}}{-}}{}}\Tikzmark{\Affichage[#1]{0}{0}{\fpeval{abs(#5)}}}% \ifboolKV[ClesDistributivite]{AideAddb}{\mathcolor{DCAide}{)}}{}% - \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{\Multi==0}{% \xintifboolexpr{#4<0}{)}{\xintifboolexpr{#5<0}{)}{}}}{)}% }% \ifboolKV[ClesDistributivite]{Fleches}{% \xdef\Multi{\fpeval{#2*#3*#4*#5}}% - \xintifboolexpr{\Multi=0}{% + \xintifboolexpr{\Multi==0}{% \xdef\Multij{\fpeval{#2*#3}}%\relax - \xintifboolexpr{\Multij=0}{\xintifboolexpr{#2=0}{\DrawArrowSimple{1}}{\DrawArrowSimple{0}}}{\xintifboolexpr{#4=0}{\DrawArrowSimpleRenverse{3}}{\DrawArrowSimpleRenverse{2}}} + \xintifboolexpr{\Multij==0}{\xintifboolexpr{#2==0}{\DrawArrowSimple{1}}{\DrawArrowSimple{0}}}{\xintifboolexpr{#4==0}{\DrawArrowSimpleRenverse{3}}{\DrawArrowSimpleRenverse{2}}} }{% \DrawArrow }% }{}\setcounter{NbDistri}{0}% }{}% % Etape 2 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=2}{% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==2}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==1}{% \xdef\Multi{\fpeval{#2*#4}}% - \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{\Multi==0}{}{% \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% }% \xdef\Multij{\fpeval{#2*#5}}% - \xintifboolexpr{\Multij=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multij==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% }% \xdef\Multik{\fpeval{#3*#4}}% - \xintifboolexpr{\Multik=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multik==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\Affichage[#1]{0}{#4}{0}\xintifboolexpr{#4<0}{)}{}% }% \xdef\Multil{\fpeval{#3*#5}}% - \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{\Multil==0}{}{+% \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\Affichage[#1]{0}{0}{#5}\xintifboolexpr{#5<0}{)}{}% }% }{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==2}{% \xdef\Multi{\fpeval{#2*#4}}% - \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{\Multi==0}{}{% \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% }% \xdef\Multij{\fpeval{#2*#5}}% - \xintifboolexpr{\Multij=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multij==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#2<0}{(}{}\Affichage[#1]{0}{#2}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% }% \xdef\Multik{\fpeval{#3*#4}}% - \xintifboolexpr{\Multik=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multik==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% }% \xdef\Multil{\fpeval{#3*#5}}% - \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{\Multil==0}{}{+% \xintifboolexpr{#3<0}{(}{}\Affichage[#1]{0}{0}{#3}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% }% }{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=3}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==3}{% \xdef\Multi{\fpeval{#2*#4}}% - \xintifboolexpr{\Multi=0}{}{% + \xintifboolexpr{\Multi==0}{}{% \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% }% \xdef\Multij{\fpeval{#2*#5}}% - \xintifboolexpr{\Multij=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multij==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#2<0}{(}{}\AffichageEchange[#1]{#2}{0}{0}\xintifboolexpr{#2<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% }% \xdef\Multik{\fpeval{#3*#4}}% - \xintifboolexpr{\Multik=0}{}{% - \xintifboolexpr{\Multi=0}{}{+}% + \xintifboolexpr{\Multik==0}{}{% + \xintifboolexpr{\Multi==0}{}{+}% \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#4<0}{(}{}\AffichageEchange[#1]{#4}{0}{0}\xintifboolexpr{#4<0}{)}{}% }% \xdef\Multil{\fpeval{#3*#5}}% - \xintifboolexpr{\Multil=0}{}{+% + \xintifboolexpr{\Multil==0}{}{+% \xintifboolexpr{#3<0}{(}{}\AffichageEchange[#1]{0}{#3}{0}\xintifboolexpr{#3<0}{)}{}\times\xintifboolexpr{#5<0}{(}{}\AffichageEchange[#1]{0}{#5}{0}\xintifboolexpr{#5<0}{)}{}% }% }{} }{} % Etape 3 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=3}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==3}{% \stepcounter{NbCalculDistri}% \xdef\Multi{\fpeval{#2*#4}}% \xdef\Multij{\fpeval{#2*#5}}% @@ -4008,36 +3995,36 @@ \xdef\Multil{\fpeval{#3*#5}}% %% ils sont red\'efinis pour pouvoir envisager la somme de deux %% expressions \`a d\'evelopper - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==1}{% \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\AffichageEchange{0}{\Multi}{0})}{\AffichageEchange{0}{\Multi}{0}}}{\AffichageEchange{0}{\Multi}{0}}% - \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{\Multij}{0}{0}\xintifboolexpr{\Multij<0}{)}{}}% - \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{0}{0}{\Multik}\xintifboolexpr{\Multik<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{\Multil}{0}\xintifboolexpr{\Multil<0}{)}{}% + \xintifboolexpr{\Multij==0}{}{\xintifboolexpr{\Multi==0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{\Multij}{0}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik==0}{}{\xintifboolexpr{\Multil==0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{0}{0}{\Multik}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{\Multil}{0}\xintifboolexpr{\Multil<0}{)}{}% \xdef\Multim{\fpeval{#2*#4+#3*#5}}% \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multik}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multij}}}{}% \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multik}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multij}}}{}% }{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==2}{% \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\AffichageEchange{0}{\Multi}{0})}{\AffichageEchange{0}{\Multi}{0}}}{\AffichageEchange{0}{\Multi}{0}}% - \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{0}{0}{\Multij}\xintifboolexpr{\Multij<0}{)}{}}% - \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{\Multik}{0}{0}\xintifboolexpr{\Multik<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{\Multil}{0}\xintifboolexpr{\Multil<0}{)}{}% + \xintifboolexpr{\Multij==0}{}{\xintifboolexpr{\Multi==0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{0}{0}{\Multij}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik==0}{}{\xintifboolexpr{\Multil==0}{\xintifboolexpr{#2==0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{\Multik}{0}{0}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{\Multil}{0}\xintifboolexpr{\Multil<0}{)}{}% \xdef\Multim{\fpeval{#2*#4+#3*#5}}% \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multij}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multik}}}{}% \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multij}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multik}}}{}% }{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=3}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==3}{% \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multi<0}{(\AffichageEchange{\Multi}{0}{0})}{\AffichageEchange{\Multi}{0}{0}}}{\AffichageEchange{\Multi}{0}{0}}% - \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multi=0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% - \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multil=0}{\xintifboolexpr{#2=0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% - \xintifboolexpr{\Multil=0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}% + \xintifboolexpr{\Multij==0}{}{\xintifboolexpr{\Multi==0}{}{+}\xintifboolexpr{\Multij<0}{(}{}\AffichageEchange{0}{\Multij}{0}\xintifboolexpr{\Multij<0}{)}{}}% + \xintifboolexpr{\Multik==0}{}{\xintifboolexpr{\Multil==0}{\xintifboolexpr{#2==0}{}{+}}{+}\xintifboolexpr{\Multik<0}{(}{}\AffichageEchange{0}{\Multik}{0}\xintifboolexpr{\Multik<0}{)}{}}% + \xintifboolexpr{\Multil==0}{}{+}\xintifboolexpr{\Multil<0}{(}{}\AffichageEchange{0}{0}{\Multil}\xintifboolexpr{\Multil<0}{)}{}% \xdef\Multim{\fpeval{#2*#5+#3*#4}}% \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multil}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multi}}}{}% \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multil}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multi}}}{}% }{}% }{}%fin etape3 % Etape 4 - \xintifboolexpr{\useKV[ClesDistributivite]{Etape}=4}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Etape}==4}{% \xdef\Multi{\fpeval{#2*#4}}% \xdef\Multij{\fpeval{#2*#5}}% \xdef\Multik{\fpeval{#3*#4}}% @@ -4046,59 +4033,59 @@ %% expressions \`a d\'evelopper \xintifboolexpr{\theNbCalculDistri>1}{\setcounter{NbCalculDistri}{0}}{}% \stepcounter{NbCalculDistri}% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=1}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==1}{% \xdef\Multim{\fpeval{#2*#4+#3*#5}}% \ifboolKV[ClesDistributivite]{Oppose}{% \xdef\Multiko{\fpeval{-\Multik}}% \xdef\Multimo{\fpeval{-\Multim}}% \xdef\Multijo{\fpeval{-\Multij}}% - \xintifboolexpr{\Multiko=0}{}{\xintifboolexpr{\Multiko<0}{(}{}\Affichage{\Multiko}{0}{0}\xintifboolexpr{\Multiko<0}{)}{}}% - \xintifboolexpr{\Multimo=0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% - \xintifboolexpr{\Multijo=0}{}{\xintifboolexpr{\Multijo>0}{+}{+(}\Affichage{0}{0}{\Multijo}\xintifboolexpr{\Multijo<0}{)}{}}% + \xintifboolexpr{\Multiko==0}{}{\xintifboolexpr{\Multiko<0}{(}{}\Affichage{\Multiko}{0}{0}\xintifboolexpr{\Multiko<0}{)}{}}% + \xintifboolexpr{\Multimo==0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% + \xintifboolexpr{\Multijo==0}{}{\xintifboolexpr{\Multijo>0}{+}{+(}\Affichage{0}{0}{\Multijo}\xintifboolexpr{\Multijo<0}{)}{}}% }{% \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multik<0}{(\Affichage{\Multik}{0}{0})}{\Affichage{\Multik}{0}{0}}}{\Affichage{\Multik}{0}{0}}% - \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim==0}{}{% \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% }% - \xintifboolexpr{\Multij=0}{}{\xintifboolexpr{\Multij<0}{-\Affichage{0}{0}{\fpeval{-\Multij}}}{+\Affichage{0}{0}{\Multij}}}% + \xintifboolexpr{\Multij==0}{}{\xintifboolexpr{\Multij<0}{-\Affichage{0}{0}{\fpeval{-\Multij}}}{+\Affichage{0}{0}{\Multij}}}% }% \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multik}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multij}}}{}% \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multik}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multij}}}{}% }{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=2}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==2}{% \xdef\Multim{\fpeval{#2*#4+#3*#5}}% \ifboolKV[ClesDistributivite]{Oppose}{% \xdef\Multijo{\fpeval{-\Multij}}% \xdef\Multimo{\fpeval{-\Multim}}% \xdef\Multiko{\fpeval{-\Multik}}% - \xintifboolexpr{\Multijo=0}{}{\xintifboolexpr{\Multijo<0}{(}{}\Affichage{\Multijo}{0}{0}\xintifboolexpr{\Multijo<0}{)}{}}% - \xintifboolexpr{\Multimo=0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% - \xintifboolexpr{\Multiko=0}{}{\xintifboolexpr{\Multiko>0}{+}{+(}\Affichage{0}{0}{\Multiko}\xintifboolexpr{\Multiko<0}{)}{}}% + \xintifboolexpr{\Multijo==0}{}{\xintifboolexpr{\Multijo<0}{(}{}\Affichage{\Multijo}{0}{0}\xintifboolexpr{\Multijo<0}{)}{}}% + \xintifboolexpr{\Multimo==0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% + \xintifboolexpr{\Multiko==0}{}{\xintifboolexpr{\Multiko>0}{+}{+(}\Affichage{0}{0}{\Multiko}\xintifboolexpr{\Multiko<0}{)}{}}% }{% \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multij<0}{(\Affichage{\Multij}{0}{0})}{\Affichage{\Multij}{0}{0}}}{\Affichage{\Multij}{0}{0}}% - \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim==0}{}{% \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% }% - \xintifboolexpr{\Multik=0}{}{\xintifboolexpr{\Multik<0}{-\Affichage{0}{0}{\fpeval{-\Multik}}}{+\Affichage{0}{0}{\Multik}}}% + \xintifboolexpr{\Multik==0}{}{\xintifboolexpr{\Multik<0}{-\Affichage{0}{0}{\fpeval{-\Multik}}}{+\Affichage{0}{0}{\Multik}}}% }% \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multij}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multik}}}{}% \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multij}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multik}}}{}% }{}% - \xintifboolexpr{\useKV[ClesDistributivite]{Echange}=3}{% + \xintifboolexpr{\useKV[ClesDistributivite]{Echange}==3}{% \xdef\Multim{\fpeval{#2*#5+#3*#4}}% \ifboolKV[ClesDistributivite]{Oppose}{% \xdef\Multilo{\fpeval{-\Multil}}% \xdef\Multimo{\fpeval{-\Multim}}% \xdef\Multio{\fpeval{-\Multi}}% - \xintifboolexpr{\Multilo=0}{}{\xintifboolexpr{\Multilo<0}{(}{}\Affichage{\Multilo}{0}{0}\xintifboolexpr{\Multilo<0}{)}{}}% - \xintifboolexpr{\Multimo=0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% - \xintifboolexpr{\Multio=0}{}{\xintifboolexpr{\Multio>0}{+}{+(}\Affichage{0}{0}{\Multio}\xintifboolexpr{\Multio<0}{)}{}}% + \xintifboolexpr{\Multilo==0}{}{\xintifboolexpr{\Multilo<0}{(}{}\Affichage{\Multilo}{0}{0}\xintifboolexpr{\Multilo<0}{)}{}}% + \xintifboolexpr{\Multimo==0}{}{\xintifboolexpr{\Multimo>0}{+}{+(}\Affichage{0}{\Multimo}{0}\xintifboolexpr{\Multimo<0}{)}{}}% + \xintifboolexpr{\Multio==0}{}{\xintifboolexpr{\Multio>0}{+}{+(}\Affichage{0}{0}{\Multio}\xintifboolexpr{\Multio<0}{)}{}}% }{% \xintifboolexpr{\theNbCalculDistri>1}{\xintifboolexpr{\Multil<0}{(\Affichage{\Multil}{0}{0})}{\Affichage{\Multil}{0}{0}}}{\Affichage{\Multil}{0}{0}}% - \xintifboolexpr{\Multim=0}{}{% + \xintifboolexpr{\Multim==0}{}{% \xintifboolexpr{\Multim>0}{+\Affichage{0}{\Multim}{0}}{-\Affichage{0}{\fpeval{-\Multim}}{0}}% }% - \xintifboolexpr{\Multi=0}{}{\xintifboolexpr{\Multi<0}{-\Affichage{0}{0}{\fpeval{-\Multi}}}{+\Affichage{0}{0}{\Multi}}}% + \xintifboolexpr{\Multi==0}{}{\xintifboolexpr{\Multi<0}{-\Affichage{0}{0}{\fpeval{-\Multi}}}{+\Affichage{0}{0}{\Multi}}}% } \ifboolKV[ClesDistributivite]{Somme}{\xdef\SommeA{\fpeval{\SommeA+\Multil}}\xdef\SommeB{\fpeval{\SommeB+\Multim}}\xdef\SommeC{\fpeval{\SommeC+\Multi}}}{}% \ifboolKV[ClesDistributivite]{Difference}{\xdef\SommeA{\fpeval{\SommeA-\Multil}}\xdef\SommeB{\fpeval{\SommeB-\Multim}}\xdef\SommeC{\fpeval{\SommeC-\Multi}}}{}% @@ -5646,7 +5633,7 @@ vardef Positions(expr Step)= }% % On choisit \'eventuellement le calcul \`a faire s'il y en a plusieurs. \xdef\CompteurCalcul{\useKV[ClesThales]{ChoixCalcul}}% - \xintifboolexpr{\CompteurCalcul>0}{\xintifboolexpr{\CompteurCalcul=1}{\xdef\cmya{0}\xdef\cmza{0}}{\xintifboolexpr{\CompteurCalcul=2}{\xdef\cmxa{0}\xdef\cmza{0}}{\xdef\cmxa{0}\xdef\cmya{0}}}}{}% + \xintifboolexpr{\CompteurCalcul>0}{\xintifboolexpr{\CompteurCalcul==1}{\xdef\cmya{0}\xdef\cmza{0}}{\xintifboolexpr{\CompteurCalcul==2}{\xdef\cmxa{0}\xdef\cmza{0}}{\xdef\cmxa{0}\xdef\cmya{0}}}}{}% %%on fait les calculs \begin{align*} %Premier compteur \xxx @@ -5863,7 +5850,7 @@ vardef Positions(expr Step)= }% % On choisit \'eventuellement le calcul \`a faire s'il y en a plusieurs. \xdef\CompteurCalcul{\useKV[ClesThales]{ChoixCalcul}}% - \xintifboolexpr{\CompteurCalcul>0}{\xintifboolexpr{\CompteurCalcul=1}{\xdef\cmya{0}\xdef\cmza{0}}{\xintifboolexpr{\CompteurCalcul=2}{\xdef\cmxa{0}\xdef\cmza{0}}{\xdef\cmxa{0}\xdef\cmya{0}}}}% + \xintifboolexpr{\CompteurCalcul>0}{\xintifboolexpr{\CompteurCalcul==1}{\xdef\cmya{0}\xdef\cmza{0}}{\xintifboolexpr{\CompteurCalcul==2}{\xdef\cmxa{0}\xdef\cmza{0}}{\xdef\cmxa{0}\xdef\cmya{0}}}}% %%on fait les calculs \begin{align*} %Premier compteur \xxx @@ -6121,7 +6108,7 @@ vardef Positions(expr Step)= \begin{align*} \num{#3}\times\num{#6}&=\num{\fpeval{#3*#6}}&&&\num{#4}\times\num{#5}&=\num{\fpeval{#4*#5}} \end{align*} - \xintifboolexpr{\NumA = \NumB}{Comme les produits en croix sont + \xintifboolexpr{\NumA == \NumB}{Comme les produits en croix sont \'egaux, alors $\dfrac{\NomA\NomM}{\NomA\NomB}=\dfrac{\NomA\NomN}{\NomA\NomC}$.\\[0.5em]% }{% @@ -6131,20 +6118,20 @@ vardef Positions(expr Step)= }{% \[\left. \begin{array}{l} - \dfrac{\NomA\NomM}{\NomA\NomB}=\dfrac{\num{#3}}{\num{#4}}\ifx\bla#7\bla\ifboolKV[ClesThales]{Simplification}{\PGCD{#3}{#4}\xintifboolexpr{\pgcd=1}{%il faut regarder si on doit continuer avec le PPCM... - \PGCD{#5}{#6}\xintifboolexpr{\pgcd>1}{\xdef\DenomSimpaa{\fpeval{#6/\pgcd}}\PPCM{#4}{\DenomSimpaa}\xintifboolexpr{\ppcm=#4}{}{=\dfrac{#3\times\num{\fpeval{\ppcm/#4}}}{#4\times\num{\fpeval{\ppcm/#4}}}=\dfrac{\num{\fpeval{#3*\ppcm/#4}}}{\num{\fpeval{\ppcm}}}}}{}% - }{=\displaystyle\Simplification[All]{#3}{#4}\PGCD{#3}{#4}\xdef\NumSimp{\fpeval{#3/\pgcd}}\xdef\DenomSimp{\fpeval{#4/\pgcd}}\PGCD{#5}{#6}\xdef\NumSimpa{\fpeval{#5/\pgcd}}\xdef\DenomSimpa{\fpeval{#6/\pgcd}}\PPCM{\DenomSimp}{\DenomSimpa}\xintifboolexpr{\fpeval{\the\ppcm/\DenomSimp}=1}{}{=\dfrac{\num{\NumSimp}\times\num{\fpeval{\the\ppcm/\DenomSimp}}}{\num{\DenomSimp}\times\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\the\ppcm/\DenomSimp}}}=\dfrac{\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\NumSimp*\the\ppcm/\DenomSimp}}}{\PPCM{\DenomSimp}{\DenomSimpa}\num{\the\ppcm}}}}}{\PPCM{#4}{#6}\xintifboolexpr{\fpeval{\the\ppcm/#4}=1}{}{=\dfrac{\num{#3}\times\num{\fpeval{\the\ppcm/#4}}}{\num{#4}\times\PPCM{#4}{#6}\num{\fpeval{\the\ppcm/#4}}}=\dfrac{\PPCM{#4}{#6}\num{\fpeval{#3*\the\ppcm/#4}}}{\PPCM{#4}{#6}\num{\the\ppcm}}}}\xdef\NumA{\fpeval{#3*#6}}\else% - \xintifboolexpr{#7=1}{}{=\dfrac{\num{#3}\times\num{#7}}{\num{#4}\times\num{#7}}=\dfrac{\num{\fpeval{#3*#7}}}{\num{\fpeval{#4*#7}}}}\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\xintifboolexpr{\the\ppcm=\fpeval{#4*#7}}{}{=\dfrac{\num{\fpeval{#3*#7}}\times\num{\fpeval{\the\ppcm/(#4*#7)}}}{\num{\fpeval{#4*#7}}\times\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm/(#4*#7)}}}=\dfrac{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{#3*\the\ppcm/#4}}}{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm}}}}\xdef\NumA{\fpeval{#3*#7*#6*#8}} + \dfrac{\NomA\NomM}{\NomA\NomB}=\dfrac{\num{#3}}{\num{#4}}\ifx\bla#7\bla\ifboolKV[ClesThales]{Simplification}{\PGCD{#3}{#4}\xintifboolexpr{\pgcd==1}{%il faut regarder si on doit continuer avec le PPCM... + \PGCD{#5}{#6}\xintifboolexpr{\pgcd>1}{\xdef\DenomSimpaa{\fpeval{#6/\pgcd}}\PPCM{#4}{\DenomSimpaa}\xintifboolexpr{\ppcm==#4}{}{=\dfrac{#3\times\num{\fpeval{\ppcm/#4}}}{#4\times\num{\fpeval{\ppcm/#4}}}=\dfrac{\num{\fpeval{#3*\ppcm/#4}}}{\num{\fpeval{\ppcm}}}}}{}% + }{=\displaystyle\Simplification[All]{#3}{#4}\PGCD{#3}{#4}\xdef\NumSimp{\fpeval{#3/\pgcd}}\xdef\DenomSimp{\fpeval{#4/\pgcd}}\PGCD{#5}{#6}\xdef\NumSimpa{\fpeval{#5/\pgcd}}\xdef\DenomSimpa{\fpeval{#6/\pgcd}}\PPCM{\DenomSimp}{\DenomSimpa}\xintifboolexpr{\fpeval{\the\ppcm/\DenomSimp}==1}{}{=\dfrac{\num{\NumSimp}\times\num{\fpeval{\the\ppcm/\DenomSimp}}}{\num{\DenomSimp}\times\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\the\ppcm/\DenomSimp}}}=\dfrac{\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\NumSimp*\the\ppcm/\DenomSimp}}}{\PPCM{\DenomSimp}{\DenomSimpa}\num{\the\ppcm}}}}}{\PPCM{#4}{#6}\xintifboolexpr{\fpeval{\the\ppcm/#4}==1}{}{=\dfrac{\num{#3}\times\num{\fpeval{\the\ppcm/#4}}}{\num{#4}\times\PPCM{#4}{#6}\num{\fpeval{\the\ppcm/#4}}}=\dfrac{\PPCM{#4}{#6}\num{\fpeval{#3*\the\ppcm/#4}}}{\PPCM{#4}{#6}\num{\the\ppcm}}}}\xdef\NumA{\fpeval{#3*#6}}\else% + \xintifboolexpr{#7==1}{}{=\dfrac{\num{#3}\times\num{#7}}{\num{#4}\times\num{#7}}=\dfrac{\num{\fpeval{#3*#7}}}{\num{\fpeval{#4*#7}}}}\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\xintifboolexpr{\the\ppcm==\fpeval{#4*#7}}{}{=\dfrac{\num{\fpeval{#3*#7}}\times\num{\fpeval{\the\ppcm/(#4*#7)}}}{\num{\fpeval{#4*#7}}\times\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm/(#4*#7)}}}=\dfrac{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{#3*\the\ppcm/#4}}}{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm}}}}\xdef\NumA{\fpeval{#3*#7*#6*#8}} \fi \\ \\ \dfrac{\NomA\NomN}{\NomA\NomC}=\dfrac{\num{#5}}{\num{#6}}% \ifx\bla#8\bla% - \ifboolKV[ClesThales]{Simplification}{\PGCD{#5}{#6}\xintifboolexpr{\pgcd=1}{%il faut regarder si on doit continuer avec le PPCM... - \PGCD{#3}{#4}\xintifboolexpr{\pgcd>1}{\xdef\DenomSimpaa{\fpeval{#4/\pgcd}}\PPCM{#6}{\DenomSimpaa}\xintifboolexpr{\ppcm=#6}{}{=\dfrac{#5\times\num{\fpeval{\ppcm/#6}}}{#6\times\num{\fpeval{\ppcm/#6}}}=\dfrac{\num{\fpeval{#5*\ppcm/#6}}}{\num{\fpeval{\ppcm}}}}}{}% - }{=\displaystyle\Simplification[All]{#5}{#6}\PGCD{#5}{#6}\xdef\NumSimp{\fpeval{#5/\pgcd}}\xdef\DenomSimp{\fpeval{#6/\pgcd}}\PGCD{#3}{#4}\xdef\NumSimpa{\fpeval{#3/\pgcd}}\xdef\DenomSimpa{\fpeval{#4/\pgcd}}\PPCM{\DenomSimp}{\DenomSimpa}\xintifboolexpr{\fpeval{\the\ppcm/\DenomSimp}=1}{}{=\dfrac{\num{\NumSimp}\times\num{\fpeval{\the\ppcm/\DenomSimp}}}{\num{\DenomSimp}\times\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\the\ppcm/\DenomSimp}}}=\dfrac{\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\NumSimp*\the\ppcm/\DenomSimp}}}{\PPCM{\DenomSimp}{\DenomSimpa}\num{\the\ppcm}}}}}{\PPCM{#4}{#6}\xintifboolexpr{\fpeval{\the\ppcm/#6}=1}{}{=\dfrac{\num{#5}\times\num{\fpeval{\the\ppcm/#6}}}{\num{#6}\times\PPCM{#4}{#6}\num{\fpeval{\the\ppcm/#6}}}=\dfrac{\PPCM{#4}{#6}\num{\fpeval{#5*\the\ppcm/#6}}}{\PPCM{#4}{#6}\num{\the\ppcm}}}}\xdef\NumB{\fpeval{#5*#4}}% + \ifboolKV[ClesThales]{Simplification}{\PGCD{#5}{#6}\xintifboolexpr{\pgcd==1}{%il faut regarder si on doit continuer avec le PPCM... + \PGCD{#3}{#4}\xintifboolexpr{\pgcd>1}{\xdef\DenomSimpaa{\fpeval{#4/\pgcd}}\PPCM{#6}{\DenomSimpaa}\xintifboolexpr{\ppcm==#6}{}{=\dfrac{#5\times\num{\fpeval{\ppcm/#6}}}{#6\times\num{\fpeval{\ppcm/#6}}}=\dfrac{\num{\fpeval{#5*\ppcm/#6}}}{\num{\fpeval{\ppcm}}}}}{}% + }{=\displaystyle\Simplification[All]{#5}{#6}\PGCD{#5}{#6}\xdef\NumSimp{\fpeval{#5/\pgcd}}\xdef\DenomSimp{\fpeval{#6/\pgcd}}\PGCD{#3}{#4}\xdef\NumSimpa{\fpeval{#3/\pgcd}}\xdef\DenomSimpa{\fpeval{#4/\pgcd}}\PPCM{\DenomSimp}{\DenomSimpa}\xintifboolexpr{\fpeval{\the\ppcm/\DenomSimp}==1}{}{=\dfrac{\num{\NumSimp}\times\num{\fpeval{\the\ppcm/\DenomSimp}}}{\num{\DenomSimp}\times\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\the\ppcm/\DenomSimp}}}=\dfrac{\PPCM{\DenomSimp}{\DenomSimpa}\num{\fpeval{\NumSimp*\the\ppcm/\DenomSimp}}}{\PPCM{\DenomSimp}{\DenomSimpa}\num{\the\ppcm}}}}}{\PPCM{#4}{#6}\xintifboolexpr{\fpeval{\the\ppcm/#6}==1}{}{=\dfrac{\num{#5}\times\num{\fpeval{\the\ppcm/#6}}}{\num{#6}\times\PPCM{#4}{#6}\num{\fpeval{\the\ppcm/#6}}}=\dfrac{\PPCM{#4}{#6}\num{\fpeval{#5*\the\ppcm/#6}}}{\PPCM{#4}{#6}\num{\the\ppcm}}}}\xdef\NumB{\fpeval{#5*#4}}% \else% - \xintifboolexpr{#8=1}{}{=\dfrac{\num{#5}\times\num{#8}}{\num{#6}\times\num{#8}}=\dfrac{\num{\fpeval{#5*#8}}}{\num{\fpeval{#6*#8}}}}\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\xintifboolexpr{\the\ppcm=\fpeval{#6*#8}}{}{=\dfrac{\num{\fpeval{#5*#8}}\times\num{\fpeval{\the\ppcm/(#6*#8)}}}{\num{\fpeval{#6*#8}}\times\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm/(#6*#8)}}}=\dfrac{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{#5*\the\ppcm/#6}}}{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm}}} + \xintifboolexpr{#8==1}{}{=\dfrac{\num{#5}\times\num{#8}}{\num{#6}\times\num{#8}}=\dfrac{\num{\fpeval{#5*#8}}}{\num{\fpeval{#6*#8}}}}\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\xintifboolexpr{\the\ppcm==\fpeval{#6*#8}}{}{=\dfrac{\num{\fpeval{#5*#8}}\times\num{\fpeval{\the\ppcm/(#6*#8)}}}{\num{\fpeval{#6*#8}}\times\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm/(#6*#8)}}}=\dfrac{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{#5*\the\ppcm/#6}}}{\xdef\NumC{\fpeval{#4*#7}}\xdef\NumD{\fpeval{#6*#8}}\PPCM{\NumC}{\NumD}\num{\fpeval{\the\ppcm}}} }\xdef\NumB{\fpeval{#5*#8*#4*#7}} \fi\\ \end{array} @@ -6164,7 +6151,7 @@ vardef Positions(expr Step)= th\'eor\`eme de Thal\`es.\else% Donc les droites $(\NomM\NomN)$ et $(\NomB\NomC)$ ne sont pas parall\`eles.\fi }{% - \xintifboolexpr{\NumA=\NumB}{% + \xintifboolexpr{\NumA==\NumB}{% De plus, les points $\NomA$, $\NomM$, $\NomB$ sont align\'es dans le m\^eme ordre que les points $\NomA$, $\NomN$, $\NomC$. Donc les droites $(\NomM\NomN)$ et $(\NomB\NomC)$ sont parall\`eles d'apr\`es @@ -6517,21 +6504,27 @@ vardef Positions(expr Step)= label(btex #3 etex,1.15[O,C]); label(btex ? etex,A+0.95u*unitvector(I-A)); decalage:=3mm; + if #6>0: if angle(1/2[A,C]-B)>0: label(btex \num{#6} etex,1.2[B,1/2[A,C]]); else: label(btex \num{#6} etex,1.2[B,1/2[A,C]]); fi; + fi; + if #4>0: if angle(1/2[B,C]-A)>0: label(btex \num{#4} etex,1/2[B,C]-decalage*(unitvector(A-B))); else: label(btex \num{#4} etex,1/2[B,C]-decalage*(unitvector(A-B))); - fi; + fi; + fi; + if #5>0: if angle(1/2[A,B]-C)>0: label(btex \num{#5} etex,1/2[A,B]-decalage*(unitvector(C-B))); else: label(btex \num{#5} etex,1/2[A,B]-decalage*(unitvector(C-B))); fi; + fi; \end{mplibcode} \mplibcodeinherit{disable} \else @@ -6579,21 +6572,27 @@ vardef Positions(expr Step)= label(btex #3 etex,1.15[O,C]); label(btex ? etex,A+0.95u*unitvector(I-A)); decalage:=3mm; + if #6>0: if angle(1/2[A,C]-B)>0: label(btex \num{#6} etex,1.2[B,1/2[A,C]]); else: label(btex \num{#6} etex,1.2[B,1/2[A,C]]); fi; + fi; + if #4>0: if angle(1/2[B,C]-A)>0: label(btex \num{#4} etex,1/2[B,C]-decalage*(unitvector(A-B))); else: label(btex \num{#4} etex,1/2[B,C]-decalage*(unitvector(A-B))); - fi; + fi; + fi; + if #5>0: if angle(1/2[A,B]-C)>0: label(btex \num{#5} etex,1/2[A,B]-decalage*(unitvector(C-B))); else: label(btex \num{#5} etex,1/2[A,B]-decalage*(unitvector(C-B))); fi; + fi; \end{mpost} \fi } @@ -6809,13 +6808,13 @@ vardef Positions(expr Step)= \ifboolKV[ClesTrigo]{FigureSeule}{% \ifx\bla#5\bla% \ifboolKV[ClesTrigo]{Cosinus}{% - \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{}{#3}{#4}{\useKV[ClesTrigo]{Angle}} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{-1}{#3}{#4}{\useKV[ClesTrigo]{Angle}} }{}% \ifboolKV[ClesTrigo]{Sinus}{% - \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{}{#4}{\useKV[ClesTrigo]{Angle}} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{-1}{#4}{\useKV[ClesTrigo]{Angle}} }{}% \ifboolKV[ClesTrigo]{Tangente}{% - \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{#4}{}{\useKV[ClesTrigo]{Angle}} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{#4}{-1}{\useKV[ClesTrigo]{Angle}} }{}% \else%}{%figure pour calculer une longueur \ifboolKV[ClesTrigo]{Cosinus}{% @@ -6847,17 +6846,17 @@ vardef Positions(expr Step)= \ifx\bla#5\bla% \ifboolKV[ClesTrigo]{Cosinus}{% \begin{center} - \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{}{#3}{#4}{\useKV[ClesTrigo]{Angle}} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{-1}{#3}{#4}{\useKV[ClesTrigo]{Angle}} \end{center} }{}% \ifboolKV[ClesTrigo]{Sinus}{% \begin{center} - \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{}{#4}{\useKV[ClesTrigo]{Angle}} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{-1}{#4}{\useKV[ClesTrigo]{Angle}} \end{center} }{}% \ifboolKV[ClesTrigo]{Tangente}{% \begin{center} - \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{#4}{}{\useKV[ClesTrigo]{Angle}} + \MPFigTrigoAngle{\NomA}{\NomB}{\NomC}{#3}{#4}{-1}{\useKV[ClesTrigo]{Angle}} \end{center} }{}% \else%}{%figure pour calculer une longueur @@ -6921,7 +6920,7 @@ vardef Positions(expr Step)= FreqVide=false,AngVide=false,ECCVide=false,TotalVide=false,Sondage=false,% Tableau=false,Stretch=1,Frequence=false,EffectifTotal=false,% Etendue=false,Moyenne=false,SET=false,Mediane=false,Total=false,Concret=false,% -Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angle=false,SemiAngle=false,Qualitatif=false,TableauVide=false,Graphique=false,Batons=true,Unitex=0.5,Unitey=0.5,Rayon=3cm,AffichageAngle=false,Liste=false,ECC=false,Coupure=10,CouleurTab=gray!15,ListeCouleurs={white},Hachures=false,Inverse=false,AbscisseRotation=false} +Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Grille=false,Origine=0,Angle=false,SemiAngle=false,Qualitatif=false,TableauVide=false,Graphique=false,Batons=true,Pasx=1,Pasy=1,Unitex=0.5,Unitey=0.5,Rayon=3cm,AffichageAngle=false,Liste=false,ECC=false,Coupure=10,CouleurTab=gray!15,ListeCouleurs={white},Hachures=false,Inverse=false,AbscisseRotation=false,Representation=false} % La construction du tableau \def\addtotok#1#2{#1\expandafter{\the#1#2}} @@ -7159,6 +7158,20 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl endfor; enddef; toto(#4); + boolean Grille; + Grille:=\useKV[ClesStat]{Grille}; + Pasx:=\useKV[ClesStat]{Pasx}; + Pasy:=\useKV[ClesStat]{Pasy}; + if Grille: + drawoptions(withcolor 0.75white); + for k=0 step Pasx until ((maxx+1)): + trace (k*unitex,0)--(k*unitex,unitey*(maxy+1)); + endfor; + for k=0 step Pasy until ((maxy+1)): + trace (0,k*unitey)--(unitex*(maxx+1),k*unitey); + endfor; + drawoptions(); + fi; for k=1 upto n: draw A[k]--P[k] withpen pencircle scaled 2bp; draw B[k]--P[k] dashed evenly; @@ -7172,7 +7185,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \mpxcommands{% \setKV[ClesStat]{#1}% } - \begin{mpost} + \begin{mpost}[mpsettings={boolean Grille; Grille:=\useKV[ClesStat]{Grille}; Pasx:=\useKV[ClesStat]{Pasx}; Pasy:=\useKV[ClesStat]{Pasy};}] maxx:=0; maxy:=0; unitex:=#2*cm; @@ -7202,6 +7215,16 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl endfor; enddef; toto(#4); + if Grille: + drawoptions(withcolor 0.75white); + for k=0 step Pasx until ((maxx+1)): + trace (k*unitex,0)--(k*unitex,unitey*(maxy+1)); + endfor; + for k=0 step Pasy until ((maxy+1)): + trace (0,k*unitey)--(unitex*(maxx+1),k*unitey); + endfor; + drawoptions(); + fi; for k=1 upto n: draw A[k]--P[k] withpen pencircle scaled 2bp; draw B[k]--P[k] dashed evenly; @@ -7245,6 +7268,20 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl endfor; enddef; toto(#4); + boolean Grille; + Grille:=\useKV[ClesStat]{Grille}; + Pasx:=\useKV[ClesStat]{Pasx}; + Pasy:=\useKV[ClesStat]{Pasy}; + if Grille: + drawoptions(withcolor 0.75white); + for k=0 step Pasx until ((n+1)): + trace (k*unitex,0)--(k*unitex,unitey*(maxy+1)); + endfor; + for k=0 step Pasy until ((maxy+1)): + trace (0,k*unitey)--(unitex*(n+1),k*unitey); + endfor; + drawoptions(); + fi; for k=0 upto n-1: draw A[k]--P[k] withpen pencircle scaled 2bp; draw B[k]--P[k] dashed evenly; @@ -7258,7 +7295,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \mpxcommands{% \setKV[ClesStat]{#1}% } - \begin{mpost} + \begin{mpost}[mpsettings={boolean Grille; Grille:=\useKV[ClesStat]{Grille}; Pasx:=\useKV[ClesStat]{Pasx}; Pasy:=\useKV[ClesStat]{Pasy};}] maxy:=0; unitex:=#2*cm; unitey:=#3*cm; @@ -7285,6 +7322,16 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl endfor; enddef; toto(#4); + if Grille: + drawoptions(withcolor 0.75white); + for k=0 step Pasx until ((n+1)): + trace (k*unitex,0)--(k*unitex,unitey*(maxy+1)); + endfor; + for k=0 step Pasy until ((maxy+1)): + trace (0,k*unitey)--(unitex*(n+1),k*unitey); + endfor; + drawoptions(); + fi; for k=0 upto n-1: draw A[k]--P[k] withpen pencircle scaled 2bp; draw B[k]--P[k] dashed evenly; @@ -7570,18 +7617,26 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \newcommand\Stat[2][]{% \useKVdefault[ClesStat]% \setKV[ClesStat]{#1}% - \ifboolKV[ClesStat]{Liste}{% - \setsepchar{,}\ignoreemptyitems% - \readlist*\Liste{#2}% - \xdef\foo{}% - \setsepchar[*]{,*/}\ignoreemptyitems% - \xintFor* ##1 in {\xintSeq {1}{\Listelen}}\do{% - \xdef\foo{\foo 1/\Liste[##1],}% - }% - \readlist*\ListeComplete{\foo}% - \setKV[ClesStat]{Qualitatif}% + \ifboolKV[ClesStat]{Representation}{% + \setKV[TraceG]{Xmin=0,Ymin=0}% + \setKV[TraceG]{#1}% + \readlist*\ListePointsPlaces{#2}% + \newtoks\toklistepoint% + \foreachitem\compteur\in\ListePointsPlaces{\expandafter\Updatetoks\compteur\nil}% + \MPPlacePoint[#1]{\the\toklistepoint}% }{% - \ifboolKV[ClesStat]{Sondage}{% + \ifboolKV[ClesStat]{Liste}{% + \setsepchar{,}\ignoreemptyitems% + \readlist*\Liste{#2}% + \xdef\foo{}% + \setsepchar[*]{,*/}\ignoreemptyitems% + \xintFor* ##1 in {\xintSeq {1}{\Listelen}}\do{% + \xdef\foo{\foo 1/\Liste[##1],}% + }% + \readlist*\ListeComplete{\foo}% + \setKV[ClesStat]{Qualitatif}% + }{% + \ifboolKV[ClesStat]{Sondage}{% \setsepchar{,}\ignoreemptyitems% \readlist*\Liste{#2}% % "liste vide" @@ -7750,7 +7805,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \begin{center} \begin{minipage}{0.9\linewidth} \DTLforeach*{mtdb}{\numeroDonnee=Numeric}{\num{\numeroDonnee}\ifboolKV[ClesStat]{Concret}{~\text{\useKV[ClesStat]{Unite}}}{}\DTLiflastrow{.}{; - }\nbdonnees=\fpeval{\nbdonnees+1}\modulo{\nbdonnees}{\useKV[ClesStat]{Coupure}}\xintifboolexpr{\remainder=0}{\\}{}} + }\nbdonnees=\fpeval{\nbdonnees+1}\modulo{\nbdonnees}{\useKV[ClesStat]{Coupure}}\xintifboolexpr{\remainder==0}{\\}{}} \end{minipage} \end{center}% \medskip% @@ -7890,6 +7945,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl }{}% }% }% +} %%% % Radar @@ -8116,7 +8172,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl %%% % Equations %%% -\setKVdefault[ClesEquation]{Ecart=0.5,Fleches=false,FlecheDiv=false,Laurent=false,Decomposition=false,Terme=false,Composition=false,Symbole=false,Entier=false,Lettre=x,Solution=false,LettreSol=true,Bloc=false,Simplification=false,CouleurTerme=black,CouleurCompo=black,CouleurSous=red,CouleurSymbole=orange,Verification=false,Nombre=0,Egalite=false,Produit=false,Facteurs=false,Carre=false,Exact=false,Pose=false,Equivalence=false} +\setKVdefault[ClesEquation]{Ecart=0.5,Fleches=false,FlecheDiv=false,Laurent=false,Decomposition=false,Terme=false,Composition=false,Symbole=false,Decimal=false,Entier=false,Lettre=x,Solution=false,LettreSol=true,Bloc=false,Simplification=false,CouleurTerme=black,CouleurCompo=black,CouleurSous=red,CouleurSymbole=orange,Verification=false,Nombre=0,Egalite=false,Produit=false,Facteurs=false,Carre=false,Exact=false,Pose=false,Equivalence=false} \newcommand\rightcomment[4]% {\begin{tikzpicture}[remember picture,overlay] @@ -8285,7 +8341,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \setKV[ClesEquation]{#1}% \xintifboolexpr{#2<0}{% Comme $\num{#2}$ est n\'egatif, alors l'\'equation $\useKV[ClesEquation]{Lettre}^2=\num{#2}$ n'a aucune solution.% - }{\xintifboolexpr{#2=0}{% + }{\xintifboolexpr{#2==0}{% L'\'equation $\useKV[ClesEquation]{Lettre}^2=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.% }{% Comme \num{#2} est positif, alors l'\'equation $\useKV[ClesEquation]{Lettre}^2=\num{#2}$ a deux solutions :% @@ -8305,24 +8361,24 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \ifboolKV[ClesEquation]{Equivalence}{% \[\Distri{#2}{#3}{#4}{#5}=0\] \begin{align*}% - &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{#3=0}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=0&\quad&\makebox[0pt]{ou}\quad&\xintifboolexpr{#5=0}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=0\\ - &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{#3=0}{\xdef\Coeffa{1}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{#2=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}}&&&\xintifboolexpr{#5=0}{\xdef\Coeffc{1}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{#4=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffc{#4}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{\Coeffc=1}{}{\num{\Coeffc}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffd}}%\\ - \xintifboolexpr{\Coeffa=1 'and' \Coeffc=1}{}{\\%\ifnum\cmtd>1 - &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{\Coeffa=1}{&}{\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}}\xintifboolexpr{\Coeffc=1}{}{&&&\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffd}}{\num{\Coeffc}}} + &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{#3==0}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=0&\quad&\makebox[0pt]{ou}\quad&\xintifboolexpr{#5==0}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=0\\ + &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{#3==0}{\xdef\Coeffa{1}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{#2==1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}}&&&\xintifboolexpr{#5==0}{\xdef\Coeffc{1}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{#4==1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffc{#4}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{\Coeffc==1}{}{\num{\Coeffc}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffd}}%\\ + \xintifboolexpr{\Coeffa==1 'and' \Coeffc==1}{}{\\%\ifnum\cmtd>1 + &\makebox[0pt]{$\Longleftrightarrow$}&\xintifboolexpr{\Coeffa==1}{&}{\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}}\xintifboolexpr{\Coeffc==1}{}{&&&\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffd}}{\num{\Coeffc}}} % accolade%\\ %%%% \ifboolKV[ClesEquation]{Entier}{% \xdef\TSimp{}% - \SSimpliTest{\Coeffb}{\Coeffa}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#3=0}{\xdef\TSimp{0}}{\xdef\TSimp{1}}}{\xdef\TSimp{0}} - \SSimpliTest{\Coeffd}{\Coeffc}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#5=0}{}{\xdef\TSimp{\fpeval{\TSimp+1}}}}{} - \xintifboolexpr{\TSimp=0}{}{\\ + \SSimpliTest{\Coeffb}{\Coeffa}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#3==0}{\xdef\TSimp{0}}{\xdef\TSimp{1}}}{\xdef\TSimp{0}} + \SSimpliTest{\Coeffd}{\Coeffc}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#5==0}{}{\xdef\TSimp{\fpeval{\TSimp+1}}}}{} + \xintifboolexpr{\TSimp==0}{}{\\ \ifboolKV[ClesEquation]{Simplification}{% - &\makebox[0pt]{$\Longleftrightarrow$}&\SSimpliTest{\Coeffb}{\Coeffa}\xintifboolexpr{\Coeffa=1}{&}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{&}%\\ + &\makebox[0pt]{$\Longleftrightarrow$}&\SSimpliTest{\Coeffb}{\Coeffa}\xintifboolexpr{\Coeffa==1}{&}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{&}%\\ } }{} &&&\ifboolKV[ClesEquation]{Simplification}{% \SSimpliTest{\Coeffd}{\Coeffc}% - \xintifboolexpr{\Coeffc=1}{}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffd}{\Coeffc}}{}%\\ + \xintifboolexpr{\Coeffc==1}{}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffd}{\Coeffc}}{}%\\ } }{} } @@ -8331,25 +8387,25 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \end{align*} }{% \begin{align*} - \xintifboolexpr{#3=0}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=0&&\text{ou}&\xintifboolexpr{#5=0}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=0\\ - \xintifboolexpr{#3=0}{\xdef\Coeffa{1}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{#2=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}}&&&\xintifboolexpr{#5=0}{\xdef\Coeffc{1}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{#4=1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffc{#4}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{\Coeffc=1}{}{\num{\Coeffc}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffd}}%\\ - \xintifboolexpr{\Coeffa=1 'and' \Coeffc=1}{}{\\%\ifnum\cmtd>1 - \xintifboolexpr{\Coeffa=1}{&}{\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}}\xintifboolexpr{\Coeffc=1}{}{&&&\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffd}}{\num{\Coeffc}}} + \xintifboolexpr{#3==0}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=0&&\text{ou}&\xintifboolexpr{#5==0}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=0\\ + \xintifboolexpr{#3==0}{\xdef\Coeffa{1}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{#2==1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}}&&&\xintifboolexpr{#5==0}{\xdef\Coeffc{1}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{#4==1}{&}{\useKV[ClesEquation]{Lettre}&=0}}{\xdef\Coeffc{#4}\xdef\Coeffd{\fpeval{0-#5}}\xintifboolexpr{\Coeffc==1}{}{\num{\Coeffc}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffd}}%\\ + \xintifboolexpr{\Coeffa==1 'and' \Coeffc==1}{}{\\%\ifnum\cmtd>1 + \xintifboolexpr{\Coeffa==1}{&}{\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}}\xintifboolexpr{\Coeffc==1}{}{&&&\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffd}}{\num{\Coeffc}}} %accolade%\\ %%%% \ifboolKV[ClesEquation]{Entier}{% \xdef\TSimp{} - \SSimpliTest{\Coeffb}{\Coeffa}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#3=0}{\xdef\TSimp{0}}{\xdef\TSimp{1}}}{\xdef\TSimp{0}} - \SSimpliTest{\Coeffd}{\Coeffc}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#5=0}{}{\xdef\TSimp{\fpeval{\TSimp+1}}}}{} - \xintifboolexpr{\TSimp=0}{}{\\ + \SSimpliTest{\Coeffb}{\Coeffa}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#3==0}{\xdef\TSimp{0}}{\xdef\TSimp{1}}}{\xdef\TSimp{0}} + \SSimpliTest{\Coeffd}{\Coeffc}\ifthenelse{\boolean{Simplification}}{\xintifboolexpr{#5==0}{}{\xdef\TSimp{\fpeval{\TSimp+1}}}}{} + \xintifboolexpr{\TSimp==0}{}{\\ \ifboolKV[ClesEquation]{Simplification}{% \SSimpliTest{\Coeffb}{\Coeffa} - \xintifboolexpr{\Coeffa=1}{&}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{&}%\\ + \xintifboolexpr{\Coeffa==1}{&}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{&}%\\ } }{} &&&\ifboolKV[ClesEquation]{Simplification}{% \SSimpliTest{\Coeffd}{\Coeffc}% - \xintifboolexpr{\Coeffc=1}{}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffd}{\Coeffc}}{}%\\ + \xintifboolexpr{\Coeffc==1}{}{\ifthenelse{\boolean{Simplification}}{\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffd}{\Coeffc}}{}%\\ } }{} } @@ -8357,24 +8413,24 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl } \end{align*} }% - \ifboolKV[ClesEquation]{Solution}{L'\'equation $\xintifboolexpr{#3=0}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{(\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}})}\xintifboolexpr{#5=0}{\times\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{(\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}})}=0$ a deux solutions : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$ et \opdiv*{\Coeffd}{\Coeffc}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffd}{\Coeffc}}{\frac{\num{\Coeffd}}{\num{\Coeffc}}}\fi$. + \ifboolKV[ClesEquation]{Solution}{L'\'equation $\xintifboolexpr{#3==0}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}{(\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}})}\xintifboolexpr{#5==0}{\times\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}{(\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}})}=0$ a deux solutions : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$ et \opdiv*{\Coeffd}{\Coeffc}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffd}{\Coeffc}}{\frac{\num{\Coeffd}}{\num{\Coeffc}}}\fi$. }{}% } \newcommand\Verification[5][]{% - \setKV[ClesEquation]{#1} - \xdef\ValeurTest{\useKV[ClesEquation]{Nombre}} - Testons la valeur $\useKV[ClesEquation]{Lettre}=\num{\ValeurTest}$ : + \setKV[ClesEquation]{#1}% + \xdef\ValeurTest{\useKV[ClesEquation]{Nombre}}% + Testons la valeur $\useKV[ClesEquation]{Lettre}=\num{\ValeurTest}$ :% \begin{align*} - \xintifboolexpr{#2=0}{\num{#3}}{\num{#2}\times\xintifboolexpr{\ValeurTest<0}{(\num{\ValeurTest})}{\num{\ValeurTest}}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}&&\xintifboolexpr{#4=0}{\num{#5}}{\num{#4}\times\xintifboolexpr{\ValeurTest<0}{(\num{\ValeurTest})}{\num{\ValeurTest}}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{\num{#5}}}}\\ - \xintifboolexpr{#2=0}{}{\num{\fpeval{#2*\useKV[ClesEquation]{Nombre}}}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}&&\xintifboolexpr{#4=0}{}{\num{\fpeval{#4*\useKV[ClesEquation]{Nombre}}}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{\num{#5}}}}\\ - \xintifboolexpr{#2=0}{}{\num{\fpeval{#2*\useKV[ClesEquation]{Nombre}+#3}}}&&\xintifboolexpr{#4=0}{}{\num{\fpeval{#4*\useKV[ClesEquation]{Nombre}+#5}}} + \xintifboolexpr{#2==0}{\num{#3}}{\num{#2}\times\xintifboolexpr{\ValeurTest<0}{(\num{\ValeurTest})}{\num{\ValeurTest}}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}&&\xintifboolexpr{#4==0}{\num{#5}}{\num{#4}\times\xintifboolexpr{\ValeurTest<0}{(\num{\ValeurTest})}{\num{\ValeurTest}}\xintifboolexpr{#5==0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{\num{#5}}}}\\ + \xintifboolexpr{#2==0}{}{\num{\fpeval{#2*\useKV[ClesEquation]{Nombre}}}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{\num{#3}}}}&&\xintifboolexpr{#4==0}{}{\num{\fpeval{#4*\useKV[ClesEquation]{Nombre}}}\xintifboolexpr{#5==0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{\num{#5}}}}\\ + \xintifboolexpr{#2==0}{}{\num{\fpeval{#2*\useKV[ClesEquation]{Nombre}+#3}}}&&\xintifboolexpr{#4==0}{}{\num{\fpeval{#4*\useKV[ClesEquation]{Nombre}+#5}}} \end{align*} - \xdef\Testa{\fpeval{#2*\useKV[ClesEquation]{Nombre}+#3}}\xdef\Testb{\fpeval{#4*\useKV[ClesEquation]{Nombre}+#5}} + \xdef\Testa{\fpeval{#2*\useKV[ClesEquation]{Nombre}+#3}}\xdef\Testb{\fpeval{#4*\useKV[ClesEquation]{Nombre}+#5}}% \ifboolKV[ClesEquation]{Egalite}{% - Comme \xintifboolexpr{\Testa=\Testb}{$\num{\Testa}=\num{\Testb}$}{$\num{\Testa}\not=\num{\Testb}$}, alors l'\'egalit\'e $\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}=\xintifboolexpr{#4=0}{\num{#5}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}}$ \xintifboolexpr{\Testa=\Testb}{ est v\'erifi\'ee }{ n'est pas v\'erifi\'ee } pour $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$.% - }{\xintifboolexpr{\Testa=\Testb}{Comme $\num{\Testa}=\num{\Testb}$, alors $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$ est bien }{Comme $\num{\Testa}\not=\num{\Testb}$, alors $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$ n'est pas }une solution de l'\'equation $\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}=\xintifboolexpr{#4=0}{\num{#5}}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5=0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}}$.} -} + Comme \xintifboolexpr{\Testa==\Testb}{$\num{\Testa}=\num{\Testb}$}{$\num{\Testa}\not=\num{\Testb}$}, alors l'\'egalit\'e $\xintifboolexpr{#2==0}{\num{#3}}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}=\xintifboolexpr{#4==0}{\num{#5}}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5==0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}}$ \xintifboolexpr{\Testa==\Testb}{ est v\'erifi\'ee }{ n'est pas v\'erifi\'ee } pour $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$.% + }{\xintifboolexpr{\Testa==\Testb}{Comme $\num{\Testa}=\num{\Testb}$, alors $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$ est bien }{Comme $\num{\Testa}\not=\num{\Testb}$, alors $\useKV[ClesEquation]{Lettre}=\num{\useKV[ClesEquation]{Nombre}}$ n'est pas }une solution de l'\'equation $\xintifboolexpr{#2==0}{\num{#3}}{\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}=\xintifboolexpr{#4==0}{\num{#5}}{\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5==0}{}{\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}}$.}% +}% %%% % Proportionnalit\'e @@ -8549,7 +8605,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \xdef\NomCouleurTab{\useKV[ClesPourcentage]{CouleurTab}}% \xdef\NomLargeurTab{\useKV[ClesPourcentage]{Largeur}}% \begin{center} - \Propor[GrandeurA=\NomA,GrandeurB=\NomB,CouleurTab=\NomCouleurTab,Largeur=\NomLargeurTab]{/#3,#2/100} + \Propor[Math,GrandeurA=\NomA,GrandeurB=\NomB,CouleurTab=\NomCouleurTab,Largeur=\NomLargeurTab]{/\num{#3},\num{#2}/100} \end{center} \FlecheCoefInv{\tiny$\times\num{\fpeval{#2/100}}$}% On obtient une \useKV[ClesPourcentage]{MotReduction} de $\num{\fpeval{#2/100}}\times\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*#2/100}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}. Donc un total de $\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}-\num{\fpeval{#3*#2/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*(1-#2/100)}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.% @@ -8570,7 +8626,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \xdef\NomCouleurTab{\useKV[ClesPourcentage]{CouleurTab}}% \xdef\NomLargeurTab{\useKV[ClesPourcentage]{Largeur}}% \begin{center}% - \Propor[GrandeurA=\NomA,GrandeurB=\NomB,CouleurTab=\NomCouleurTab,Largeur=\NomLargeurTab]{/#3,#2/100}% + \Propor[Math,GrandeurA=\NomA,GrandeurB=\NomB,CouleurTab=\NomCouleurTab,Largeur=\NomLargeurTab]{/\num{#3},\num{#2}/100}% \end{center}% \FlecheCoefInv{\tiny$\times\num{\fpeval{#2/100}}$}% On obtient une augmentation de $\num{\fpeval{#2/100}}\times\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*#2/100}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.\\Donc un total de $\num{#3}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}+\num{\fpeval{#3*#2/100}}\ifboolKV[ClesPourcentage]{Concret}{~\text{\useKV[ClesPourcentage]{Unite}}}{}=\num{\fpeval{#3*(1+#2/100)}}$\ifboolKV[ClesPourcentage]{Concret}{~\useKV[ClesPourcentage]{Unite}}{}.% @@ -8584,7 +8640,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \xdef\NomB{\useKV[ClesPourcentage]{GrandeurB}}% \xdef\NomCouleurTab{\useKV[ClesPourcentage]{CouleurTab}}% \xdef\NomLargeurTab{\useKV[ClesPourcentage]{Largeur}}% - \Propor[GrandeurA=\NomA,GrandeurB=\NomB,CouleurTab=\NomCouleurTab,Largeur=\NomLargeurTab]{#2/#3,/100}% + \Propor[Math,GrandeurA=\NomA,GrandeurB=\NomB,CouleurTab=\NomCouleurTab,Largeur=\NomLargeurTab]{\num{#2}/\num{#3},/100}% \xdef\colorfill{\useKV[ClesPourcentage]{ColorFill}}% \FlechesPB{2}{1}{\scriptsize$\times\num{\fpeval{#3/100}}$}% \FlechesPH{1}{2}{\scriptsize$\div\num{\fpeval{#3/100}}$}% @@ -8887,8 +8943,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \newtoks\toklisteratio \def\UpdateRatio#1\nil{\addtotok\toklisteratio{#1,}} -\def\updateratiotoks#1/#2/#3\nil{\addtotok\tabtoksa{&\num{#2}}\addtotok\tabtoksb{&\num{#3}}\addtotok\tabtoksc{}} - +\def\updateratiotoks#1/#2/#3\nil{\addtotok\tabtoksa{&\ifx\bla#2\bla\else\num{#2}\fi}\addtotok\tabtoksb{&\ifx\bla#3\bla\else\num{#3}\fi}\addtotok\tabtoksc{}} \def\buildtabratio{% \tabtoksa{}\tabtoksb{}\tabtoksc{}% @@ -9006,7 +9061,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \newcommand\Redaction[4][]{% \ifboolKV[ClesDroites]{Remediation}{% - \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \xintifboolexpr{\useKV[ClesDroites]{Num}==1}{% \ifboolKV[ClesDroites]{CitePropriete}{% Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parall\`eles. Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parall\`eles.% @@ -9016,7 +9071,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl }{% Comme les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont toutes les deux parall\`eles \`a la m\^eme droite $(\hbox to2em{\dotfill})$, alors les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont parall\`eles.% } - }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + }{\xintifboolexpr{\useKV[ClesDroites]{Num}==2}{% \ifboolKV[ClesDroites]{CitePropriete}{% Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont perpendiculaires. Les droites $(\hbox to2em{\dotfill})$ et $(\hbox to2em{\dotfill})$ sont perpendiculaires.% @@ -9039,7 +9094,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl } }% }{% - \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \xintifboolexpr{\useKV[ClesDroites]{Num}==1}{% \ifboolKV[ClesDroites]{CitePropriete}{% Les droites $(#2)$ et $(#4)$ sont parall\`eles. Les droites $(#3)$ et $(#4)$ sont parall\`eles.% @@ -9049,7 +9104,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl }{% Comme les droites $(#2)$ et $(#3)$ sont toutes les deux parall\`eles \`a la m\^eme droite $(#4)$, alors les droites $(#2)$ et $(#3)$ sont parall\`eles. } - }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + }{\xintifboolexpr{\useKV[ClesDroites]{Num}==2}{% \ifboolKV[ClesDroites]{CitePropriete}{% Les droites $(#2)$ et $(#4)$ sont perpendiculaires. Les droites $(#3)$ et $(#4)$ sont perpendiculaires.% @@ -9077,7 +9132,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \newcommand\Brouillon[4][]{% \setlength{\abovedisplayskip}{0pt} \ifboolKV[ClesDroites]{Remediation}{% - \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \xintifboolexpr{\useKV[ClesDroites]{Num}==1}{% \[\left. \begin{array}{l} (\hbox to2em{\dotfill})//(\hbox to2em{\dotfill})\\ @@ -9086,7 +9141,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \end{array} \right\}(\hbox to2em{\dotfill})//(\hbox to2em{\dotfill}) \] - }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + }{\xintifboolexpr{\useKV[ClesDroites]{Num}==2}{% \[\left. \begin{array}{l} (\hbox to2em{\dotfill})\perp(\hbox to2em{\dotfill})\\ @@ -9107,7 +9162,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl } } }{ - \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \xintifboolexpr{\useKV[ClesDroites]{Num}==1}{% \[\left. \begin{array}{l} (#2)//(#4)\\ @@ -9116,7 +9171,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \end{array} \right\}(#2)//(#3) \] - }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + }{\xintifboolexpr{\useKV[ClesDroites]{Num}==2}{% \[\left. \begin{array}{l} (#2)\perp(#4)\\ @@ -9314,9 +9369,9 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \newcommand\FaireFigure[4][]{% \setlength{\abovedisplayskip}{0pt} - \xintifboolexpr{\useKV[ClesDroites]{Num}=1}{% + \xintifboolexpr{\useKV[ClesDroites]{Num}==1}{% \MPFigureDroite{2}{3}% - }{\xintifboolexpr{\useKV[ClesDroites]{Num}=2}{% + }{\xintifboolexpr{\useKV[ClesDroites]{Num}==2}{% \MPFigureDroite{2}{4}% }{% \MPFigureDroite{3}{4}% @@ -9357,18 +9412,18 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \setKV[ClesAffine]{#1}% \ifboolKV[ClesAffine]{Image}{% \ifboolKV[ClesAffine]{Ligne}{% - \ensuremath{\useKV[ClesAffine]{Nom}(\num{#2})=\num{#3}\times\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}=\num{\fpeval{#2*#3}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}\xintifboolexpr{#4=0}{}{=\num{\fpeval{#2*#3+#4}}}}% + \ensuremath{\useKV[ClesAffine]{Nom}(\num{#2})=\num{#3}\times\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}=\num{\fpeval{#2*#3}}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}\xintifboolexpr{#4==0}{}{=\num{\fpeval{#2*#3+#4}}}}% }{% \ifboolKV[ClesAffine]{ProgCalcul}{% \begin{align*} - \useKV[ClesAffine]{Nom}&:\useKV[ClesAffine]{Variable}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}}\\ - \useKV[ClesAffine]{Nom}&:\num{#2}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{\fpeval{#3*#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{\fpeval{#3*#2+#4}}} + \useKV[ClesAffine]{Nom}&:\useKV[ClesAffine]{Variable}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}}\\ + \useKV[ClesAffine]{Nom}&:\num{#2}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{\fpeval{#3*#2}}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{\fpeval{#3*#2+#4}}} \end{align*} }{% \begin{align*} - \useKV[ClesAffine]{Nom}(\num{#2})&=\num{#3}\times\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}\\ - \useKV[ClesAffine]{Nom}(\num{#2})&=\num{\fpeval{#3*#2}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}%\\ - \xintifboolexpr{#4=0}{}{\\ + \useKV[ClesAffine]{Nom}(\num{#2})&=\num{#3}\times\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}\\ + \useKV[ClesAffine]{Nom}(\num{#2})&=\num{\fpeval{#3*#2}}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}%\\ + \xintifboolexpr{#4==0}{}{\\ \useKV[ClesAffine]{Nom}(\num{#2})&=\num{\fpeval{#3*#2+#4}}%\\ } \end{align*} @@ -9378,11 +9433,11 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \ifboolKV[ClesAffine]{ProgCalcul}{% La fonction affine $\useKV[ClesAffine]{Nom}$ est d\'efinie par : \begin{align*} - \useKV[ClesAffine]{Nom}&:\useKV[ClesAffine]{Variable}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}} + \useKV[ClesAffine]{Nom}&:\useKV[ClesAffine]{Variable}\stackrel{\times\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longrightarrow}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{\stackrel{+\num{#4}}{\longrightarrow}}{\stackrel{\num{#4}}{\longrightarrow}}\num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{\num{#4}}}} \end{align*} Nous cherchons le nombre $\useKV[ClesAffine]{Variable}$ tel que son image par la fonction $\useKV[ClesAffine]{Nom}$ soit $\num{#2}$. Donc on obtient : \begin{align*} - \useKV[ClesAffine]{Nom}&:\frac{\num{\fpeval{#2-#4}}}{\num{#3}}\stackrel{\div\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longleftarrow}\num{\fpeval{#2-#4}}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{\stackrel{-\num{#4}}{\longleftarrow}}{\stackrel{+\num{\fpeval{0-#4}}}{\longleftarrow}}\num{#2}} + \useKV[ClesAffine]{Nom}&:\frac{\num{\fpeval{#2-#4}}}{\num{#3}}\stackrel{\div\xintifboolexpr{#3<0}{(\num{#3})}{\num{#3}}}{\longleftarrow}\num{\fpeval{#2-#4}}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{\stackrel{-\num{#4}}{\longleftarrow}}{\stackrel{+\num{\fpeval{0-#4}}}{\longleftarrow}}\num{#2}} \end{align*} }{% On cherche l'ant\'ec\'edent de $\num{#2}$ par la fonction @@ -9390,12 +9445,12 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl $\useKV[ClesAffine]{Variable}$ tel que $\useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\num{#2}$. Or, la fonction $\useKV[ClesAffine]{Nom}$ est d\'efinie par : \[% - \useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\xintifboolexpr{#3=0}{}{\num{#3}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#3=0}{\num{#4}}{\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}} + \useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\xintifboolexpr{#3==0}{}{\num{#3}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#3==0}{\num{#4}}{\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}} \] Par cons\'equent, on a : \begin{align*} - \num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4=0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}&=\num{#2}\\ - \xintifboolexpr{#4=0}{\useKV[ClesAffine]{Variable}\uppercase{&}=\frac{\num{#2}}{\num{#3}}%\\ + \num{#3}\useKV[ClesAffine]{Variable}\xintifboolexpr{#4==0}{}{\xintifboolexpr{#4>0}{+\num{#4}}{-\num{\fpeval{0-#4}}}}&=\num{#2}\\ + \xintifboolexpr{#4==0}{\useKV[ClesAffine]{Variable}\uppercase{&}=\frac{\num{#2}}{\num{#3}}%\\ }{\num{#3}\useKV[ClesAffine]{Variable}&=\num{\fpeval{#2-#4}}\\ \useKV[ClesAffine]{Variable}&=\frac{\num{\fpeval{#2-#4}}}{\num{#3}}%\\ } @@ -9420,7 +9475,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \end{align*} \xdef\OrdOrigine{\fpeval{#3-(#3-#5)*#2/(#2-#4)}} La fonction affine $\useKV[ClesAffine]{Nom}$ cherch\'ee est : - \[\useKV[ClesAffine]{Nom}:\useKV[ClesAffine]{Variable}\mapsto\SSimplifie{\fpeval{#3-#5}}{\fpeval{#2-#4}}\useKV[ClesAffine]{Variable}\xintifboolexpr{\OrdOrigine=0}{}{\xintifboolexpr{\OrdOrigine>0}{+\num{\OrdOrigine}}{-\num{\fpeval{0-\OrdOrigine}}}}\] + \[\useKV[ClesAffine]{Nom}:\useKV[ClesAffine]{Variable}\mapsto\SSimplifie{\fpeval{#3-#5}}{\fpeval{#2-#4}}\useKV[ClesAffine]{Variable}\xintifboolexpr{\OrdOrigine==0}{}{\xintifboolexpr{\OrdOrigine>0}{+\num{\OrdOrigine}}{-\num{\fpeval{0-\OrdOrigine}}}}\] }{% % }% @@ -9433,17 +9488,17 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \MPFonctionAffine{\useKV[ClesAffine]{Unitex}}{\useKV[ClesAffine]{Unitey}}{#2}{#3}{#4}{#5}{""}}{}% }{}% \ifboolKV[ClesAffine]{Redaction}{% - \xintifboolexpr{#2=0}{Comme la fonction $\useKV[ClesAffine]{Nom}$ + \xintifboolexpr{#2==0}{Comme la fonction $\useKV[ClesAffine]{Nom}$ est une fonction constante, alors sa repr\'esentation graphique est une droite parall\`ele \`a l'axe des abscisses passant par le point de coordonn\'ees $(0;\num{#3})$.}% - {\xintifboolexpr{#3=0}{Comme la fonction $\useKV[ClesAffine]{Nom}$ est une fonction lin\'eaire, alors sa repr\'esentation graphique est une droite passant par l'origine du rep\`ere.\\Je choisis $\useKV[ClesAffine]{Variable}=\num{#4}$. Son image est \xdef\NomFonctionA{\useKV[ClesAffine]{Nom}}\FonctionAffine[Nom=\NomFonctionA,Image,Ligne]{#4}{#2}{#3}{#5}. On place le point de coordonn\'ees $(\num{#4};\num{\fpeval{#2*#4+#3}})$. + {\xintifboolexpr{#3==0}{Comme la fonction $\useKV[ClesAffine]{Nom}$ est une fonction lin\'eaire, alors sa repr\'esentation graphique est une droite passant par l'origine du rep\`ere.\\Je choisis $\useKV[ClesAffine]{Variable}=\num{#4}$. Son image est \xdef\NomFonctionA{\useKV[ClesAffine]{Nom}}\FonctionAffine[Nom=\NomFonctionA,Image,Ligne]{#4}{#2}{#3}{#5}. On place le point de coordonn\'ees $(\num{#4};\num{\fpeval{#2*#4+#3}})$. }{% Comme $\useKV[ClesAffine]{Nom}$ est une fonction affine, alors sa repr\'esentation graphique est une droite.\\Je choisis $\useKV[ClesAffine]{Variable}=\num{#4}$. Son image est \xdef\NomVariable{\useKV[ClesAffine]{Variable}}\xdef\NomFonction{\useKV[ClesAffine]{Nom}}\FonctionAffine[Nom=\NomFonction,Image,Ligne]{#4}{#2}{#3}{#5}. On place le point de coordonn\'ees $(\num{#4};\num{\fpeval{#2*#4+#3}})$.\\Je choisis \setKV[ClesAffine]{Variable=\NomVariable}$\useKV[ClesAffine]{Variable}=\num{#5}$. Son image est \FonctionAffine[Nom=\NomFonction,Image,Ligne]{#5}{#2}{#3}{#4}. On place le point de coordonn\'ees $(\num{#5};\num{\fpeval{#2*#5+#3}})$.% }% }% }% {}% - \ifboolKV[ClesAffine]{Ecriture}{\ensuremath{\useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\xintifboolexpr{#2=0}{}{\num{#2}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}}}{}% - \ifboolKV[ClesAffine]{Definition}{\ensuremath{\useKV[ClesAffine]{Nom}:\useKV[ClesAffine]{Variable}\mapsto\xintifboolexpr{#2=0}{}{\num{#2}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#2=0}{\num{#3}}{\xintifboolexpr{#3=0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}}}{}% + \ifboolKV[ClesAffine]{Ecriture}{\ensuremath{\useKV[ClesAffine]{Nom}(\useKV[ClesAffine]{Variable})=\xintifboolexpr{#2==0}{}{\num{#2}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#2==0}{\num{#3}}{\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}}}{}% + \ifboolKV[ClesAffine]{Definition}{\ensuremath{\useKV[ClesAffine]{Nom}:\useKV[ClesAffine]{Variable}\mapsto\xintifboolexpr{#2==0}{}{\num{#2}\useKV[ClesAffine]{Variable}}\xintifboolexpr{#2==0}{\num{#3}}{\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}}}}{}% }% \def\MPFonctionAffine#1#2#3#4#5#6#7{% @@ -9708,7 +9763,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl %%% % Fonction %%% -\setKVdefault[ClesFonction]{Nom=f,Variable=x,Calcul=x,Tableau=false,Largeur=5mm,Ecriture=false,Definition=false,Points=false,Tangentes=false,PasX=1,PasY=1,UniteX=1,UniteY=1,Prolonge=false} +\setKVdefault[ClesFonction]{Nom=f,Variable=x,Calcul=x,Tableau=false,Largeur=5mm,Ecriture=false,Definition=false,Points=false,Tangentes=false,PasX=1,PasY=1,UniteX=1,UniteY=1,Prolonge=false,Trace=false} \newtoks\toklistePtsFn%pour la discipline @@ -10037,48 +10092,54 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \fi } -\newcommand{\Fonction}[2][]{% +\newcommand\Fonction[2][]{% \useKVdefault[ClesFonction] \setKV[ClesFonction]{#1} - \ifboolKV[ClesFonction]{Points}{% - \toklistePtsFn{}% - % \setsepchar[*]{,*/}%\ignoreemptyitems% - \setsepchar[*]{§*/}%\ignoreemptyitems% - \readlist*\ListePoints{#2}% - \ifboolKV[ClesFonction]{Tangentes}{% - \foreachitem\compteur\in\ListePoints{% - \expandafter\UpdatePtsFn\compteur\nil% - }% - \ifboolKV[ClesFonction]{Prolonge}{% - \MPCourbe{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{1}% + \ifboolKV[ClesFonction]{Trace}{% + \useKVdefault[TraceG]% + \setKV[TraceG]{#1}% + \MPTraceFonction[#1]{\useKV[ClesFonction]{Calcul}}% + }{% + \ifboolKV[ClesFonction]{Points}{% + \toklistePtsFn{}% + % \setsepchar[*]{,*/}%\ignoreemptyitems% + \setsepchar[*]{§*/}%\ignoreemptyitems% + \readlist*\ListePoints{#2}% + \ifboolKV[ClesFonction]{Tangentes}{% + \foreachitem\compteur\in\ListePoints{% + \expandafter\UpdatePtsFn\compteur\nil% + }% + \ifboolKV[ClesFonction]{Prolonge}{% + \MPCourbe{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{1}% + }{% + \MPCourbe{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{0}% + }% }{% - \MPCourbe{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{0}% + \foreachitem\compteur\in\ListePoints{% + \expandafter\UpdatePtsFN\compteur\nil% + }% + \ifboolKV[ClesFonction]{Prolonge}{% + \MPCourbePoints{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{1}% + }{% + \MPCourbePoints{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{0}% + }% }% }{% - \foreachitem\compteur\in\ListePoints{% - \expandafter\UpdatePtsFN\compteur\nil% - }% - \ifboolKV[ClesFonction]{Prolonge}{% - \MPCourbePoints{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{1}% - }{% - \MPCourbePoints{\the\toklistePtsFn}{\useKV[ClesFonction]{PasX}}{\useKV[ClesFonction]{PasY}}{\useKV[ClesFonction]{UniteX}}{\useKV[ClesFonction]{UniteY}}{0}% - }% + \ignoreemptyitems% + \readlist*\ListeFonction{#2} + \StrSubstitute{\useKV[ClesFonction]{Calcul}}{\useKV[ClesFonction]{Variable}}{\i}[\temp]% + \StrSubstitute{\useKV[ClesFonction]{Calcul}}{**}{^}[\tempa]% + \StrSubstitute{\tempa}{*}{}[\tempab]% + \ifboolKV[ClesFonction]{Ecriture}{% + \ensuremath{\useKV[ClesFonction]{Nom}(\useKV[ClesFonction]{Variable})=\tempab} + }{}% + \ifboolKV[ClesFonction]{Definition}{% + \ensuremath{\useKV[ClesFonction]{Nom}:\useKV[ClesFonction]{Variable}\mapsto\tempab} + }{}% + \ifboolKV[ClesFonction]{Tableau}{% + \buildtabfonction% + }{}% }% - }{% - \ignoreemptyitems% - \readlist*\ListeFonction{#2} - \StrSubstitute{\useKV[ClesFonction]{Calcul}}{\useKV[ClesFonction]{Variable}}{\i}[\temp]% - \StrSubstitute{\useKV[ClesFonction]{Calcul}}{**}{^}[\tempa]% - \StrSubstitute{\tempa}{*}{}[\tempab]% - \ifboolKV[ClesFonction]{Ecriture}{% - \ensuremath{\useKV[ClesFonction]{Nom}(\useKV[ClesFonction]{Variable})=\tempab} - }{}% - \ifboolKV[ClesFonction]{Definition}{% - \ensuremath{\useKV[ClesFonction]{Nom}:\useKV[ClesFonction]{Variable}\mapsto\tempab} - }{}% - \ifboolKV[ClesFonction]{Tableau}{% - \buildtabfonction% - }{}% }% }% @@ -10095,6 +10156,415 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl } %%% +% Diff\'erentes représentations graphiques +%%% +\setKVdefault[TraceG]{Grille=false,Graduations=false,PasGrilleX=1,PasGrilleY=1,Xmin=-5.5,Xmax=5.5,Xstep=1,Ymin=-5.5,Ymax=5.5,Ystep=1,Bornea=-5.5,Borneb=5.5,LabelX={},LabelY={},LabelC=0.5,NomCourbe={},Origine={(5.5,5.5)},Fonction=false,Points=false,Invisible=false,CouleurPoint=red,CouleurTrace=black,Relie=false,RelieSegment=false} + +\newcommand\TraceGraphique[2][]{% + \useKVdefault[TraceG]% + \setKV[TraceG]{#1}% + \ifboolKV[TraceG]{Fonction}{% + \MPTraceFonction[#1]{#2}% + }{% + \setKV[TraceG]{Xmin=0,Ymin=0} + \setKV[TraceG]{#1}% + \readlist*\ListePointsPlaces{#2}% + \newtoks\toklistepoint% + \foreachitem\compteur\in\ListePointsPlaces{\expandafter\Updatetoks\compteur\nil}% + \MPPlacePoint[#1]{\the\toklistepoint} + }% +}% + +\newcommand\MPPlacePoint[2][]{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + xmin=\useKV[TraceG]{Xmin}; + xmax=\useKV[TraceG]{Xmax}; + ymin=\useKV[TraceG]{Ymin}; + ymax=\useKV[TraceG]{Ymax}; + pasx=\useKV[TraceG]{Xstep}; + pasy=\useKV[TraceG]{Ystep}; + x.u=1cm/\useKV[TraceG]{Xstep}; + y.u=1cm/\useKV[TraceG]{Ystep}; + grillex=\useKV[TraceG]{PasGrilleX}; + grilley=\useKV[TraceG]{PasGrilleY}; + pos=\useKV[TraceG]{LabelC}; + + color colorpoint,colortrace; + colorpoint=\useKV[TraceG]{CouleurPoint}; + colortrace=\useKV[TraceG]{CouleurTrace}; + boolean Grille; + Grille=\useKV[TraceG]{Grille}; + + boolean Graduations; + Graduations=\useKV[TraceG]{Graduations}; + + boolean Relie; + Relie=\useKV[TraceG]{Relie}; + + boolean RelieSegment; + RelieSegment=\useKV[TraceG]{RelieSegment}; + + boolean Invisible; + Invisible=\useKV[TraceG]{Invisible}; + + pair Origine; + Origine=(0,0); + + if Grille: + drawoptions(withcolor 0.75white); + for k=0 step grillex until (xmax-xmin): + trace (k*x.u,ypart(Origine))--(x.u*k,y.u*(ymax-ymin)); + endfor; + for k=0 step grilley until (ymax-ymin): + trace (xpart(Origine),k*y.u)--(x.u*(xmax-xmin),y.u*k); + endfor; + drawoptions(); + fi; + + if Graduations: + for k=0 step grillex until (xmax-xmin): + trace ((0,-0.5mm)--(0,0.5mm)) shifted ((k*x.u,0) shifted Origine) withpen pencircle scaled1.25; + label.bot(TEX("\num{"&decimal(xmin+k)&"}"),(k*x.u,0) shifted Origine); + endfor; + label.ulft(TEX("\num{"&decimal(ymin)&"}"),(0,0) shifted Origine); + for k=grilley step grilley until (ymax-ymin): + trace ((-0.5mm,0)--(0.5mm,0)) shifted ((0,k*y.u) shifted Origine) withpen pencircle scaled1.25; + label.lft(TEX("\num{"&decimal(ymin+k)&"}"),(0,k*y.u) shifted Origine); + endfor; + fi; + drawoptions(withpen pencircle scaled1.5); + drawarrow Origine--(xpart(Origine),y.u*(ymax-ymin)); + drawarrow Origine--((xmax-xmin)*x.u,ypart(Origine)); + drawoptions(); + + % On relie éventuellement les points + if Relie: + pair N[]; + nbpoint=0; + for p_=#2: + nbpoint:=nbpoint+1; + N[nbpoint]=(x.u*(xpart(p_)-xmin),y.u*(ypart(p_)-ymin)); + endfor; + draw N[1] for k=2 upto nbpoint: + ..N[k] + endfor withcolor colortrace; + fi; + if RelieSegment: + pair N[]; + nbpoint=0; + for p_=#2: + nbpoint:=nbpoint+1; + N[nbpoint]=(x.u*(xpart(p_)-xmin),y.u*(ypart(p_)-ymin)); + endfor; + draw N[1] for k=2 upto nbpoint: + --N[k] + endfor withcolor colortrace; + fi; + + % On place les points + if Invisible=false: + drawoptions(withcolor colorpoint); + for p_=#2: + dotlabel("",(x.u*(xpart(p_)-xmin),y.u*(ypart(p_)-ymin))); + endfor; + drawoptions(); + fi; + %on labelise les axes + label.urt(btex \useKV[TraceG]{LabelX} etex,(x.u*(xmax-xmin),ypart(Origine))); + label.urt(btex \useKV[TraceG]{LabelY} etex,(xpart(Origine),y.u*(ymax-ymin))); + \end{mplibcode} + \else + \mpxcommands{% + \setKV[TraceG]{#1} + } + \begin{mpost}[mpsettings={xmin=\useKV[TraceG]{Xmin};xmax=\useKV[TraceG]{Xmax};ymin=\useKV[TraceG]{Ymin};ymax=\useKV[TraceG]{Ymax};pasx=\useKV[TraceG]{Xstep};pasy=\useKV[TraceG]{Ystep};xu=1cm/\useKV[TraceG]{Xstep};yu=1cm/\useKV[TraceG]{Ystep};grillex=\useKV[TraceG]{PasGrilleX};grilley=\useKV[TraceG]{PasGrilleY};pos=\useKV[TraceG]{LabelC};color colorpoint,colortrace;colorpoint=\useKV[TraceG]{CouleurPoint};colortrace=\useKV[TraceG]{CouleurTrace};boolean Grille;Grille=\useKV[TraceG]{Grille};boolean Graduations;Graduations=\useKV[TraceG]{Graduations};boolean Relie;Relie=\useKV[TraceG]{Relie};boolean RelieSegment;RelieSegment=\useKV[TraceG]{RelieSegment};boolean Invisible;Invisible=\useKV[TraceG]{Invisible};}] + pair Origine; + Origine=(0,0); + + if Grille: + drawoptions(withcolor 0.75white); + for k=0 step grillex until (xmax-xmin): + trace (k*xu,ypart(Origine))--(xu*k,yu*(ymax-ymin)); + endfor; + for k=0 step grilley until (ymax-ymin): + trace (xpart(Origine),k*yu)--(xu*(xmax-xmin),yu*k); + endfor; + drawoptions(); + fi; + + if Graduations: + for k=0 step grillex until (xmax-xmin): + trace ((0,-0.5mm)--(0,0.5mm)) shifted ((k*xu,0) shifted Origine) withpen pencircle scaled1.25; + label.bot(LATEX("\num{"&decimal(xmin+k)&"}"),(k*xu,0) shifted Origine); + endfor; + label.ulft(LATEX("\num{"&decimal(ymin)&"}"),(0,0) shifted Origine); + for k=grilley step grilley until (ymax-ymin): + trace ((-0.5mm,0)--(0.5mm,0)) shifted ((0,k*yu) shifted Origine) withpen pencircle scaled1.25; + label.lft(LATEX("\num{"&decimal(ymin+k)&"}"),(0,k*yu) shifted Origine); + endfor; + fi; + drawoptions(withpen pencircle scaled1.5); + drawarrow Origine--(xpart(Origine),yu*(ymax-ymin)); + drawarrow Origine--((xmax-xmin)*xu,ypart(Origine)); + drawoptions(); + + % On relie éventuellement les points + if Relie: + pair N[]; + nbpoint=0; + for p_=#2: + nbpoint:=nbpoint+1; + N[nbpoint]=(xu*(xpart(p_)-xmin),yu*(ypart(p_)-ymin)); + endfor; + draw N[1] for k=2 upto nbpoint: + ..N[k] + endfor withcolor colortrace; + fi; + if RelieSegment: + pair N[]; + nbpoint=0; + for p_=#2: + nbpoint:=nbpoint+1; + N[nbpoint]=(xu*(xpart(p_)-xmin),yu*(ypart(p_)-ymin)); + endfor; + draw N[1] for k=2 upto nbpoint: + --N[k] + endfor withcolor colortrace; + fi; + + % On place les points + if Invisible=false: + drawoptions(withcolor colorpoint); + for p_=#2: + dotlabel("",(xu*(xpart(p_)-xmin),yu*(ypart(p_)-ymin))); + endfor; + drawoptions(); + fi; + %on labelise les axes + label.urt(btex \unexpanded{\useKV[TraceG]{LabelX}} etex,(xu*(xmax-xmin),ypart(Origine))); + label.urt(btex \unexpanded{\useKV[TraceG]{LabelY}} etex,(xpart(Origine),yu*(ymax-ymin))); + \end{mpost} + \fi +} + +\newcommand\MPTraceFonction[2][]{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + borneinf=\useKV[TraceG]{Bornea}; + bornesup=\useKV[TraceG]{Borneb}; + xmin=\useKV[TraceG]{Xmin}; + xmax=\useKV[TraceG]{Xmax}; + ymin=\useKV[TraceG]{Ymin}; + ymax=\useKV[TraceG]{Ymax}; + pasx=\useKV[TraceG]{Xstep}; + pasy=\useKV[TraceG]{Ystep}; + x.u=1cm/\useKV[TraceG]{Xstep}; + y.u=1cm/\useKV[TraceG]{Ystep}; + grillex=\useKV[TraceG]{PasGrilleX}; + grilley=\useKV[TraceG]{PasGrilleY}; + pos=\useKV[TraceG]{LabelC}; + + color colortrace; + colortrace=\useKV[TraceG]{CouleurTrace}; + + pair Origine; + Origine=(xmin,ymin)+\useKV[TraceG]{Origine}; + + boolean Grille; + Grille=\useKV[TraceG]{Grille}; + + boolean Graduations; + Graduations=\useKV[TraceG]{Graduations}; + + vardef sin(expr t) = sind(c*t) enddef; + + vardef cos(expr t) = cosd(c*t) enddef; + + vardef tan(expr t) = sin(t)/cos(t) enddef; + + vardef exp(expr t) = e**t enddef; + + vardef ch(expr x)=(exp(x)+exp(-x))/2 enddef; + + vardef sh(expr x)=(exp(x)-exp(-x))/2 enddef; + + vardef ln(expr t) = mlog(t)/256 enddef; + + vardef arcsin(expr x)=%Définition mathématique en radian + pi*angle((sqrt(1-x**2),x))/180 + enddef; + + vardef arccos(expr x)=%Définition mathématique en radian + pi*angle((x,sqrt(1-x**2)))/180 + enddef; + + path Cb[]; + + vardef courbe[](expr a,b,nb)(text texte)= + path Courbe; + for i:=0 upto nb : + x@[i]:=(a+i*(b-a)/nb); + x:=x@[i]; + y@[i]:=texte; + endfor ; + Cb@:=(x@.0*x.u,y@.0*y.u) + for i:=1 upto nb : + ..(x@[i]*x.u,y@[i]*y.u) + endfor; + Cb@:=Cb@ shifted (Origine*cm); + Courbe=Cb@; + Courbe + enddef; + + if Grille: + drawoptions(withcolor 0.75white); + for k=xpart(Origine) step grillex until xmax: + trace u*(k,ymin)--u*(k,ymax); + endfor; + for k=xpart(Origine) step -grillex until xmin: + trace u*(k,ymin)--u*(k,ymax); + endfor; + for k=ypart(Origine) step grilley until ymax: + trace u*(xmin,k)--u*(xmax,k); + endfor; + for k=ypart(Origine) step -grilley until ymin: + trace u*(xmin,k)--u*(xmax,k); + endfor; + drawoptions(); + fi; + if Graduations: + for k=1 upto xmax/grillex: + dotlabel.bot(TEX("\num{"&decimal(k)&"}"),(k*x.u+xpart(Origine*cm),ypart(Origine*cm))); + endfor; + for k=-1 downto xmin/grillex: + dotlabel.bot(TEX("\num{"&decimal(k)&"}"),(k*x.u+xpart(Origine*cm),ypart(Origine*cm))); + endfor; + for k=1 upto ymax/grilley: + dotlabel.lft(TEX("\num{"&decimal(k)&"}"),(xpart(Origine*cm),k*y.u+ypart(Origine*cm))); + endfor; + for k=-1 downto ymin/grilley: + dotlabel.lft(TEX("\num{"&decimal(k)&"}"),(xpart(Origine*cm),k*y.u+ypart(Origine*cm))); + endfor; + fi; + drawoptions(withpen pencircle scaled1.5); + drawarrow (u*(0,ymin)--u*(0,ymax)) shifted (u*(xpart(Origine),0)); + drawarrow (u*(xmin,0)--u*(xmax,0)) shifted (u*(0,ypart(Origine))); + drawoptions(); + draw courbe1(borneinf,bornesup,100)(#2) withcolor colortrace; + % labelisation + numeric t; + t=pos*length Cb1; + pair PT,Tangente; + PT:=point (pos*length Cb1) of Cb1; + Tangente:=unitvector(direction t of Cb1); + label(btex \useKV[TraceG]{NomCourbe} etex rotated angle(Tangente),PT+2mm*(Tangente rotated 90)); + % fin labelisation + clip currentpicture to polygone(u*(xmin,ymin),u*(xmax,ymin),u*(xmax,ymax),u*(xmin,ymax)); + label.rt(btex \useKV[TraceG]{LabelX} etex,u*(xmax,ypart(Origine))); + label.top(btex \useKV[TraceG]{LabelY} etex,u*(xpart(Origine),ymax)); + \end{mplibcode} + \else + \mpxcommands{% + \setKV[TraceG]{#1} + } + \begin{mpost}[mpsettings={borneinf=\useKV[TraceG]{Bornea};bornesup=\useKV[TraceG]{Borneb};xmin=\useKV[TraceG]{Xmin};xmax=\useKV[TraceG]{Xmax};ymin=\useKV[TraceG]{Ymin};ymax=\useKV[TraceG]{Ymax};pasx=\useKV[TraceG]{Xstep};pasy=\useKV[TraceG]{Ystep};xu=1cm/\useKV[TraceG]{Xstep};yu=1cm/\useKV[TraceG]{Ystep};grillex=\useKV[TraceG]{PasGrilleX};grilley=\useKV[TraceG]{PasGrilleY};pos=\useKV[TraceG]{LabelC};color colortrace;colortrace=\useKV[TraceG]{CouleurTrace};boolean Grille;Grille=\useKV[TraceG]{Grille};boolean Graduations;Graduations=\useKV[TraceG]{Graduations};}] + pair Origine; + Origine=(xmin,ymin)+\useKV[TraceG]{Origine}; + + vardef sin(expr t) = sind(c*t) enddef; + + vardef cos(expr t) = cosd(c*t) enddef; + + vardef tan(expr t) = sin(t)/cos(t) enddef; + + vardef exp(expr t) = e**t enddef; + + vardef ch(expr x)=(exp(x)+exp(-x))/2 enddef; + + vardef sh(expr x)=(exp(x)-exp(-x))/2 enddef; + + vardef ln(expr t) = mlog(t)/256 enddef; + + vardef arcsin(expr x)=%Définition mathématique en radian + pi*angle((sqrt(1-x**2),x))/180 + enddef; + + vardef arccos(expr x)=%Définition mathématique en radian + pi*angle((x,sqrt(1-x**2)))/180 + enddef; + + path Cb[]; + + vardef courbe[](expr a,b,nb)(text texte)= + path Courbe; + for i:=0 upto nb : + x@[i]:=(a+i*(b-a)/nb); + x:=x@[i]; + y@[i]:=texte; + endfor ; + Cb@:=(x@.0*xu,y@.0*yu) + for i:=1 upto nb : + ..(x@[i]*xu,y@[i]*yu) + endfor; + Cb@:=Cb@ shifted (Origine*cm); + Courbe=Cb@; + Courbe + enddef; + + if Grille: + drawoptions(withcolor 0.75white); + for k=xpart(Origine) step grillex until xmax: + trace u*(k,ymin)--u*(k,ymax); + endfor; + for k=xpart(Origine) step -grillex until xmin: + trace u*(k,ymin)--u*(k,ymax); + endfor; + for k=ypart(Origine) step grilley until ymax: + trace u*(xmin,k)--u*(xmax,k); + endfor; + for k=ypart(Origine) step -grilley until ymin: + trace u*(xmin,k)--u*(xmax,k); + endfor; + drawoptions(); + fi; + if Graduations: + for k=1 upto xmax/grillex: + dotlabel.bot(LATEX("\num{"&decimal(k)&"}"),(k*xu+xpart(Origine*cm),ypart(Origine*cm))); + endfor; + for k=-1 downto xmin/grillex: + dotlabel.bot(LATEX("\num{"&decimal(k)&"}"),(k*xu+xpart(Origine*cm),ypart(Origine*cm))); + endfor; + for k=1 upto ymax/grilley: + dotlabel.lft(LATEX("\num{"&decimal(k)&"}"),(xpart(Origine*cm),k*yu+ypart(Origine*cm))); + endfor; + for k=-1 downto ymin/grilley: + dotlabel.lft(LATEX("\num{"&decimal(k)&"}"),(xpart(Origine*cm),k*yu+ypart(Origine*cm))); + endfor; + fi; + drawoptions(withpen pencircle scaled1.5); + drawarrow (u*(0,ymin)--u*(0,ymax)) shifted (u*(xpart(Origine),0)); + drawarrow (u*(xmin,0)--u*(xmax,0)) shifted (u*(0,ypart(Origine))); + drawoptions(); + draw courbe1(borneinf,bornesup,100)(#2) withcolor colortrace; +% % labelisation + numeric t; + t=pos*length Cb1; + pair PT,Tangente; + PT:=point (pos*length Cb1) of Cb1; + Tangente:=unitvector(direction t of Cb1); + label(btex \noexpand\useKV[TraceG]{NomCourbe} etex rotated angle(Tangente),PT+2mm*(Tangente rotated 90)); +% % fin labelisation + clip currentpicture to polygone(u*(xmin,ymin),u*(xmax,ymin),u*(xmax,ymax),u*(xmin,ymax)); + label.rt(btex \useKV[TraceG]{LabelX} etex,u*(xmax,ypart(Origine))); + label.top(btex \useKV[TraceG]{LabelY} etex,u*(xpart(Origine),ymax)); + \end{mpost} + \fi +} + +%%% % Formules %%% \setKVdefault[ClesFormule]{Perimetre=false,Aire=false,Volume=false,Surface=carr\'e,Solide=pav\'e,Angle=0,Ancre={(0,0)},Largeur=5cm,Couleur=white} @@ -12906,7 +13376,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl %%% \newcommand\Puissances[2]{% \ensuremath{% - \xintifboolexpr{#2=0}{1}{\xintifboolexpr{#2>0}{\xdef\total{\fpeval{#2-1}}#1\multido{\i=1+1}{\total}{\times#1}}{\xdef\total{\fpeval{-#2-1}}\frac{1}{#1\multido{\i=1+1}{\total}{\times#1}}}}% + \xintifboolexpr{#2==0}{1}{\xintifboolexpr{#2>0}{\xdef\total{\fpeval{#2-1}}#1\multido{\i=1+1}{\total}{\times#1}}{\xdef\total{\fpeval{-#2-1}}\frac{1}{#1\multido{\i=1+1}{\total}{\times#1}}}}% }% } @@ -13870,7 +14340,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl }; \node[yshift=-0.65cm] (T2b) at (T2){}; \ifboolKV[Cards]{Titre}{\node[] at (T2b) {\tiny\useKV[Cards]{NomTitre}};}{}, - \node[rectangle,xshift=5mm,yshift=4.25mm,minimum width=2em,rounded corners,fill=TrameCouleur,draw=black] (R) at (frame.south west) {\color{black}\Large\bfseries #3}; + \node[rectangle,xshift=5pt,yshift=4.25mm,minimum width=2em,rounded corners,fill=TrameCouleur,draw=black,anchor=west] (R) at (frame.south west) {\color{black}\Large\bfseries #3}; \draw[dashed] (S1) -- (S2); }, colback=white, @@ -14124,7 +14594,7 @@ Unite={},Largeur=1cm,Precision=2,Donnee=Valeurs,Effectif=Effectif,Origine=0,Angl \long\def\ifremain@lines#1\\#2\@nil{% \csname @\ifx\@empty#2\@empty second\else first\fi oftwo\endcsname} \long\def\subst@eol#1\\#2\@nil{\addtot@b{#1\\}% - \ifremain@lines#2\\\@nil{\addtot@b&\subst@eol#2\@nil}{\addtot@b{#2\CodeAfter\xintifboolexpr{\useKV[Tableur]{Ligne}=0 || \useKV[Tableur]{Colonne}=0}{}{\tikz\draw[line width=2pt](row-\fpeval{\useKV[Tableur]{Ligne}+1}-|col-\fpeval{\useKV[Tableur]{Colonne}+1}) rectangle (row-\fpeval{\useKV[Tableur]{Ligne}+1+\useKV[Tableur]{PasL}}-|col-\fpeval{\useKV[Tableur]{Colonne}+1+\useKV[Tableur]{PasC}});}\end{NiceTabular}}}} + \ifremain@lines#2\\\@nil{\addtot@b&\subst@eol#2\@nil}{\addtot@b{#2\CodeAfter\xintifboolexpr{\useKV[Tableur]{Ligne}==0 || \useKV[Tableur]{Colonne}==0}{}{\tikz\draw[line width=2pt](row-\fpeval{\useKV[Tableur]{Ligne}+1}-|col-\fpeval{\useKV[Tableur]{Colonne}+1}) rectangle (row-\fpeval{\useKV[Tableur]{Ligne}+1+\useKV[Tableur]{PasL}}-|col-\fpeval{\useKV[Tableur]{Colonne}+1+\useKV[Tableur]{PasC}});}\end{NiceTabular}}}} \long\def\collectcp@body#1\end{\subst@eol#1\@nil\end} \newcommand\addtot@b[1]{\t@b\expandafter{\the\t@b#1}} |