diff options
author | Karl Berry <karl@freefriends.org> | 2014-09-26 20:27:29 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2014-09-26 20:27:29 +0000 |
commit | f0f6bb195e19199b566cdbd1e8352dbae05e777c (patch) | |
tree | 39a8e82563a67ec9ea01806a00e70dbb21c0f75c /Master/texmf-dist/tex/latex | |
parent | 9c3620cf1b23153d42f77977451f1221954ce72d (diff) |
qrcode (26sep14)
git-svn-id: svn://tug.org/texlive/trunk@35265 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex')
-rw-r--r-- | Master/texmf-dist/tex/latex/qrcode/qrcode.sty | 3023 |
1 files changed, 3023 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/qrcode/qrcode.sty b/Master/texmf-dist/tex/latex/qrcode/qrcode.sty new file mode 100644 index 00000000000..71504c64504 --- /dev/null +++ b/Master/texmf-dist/tex/latex/qrcode/qrcode.sty @@ -0,0 +1,3023 @@ +%% +%% This is file `qrcode.sty', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% qrcode.dtx (with options: `package') +%% +%% This is a generated file. +%% +%% Copyright (C) 2014 by Anders Hendrickson <ahendric@cord.edu> +%% +%% This work may be distributed and/or modified under the +%% conditions of the LaTeX Project Public License, either version 1.3 +%% of this license or (at your option) any later version. +%% The latest version of this license is in +%% http://www.latex-project.org/lppl.txt +%% and version 1.3 or later is part of all distributions of LaTeX +%% version 2005/12/01 or later. +%% +\NeedsTeXFormat{LaTeX2e}[1999/12/01] +\ProvidesPackage{qrcode} + [2014/09/26 v1.0 QR code generation] +%%PACKAGE LOADING +\RequirePackage{xcolor}% +\RequirePackage{xkeyval}% + +%%INITIAL CODE +\newif\ifqr@draft@mode +\newif\ifqr@forget@mode + +%%DECLARATION OF OPTIONS +\define@boolkey{qr}[qr@]{draft}[true]{\ifqr@draft\qr@draft@modetrue\else\qr@draft@modefalse\fi}% +\define@boolkey{qr}[qr@]{final}[true]{\ifqr@final\qr@draft@modefalse\else\qr@draft@modetrue\fi}% +\define@boolkey{qr}[qr@]{forget}[true]{\ifqr@forget\qr@forget@modetrue\else\qr@forget@modefalse\fi}% + +%%EXECUTION OF OPTIONS +\qr@draft@modefalse +\qr@forget@modefalse + +\ProcessOptionsX<qr> + +\newcounter{qr@i}% +\newcounter{qr@j}% +\newcount\qr@a +\newcount\qr@b +\newcount\qr@c + +\let\xa=\expandafter + +\newlinechar=`\^^J + +\def\@relax{\relax}% + +\def\preface@macro#1#2{% + % #1 = macro name + % #2 = text to add to front of macro + \def\tempb{#2}% + \xa\xa\xa\def\xa\xa\xa#1\xa\xa\xa{\xa\tempb #1}% +}% + +\def\g@preface@macro#1#2{% + % #1 = macro to be appended to + % #2 = code to add + \edef\codeA{#2}% + \xa\xa\xa\gdef\xa\xa\xa#1\xa\xa\xa{\xa\codeA#1}% +} + +\def\qr@getstringlength#1{% + \bgroup + \qr@a=0% + \xdef\thestring{#1}% + \xa\qr@stringlength@recursive\xa(\thestring\relax\relax)% + \xdef\qr@stringlength{\the\qr@a}% + \egroup +}% + +\def\qr@stringlength@recursive(#1#2){% + \def\testi{#1}% + \ifx\testi\@relax + %we are done. + \let\qr@next=\relax% + \else + \advance\qr@a by 1% + \def\qr@next{\qr@stringlength@recursive(#2)}% + \fi + \qr@next +}% +\newcount\qr@for@depth% +\newcount\qr@for@maxdepth% +\qr@for@depth=0% +\qr@for@maxdepth=0% +\newcount\qr@for@start% +\newcount\qr@for@end% +\newcount\qr@for@step% +\def\qr@allocate@new@for@counter{% + \global\advance\qr@for@maxdepth by 1% + \newcount\qr@newforcount% + \xa\global\xa\let\csname qr@for@var@\the\qr@for@maxdepth\endcsname=\qr@newforcount% +}% + +\newif\ifqr@loopshouldrun +\def\qr@for #1=#2to#3by#4#{% + \qr@for@int{#1}{#2}{#3}{#4}% +}% +\long\def\qr@for@int#1#2#3#4#5{% + \bgroup + %Because we're working within a TeX group, + %any values of \qr@for@start, \qr@for@end, and \qr@for@step from an outer loop + %will be restored after the \egroup. + % + %For the \qr@for@var itself, however, we need a different counter, + %because the user's text within the loop might need to access the variable from the outer loop. + \advance\qr@for@depth by 1\relax% This is a local change. + \ifnum\qr@for@depth>\qr@for@maxdepth% + %This is the first time we have gone to this depth of nesting! + %We should only be over by one. + \qr@allocate@new@for@counter% + \fi + \xa\let\xa\qr@for@var\xa=\csname qr@for@var@\the\qr@for@depth\endcsname% + %Now \qr@for@var points to the same register as \qr@for@var@3 or something. + %The next line lets the user-level variable (e.g., \i or \j) point to the same count register. + \let#1=\qr@for@var% + %Now establish the looping parameters. + \edef\qr@for@start@text{#2}% + \edef\qr@for@end@text{#3}% + \edef\qr@for@step@text{#4}% + \def\qr@for@body{\bgroup #5\egroup}% + \xa\qr@for@start\qr@for@start@text\relax% + \xa\qr@for@end \qr@for@end@text\relax% + \xa\qr@for@step \qr@for@step@text\relax% + % + %Next, test whether the loop should run at all. + % * "\qr@for \i = 1 to 0 by 1" should fail. + % * "\qr@for \i = 3 to 5 by -1" should fail. + % * "\qr@for \i = 6 to 2 by 1" should fail. + % * "\qr@for \i = 4 to 4 by -1" should run. + % * "\qr@for \i = 4 to 4 by 1" should run. + % * "\qr@for \i = 5 to 7 by 0" should fail. + %The loop should fail if (step)=0 or if (step) and (end-start) have opposite signs. + %The loop will fail if (step=0) or (step)*(end-start)<0. + % TODO: "\qr@for \i = 5 to 5 by 0" should run (just one iteration). + \qr@loopshouldruntrue + \ifnum\qr@for@step=0\relax + \qr@loopshouldrunfalse + \fi + \qr@a=\qr@for@end% + \advance\qr@a by -\qr@for@start% + \multiply\qr@a by \qr@for@step% + \ifnum\qr@a<0\relax + \qr@loopshouldrunfalse + \fi + \ifqr@loopshouldrun + \qr@for@var=\qr@for@start% + \ifnum\qr@for@step>0\relax + \def\qr@for@recursive{% + \qr@for@body% + \advance\qr@for@var by \qr@for@step% + \ifnum\qr@for@var>\qr@for@end% + \let\qr@for@next=\relax% + \else% + \let\qr@for@next=\qr@for@recursive% + \fi% + \qr@for@next% + }% + \else + \def\qr@for@recursive{% + \qr@for@body% + \advance\qr@for@var by \qr@for@step% + \ifnum\qr@for@var<\qr@for@end% + \let\qr@for@next=\relax% + \else% + \let\qr@for@next=\qr@for@recursive% + \fi% + \qr@for@next% + }% + \fi + \qr@for@recursive% + \fi + \egroup +}% +\def\qr@padatfront#1#2{% + % #1 = macro containing text to pad + % #2 = desired number of characters + % Pads a number with initial zeros. + \qr@getstringlength{#1}% + \qr@a=\qr@stringlength\relax% + \advance\qr@a by 1\relax% + \qr@for \i = \qr@a to #2 by 1\relax% + {\g@preface@macro{#1}{0}}% +} + +\qr@a=-1\relax% +\def\qr@savehexsymbols(#1#2){% + \advance\qr@a by 1\relax% + \xa\def\csname qr@hexchar@\the\qr@a\endcsname{#1}% + \xa\edef\csname qr@hextodecimal@#1\endcsname{\the\qr@a}% + \ifnum\qr@a=15\relax + %Done. + \let\qr@next=\relax% + \else + \def\qr@next{\qr@savehexsymbols(#2)}% + \fi% + \qr@next% +}% +\qr@savehexsymbols(0123456789abcdef\relax\relax)% + +\def\qr@decimaltobase#1#2#3{% + % #1 = macro to store result + % #2 = decimal representation of a positive integer + % #3 = new base + \bgroup + \edef\qr@newbase{#3}% + \gdef\qr@base@result{}% + \qr@a=#2\relax% + \qr@decimaltobase@recursive% + \xdef#1{\qr@base@result}% + \egroup +} +\def\qr@decimaltobase@recursive{% + \qr@b=\qr@a% + \divide\qr@b by \qr@newbase\relax + \multiply\qr@b by -\qr@newbase\relax + \advance\qr@b by \qr@a\relax% + \divide\qr@a by \qr@newbase\relax% + \ifnum\qr@b<10\relax + \edef\newdigit{\the\qr@b}% + \else + \edef\newdigit{\csname qr@hexchar@\the\qr@b\endcsname}% + \fi + \edef\qr@argument{{\noexpand\qr@base@result}{\newdigit}}% + \xa\g@preface@macro\qr@argument% + \ifnum\qr@a=0\relax + \relax + \else + \xa\qr@decimaltobase@recursive + \fi +} + +\newcommand\qr@decimaltohex[3][0]{% + % #1 (opt.) = number of hex digits to create + % #2 = macro to store result + % #3 = decimal digits to convert + \qr@decimaltobase{#2}{#3}{16}% + \qr@padatfront{#2}{#1}% +} + +\newcommand\qr@decimaltobinary[3][0]{% + % #1 (opt.) = number of bits to create + % #2 = macro to store result + % #3 = decimal digits to convert + \qr@decimaltobase{#2}{#3}{2}% + \qr@padatfront{#2}{#1}% +} + +\qr@for \i = 0 to 15 by 1% + {% + \qr@decimaltohex[1]{\qr@hexchar}{\the\i}% + \qr@decimaltobinary[4]{\qr@bits}{\the\i}% + \xa\xdef\csname qr@b2h@\qr@bits\endcsname{\qr@hexchar}% + \xa\xdef\csname qr@h2b@\qr@hexchar\endcsname{\qr@bits}% + }% + +\newcommand\qr@binarytohex[3][\relax]{% + % #1 (optional) = # digits desired + % #2 = macro to save to + % #3 = binary string (must be multiple of 4 bits) + \def\test@i{#1}% + \ifx\test@i\@relax% + %No argument specified + \def\qr@desireddigits{0}% + \else + \def\qr@desireddigits{#1}% + \fi + \gdef\qr@base@result{}% + \edef\qr@argument{(#3\relax\relax\relax\relax\relax)}% + \xa\qr@binarytohex@int\qr@argument% + \qr@padatfront{\qr@base@result}{\qr@desireddigits}% + \xdef#2{\qr@base@result}% +} +\def\qr@binarytohex@int(#1#2#3#4#5){% + % #1#2#3#4 = 4 bits + % #5 = remainder, including \relax\relax\relax\relax\relax terminator + \def\test@i{#1}% + \ifx\test@i\@relax% + %Done. + \def\qr@next{\relax}% + \else% + \xdef\qr@base@result{\qr@base@result\csname qr@b2h@#1#2#3#4\endcsname}% + \def\qr@next{\qr@binarytohex@int(#5)}% + \fi% + \qr@next% +} + +\newcommand\qr@hextobinary[3][\relax]{% + % #1 (optional) = # bits desired + % #2 = macro to save to + % #3 = hexadecimal string + \bgroup + \def\test@i{#1}% + \ifx\test@i\@relax% + %No argument specified + \def\qr@desireddigits{0}% + \else + \def\qr@desireddigits{#1}% + \fi + \gdef\qr@base@result{}% + \edef\qr@argument{(#3\relax\relax)}% + \xa\qr@hextobinary@int\qr@argument% + \qr@padatfront{\qr@base@result}{\qr@desireddigits}% + \xdef#2{\qr@base@result}% + \egroup +} +\def\qr@hextobinary@int(#1#2){% + % #1 = hexadecimal character + % #2 = remainder, including \relax\relax terminator + \def\test@@i{#1}% + \ifx\test@@i\@relax% + %Done. + \def\qr@next{\relax}% + \else% + \xdef\qr@base@result{\qr@base@result\csname qr@h2b@#1\endcsname}% + \def\qr@next{\qr@hextobinary@int(#2)}% + \fi% + \qr@next% +} + +\def\qr@hextodecimal#1#2{% + \edef\qr@argument{#2}% + \xa\qr@a\xa=\xa\number\xa"\qr@argument\relax% + \edef#1{\the\qr@a}% +} + +\def\qr@hextodecimal#1#2{% + % #1 = macro to store result + % #2 = hexadecimal representation of a positive integer + \bgroup + \qr@a=0\relax% + \edef\qr@argument{(#2\relax)}% + \xa\qr@hextodecimal@recursive\qr@argument% + \xdef#1{\the\qr@a}% + \egroup +} +\def\qr@hextodecimal@recursive(#1#2){% + % #1 = first hex char + % #2 = remainder + \advance \qr@a by \csname qr@hextodecimal@#1\endcsname\relax% + \edef\testii{#2}% + \ifx\testii\@relax% + %Done. + \let\qr@next=\relax% + \else + %There's at least one more digit. + \multiply\qr@a by 16\relax + \edef\qr@next{\noexpand\qr@hextodecimal@recursive(#2)}% + \fi% + \qr@next% +} +{\catcode`\ =12\relax\gdef\qr@otherspace{ }}% +{\catcode`\%=12\relax\gdef\qr@otherpercent{%}}% +{\catcode`\#=12\relax\gdef\qr@otherpound{#}}% +{\catcode`\|=0\relax|catcode`|\=12|relax|gdef|qr@otherbackslash{\}}% +\bgroup + \catcode`\<=1\relax + \catcode`\>=2\relax + \catcode`\{=12\relax\gdef\qr@otherleftbrace<{>% + \catcode`\}=12\relax\gdef\qr@otherrightbrace<}>% +\egroup% +{\catcode`\&=12\relax\gdef\qr@otherampersand{&}}% +{\catcode`\~=12\relax\gdef\qr@othertilde{~}}% +{\catcode`\^=12\relax\gdef\qr@othercaret{^}}% +{\catcode`\_=12\relax\gdef\qr@otherunderscore{_}}% +{\catcode`\$=12\relax\gdef\qr@otherdollar{$}}% + +\def\qr@verbatimcatcodes{% + \catcode`\#=12\relax + \catcode`\$=12\relax + \catcode`\&=12\relax + \catcode`\^=12\relax + \catcode`\_=12\relax + \catcode`\~=12\relax + \catcode`\%=12\relax + \catcode`\ =12\relax}% + +\def\qr@setescapedspecials{% + \let\ =\qr@otherspace% + \let\%=\qr@otherpercent% + \let\#=\qr@otherpound% + \let\&=\qr@otherampersand% + \let\^=\qr@othercaret% + \let\_=\qr@otherunderscore% + \let\~=\qr@othertilde% + \let\$=\qr@otherdollar% + \let\\=\qr@otherbackslash% + \let\{=\qr@otherleftbrace% + \let\}=\qr@otherrightbrace% +}% +\def\qr@creatematrix#1{% + \xa\gdef\csname #1\endcsname##1##2{% + \csname #1@##1@##2\endcsname + }% +}% + +\def\qr@storetomatrix#1#2#3#4{% + % #1 = matrix name + % #2 = row number + % #3 = column number + % #4 = value of matrix entry + \xa\gdef\csname #1@#2@#3\endcsname{#4}% +}% + +\def\qr@estoretomatrix#1#2#3#4{% + % This version performs exactly one expansion on #4. + % #1 = matrix name + % #2 = row number + % #3 = column number + % #4 = value of matrix + \xa\xa\xa\gdef\xa\xa\csname #1@#2@#3\endcsname\xa{#4}% +}% + +\def\qr@matrixentry#1#2#3{% + % #1 = matrix name + % #2 = row number + % #3 = column number + \csname #1@#2@#3\endcsname% +}% + +\def\qr@createsquareblankmatrix#1#2{% + \qr@creatematrix{#1}% + \xa\gdef\csname #1@numrows\endcsname{#2}% + \xa\gdef\csname #1@numcols\endcsname{#2}% + \qr@for \i = 1 to #2 by 1% + {\qr@for \j = 1 to #2 by 1% + {\qr@storetomatrix{#1}{\the\i}{\the\j}{\@blank}}}% +}% + +\def\qr@numberofrowsinmatrix#1{% + \csname #1@numrows\endcsname% +}% + +\def\qr@numberofcolsinmatrix#1{% + \csname #1@numcols\endcsname% +}% + +\def\qr@setnumberofrows#1#2{% + \xa\xdef\csname #1@numrows\endcsname{#2}% +}% + +\def\qr@setnumberofcols#1#2{% + \xa\xdef\csname #1@numcols\endcsname{#2}% +}% + +\newlength\qr@desiredheight +\setlength\qr@desiredheight{2cm}% +\newlength\qr@modulesize +\newlength\qr@minipagewidth + +\def\qr@printmatrix#1{% + \def\qr@black{\rule{\qr@modulesize}{\qr@modulesize}}% + \def\@white{\rule{\qr@modulesize}{0pt}}% + \def\qr@black@fixed{\rule{\qr@modulesize}{\qr@modulesize}}% + \def\qr@white@fixed{\rule{\qr@modulesize}{0pt}}% + \def\qr@black@format{\rule{\qr@modulesize}{\qr@modulesize}}% + \def\qr@white@format{\rule{\qr@modulesize}{0pt}}% + %Set module size + \setlength{\qr@modulesize}{\qr@desiredheight}% + \divide\qr@modulesize by \qr@size\relax% + % + \setlength{\qr@minipagewidth}{\qr@modulesize}% + \multiply\qr@minipagewidth by \qr@size\relax% + \ifqr@tight + \else + \advance\qr@minipagewidth by 8\qr@modulesize% + \fi + \begin{minipage}{\qr@minipagewidth}% + \baselineskip=\qr@modulesize% + \ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi% %Blank space at top. + \qr@for \i = 1 to \qr@numberofrowsinmatrix{#1} by 1% + {\ifqr@tight\else\rule{4\qr@modulesize}{0pt}\fi% %Blank space at left. + \qr@for \j = 1 to \qr@numberofcolsinmatrix{#1} by 1% + {\qr@matrixentry{#1}{\the\i}{\the\j}}% + \par}% + \ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi% + \end{minipage}% +}% + +\def\qr@printsavedbinarymatrix#1{% + \edef\qr@binarystring{#1\relax\relax}% + %Set module size + \setlength{\qr@modulesize}{\qr@desiredheight}% + \divide\qr@modulesize by \qr@size\relax% + % + \setlength{\qr@minipagewidth}{\qr@modulesize}% + \multiply\qr@minipagewidth by \qr@size\relax% + \ifqr@tight + \else + \advance\qr@minipagewidth by 8\qr@modulesize% + \fi + \begin{minipage}{\qr@minipagewidth}% + \baselineskip=\qr@modulesize% + \ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi% %Blank space at top. + \qr@for \i = 1 to \qr@size by 1% + {\ifqr@tight\else\rule{4\qr@modulesize}{0pt}\fi% %Blank space at left. + \qr@for \j = 1 to \qr@size by 1% + {\edef\theargument{(\qr@binarystring)}% + \xa\qr@printsavedbinarymatrix@int\theargument + }% + \par}% + \ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi% + \end{minipage}% +}% + +\def\qr@printsavedbinarymatrix@int(#1#2){% + % #1 = first bit, either 1 or 0. + % #2 = remainder of string, terminating with \relax\relax + % There's no need to check for EOF here, because + % we'll only call this n^2 times. + \ifcase #1\relax + \rule{\qr@modulesize}{0pt}% % 0: white square + \or + \rule{\qr@modulesize}{\qr@modulesize}% % 1: black square + \fi + \xdef\qr@binarystring{#2}% +}% + +\def\qr@createliteralmatrix#1#2#3{% + % #1 = matrix name + % #2 = m, the number of rows and columns in the square matrix + % #3 = a string of m^2 tokens to be written into the matrix + \qr@creatematrix{#1}% + \xa\xdef\csname #1@numrows\endcsname{#2}% + \xa\xdef\csname #1@numcols\endcsname{#2}% + \gdef\qr@literalmatrix@tokens{#3}% + \qr@for \i = 1 to #2 by 1% + {\qr@for \j = 1 to #2 by 1% + {\xa\qr@createliteralmatrix@int\xa(\qr@literalmatrix@tokens)% + \qr@estoretomatrix{#1}{\the\i}{\the\j}{\qr@entrytext}% + }% + }% +} +\def\qr@createliteralmatrix@int(#1#2){% + \def\qr@entrytext{#1}% + \gdef\qr@literalmatrix@tokens{#2}% +} + +\qr@createliteralmatrix{finderpattern}{8}{% + \qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed% + \qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed% + \qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed% + \qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed% + \qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed% + \qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed% + \qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed% + \qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed% +}% + +\qr@createliteralmatrix{alignmentpattern}{5}{% + \qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed% + \qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed% + \qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed% + \qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed% + \qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed% +}% + +\def\qr@copymatrixentry#1#2#3#4#5#6{% + % Copy the (#2,#3) entry of matrix #1 + % to the (#5,#6) position of matrix #4. + \xa\xa\xa\global% + \xa\xa\xa\let\xa\xa\csname #4@#5@#6\endcsname% + \csname #1@#2@#3\endcsname% +}% + +\def\qr@createduplicatematrix#1#2{% + % #1 = name of copy + % #2 = original matrix to be copied + \qr@creatematrix{#1}% + \qr@for \i = 1 to \qr@numberofrowsinmatrix{#2} by 1% + {\qr@for \j = 1 to \qr@numberofcolsinmatrix{#2} by 1% + {\qr@copymatrixentry{#2}{\the\i}{\the\j}{#1}{\the\i}{\the\j}% + }% + }% + \qr@setnumberofrows{#1}{\qr@numberofrowsinmatrix{#2}}% + \qr@setnumberofcols{#1}{\qr@numberofcolsinmatrix{#2}}% +}% + +\def\qr@placefinderpattern@int#1#2#3#4#5{% + % Work on matrix #1. + % Start in position (#2, #3) -- should be a corner + % #4 indicates horizontal direction (1=right, -1=left) + % #5 indicates vertical direction (1=down, -1=up) + % + % In this code, \sourcei and \sourcej are TeX counts working through the finderpattern matrix, + % and i and j are LaTeX counters indicating positions in the big matrix. + \setcounter{qr@i}{#2}% + \qr@for \sourcei=1 to 8 by 1% + {\setcounter{qr@j}{#3}% + \qr@for \sourcej=1 to 8 by 1% + {\qr@copymatrixentry{finderpattern}{\the\sourcei}{\the\sourcej}% + {#1}{\theqr@i}{\theqr@j}% + \addtocounter{qr@j}{#5}% + }% + \addtocounter{qr@i}{#4}% + }% +}% + +\def\qr@placefinderpatterns#1{% + % #1=matrix name + \qr@placefinderpattern@int{#1}{1}{1}{1}{1}% + \qr@placefinderpattern@int{#1}{\qr@numberofrowsinmatrix{#1}}{1}{-1}{1}% + \qr@placefinderpattern@int{#1}{1}{\qr@numberofcolsinmatrix{#1}}{1}{-1}% +}% + +\def\qr@placetimingpatterns#1{% + %Set \endingcol to n-8. + \qr@a=\qr@size\relax% + \advance\qr@a by -8\relax% + \edef\endingcol{\the\qr@a}% + \qr@for \j = 9 to \endingcol by 1% + {\ifodd\j\relax% + \qr@storetomatrix{#1}{7}{\the\j}{\qr@black@fixed}% + \qr@storetomatrix{#1}{\the\j}{7}{\qr@black@fixed}% + \else% + \qr@storetomatrix{#1}{7}{\the\j}{\qr@white@fixed}% + \qr@storetomatrix{#1}{\the\j}{7}{\qr@white@fixed}% + \fi% + }% +}% + +\def\qr@placealignmentpattern@int#1#2#3{% + % Work on matrix #1. + % Write an alignment pattern into the matrix, centered on (#2,#3). + \qr@a=#2\relax% + \advance\qr@a by -2\relax% + \qr@b=#3\relax% + \advance\qr@b by -2\relax% + \setcounter{qr@i}{\the\qr@a}% + \qr@for \i=1 to 5 by 1% + {\setcounter{qr@j}{\the\qr@b}% + \qr@for \j=1 to 5 by 1% + {\qr@copymatrixentry{alignmentpattern}{\the\i}{\the\j}% + {#1}{\theqr@i}{\theqr@j}% + \stepcounter{qr@j}% + }% + \stepcounter{qr@i}% + }% +}% + +\newif\ifqr@incorner% +\def\qr@placealignmentpatterns#1{% + %There are k^2-3 alignment patterns, + %arranged in a (k x k) grid within the matrix. + %They begin in row 7, column 7, + %except that the ones in the NW, NE, and SW corners + %are omitted because of the finder patterns. + %Recall that + % * \qr@k stores k, + % * \qr@alignment@firstskip stores how far between the 1st and 2nd row/col, & + % * \qr@alignment@generalskip stores how far between each subsequent row/col. + \xa\ifnum\qr@k>0\relax + %There will be at least one alignment pattern. + %N.B. k cannot equal 1. + \xa\ifnum\qr@k=2\relax + % 2*2-3 = exactly 1 alignment pattern. + \qr@a=7\relax + \advance\qr@a by \qr@alignment@firstskip\relax + \xdef\qr@target@ii{\the\qr@a}% + \qr@placealignmentpattern@int{#1}{\qr@target@ii}{\qr@target@ii}% + \else + % k is at least 3, so the following loops should be safe. + \xdef\qr@target@ii{7}% + \qr@for \ii = 1 to \qr@k by 1% + {\ifcase\ii\relax% + \relax% \ii should never equal 0. + \or + \xdef\qr@target@ii{7}% If \ii = 1, we start in row 7. + \or + %If \ii = 2, we add the firstskip. + \qr@a=\qr@target@ii\relax% + \advance\qr@a by \qr@alignment@firstskip\relax% + \xdef\qr@target@ii{\the\qr@a}% + \else + %If \ii>2, we add the generalskip. + \qr@a=\qr@target@ii\relax% + \advance\qr@a by \qr@alignment@generalskip\relax% + \xdef\qr@target@ii{\the\qr@a}% + \fi + \qr@for \jj = 1 to \qr@k by 1% + {\ifcase\jj\relax% + \relax% \jj should never equal 0. + \or + \xdef\qr@target@jj{7}% If \jj=1, we start in row 7. + \or + %If \jj=2, we add the firstskip. + \qr@a=\qr@target@jj\relax% + \advance\qr@a by \qr@alignment@firstskip% + \xdef\qr@target@jj{\the\qr@a}% + \else + %If \jj>2, we add the generalskip. + \qr@a=\qr@target@jj\relax% + \advance\qr@a by \qr@alignment@generalskip% + \xdef\qr@target@jj{\the\qr@a}% + \fi + \qr@incornerfalse% + \ifnum\ii=1\relax + \ifnum\jj=1\relax + \qr@incornertrue + \else + \ifnum\qr@k=\jj\relax + \qr@incornertrue + \fi + \fi + \else + \xa\ifnum\qr@k=\ii\relax + \ifnum\jj=1\relax + \qr@incornertrue + \fi + \fi + \fi + \ifqr@incorner + \relax + \else + \qr@placealignmentpattern@int{#1}{\qr@target@ii}{\qr@target@jj}% + \fi + }% ends \qr@for \jj + }% ends \qr@for \ii + \fi + \fi +}% + +\def\qr@placedummyformatpatterns#1{% + \qr@for \j = 1 to 9 by 1% + {\ifnum\j=7\relax% + \else% + \qr@storetomatrix{#1}{9}{\the\j}{\qr@format@square}% + \qr@storetomatrix{#1}{\the\j}{9}{\qr@format@square}% + \fi% + }% + \setcounter{qr@j}{\qr@size}% + \qr@for \j = 1 to 8 by 1% + {\qr@storetomatrix{#1}{9}{\theqr@j}{\qr@format@square}% + \qr@storetomatrix{#1}{\theqr@j}{9}{\qr@format@square}% + \addtocounter{qr@j}{-1}% + }% + %Now go back and change the \qr@format@square in (n-8,9) to \qr@black@fixed. + \addtocounter{qr@j}{1}% + \qr@storetomatrix{#1}{\theqr@j}{9}{\qr@black@fixed}% +}% + +\def\qr@placedummyversionpatterns#1{% + \xa\ifnum\qr@version>6\relax + %Must include version information. + \global\c@qr@i=\qr@size% + \global\advance\c@qr@i by -10\relax% + \qr@for \i = 1 to 3 by 1% + {\qr@for \j = 1 to 6 by 1% + {\qr@storetomatrix{#1}{\theqr@i}{\the\j}{\qr@format@square}% + \qr@storetomatrix{#1}{\the\j}{\theqr@i}{\qr@format@square}% + }% + \stepcounter{qr@i}% + }% + \fi +}% + +\def\qr@writebit(#1#2)#3{% + % #3 = matrix name + % (qr@i,qr@j) = position to write in (LaTeX counters) + % #1 = bit to be written + % #2 = remaining bits plus '\relax' as an end-of-file marker + \edef\qr@datatowrite{#2}% + \ifnum#1=1 + \qr@storetomatrix{#3}{\theqr@i}{\theqr@j}{\qr@black}% + \else + \qr@storetomatrix{#3}{\theqr@i}{\theqr@j}{\@white}% + \fi +}% + +\newif\ifqr@rightcol +\newif\ifqr@goingup + +\def\qr@writedata@hex#1#2{% + % #1 = name of a matrix that has been prepared with finder patterns, timing patterns, etc. + % #2 = a string consisting of bytes to write into the matrix, in two-char hex format. + \setcounter{qr@i}{\qr@numberofrowsinmatrix{#1}}% + \setcounter{qr@j}{\qr@numberofcolsinmatrix{#1}}% + \qr@rightcoltrue% + \qr@goinguptrue% + \edef\qr@argument{{#1}(#2\relax\relax\relax)}% + \xa\qr@writedata@hex@recursive\qr@argument% +}% + +\def\qr@writedata@hex@recursive#1(#2#3#4){% + % #1 = name of a matrix that has been prepared with finder patterns, timing patterns, etc. + % (qr@i,qr@j) = position to write in LaTeX counters + % #2#3#4 contains the hex codes of the bytes to be written, plus \relax\relax\relax + % as an end-of-file marker + \edef\testii{#2}% + \ifx\testii\@relax% + % #2 is \relax, so there is nothing more to write. + \relax + \let\go=\relax + \else + % #2 is not \relax, so there is another byte to write. + \qr@hextobinary[8]{\bytetowrite}{#2#3}% + \xdef\qr@datatowrite{\bytetowrite\relax}% %Add terminating "\relax" + \qr@writedata@recursive{#1}% %This function actually writes the 8 bits. + \edef\qr@argument{{#1}(#4)}% + \xa\def\xa\go\xa{\xa\qr@writedata@hex@recursive\qr@argument}% %Call self to write the next bit. + \fi + \go +}% + +\def\qr@writedata#1#2{% + % #1 = name of a matrix that has been prepared with finder patterns, timing patterns, etc. + % #2 = a string consisting of 0's and 1's to write into the matrix. + \setcounter{qr@i}{\qr@numberofrowsinmatrix{#1}}% + \setcounter{qr@j}{\qr@numberofcolsinmatrix{#1}}% + \qr@rightcoltrue + \qr@goinguptrue + \edef\qr@datatowrite{#2\relax}% + \qr@writedata@recursive{#1}% +}% + +\def\@@blank{\@blank}% + +\def\qr@writedata@recursive#1{% + % #1 = matrix name + % (qr@i,qr@j) = position to write in (LaTeX counters) + % \qr@datatowrite contains the bits to be written, plus '\relax' as an end-of-file marker + \xa\let\xa\squarevalue\csname #1@\theqr@i @\theqr@j\endcsname% + \ifx\squarevalue\@@blank + %Square is blank, so write data in it. + \xa\qr@writebit\xa(\qr@datatowrite){#1}% + %The \qr@writebit macro not only writes the first bit of \qr@datatowrite into the matrix, + %but also removes the bit from the 'bitstream' of \qr@datatowrite. + \fi + %Now adjust our position in the matrix. + \ifqr@rightcol + %From the right-hand half of the two-bit column, we always move left. Easy peasy. + \addtocounter{qr@j}{-1}% + \qr@rightcolfalse + \else + %If we're in the left-hand column, things are harder. + \ifqr@goingup + %First, suppose we're going upwards. + \ifnum\c@qr@i>1\relax% + %If we're not in the first row, things are easy. + %We move one to the right and one up. + \addtocounter{qr@j}{1}% + \addtocounter{qr@i}{-1}% + \qr@rightcoltrue + \else + %If we are in the first row, then we move to the left, + %and we are now in the right-hand column on a downward pass. + \addtocounter{qr@j}{-1}% + \qr@goingupfalse + \qr@rightcoltrue + \fi + \else + %Now, suppose we're going downwards. + \xa\ifnum\qr@size>\c@qr@i\relax% + %If we're not yet in the bottom row, things are easy. + %We move one to the right and one down. + \addtocounter{qr@j}{1}% + \addtocounter{qr@i}{1}% + \qr@rightcoltrue + \else + %If we are in the bottom row, then we move to the left, + %and we are now in the right-hand column on an upward pass. + \addtocounter{qr@j}{-1}% + \qr@rightcoltrue + \qr@goinguptrue + \fi + \fi + %One problem: what if we just moved into the 7th column? + %Das ist verboten. + %If we just moved (left) into the 7th column, we should move on into the 6th column. + \ifnum\c@qr@j=7\relax% + \setcounter{qr@j}{6}% + \fi + \fi + %Now check whether there are any more bits to write. + \ifx\qr@datatowrite\@relax + % \qr@datatowrite is just `\relax', so we're done. + \let\nexttoken=\relax + \relax + \else + % Write some more! + \def\nexttoken{\qr@writedata@recursive{#1}}% + \fi + \nexttoken +}% + +\def\qr@writeremainderbits#1{% + % #1 = name of a matrix that has been prepared and partly filled. + % (qr@i,qr@j) = position to write in LaTeX counters + \xa\ifnum\qr@numremainderbits>0\relax + \def\qr@datatowrite{}% + \qr@for \i = 1 to \qr@numremainderbits by 1% + {\g@addto@macro{\qr@datatowrite}{0}}% + \g@addto@macro{\qr@datatowrite}{\relax}% terminator + \qr@writedata@recursive{#1}% + \fi +}% + +\newif\ifqr@cellinmask + +\def\qr@setmaskingfunction#1{% + % #1 = 1 decimal digit for the mask. (I see no reason to use the 3-bit binary code.) + % The current position is (\themaski,\themaskj), with indexing starting at 0. + \edef\maskselection{#1}% + \xa\ifcase\maskselection\relax + %Case 0: checkerboard + \def\qr@parsemaskingfunction{% + % Compute mod(\themaski+\themaskj,2)% + \qr@a=\c@maski% + \advance\qr@a by \c@maskj% + \qr@b=\qr@a% + \divide\qr@b by 2% + \multiply\qr@b by 2% + \advance\qr@a by -\qr@b% + \edef\qr@maskfunctionresult{\the\qr@a}% + }% + \or + %Case 1: horizontal stripes + \def\qr@parsemaskingfunction{% + % Compute mod(\themaski,2)% + \ifodd\c@maski\relax% + \def\qr@maskfunctionresult{1}% + \else% + \def\qr@maskfunctionresult{0}% + \fi% + }% + \or + %Case 2: vertical stripes + \def\qr@parsemaskingfunction{% + % Compute mod(\themaskj,3)% + \qr@a=\c@maskj% + \divide\qr@a by 3% + \multiply\qr@a by 3% + \advance\qr@a by -\c@maskj% + \edef\qr@maskfunctionresult{\the\qr@a}% + }% + \or + %Case 3: diagonal stripes + \def\qr@parsemaskingfunction{% + % Compute mod(\themaski+\themaskj,3)% + \qr@a=\c@maski% + \advance\qr@a by \c@maskj% + \qr@b=\qr@a% + \divide\qr@b by 3% + \multiply\qr@b by 3% + \advance\qr@b by -\qr@a% + \edef\qr@maskfunctionresult{\the\qr@b}% + }% + \or + %Case 4: wide checkerboard + \def\qr@parsemaskingfunction{% + % Compute mod(floor(\themaski/2) + floor(\themaskj/3),2) % + \qr@a=\c@maski% + \divide\qr@a by 2% + \qr@b=\c@maskj% + \divide\qr@b by 3% + \advance\qr@a by \qr@b% + \qr@b=\qr@a% + \divide\qr@a by 2% + \multiply\qr@a by 2% + \advance\qr@a by -\qr@b% + \edef\qr@maskfunctionresult{\the\qr@a}% + }% + \or + %Case 5: quilt + \def\qr@parsemaskingfunction{% + % Compute mod(\themaski*\themaskj,2) + mod(\themaski*\themaskj,3) % + \qr@a=\c@maski% + \multiply\qr@a by \c@maskj% + \qr@b=\qr@a% + \qr@c=\qr@a% + \divide\qr@a by 2% + \multiply\qr@a by 2% + \advance\qr@a by -\qr@c% (result will be -mod(i*j,2), which is negative.) + \divide\qr@b by 3% + \multiply\qr@b by 3% + \advance\qr@b by -\qr@c% (result will be -mod(i*j,3), which is negative.) + \advance\qr@a by \qr@b% (result is negative of what's in the spec.) + \edef\qr@maskfunctionresult{\the\qr@a}% + }% + \or + %Case 6: arrows + \def\qr@parsemaskingfunction{% + % Compute mod( mod(\themaski*\themaskj,2) + mod(\themaski*\themaskj,3) , 2 ) % + \qr@a=\c@maski% + \multiply\qr@a by \c@maskj% + \qr@b=\qr@a% + \qr@c=\qr@a% + \multiply\qr@c by 2% % \qr@c equals 2*i*j. + \divide\qr@a by 2% + \multiply\qr@a by 2% + \advance\qr@c by -\qr@a% Now \qr@c equals i*j + mod(i*j,2). + \divide\qr@b by 3% + \multiply\qr@b by 3% + \advance\qr@c by -\qr@b% (Now \qr@c equals mod(i*j,2) + mod(i*j,3). + \qr@a=\qr@c% + \divide\qr@a by 2% + \multiply\qr@a by 2% + \advance\qr@c by-\qr@a% + \edef\qr@maskfunctionresult{\the\qr@c}% + }% + \or + %Case 7: shotgun + \def\qr@parsemaskingfunction{% + % Compute mod( mod(\themaski+\themaskj,2) + mod(\themaski*\themaskj,3) , 2 ) % + \qr@a=\c@maski% + \advance\qr@a by \c@maskj% %So \qr@a = i+j + \qr@b=\c@maski% + \multiply\qr@b by \c@maskj% %So \qr@b = i*j + \qr@c=\qr@a% + \advance\qr@c by \qr@b% So \qr@c = i+j+i*j + \divide\qr@a by 2% + \multiply\qr@a by 2% + \advance\qr@c by -\qr@a% So \qr@c = mod(i+j,2) + i*j + \divide\qr@b by 3% + \multiply\qr@b by 3% + \advance\qr@c by -\qr@b% So \qr@c = mod(i+j,2) + mod(i*j,3) + \qr@a=\qr@c% + \divide\qr@c by 2% + \multiply\qr@c by 2% + \advance\qr@a by -\qr@c% + \edef\qr@maskfunctionresult{\the\qr@a}% + }% + \fi +}% + +\def\qr@checkifcellisinmask{% + % The current position is (\i,\j), in TeX counts, + % but the LaTeX counters (maski,maskj) should contain + % the current position with indexing starting at 0. + % That is, maski = \i-1 and maskj = \j-1. + % + % \qr@parsemaskingfunction must have been set by a call to \qr@setmaskingfunction + \qr@parsemaskingfunction + \xa\ifnum\qr@maskfunctionresult=0\relax + \qr@cellinmasktrue + \else + \qr@cellinmaskfalse + \fi +}% + +\newcounter{maski}% +\newcounter{maskj}% + +\def\qr@applymask#1#2#3{% + % #1 = name of a matrix that should be filled out completely + % except for the format and/or version information. + % #2 = name of a new matrix to contain the masked version + % #3 = 1 decimal digit naming the mask + \qr@createduplicatematrix{#2}{#1}% + \qr@setmaskingfunction{#3}% + \setcounter{maski}{-1}% + \qr@for \i = 1 to \qr@size by 1% + {\stepcounter{maski}% + \setcounter{maskj}{-1}% + \qr@for \j = 1 to \qr@size by 1% + {\stepcounter{maskj}% + \qr@checkifcellisinmask + \ifqr@cellinmask + \qr@checkifcurrentcellcontainsdata{#2}% + \ifqr@currentcellcontainsdata + \qr@flipcurrentcell{#2}% + \fi + \fi + }% + }% +}% + +\newif\ifqr@currentcellcontainsdata +\qr@currentcellcontainsdatafalse + +\def\@@white{\@white}% +\def\@@black{\qr@black}% + +\def\qr@checkifcurrentcellcontainsdata#1{% + % #1 = name of matrix + \qr@currentcellcontainsdatafalse + \xa\ifx\csname #1@\the\i @\the\j\endcsname\@@white + \qr@currentcellcontainsdatatrue + \fi + \xa\ifx\csname #1@\the\i @\the\j\endcsname\@@black + \qr@currentcellcontainsdatatrue + \fi +}% + +\def\qr@flipped@black{\qr@black}% +\def\qr@flipped@white{\@white}% + +\def\qr@flipcurrentcell#1{% + % #1 = name of matrix + % (\i, \j) = current position, in TeX counts. + % This assumes the cell contains data, either black or white! + \xa\ifx\csname #1@\the\i @\the\j\endcsname\@@white + \qr@storetomatrix{#1}{\the\i}{\the\j}{\qr@flipped@black}% + \else + \qr@storetomatrix{#1}{\the\i}{\the\j}{\qr@flipped@white}% + \fi +}% + +\def\qr@chooseandapplybestmask#1{% + % #1 = name of a matrix that should be filled out completely + % except for the format and/or version information. + % This function applies all eight masks in succession, + % calculates their penalties, and remembers the best. + % The number indicating which mask was used is saved in \qr@mask@selected. + \qr@createduplicatematrix{originalmatrix}{#1}% + \message{<Applying Mask 0...}% + \qr@applymask{originalmatrix}{#1}{0}% + \message{done. Calculating penalty...}% + \qr@evaluatemaskpenalty{#1}% + \xdef\currentbestpenalty{\qr@penalty}% + \message{penalty is \qr@penalty>^^J}% + \gdef\currentbestmask{0}% + \qr@for \i = 1 to 7 by 1% + {\message{<Applying Mask \the\i...}% + \qr@applymask{originalmatrix}{currentmasked}{\the\i}% + \message{done. Calculating penalty...}% + \qr@evaluatemaskpenalty{currentmasked}% + \message{penalty is \qr@penalty>^^J}% + \xa\xa\xa\ifnum\xa\qr@penalty\xa<\currentbestpenalty\relax + %We found a better mask. + \xdef\currentbestmask{\the\i}% + \qr@createduplicatematrix{#1}{currentmasked}% + \xdef\currentbestpenalty{\qr@penalty}% + \fi + }% + \xdef\qr@mask@selected{\currentbestmask}% + \message{<Selected Mask \qr@mask@selected>^^J}% +}% + +\def\qr@Ni{3}% +\def\qr@Nii{3}% +\def\qr@Niii{40}% +\def\qr@Niv{10}% +\def\@fiveones{11111}% +\def\@fivezeros{11111}% +\def\@twoones{11}% +\def\@twozeros{00}% +\def\@finderA{00001011101}% +\def\@finderB{10111010000}% +\def\@finderB@three{1011101000}% +\def\@finderB@two{101110100}% +\def\@finderB@one{10111010}% +\def\@finderB@zero{1011101}% +\newif\ifstringoffive +\def\addpenaltyiii{% + \addtocounter{penaltyiii}{\qr@Niii}% +}% +\newcounter{totalones}% +\newcounter{penaltyi}% +\newcounter{penaltyii}% +\newcounter{penaltyiii}% +\newcounter{penaltyiv}% +\def\qr@evaluatemaskpenalty#1{% + % #1 = name of a matrix that we will test for the penalty + % according to the specs. + \setcounter{penaltyi}{0}% + \setcounter{penaltyii}{0}% + \setcounter{penaltyiii}{0}% + \setcounter{penaltyiv}{0}% + \bgroup%localize the meanings we give to the symbols + \def\qr@black{1}\def\@white{0}% + \def\qr@black@fixed{1}\def\qr@white@fixed{0}% + \def\qr@format@square{0}% This is not stated in the specs, but seems + % to be the standard implementation. + \def\@blank{0}% These would be any bits at the end. + % + \setcounter{totalones}{0}% + \qr@for \i=1 to \qr@size by 1% + {\def\lastfive{z}% %The z is a dummy, that will be removed before any testing. + \stringoffivefalse + \def\lasttwo@thisrow{z}% %The z is a dummy. + \def\lasttwo@nextrow{z}% %The z is a dummy. + \def\lastnine{z0000}% %The 0000 stands for the white space to the left. The z is a dummy. + \def\ignore@finderB@at{0}% + \qr@for \j=1 to \qr@size by 1% + {\edef\newbit{\qr@matrixentry{#1}{\the\i}{\the\j}}% + % + % LASTFIVE CODE FOR PENALTY 1 + % First, add the new bit to the end. + \xa\g@addto@macro\xa\lastfive\xa{\newbit}% + \ifnum\j<5\relax% + %Not yet on the 5th entry. + %Don't do any testing. + \else + % 5th entry or later. + % Remove the old one, and then test. + \removefirsttoken\lastfive% + \ifx\lastfive\@fiveones% + \ifstringoffive% + %This is a continuation of a previous block of five or more 1's. + \stepcounter{penaltyi}% + \else + %This is a new string of five 1's. + \addtocounter{penaltyi}{\qr@Ni}% + \global\stringoffivetrue + \fi + \else + \ifx\lastfive\@fivezeros% + \ifstringoffive + %This is a continuation of a previous block of five or more 0's. + \stepcounter{penaltyi}% + \else + %This is a new string of five 0's. + \addtocounter{penaltyi}{\qr@Ni}% + \global\stringoffivetrue + \fi + \else + %This is not a string of five 1's or five 0's. + \global\stringoffivefalse + \fi + \fi + \fi + % + % 2x2 BLOCKS FOR PENALTY 2 + % Every 2x2 block of all 1's counts for \qr@Nii penalty points. + % We do not need to run this test in the last row. + \xa\ifnum\xa\i\xa<\qr@size\relax + \xa\g@addto@macro\xa\lasttwo@thisrow\xa{\newbit}% + %Compute \iplusone + \qr@a=\i\relax% + \advance\qr@a by 1% + \edef\iplusone{\the\qr@a}% + % + \edef\nextrowbit{\qr@matrixentry{#1}{\iplusone}{\the\j}}% + \xa\g@addto@macro\xa\lasttwo@nextrow\xa{\nextrowbit}% + \ifnum\j<2\relax% + %Still in the first column; no check. + \else + %Second column or later. Remove the old bits, and then test. + \removefirsttoken\lasttwo@thisrow + \removefirsttoken\lasttwo@nextrow + \ifx\lasttwo@thisrow\@twoones + \ifx\lasttwo@nextrow\@twoones + \addtocounter{penaltyii}{\qr@Nii}% + \fi + \else + \ifx\lasttwo@thisrow\@twozeros + \ifx\lasttwo@nextrow\@twozeros + \addtocounter{penaltyii}{\qr@Nii}% + \fi + \fi + \fi + \fi + \fi + % + % LASTNINE CODE FOR PENALTY 3 + % First, add the new bit to the end. + \xa\g@addto@macro\xa\lastnine\xa{\newbit}% + \ifnum\j<7\relax% + %Not yet on the 7th entry. + %Don't do any testing. + \else + % 7th entry or later. + % Remove the old one, and then test. + \removefirsttoken\lastnine + \xa\ifnum\qr@size=\j\relax% + % Last column. Any of the following should count: + % 1011101 (\@finderB@zero) + % 10111010 (\@finderB@one) + % 101110100 (\@finderB@two) + % 1011101000 (\@finderB@three) + % 10111010000 (\@finderB) + \ifx\lastnine\@finderB + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@three + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@two + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@one + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@zero + \addpenaltyiii + \fi + \fi + \fi + \fi + \fi + \else + \ifx\lastnine\@finderA% %Matches 0000 1011101 + \addpenaltyiii + %Also, we record our discovery, so that we can't count this pattern again + %if it shows up four columns later as 1011101 0000. + % + %Set \ignore@finderB@at to \j+4. + \qr@a=\j\relax% + \advance\qr@a by 4% + \xdef\ignore@finderB@at{\the\qr@a}% + \else + \ifx\lastfive\@finderB% %Matches 1011101 0000. + \xa\ifnum\ignore@finderB@at=\j\relax + %This pattern was *not* counted already earlier. + \addpenaltyiii + \fi + \fi + \fi + \fi + \fi + % + %COUNT 1's FOR PENALTY 4 + \xa\ifnum\newbit=1\relax% + \stepcounter{totalones}% + \fi + }% end of j-loop + }% end of i-loop + % + %NOW WE ALSO NEED TO RUN DOWN THE COLUMNS TO FINISH CALCULATING PENALTIES 1 AND 3. + \qr@for \j=1 to \qr@size by 1% + {\def\lastfive{z}% %The z is a dummy, that will be removed before any testing. + \stringoffivefalse + \def\lastnine{z0000}% %The 0000 stands for the white space to the left. The z is a dummy. + \def\ignore@finderB@at{0}% + \qr@for \i=1 to \qr@size by 1% + {\edef\newbit{\qr@matrixentry{#1}{\the\i}{\the\j}}% + % + % LASTFIVE CODE FOR PENALTY 1 + % First, add the new bit to the end. + \xa\g@addto@macro\xa\lastfive\xa{\newbit}% + \ifnum\i<5\relax% + %Not yet on the 5th entry. + %Don't do any testing. + \else + % 5th entry or later. + % Remove the old one, and then test. + \removefirsttoken\lastfive% + \ifx\lastfive\@fiveones% + \ifstringoffive% + %This is a continuation of a previous block of five or more 1's. + \stepcounter{penaltyi}% + \else + %This is a new string of five 1's. + \addtocounter{penaltyi}{\qr@Ni}% + \global\stringoffivetrue + \fi + \else + \ifx\lastfive\@fivezeros% + \ifstringoffive + %This is a continuation of a previous block of five or more 0's. + \stepcounter{penaltyi}% + \else + %This is a new string of five 0's. + \addtocounter{penaltyi}{\qr@Ni}% + \global\stringoffivetrue + \fi + \else + %This is not a string of five 1's or five 0's. + \global\stringoffivefalse + \fi + \fi + \fi + % + % HAPPILY, WE DON'T NEED TO CALCULATE PENALTY 2 AGAIN. + % + % LASTNINE CODE FOR PENALTY 3 + % First, add the new bit to the end. + \xa\g@addto@macro\xa\lastnine\xa{\newbit}% + \ifnum\i<7\relax% + %Not yet on the 7th entry. + %Don't do any testing. + \else + % 7th entry or later. + % Remove the old one, and then test. + \removefirsttoken\lastnine + \xa\ifnum\qr@size=\i\relax% + % Last column. Any of the following should count: + % 1011101 (\@finderB@zero) + % 10111010 (\@finderB@one) + % 101110100 (\@finderB@two) + % 1011101000 (\@finderB@three) + % 10111010000 (\@finderB) + \ifx\lastnine\@finderB + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@three + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@two + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@one + \addpenaltyiii + \else + \removefirsttoken\lastnine + \ifx\lastnine\@finderB@zero + \addpenaltyiii + \fi + \fi + \fi + \fi + \fi + \else + \ifx\lastnine\@finderA% %Matches 0000 1011101 + \addpenaltyiii + %Also, we record our discovery, so that we can't count this pattern again + %if it shows up four columns later as 1011101 0000. + % + %Set \ignore@finderB@at to \i+4. + \qr@a=\i\relax% + \advance\qr@a by 4% + \xdef\ignore@finderB@at{\the\qr@a}% + \else + \ifx\lastfive\@finderB% %Matches 1011101 0000. + \xa\ifnum\ignore@finderB@at=\i\relax + %This pattern was *not* counted already earlier. + \addpenaltyiii + \fi + \fi + \fi + \fi + \fi + % + }% end of i-loop + }% end of j-loop + \egroup% + % + %CALCULATE PENALTY 4 + %According to the spec, penalty #4 is computed as + % floor( |(i/n^2)-0.5|/0.05 ) + % where i is the total number of 1's in the matrix. + % This is equal to abs(20*i-10n^2) div n^2. + % + \qr@a=\c@totalones\relax + \multiply\qr@a by 20\relax + \qr@b=\qr@size\relax + \multiply\qr@b by \qr@size\relax + \qr@c=10\relax + \multiply\qr@c by \qr@b\relax + \advance\qr@a by -\qr@c\relax + \ifnum\qr@a<0\relax + \multiply\qr@a by -1\relax + \fi + \divide\qr@a by \qr@b\relax + \setcounter{penaltyiv}{\the\qr@a}% + % + %CALCULATE TOTAL PENALTY + \qr@a=\thepenaltyi\relax% + \advance\qr@a by \thepenaltyii\relax% + \advance\qr@a by \thepenaltyiii\relax% + \advance\qr@a by \thepenaltyiv\relax% + \edef\qr@penalty{\the\qr@a}% +}% + +\def\removefirsttoken#1{% + %Removes the first token from the macro named in #1. + \edef\qr@argument{(#1)}% + \xa\removefirsttoken@int\qr@argument% + \xdef#1{\removefirsttoken@result}% +}% +\def\removefirsttoken@int(#1#2){% + \def\removefirsttoken@result{#2}% +}% + +\def\qr@writeformatstring#1#2{% + % #1 = matrix name + % #2 = binary string representing the encoded and masked format information + \setcounter{qr@i}{9}% + \setcounter{qr@j}{1}% + \edef\qr@argument{{#1}(#2\relax)}% + \xa\qr@writeformatA@recursive\qr@argument + % + \setcounter{qr@i}{\qr@numberofrowsinmatrix{#1}}% + \setcounter{qr@j}{9}% + \xa\qr@writeformatB@recursive\qr@argument +}% + +\def\qr@writeformatA@recursive#1(#2#3){% + % #1 = matrix name + % #2 = first bit of string + % #3 = rest of bitstream + % (qr@i,qr@j) = current (valid) position to write (in LaTeX counters) + \def\formattowrite{#3}% + \ifnum#2=1\relax + \qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@black@format}% + \else + \qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@white@format}% + \fi + % Now the tricky part--moving \i and \j to their next positions. + \ifnum\c@qr@j<9\relax + %If we're not yet in column 9, move right. + \stepcounter{qr@j}% + \ifnum\c@qr@j=7\relax + %But we skip column 7! + \stepcounter{qr@j}% + \fi + \else + %If we're in column 9, we move up. + \addtocounter{qr@i}{-1}% + \ifnum\c@qr@i=7\relax + %But we skip row 7! + \addtocounter{qr@i}{-1}% + \fi + \fi + %N.B. that at the end of time, this will leave us at invalid position (0,9). + %That makes for an easy test to know when we are done. + \ifnum\c@qr@i<1 + \let\nexttoken=\relax + \else + \def\nexttoken{\qr@writeformatA@recursive{#1}(#3)}% + \fi + \nexttoken +}% + +\def\qr@writeformatB@recursive#1(#2#3){% + % #1 = matrix name + % #2 = first bit of string + % #3 = rest of bitstream + % (qr@i,qr@j) = current (valid) position to write (in LaTeX counters) + \def\formattowrite{#3}% + \ifnum#2=1\relax + \qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@black@format}% + \else + \qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@white@format}% + \fi + % Now the tricky part--moving counters i and j to their next positions. + \qr@a=\qr@size% + \advance\qr@a by -6\relax% + \ifnum\qr@a<\c@qr@i\relax + %If we're not yet in row n-6, move up. + \addtocounter{qr@i}{-1}% + \else + \ifnum\qr@a=\c@qr@i\relax + %If we're actually in row n-6, we jump to position (9,n-7). + \setcounter{qr@i}{9}% + %Set counter j equal to \qr@size-7. + \global\c@qr@j=\qr@size\relax% + \global\advance\c@qr@j by -7\relax% + \else + %Otherwise, we must be in row 9. + %In this case, we move right. + \stepcounter{qr@j}% + \fi + \fi + %N.B. that at the end of time, this will leave us at invalid position (9,n+1). + %That makes for an easy test to know when we are done. + \xa\ifnum\qr@size<\c@qr@j\relax + \let\nexttoken=\relax + \else + \def\nexttoken{\qr@writeformatB@recursive{#1}(#3)}% + \fi + \nexttoken +}% + +\def\qr@writeversionstring#1#2{% + % #1 = matrix name + % #2 = binary string representing the encoded version information + % + % Plot the encoded version string into the matrix. + % This is only done for versions 7 and higher. + \xa\ifnum\qr@version>6\relax + %Move to position (n-8,6). + \setcounter{qr@i}{\qr@size}\relax% + \addtocounter{qr@i}{-8}\relax% + \setcounter{qr@j}{6}% + \edef\qr@argument{{#1}(#2\relax)}% + \xa\qr@writeversion@recursive\qr@argument + \fi +}% + +\def\qr@writeversion@recursive#1(#2#3){% + % #1 = matrix name + % #2 = first bit of string + % #3 = rest of bitstream + % (qr@i,qr@j) = current (valid) position to write (in LaTeX counters) + % + % The version information is stored symmetrically in the matrix + % In two transposed regions, so we can write both at the same time. + % In the comments, we describe what happens in the lower-left region, + % not the upper-right. + % + \def\versiontowrite{#3}% + % + %Set \topline equal to n-10. + \qr@a=\qr@size\relax% + \advance\qr@a by -10\relax% + \edef\topline{\the\qr@a}% + % + \ifnum#2=1\relax + \qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@black@format}% + \qr@storetomatrix{#1}{\theqr@j}{\theqr@i}{\qr@black@format}% + \else + \qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@white@format}% + \qr@storetomatrix{#1}{\theqr@j}{\theqr@i}{\qr@white@format}% + \fi + % Now the tricky part--moving counters i and j to their next positions. + \addtocounter{qr@i}{-1}% + \xa\ifnum\topline>\c@qr@i\relax + %We've overshot the top of the region. + %We need to move left one column and down three. + \addtocounter{qr@j}{-1}% + \addtocounter{qr@i}{3}% + \fi + %N.B. that at the end of time, this will leave us at invalid position (n-8,0). + %That makes for an easy test to know when we are done. + \ifnum\c@qr@j<1\relax + \let\nexttoken=\relax + \else + \def\nexttoken{\qr@writeversion@recursive{#1}(#3)}% + \fi + \nexttoken +}% +\newcounter{qr@hexchars}% + +\def\qr@string@binarytohex#1{% + \qr@binarytohex{\qr@hex@result}{#1}% +}% + +\def\qr@encode@binary#1{% + % #1 = string of ascii characters, to be converted into bitstream + % + % We do this one entirely in hex, rather than binary, because we can. + \edef\plaintext{#1}% + % + %First, the mode indicator. + \def\qr@codetext{4}% %This means `binary' + % + %Next, the character count. + \qr@getstringlength{\plaintext}% + %Set \charactercountlengthinhex to \qr@charactercountbits@byte/4% + \qr@a=\qr@charactercountbits@byte\relax% + \divide \qr@a by 4\relax% + \edef\charactercountlengthinhex{\the\qr@a}% + \qr@decimaltohex[\charactercountlengthinhex]{\charactercount}{\qr@stringlength}% + \xa\g@addto@macro\xa\qr@codetext\xa{\charactercount}% + % + %Now comes the actual data. + \edef\qr@argument{(,\plaintext\relax\relax\relax)}% + \xa\qr@encode@ascii@recursive\qr@argument% + % + %Now the terminator. + \g@addto@macro\qr@codetext{0}% %This is '0000' in binary. + % + %There is no need to pad bits to make a multiple of 8, + %because the data length is already 4 + 8 + 8n + 4. + % + %Now add padding codewords if needed. + \setcounter{qr@hexchars}{0}% + \qr@getstringlength{\qr@codetext}% + \setcounter{qr@hexchars}{\qr@stringlength}% + %Set \qr@numpaddingcodewords equal to \qr@totaldatacodewords - hexchars/2. + \qr@a=-\c@qr@hexchars\relax + \divide\qr@a by 2\relax + \advance\qr@a by \qr@totaldatacodewords\relax + \edef\qr@numpaddingcodewords{\the\qr@a}% + % + \xa\ifnum\qr@numpaddingcodewords<0% + \edef\ds{ERROR: Too much data! Over by \qr@numpaddingcodewords bytes.}\show\ds% + \fi% + \xa\ifnum\qr@numpaddingcodewords>0% + \qr@for \i = 2 to \qr@numpaddingcodewords by 2% + {\g@addto@macro{\qr@codetext}{ec11}}% + \xa\ifodd\qr@numpaddingcodewords\relax% + \g@addto@macro{\qr@codetext}{ec}% + \fi% + \fi% +}% + +\def\qr@encode@ascii@recursive(#1,#2#3){% + % #1 = hex codes translated so far + % #2 = next plaintext character to translate + % #3 = remainder of plaintext + \edef\testii{#2}% + \ifx\testii\@relax% + % All done! + \g@addto@macro\qr@codetext{#1}% + \else% + % Another character to translate. + \edef\asciicode{\number`#2}% + \qr@decimaltohex[2]{\newhexcodes}{\asciicode}% + \edef\qr@argument{(#1\newhexcodes,#3)}% + %\show\qr@argument + \xa\qr@encode@ascii@recursive\qr@argument% + \fi% +}% + +\def\qr@splitcodetextintoblocks{% + \setcounter{qr@i}{0}% + \qr@for \j = 1 to \qr@numshortblocks by 1% + {\stepcounter{qr@i}% + \qr@splitoffblock{\qr@codetext}{\theqr@i}{\qr@shortblock@size}% + }% + \xa\ifnum\qr@numlongblocks>0\relax% + \qr@for \j = 1 to \qr@numlongblocks by 1% + {\stepcounter{qr@i}% + \qr@splitoffblock{\qr@codetext}{\theqr@i}{\qr@longblock@size}% + }% + \fi% +}% + +\def\qr@splitoffblock#1#2#3{% + % #1 = current codetext in hexadecimal + % #2 = number to use in csname "\datablock@#2". + % #3 = number of bytes to split off + \message{<Splitting off block #2>}% + \xa\gdef\csname datablock@#2\endcsname{}% %This line is important! + \qr@for \i = 1 to #3 by 1% + {\edef\qr@argument{{#2}(#1)}% + \xa\qr@splitoffblock@int\qr@argument% + }% +}% + +\def\qr@splitoffblock@int#1(#2#3#4){% + % #1 = number to use in csname "\datablock@#1". + % #2#3 = next byte to split off + % #4 = remaining text + % + % We add the next byte to "\datablock@#1", + % and we remove it from the codetext. + \xa\xdef\csname datablock@#1\endcsname{\csname datablock@#1\endcsname#2#3}% + \xdef\qr@codetext{#4}% +}% + +\def\qr@createerrorblocks{% + \qr@for \ii = 1 to \qr@numblocks by 1% + {\message{<Making error block \the\ii>}% + \FX@generate@errorbytes{\csname datablock@\the\ii\endcsname}{\qr@num@eccodewords}% + \xa\xdef\csname errorblock@\the\ii\endcsname{\FX@errorbytes}% + }% +}% + +\def\qr@interleave{% + \setcounter{qr@i}{0}% + \def\qr@interleaved@text{}% + \message{<Interleaving datablocks of length \qr@shortblock@size\ and \qr@longblock@size: }% + \qr@for \ii = 1 to \qr@shortblock@size by 1% + {\qr@for \jj = 1 to \qr@numblocks by 1% + {\qr@writefromblock{datablock}{\the\jj}% + }% + \message{\the\ii,}% + }% + %The long blocks are numbered \qr@numshortblocks+1, \qr@numshortblocks+2, ..., \qr@numblocks. + \qr@a=\qr@numshortblocks\relax% + \advance\qr@a by 1\relax% + \qr@for \jj = \qr@a to \qr@numblocks by 1% + {\qr@writefromblock{datablock}{\the\jj}}% + \xa\ifnum\qr@numlongblocks>0\relax% + \message{\qr@longblock@size.>}% + \else + \message{.>}% + \fi + \message{<Interleaving errorblocks of length \qr@num@eccodewords: }% + \qr@for \ii = 1 to \qr@num@eccodewords by 1% + {\message{\the\ii,}% + \qr@for \jj = 1 to \qr@numblocks by 1% + {\qr@writefromblock{errorblock}{\the\jj}% + }% + }% + \message{.><Interleaving complete.>}% +}% + +\def\qr@writefromblock#1#2{% + % #1 = either 'datablock' or 'errorblock' + % #2 = block number, in {1,...,\qr@numblocks}% + \edef\qr@argument{(\csname #1@#2\endcsname\relax\relax\relax)}% + \xa\qr@writefromblock@int\qr@argument + \xa\xdef\csname #1@#2\endcsname{\qr@writefromblock@remainder}% +}% + +\def\qr@writefromblock@int(#1#2#3){% + % #1#2 = first byte (in hex) of text, which will be written to \qr@interleaved@text + % #3 = remainder, including \relax\relax\relax terminator. + \g@addto@macro{\qr@interleaved@text}{#1#2}% + \qr@writefromblock@intint(#3)% +}% + +\def\qr@writefromblock@intint(#1\relax\relax\relax){% + \xdef\qr@writefromblock@remainder{#1}% +}% +\let\xa=\expandafter +\makeatletter + +\def\preface@macro#1#2{% + % #1 = macro name + % #2 = text to add to front of macro + \def\tempb{#2}% + \xa\xa\xa\gdef\xa\xa\xa#1\xa\xa\xa{\xa\tempb #1}% +}% + +\newif\ifqr@leadingcoeff +\def\qr@testleadingcoeff(#1#2){% + % Tests whether the leading digit of #1#2 is 1. + \ifnum#1=1\relax + \qr@leadingcoefftrue + \else + \qr@leadingcoefffalse + \fi +}% + +\def\qr@polynomialdivide#1#2{% + \edef\qr@numerator{#1}% + \edef\qr@denominator{#2}% + \qr@divisiondonefalse% + \xa\xa\xa\qr@oneroundofdivision\xa\xa\xa{\xa\qr@numerator\xa}\xa{\qr@denominator}% +}% + +\def\@qr@empty{}% +\def\qr@oneroundofdivision#1#2{% + % #1 = f(x), of degree n + % #2 = g(x), of degree m + % Obtains a new polynomial h(x), congruent to f(x) modulo g(x), + % but of degree at most n-1. + % + % If leading coefficient of f(x) is 1, subtracts off g(x) * x^(n-m). + % If leading coefficient of f(x) is 0, strips off that leading zero. + % + \qr@testleadingcoeff(#1)% + \ifqr@leadingcoeff + \qr@xorbitstrings{#1}{#2}% + \ifqr@xorfailed + %If xor failed, that means our #1 was already the remainder! + \qr@divisiondonetrue + \edef\theremainder{#1}% + \else + %xor succeeded. We need to recurse. + \xa\xa\xa\edef\xa\xa\xa\qr@numerator\xa\xa\xa{\xa\qr@stripleadingzero\xa(\xorresult)}% + \fi + \else + \xa\def\xa\qr@numerator\xa{\qr@stripleadingzero(#1)}% + \ifx\qr@numerator\@qr@empty + \qr@divisiondonetrue + \def\theremainder{0}% + \fi + \fi + \ifqr@divisiondone + \relax + \else + \xa\qr@oneroundofdivision\xa{\qr@numerator}{#2}% + \fi +}% + +\def\qr@stripleadingzero(0#1){#1}%Strips off a leading zero. + +\newif\ifqr@xorfailed% This flag will trigger when #2 is longer than #1. + +\def\qr@xorbitstrings#1#2{% + % #1 = bitstring + % #2 = bitstring no longer than #1 + \qr@xorfailedfalse + \edef\qr@argument{(,#1\relax\relax)(#2\relax\relax)}% + \xa\qr@xorbitstrings@recursive\qr@argument + %\qr@xorbitstrings@recursive(,#1\relax\relax)(#2\relax\relax)% +}% + +\def\qr@xorbitstrings@recursive(#1,#2#3)(#4#5){% + % #1#2#3 is the first bitstring, xor'ed up through #1. + % #4#5 is the remaining portion of the second bitstring. + \def\testii{#2}% + \def\testiv{#4}% + \ifx\testii\@relax + % #1 contains the whole string. + % Now if #4 is also \relax, that means the two strings started off with equal lengths. + % If, however, #4 is not \relax, that means the second string was longer than the first, a problem. + \ifx\testiv\@relax + %No problem. We are done. + \qr@xorbit@saveresult(#1#2#3)% + \else + %Problem! The second string was longer than the first. + \qr@xorfailedtrue + \def\xorresult{}% + \fi + \else + % There is still a bit to manipulate in #2. + % Check whether #4 contains anything. + \ifx\testiv\@relax + % No, #4 is empty. We are done. "#2#3" contains the remainder of the first string, + % which we append untouched and then strip off the two \relax-es. + \qr@xorbit@saveresult(#1#2#3)% + \else + % Yes, #4 still has something to XOR. Do the task. + \ifnum#2=#4\relax + \qr@xorbitstrings@recursive(#1% + 0,#3)(#5)% + \else + \qr@xorbitstrings@recursive(#1% + 1,#3)(#5)% + \fi + \fi + \fi +}% + +\def\qr@xorbit@saveresult(#1\relax\relax){% + %Strips off the extra '\relax'es at the end. + \def\xorresult{#1}% +}% + +\newif\ifqr@divisiondone +\def\dodivision#1#2{% + \qr@divisiondonefalse + \dodivision@recursive{#1}{#2}% +}% + +\def\BCHcode#1{% + \edef\formatinfo{#1}% + \def\formatinfopadded{\formatinfo 0000000000}% + \def\qr@divisor{10100110111}% + \qr@divisiondonefalse + \qr@polynomialdivide{\formatinfopadded}{\qr@divisor}% + % + \qr@getstringlength{\theremainder}% + %Run loop from stringlength+1 to 10. + \qr@a=\qr@stringlength\relax% + \advance\qr@a by 1\relax% + \qr@for \i = \qr@a to 10 by 1% + {\preface@macro{\theremainder}{0}% + \xdef\theremainder{\theremainder}% + }% + \edef\BCHresult{\formatinfo\theremainder}% +}% + +\def\qr@formatmask{101010000010010}% + +\def\qr@encodeandmaskformat#1{% + \BCHcode{#1}% + \qr@xorbitstrings{\BCHresult}{\qr@formatmask}% + \edef\qr@format@bitstring{\xorresult}% +}% + +\def\qr@Golaycode#1{% + % #1 = 6-bit version number + \edef\qr@versioninfo{#1}% + \def\qr@versioninfopadded{\qr@versioninfo 000000000000}% %Append 12 zeros. + \def\qr@divisor{1111100100101}% + \qr@divisiondonefalse + \qr@polynomialdivide{\qr@versioninfopadded}{\qr@divisor}% + % + \qr@getstringlength{\theremainder}% + %Run loop from stringlength+1 to 12. + \qr@a=\qr@stringlength\relax% + \advance\qr@a by 1\relax% + \qr@for \i = \qr@a to 12 by 1% + {\preface@macro{\theremainder}{0}% + \xdef\theremainder{\theremainder}% + }% + \edef\Golayresult{\qr@versioninfo\theremainder}% +}% +\def\F@result{}% + +\def\qr@xorbitstring#1#2#3{% + % #1 = new macro to receive result + % #2, #3 = bitstrings to xor. The second can be shorter than the first. + \def\qr@xor@result{}% + \edef\qr@argument{(#2\relax\relax)(#3\relax\relax)}% + \xa\qr@xorbitstring@recursive\qr@argument% + \edef#1{\qr@xor@result}% +}% +\def\qr@xorbitstring@recursive(#1#2)(#3#4){% + \edef\testi{#1}% + \ifx\testi\@relax% + %Done. + \let\qr@next=\relax% + \else + \if#1#3\relax + \g@addto@macro{\qr@xor@result}{0}% + \else + \g@addto@macro{\qr@xor@result}{1}% + \fi + \edef\qr@next{\noexpand\qr@xorbitstring@recursive(#2)(#4)}% + \fi + \qr@next +} + +\def\F@addchar@raw#1#2{% + %Add two hexadecimal digits using bitwise xor + \qr@hextobinary[4]{\summandA}{#1}% + \qr@hextobinary[4]{\summandB}{#2}% + \qr@xorbitstring{\F@result}{\summandA}{\summandB}% + \qr@binarytohex[1]{\F@result}{\F@result}% +}% + +\def\canceltwos#1{% + \edef\qr@argument{(#1\relax\relax)}% + \xa\canceltwos@int\qr@argument% +}% + +\def\canceltwos@int(#1#2){% + \xa\canceltwos@recursion(,#1#2)% +}% + +\def\canceltwos@recursion(#1,#2#3){% + \def\testii{#2}% + \ifx\testii\@relax + %Cancelling complete. + \striptworelaxes(#1#2#3)% + %Now \F@result contains the answer. + \else + \relax + \ifnum#2=2\relax + \canceltwos@recursion(#10,#3)% + \else + \canceltwos@recursion(#1#2,#3)% + \fi + \fi +}% + +\def\striptworelaxes(#1\relax\relax){% + \gdef\F@result{#1}% +}% + +\qr@for \i = 0 to 15 by 1% + {\qr@decimaltohex[1]{\qr@tempa}{\the\i}% + \qr@for \j = 0 to 15 by 1% + {\qr@decimaltohex[1]{\qr@tempb}{\the\j}% + \F@addchar@raw\qr@tempa\qr@tempb + \xa\xdef\csname F@addchar@\qr@tempa\qr@tempb\endcsname{\F@result}% + }% + }% + +\def\F@addchar#1#2{% + \xa\def\xa\F@result\xa{\csname F@addchar@#1#2\endcsname}% +}% + +\def\F@addstrings#1#2{% + \edef\qr@argument{(,#1\relax\relax)(#2\relax\relax)}% + \xa\F@addstrings@recursion\qr@argument% +}% + +\def\F@addstrings@recursion(#1,#2#3)(#4#5){% + %Adds two hexadecimal strings, bitwise, from left to right. + %The second string is allowed to be shorter than the first. + \def\testii{#2}% + \def\testiv{#4}% + \ifx\testii\@relax + %The entire string has been processed. + \gdef\F@result{#1}% + \else + \ifx\testiv\@relax + %The second string is over. + \striptworelaxes(#1#2#3)% + %Now \F@result contains the answer. + \else + %We continue to add. + \F@addchar{#2}{#4}% + \edef\qr@argument{(#1\F@result,#3)(#5)}% + \xa\F@addstrings@recursion\qr@argument% + \fi + \fi +}% +\gdef\F@stripleadingzero(0#1){\edef\F@result{#1}}% + +\setcounter{qr@i}{0}% +\def\poweroftwo{1}% +\qr@for \i = 1 to 254 by 1% + {\stepcounter{qr@i}% + \qr@a=\poweroftwo\relax + \multiply\qr@a by 2\relax + \edef\poweroftwo{\the\qr@a}% + %\show\poweroftwo + \qr@decimaltohex[2]{\poweroftwo@hex}{\poweroftwo}% + \xa\ifnum\poweroftwo>255\relax + %We need to bitwise add the polynomial represented by 100011101, i.e. 0x11d. + \F@addstrings{\poweroftwo@hex}{11d}% %Now it should start with 0. + \xa\F@stripleadingzero\xa(\F@result)% %Now it should be two hex digits. + \edef\poweroftwo@hex{\F@result}% %Save the hex version. + \qr@hextodecimal{\poweroftwo}{\F@result}% + \fi + \xdef\poweroftwo{\poweroftwo}% + \xa\xdef\csname F@twotothe@\theqr@i\endcsname{\poweroftwo@hex}% + \xa\xdef\csname F@logtwo@\poweroftwo@hex\endcsname{\theqr@i}% + }% +\xa\xdef\csname F@twotothe@0\endcsname{01}% +\xa\xdef\csname F@logtwo@01\endcsname{0}% + +\def\F@twotothe#1{% + \xa\xdef\xa\F@result\xa{\csname F@twotothe@#1\endcsname}% +}% +\def\F@logtwo#1{% + \xa\xdef\xa\F@result\xa{\csname F@logtwo@#1\endcsname}% +}% + +\def\@zerozero{00}% + +\def\F@multiply#1#2{% + % #1 and #2 are two elements of F_256, + % given as two-character hexadecimal strings. + % Multiply them within F_256, and place the answer in \F@result + \edef\argA{#1}% + \edef\argB{#2}% + \ifx\argA\@zerozero + \def\F@result{00}% + \else + \ifx\argB\@zerozero + \def\F@result{00}% + \else + \xa\F@logtwo\xa{\argA}% + \edef\logA{\F@result}% + \xa\F@logtwo\xa{\argB}% + \edef\logB{\F@result}% + \xa\qr@a\xa=\logA\relax% \qr@a = \logA + \xa\advance\xa\qr@a\logB\relax% \advance \qr@a by \logB + \ifnum\qr@a>254\relax% + \advance\qr@a by -255\relax% + \fi% + \xa\F@twotothe\xa{\the\qr@a}% + % Now \F@result contains the product, as desired. + \fi + \fi +}% + +\def\F@multiply#1#2{% + % #1 and #2 are two elements of F_256, + % given as two-character hexadecimal strings. + % Multiply them within F_256, and place the answer in \F@result + \edef\argA{#1}% + \edef\argB{#2}% + \ifx\argA\@zerozero + \def\F@result{00}% + \else + \ifx\argB\@zerozero + \def\F@result{00}% + \else + \xa\F@logtwo\xa{\argA}% + \edef\logA{\F@result}% + \xa\F@logtwo\xa{\argB}% + \edef\logB{\F@result}% + \xa\qr@a\xa=\logA\relax% \qr@a = \logA + \xa\advance\xa\qr@a\logB\relax% \advance \qr@a by \logB + \ifnum\qr@a>254\relax% + \advance\qr@a by -255\relax% + \fi% + \xa\F@twotothe\xa{\the\qr@a}% + % Now \F@result contains the product, as desired. + \fi + \fi +}% + +\def\FX@getstringlength#1{% + %Count number of two-character coefficients + \setcounter{qr@i}{0}% + \xdef\qr@argument{(#1\relax\relax\relax)}% + \xa\FX@stringlength@recursive\qr@argument% + \xdef\stringresult{\arabic{qr@i}}% +}% + +\def\FX@stringlength@recursive(#1#2#3){% + \def\testi{#1}% + \ifx\testi\@relax + %we are done. + \else + \stepcounter{qr@i}% + %\showthe\c@qr@i + \qr@stringlength@recursive(#3)% + \fi +}% + +\newif\ifFX@leadingcoeff@zero +\def\FX@testleadingcoeff(#1#2#3){% + % Tests whether the leading coefficient of the hex-string #1#2#3 is '00'. + \edef\FX@leadingcoefficient{#1#2}% + \FX@leadingcoeff@zerofalse + \ifx\FX@leadingcoefficient\@zerozero + \FX@leadingcoeff@zerotrue + \fi +}% + +\newif\ifFX@divisiondone + +\newcounter{qr@divisionsremaining} %Keep track of how many divisions to go! +\def\FX@polynomialdivide#1#2{% + \edef\FX@numerator{#1}% + \edef\denominator{#2}% + \qr@getstringlength\FX@numerator% + \setcounter{qr@divisionsremaining}{\qr@stringlength}% + \qr@getstringlength\denominator% + \addtocounter{qr@divisionsremaining}{-\qr@stringlength}% + \addtocounter{qr@divisionsremaining}{2}% + \divide\c@qr@divisionsremaining by 2\relax% %2 hex chars per number + \FX@divisiondonefalse% + \xa\xa\xa\FX@polynomialdivide@recursive\xa\xa\xa{\xa\FX@numerator\xa}\xa{\denominator}% +}% + +\def\FX@polynomialdivide@recursive#1#2{% + % #1 = f(x), of degree n + % #2 = g(x), of degree m + % Obtains a new polynomial h(x), congruent to f(x) modulo g(x), + % but of degree at most n-1. + % + % If leading coefficient of f(x) is 0, strips off that leading zero. + % If leading coefficient of f(x) is a, subtracts off a * g(x) * x^(n-m). + % N.B. we assume g is monic. + % + \FX@testleadingcoeff(#1)% + \ifFX@leadingcoeff@zero% + %Leading coefficient is zero, so remove it. + \xa\def\xa\FX@numerator\xa{\FX@stripleadingzero(#1)}% + \else% + %Leading coefficient is nonzero, and contained in \FX@leadingcoefficient + \FX@subtractphase{#1}{#2}{\FX@leadingcoefficient}% + \ifFX@subtract@failed% + %If subtraction failed, that means our #1 was already the remainder! + \FX@divisiondonetrue% + \edef\theremainder{#1}% + \else% + %xor succeeded. We need to recurse. + \xa\xa\xa\edef\xa\xa\xa\FX@numerator\xa\xa\xa{\xa\FX@stripleadingzero\xa(\FX@subtraction@result)}% + \fi% + \fi% + \addtocounter{qr@divisionsremaining}{-1}% + \ifnum\c@qr@divisionsremaining=0\relax + %Division is done! + \FX@divisiondonetrue% + \edef\theremainder{\FX@numerator}% + \relax% + \else% + \xa\FX@polynomialdivide@recursive\xa{\FX@numerator}{#2}% + \fi% +}% + +\def\FX@stripleadingzero(00#1){#1}%Strips off a single leading zero of F_256. + +\newif\ifFX@subtract@failed% This flag will trigger when #2 is longer than #1. + +\def\FX@subtractphase#1#2#3{% + % #1 = bitstring + % #2 = bitstring no longer than #1 + % #3 = leading coefficient + \FX@subtract@failedfalse% + \edef\qr@argument{(,#1\relax\relax\relax)(#2\relax\relax\relax)(#3)}% + \xa\FX@subtract@recursive\qr@argument% +}% + +\def\FX@subtract@recursive(#1,#2#3#4)(#5#6#7)(#8){% + % This is a recursive way to compute f(x) - a*g(x)*x^k. + % #1#2#3#4 is the first bitstring, subtracted up through #1. + % Thus #2#3 constitutes the next two-character coefficient. + % #5#6#7 is the remaining portion of the second bitstring. + % Thus #5#6 constitutes the next two-character coefficient + % #8 is the element a of F_256. It should contain two characters. + \def\testii{#2}% + \def\testv{#5}% + \ifx\testii\@relax + % #1 contains the whole string. + % Now if #5 is also \relax, that means the two strings started off with equal lengths. + % If, however, #5 is not \relax, that means the second string was longer than the first, a problem. + \ifx\testv\@relax + %No problem. We are done. + \FX@subtract@saveresult(#1#2#3#4)% %We keep the #2#3#4 to be sure we have all three relax-es to strip off. + \else + %Problem! The second string was longer than the first. + %This usually indicates the end of the long division process. + \FX@subtract@failedtrue + \def\FX@subtraction@result{}% + \fi + \else + % There is still a coefficient to manipulate in #2#3. + % Check whether #5 contains anything. + \ifx\testv\@relax + % No, #5 is empty. We are done. "#2#3#4" contains the remainder of the first string, + % which we append untouched and then strip off the three \relax-es. + \FX@subtract@saveresult(#1#2#3#4)% + \else + % Yes, #5#6 still has something to XOR. Do the task. + \F@multiply{#5#6}{#8}% Multiply by the factor 'a'. + \F@addstrings{#2#3}{\F@result}% Subtract. (We're in characteristic two, so adding works.) + \edef\qr@argument{(#1\F@result,#4)(#7)(#8)}% + \xa\FX@subtract@recursive\qr@argument% + \fi + \fi +}% + +\def\FX@subtract@saveresult(#1\relax\relax\relax){% + %Strips off the three extra '\relax'es at the end. + \def\FX@subtraction@result{#1}% +}% + +\def\FX@creategeneratorpolynomial#1{% + % #1 = n, the number of error codewords desired. + % We need to create \prod_{j=0}^{n-1} (x-2^j). + \edef\FX@generator@degree{#1}% + \def\FX@generatorpolynomial{01}% Initially, set it equal to 1. + \setcounter{qr@i}{0}% + \FX@creategenerator@recursive% + %The result is now stored in \FX@generatorpolynomial +}% + +\def\FX@creategenerator@recursive{% + % \c@qr@i contains the current value of i. + % \FX@generatorpolynomial contains the current polynomial f(x), + % which should be a degree-i polynomial + % equal to \prod_{j=0}^{i-1} (x-2^j). + % (If i=0, then \FX@generatorpolynomial should be 01.) + % This recursion step should multiply the existing polynomial by (x-2^i), + % increment i by 1, and check whether we're done or not. + \edef\summandA{\FX@generatorpolynomial 00}% This is f(x) * x + \edef\summandB{00\FX@generatorpolynomial}% This is f(x), with a 0x^{i+1} in front. + \F@twotothe{\theqr@i}% + \edef\theconstant{\F@result}% + \FX@subtractphase{\summandA}{\summandB}{\theconstant}% + %This calculates \summandA + \theconstant * \summandB + %and stores the result in \FX@subtraction@result + \edef\FX@generatorpolynomial{\FX@subtraction@result}% + \stepcounter{qr@i}% + \xa\ifnum\FX@generator@degree=\c@qr@i\relax% + %We just multiplied by (x-2^{n-1}), so we're done. + \relax% + \else% + %We need to do this again! + \xa% + \FX@creategenerator@recursive% + \fi% +}% + +\def\FX@generate@errorbytes#1#2{% + % #1 = datastream in hex + % #2 = number of error correction bytes requested + \edef\numerrorbytes{#2}% + \xa\FX@creategeneratorpolynomial\xa{\numerrorbytes}% + \edef\FX@numerator{#1}% + \qr@for \i = 1 to \numerrorbytes by 1% + {\g@addto@macro\FX@numerator{00}}% %One error byte means two hex codes. + \FX@polynomialdivide{\FX@numerator}{\FX@generatorpolynomial}% + \edef\FX@errorbytes{\theremainder}% +}% +\newif\ifqr@versionmodules + +\def\qr@level@char#1{% + \xa\ifcase#1 + M\or L\or H\or Q\fi}% + +\newif\ifqr@versiongoodenough +\def\qr@choose@best@version#1{% + % \qr@desiredversion = user-requested version + % \qr@desiredlevel = user-requested error-correction level + \edef\qr@plaintext{#1}% + \qr@getstringlength{\qr@plaintext}% + % + %Run double loop over levels and versions, looking for + %the smallest version that can contain our data, + %and then choosing the best error-correcting level at that version, + %subject to the level being at least as good as the user desires. + \global\qr@versiongoodenoughfalse% + \gdef\qr@bestversion{0}% + \gdef\qr@bestlevel{0}% + \ifnum\qr@desiredversion=0\relax + \qr@a=1\relax + \else + \qr@a=\qr@desiredversion\relax + \fi + \qr@for \i=\qr@a to 40 by 1 + {\edef\qr@version{\the\i}% + \global\qr@versiongoodenoughfalse + \qr@for \j=0 to 3 by 1% + {%First, we map {0,1,2,3} to {1,0,4,3}, so that we loop through {M,L,H,Q} + %in order of increasing error-correction capabilities. + \qr@a = \j\relax + \divide \qr@a by 2\relax + \multiply \qr@a by 4\relax + \advance \qr@a by 1\relax + \advance \qr@a by -\j\relax + \edef\qr@level{\the\qr@a}% + \ifnum\qr@desiredlevel=\qr@a\relax + \global\qr@versiongoodenoughtrue + \fi + \ifqr@versiongoodenough + \qr@calculate@capacity{\qr@version}{\qr@level}% + \xa\xa\xa\ifnum\xa\qr@truecapacity\xa<\qr@stringlength\relax + %Too short + \relax + \else + %Long enough! + \xdef\qr@bestversion{\qr@version}% + \xdef\qr@bestlevel{\qr@level}% + \global\i=40% + \fi + \fi + }% + }% + \edef\qr@version{\qr@bestversion}% + \edef\qr@level{\qr@bestlevel}% + \xa\ifnum\qr@desiredversion>0\relax + \ifx\qr@bestversion\qr@desiredversion\relax + %No change from desired version. + \else + %Version was increased + \message{<Requested QR version '\qr@desiredversion' is too small for desired text.}% + \message{Version increased to '\qr@bestversion' to fit text.>^^J}% + \fi + \fi + \ifx\qr@bestlevel\qr@desiredlevel\relax + %No change in level. + \else + \message{<Error-correction level increased from \qr@level@char{\qr@desiredlevel}}% + \message{to \qr@level@char{\qr@bestlevel} at no cost.>^^J}% + \fi +}% + +\def\qr@calculate@capacity#1#2{% + \edef\qr@version{#1}% + \edef\qr@level{#2}% + %Calculate \qr@size, the number of modules per side. + % The formula is 4\qr@version+17. + \qr@a=\qr@version\relax% + \multiply\qr@a by 4\relax% + \advance\qr@a by 17\relax% + \edef\qr@size{\the\qr@a}% + % + % Calculate \qr@k, which governs the number of alignment patterns. + % The alignment patterns lie in a kxk square, except for 3 that are replaced by finding patterns. + % The formula is 2 + floor( \qr@version / 7 ), except that k=0 for version 1. + \xa\ifnum\qr@version=1\relax% + \def\qr@k{0}% + \else% + \qr@a=\qr@version\relax + \divide \qr@a by 7\relax + \advance\qr@a by 2\relax + \edef\qr@k{\the\qr@a}% + \fi% + % + %Calculate number of function pattern modules. + %This consists of the three 8x8 finder patterns, the two timing strips, and the (k^2-3) 5x5 alignment patterns. + %The formula is 160+2n+25(k^2-3)-10(k-2), unless k=0 in which case we just have 160+2n. + \qr@a=\qr@size\relax + \multiply\qr@a by 2\relax + \advance\qr@a by 160\relax + \xa\ifnum\qr@k=0\relax\else + %\qr@k is nonzero, hence at least 2, so we continue to add 25(k^2-3)-10(k-2). + \qr@b=\qr@k\relax + \multiply\qr@b by \qr@k\relax + \advance\qr@b by -3\relax + \multiply\qr@b by 25\relax + \advance\qr@a by \qr@b\relax + \qr@b=\qr@k\relax + \advance\qr@b by -2\relax + \multiply\qr@b by 10\relax + \advance\qr@a by -\qr@b\relax + \fi + \edef\qr@numfunctionpatternmodules{\the\qr@a}% + % + %Calculate the number of version modules, either 36 or 0. + \xa\ifnum\qr@version>6\relax + \qr@versionmodulestrue + \def\qr@numversionmodules{36}% + \else + \qr@versionmodulesfalse + \def\qr@numversionmodules{0}% + \fi + % + %Now calculate the codeword capacity and remainder bits. + %Take n^2 modules, subtract all those dedicated to finder patterns etc., format information, and version information, + %and what's left is the number of bits we can play with. + %The number of complete bytes is \qr@numdatacodewords; + %the leftover bits are \qr@numremainderbits. + \qr@a=\qr@size\relax + \multiply \qr@a by \qr@size\relax + \advance \qr@a by -\qr@numfunctionpatternmodules\relax + \advance \qr@a by -31\relax% % There are 31 format modules. + \advance \qr@a by -\qr@numversionmodules\relax + \qr@b=\qr@a\relax + \divide \qr@a by 8\relax + \edef\qr@numdatacodewords{\the\qr@a}% + \multiply\qr@a by 8\relax + \advance \qr@b by -\qr@a\relax + \edef\qr@numremainderbits{\the\qr@b}% + % + %The size of the character count indicator also varies by version. + %There are only two options, so hardcoding seems easier than expressing these functionally. + \xa\ifnum\qr@version<10\relax + \def\qr@charactercountbytes@byte{1}% + \def\qr@charactercountbits@byte{8}% + \else + \def\qr@charactercountbytes@byte{2}% + \def\qr@charactercountbits@byte{16}% + \fi + % + %Now we call on the table, from the QR specification, + %of how many blocks to divide the message into, and how many error bytes each block gets. + %This affects the true capacity for data, which we store into \qr@totaldatacodewords. + % The following macro sets \qr@numblocks and \qr@num@eccodewords + % based on Table 9 of the QR specification. + \qr@settableix + \qr@a = -\qr@numblocks\relax + \multiply \qr@a by \qr@num@eccodewords\relax + \advance\qr@a by \qr@numdatacodewords\relax + \edef\qr@totaldatacodewords{\the\qr@a}% + \advance\qr@a by -\qr@charactercountbytes@byte\relax%Subtract character count + \advance\qr@a by -1\relax% Subtract 1 byte for the 4-bit mode indicator and the 4-bit terminator at the end. + \edef\qr@truecapacity{\the\qr@a}% +} + +\def\qr@setversion#1#2{% + % #1 = version number, an integer between 1 and 40 inclusive. + % #2 = error-correction level, as an integer between 0 and 3 inclusive. + % 0 = 00 = M + % 1 = 01 = L + % 2 = 10 = H + % 3 = 11 = Q + % This macro calculates and sets a variety of global macros and/or counters + % storing version information that is used later in construction the QR code. + % Thus \setversion should be called every time! + % + \edef\qr@version{#1}% + \edef\qr@level{#2}% + % + \qr@calculate@capacity{\qr@version}{\qr@level}% + %The capacity-check code sets the following: + % * \qr@size + % * \qr@k + % * \ifqr@versionmodules + % * \qr@numversionmodules + % * \qr@numdatacodewords + % * \qr@numremainderbits + % * \qr@charactercountbits@byte + % * \qr@charactercountbytes@byte + % * \qr@numblocks (via \qr@settableix) + % * \qr@num@eccodewords (via \qr@settableix) + % * \qr@totaldatacodewords + % + % The alignment patterns' square is 7 modules in from each edge. + % They are spaced "as evenly as possible" with an even number of modules between each row/column, + % unevenness in division being accommodated by making the first such gap smaller. + % The formula seems to be + % general distance = 2*round((n-13)/(k-1)/2+0.25) + % = 2*floor((n-13)/(k-1)/2+0.75) + % = 2*floor( (2*(n-13)/(k-1)+3) / 4 ) + % = (((2*(n-13)) div (k-1) + 3 ) div 4 ) * 2 + % first distance = leftovers + % The 0.25 is to accommodate version 32, which is the only time we round down. + % Otherwise a simple 2*ceiling((n-13)/(k-1)/2) would have sufficed. + % + \qr@a = \qr@size\relax + \advance\qr@a by -13\relax + \multiply\qr@a by 2\relax + \qr@b = \qr@k\relax + \advance \qr@b by -1\relax + \divide\qr@a by \qr@b\relax + \advance\qr@a by 3\relax + \divide\qr@a by 4\relax + \multiply\qr@a by 2\relax + \edef\qr@alignment@generalskip{\the\qr@a}% + % + %Now set \qr@alignment@firstskip to (\qr@size-13)-(\qr@k-2)*\qr@alignment@generalskip % + \qr@a = \qr@k\relax + \advance\qr@a by -2\relax + \multiply\qr@a by -\qr@alignment@generalskip\relax + \advance\qr@a by \qr@size\relax + \advance\qr@a by -13\relax + \edef\qr@alignment@firstskip{\the\qr@a}% + % + % + % + % Our \qr@totaldatacodewords bytes of data are broken up as evenly as possible + % into \qr@numblocks datablocks; some may be one byte longer than others. + % We set \qr@shortblock@size to floor(\qr@totaldatacodewords / \qr@numblocks) + % and \qr@numlongblocks to mod(\qr@totaldatacodewords , \qr@numblocks). + \qr@a=\qr@totaldatacodewords\relax + \divide\qr@a by \qr@numblocks\relax + \edef\qr@shortblock@size{\the\qr@a}% + \multiply\qr@a by -\qr@numblocks\relax + \advance\qr@a by \qr@totaldatacodewords\relax + \edef\qr@numlongblocks{\the\qr@a}% + % + %Set \qr@longblock@size to \qr@shortblock@size+1. + \qr@a=\qr@shortblock@size\relax + \advance\qr@a by 1\relax + \edef\qr@longblock@size{\the\qr@a}% + % + %Set \qr@numshortblocks to \qr@numblocks - \qr@numlongblocks + \qr@b=\qr@numblocks\relax + \advance\qr@b by -\qr@numlongblocks\relax + \edef\qr@numshortblocks{\the\qr@b}% +}% + +\def\qr@settableix@int(#1,#2){% + \edef\qr@numblocks{#1}% + \edef\qr@num@eccodewords{#2}% +}% + +\def\qr@settableix{% +\xa\ifcase\qr@level\relax + %00: Level 'M', medium error correction + \edef\tempdata{(% + \ifcase\qr@version\relax + \relax %There is no version 0. + \or1,10% + \or1,16% + \or1,26% + \or2,18% + \or2,24% + \or4,16% + \or4,18% + \or4,22% + \or5,22% + \or5,26% + \or5,30% + \or8,22% + \or9,22% + \or9,24% + \or10,24% + \or10,28% + \or11,28% + \or13,26% + \or14,26% + \or16,26% + \or17,26% + \or17,28% + \or18,28% + \or20,28% + \or21,28% + \or23,28% + \or25,28% + \or26,28% + \or28,28% + \or29,28% + \or31,28% + \or33,28% + \or35,28% + \or37,28% + \or38,28% + \or40,28% + \or43,28% + \or45,28% + \or47,28% + \or49,28% + \fi)}% +\or + %01: Level 'L', low error correction + \edef\tempdata{% + (\ifcase\qr@version\relax + \relax %There is no version 0. + \or 1,7% + \or 1,10% + \or 1,15% + \or 1,20% + \or 1,26% + \or 2,18% + \or 2,20% + \or 2,24% + \or 2,30% + \or 4,18% + \or 4,20% + \or 4,24% + \or 4,26% + \or 4,30% + \or 6,22% + \or 6,24% + \or 6,28% + \or 6,30% + \or 7,28% + \or 8,28% + \or 8,28% + \or 9,28% + \or 9,30% + \or 10,30% + \or 12,26% + \or 12,28% + \or 12,30% + \or 13,30% + \or 14,30% + \or 15,30% + \or 16,30% + \or 17,30% + \or 18,30% + \or 19,30% + \or 19,30% + \or 20,30% + \or 21,30% + \or 22,30% + \or 24,30% + \or 25,30% + \fi)}% +\or + %10: Level 'H', high error correction + \edef\tempdata{(% + \ifcase\qr@version\relax + \relax %There is no version 0. + \or1,17% + \or1,28% + \or2,22% + \or4,16% + \or4,22% + \or4,28% + \or5,26% + \or6,26% + \or8,24% + \or8,28% + \or11,24% + \or11,28% + \or16,22% + \or16,24% + \or18,24% + \or16,30% + \or19,28% + \or21,28% + \or25,26% + \or25,28% + \or25,30% + \or34,24% + \or30,30% + \or32,30% + \or35,30% + \or37,30% + \or40,30% + \or42,30% + \or45,30% + \or48,30% + \or51,30% + \or54,30% + \or57,30% + \or60,30% + \or63,30% + \or66,30% + \or70,30% + \or74,30% + \or77,30% + \or81,30% + \fi)}% +\or + %11: Level 'Q', quality error correction + \edef\tempdata{(% + \ifcase\qr@version\relax + \relax %There is no version 0. + \or1,13% + \or1,22% + \or2,18% + \or2,26% + \or4,18% + \or4,24% + \or6,18% + \or6,22% + \or8,20% + \or8,24% + \or8,28% + \or10,26% + \or12,24% + \or16,20% + \or12,30% + \or17,24% + \or16,28% + \or18,28% + \or21,26% + \or20,30% + \or23,28% + \or23,30% + \or25,30% + \or27,30% + \or29,30% + \or34,28% + \or34,30% + \or35,30% + \or38,30% + \or40,30% + \or43,30% + \or45,30% + \or48,30% + \or51,30% + \or53,30% + \or56,30% + \or59,30% + \or62,30% + \or65,30% + \or68,30% + \fi)}% +\fi +\xa\qr@settableix@int\tempdata +}% +\define@key{qr}{version}{\edef\qr@desiredversion{#1}}% +\define@key{qr}{level}{\qr@setlevel{#1}}% +\define@key{qr}{height}{\qr@setheight{#1}}% +\define@boolkey{qr}[qr@]{tight}[true]{}% %This creates \ifqr@tight and initializes it to false. +\define@boolkey{qr}[qr@]{padding}[true]{\ifqr@padding\qr@tightfalse\else\qr@tighttrue\fi}% %Define 'padding' as antonym to 'tight' + +\def\@qr@M{M}\def\@qr@z{0}% +\def\@qr@L{L}\def\@qr@i{1}% +\def\@qr@H{H}\def\@qr@ii{2}% +\def\@qr@Q{Q}\def\@qr@iii{3}% +\def\qr@setlevel#1{% + \edef\qr@level@selected{#1}% + \ifx\qr@level@selected\@qr@M + \edef\qr@desiredlevel{0}% + \fi + \ifx\qr@level@selected\@qr@L + \edef\qr@desiredlevel{1}% + \fi + \ifx\qr@level@selected\@qr@H + \edef\qr@desiredlevel{2}% + \fi + \ifx\qr@level@selected\@qr@Q + \edef\qr@desiredlevel{3}% + \fi + \ifx\qr@level@selected\@qr@z + \edef\qr@desiredlevel{0}% + \fi + \ifx\qr@level@selected\@qr@i + \edef\qr@desiredlevel{1}% + \fi + \ifx\qr@level@selected\@qr@ii + \edef\qr@desiredlevel{2}% + \fi + \ifx\qr@level@selected\@qr@iii + \edef\qr@desiredlevel{3}% + \fi +}% + +\def\qr@setheight#1{% + \setlength{\qr@desiredheight}{#1}% +}% + +\newcommand\qrset[1]{% + \setkeys{qr}{#1}% +} + +\qrset{version=0, level=0, tight} +\newcommand\qrcode[1][]{% + \begingroup% + \setkeys{qr}{#1}% + \bgroup\qr@verbatimcatcodes\qr@setescapedspecials\qrcode@i}% + +\def\qrcode@i#1{\xdef\qr@texttoencode{#1}\egroup\qrcode@int\endgroup}% + +\def\qrcode@int{% + \message{^^J^^J<QR code requested for "\qr@texttoencode" in version + \qr@desiredversion-\qr@level@char{\qr@desiredlevel}.>^^J}% + %First, choose the version and level. + %Recall that \qr@choose@best@version sets \qr@version and \qr@level. + \xa\qr@choose@best@version\xa{\qr@texttoencode}% + \qr@setversion{\qr@version}{\qr@level}% + % + %Next, check whether we have already encoded this text at this version + %and level. + \xa\ifx\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname + \relax% + %This text has not yet been encoded. + \qrcode@int@new% + \else + %This text has already been encoded! + \ifqr@forget@mode + %In 'forget' mode, we deliberately recalculate anyway. + \qrcode@int@new% + \else + \qrcode@int@remember% + \fi + \fi% +}% + +\def\qrcode@int@new{% + \qr@createsquareblankmatrix{newqr}{\qr@size}% + \qr@placefinderpatterns{newqr}% + \qr@placetimingpatterns{newqr}% + \qr@placealignmentpatterns{newqr}% + \qr@placedummyformatpatterns{newqr}% + \qr@placedummyversionpatterns{newqr}% + \ifqr@draft@mode + \message{<Inserting dummy QR code in draft mode for "\qr@texttoencode" in + version \qr@version-\qr@level@char{\qr@level}.>^^J}% + \relax% Draft mode---don't load any data or do any work. Also don't save! + \def\qr@format@square{\qr@black}% + \def\@blank{\@white}% + \fboxsep=-\fboxrule% + \fbox{\qr@printmatrix{newqr}}% + \else + \message{<Calculating QR code for "\qr@texttoencode" in + version \qr@version-\qr@level@char{\qr@level}.>^^J}% + \xa\qr@encode@binary\xa{\qr@texttoencode}% + \qr@splitcodetextintoblocks + \qr@createerrorblocks + \qr@interleave + \message{<Writing data...}% + \qr@writedata@hex{newqr}{\qr@interleaved@text}% + \message{done.>^^J}% + \qr@writeremainderbits{newqr}% + \qr@chooseandapplybestmask{newqr}% + \qr@decimaltobinary[2]{\level@binary}{\qr@level}% + \qr@decimaltobinary[3]{\mask@binary}{\qr@mask@selected}% + \edef\formatstring{\level@binary\mask@binary}% + \message{<Encoding and writing format string...}% + \xa\qr@encodeandmaskformat\xa{\formatstring}% + \qr@writeformatstring{newqr}{\qr@format@bitstring}% + \message{done.>^^J}% + \message{<Encoding and writing version information...}% + \qr@decimaltobinary[6]{\version@binary}{\qr@version}% + \qr@Golaycode{\version@binary}% + \qr@writeversionstring{newqr}{\Golayresult}% + \message{done.>^^J}% + \message{<Saving QR code to memory...}% + \qr@matrixtobinary{newqr}% + % + %Now save the binary version into TeX's memory for later use in this document. + \xa\xdef\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname + {\qr@binarymatrix@result}% + \message{done.>^^J}% + % + %Also save the binary version into the aux file, for use in later runs. + \message{<Writing QR code to aux file...}% + \qr@writebinarymatrixtoauxfile{\qr@binarymatrix@result}% + \message{done.>^^J}% + \message{<Printing matrix...}% + \qr@printmatrix{newqr}% + \message{done.>^^J}% + \fi + \message{^^J}% +}% +\def\qrcode@int@remember{% + %This text has already been encoded, + %so we just copy it from the saved binary string. + \message{<Copying the QR code for "\qr@texttoencode" in version \qr@version-\qr@level@char{\qr@level} as previously calculated.>^^J}% + \xa\qr@printsavedbinarymatrix\xa{\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname}% + % + % Now this still might need to be written to the aux file. + % + \xa\ifx\csname qr@savedflag@\qr@texttoencode @\qr@version @\qr@level\endcsname\@qr@TRUE + %Okay, this has already been written to aux file. + %Do nothing. + \relax% + \else% + %This has NOT been written to the aux file yet. + %We need to do so now. + \xa\qr@writebinarymatrixtoauxfile\xa{\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname}% + \fi% +}% + +\def\qr@matrixtobinary#1{% + \def\qr@binarymatrix@result{}% + \bgroup + \def\qr@black{1}% + \def\@white{0}% + \def\@blank{0}% + \def\qr@black@fixed{1}% + \def\qr@white@fixed{0}% + \def\qr@black@format{1}% + \def\qr@white@format{0}% + % + \qr@for \i = 1 to \qr@size by 1% + {\qr@for \j = 1 to \qr@size by 1% + {\edef\theentry{\qr@matrixentry{#1}{\the\i}{\the\j}}% + \xa\g@addto@macro\xa\qr@binarymatrix@result\xa{\theentry}% + }% + }% + \egroup% +}% + +\def\qr@sanitize@output#1{% + %Read through ASCII text '#1' and escape backslashes and braces + \def\qr@sanitized@result{}% + \edef\qr@argument{(#1\relax\relax\relax)}% + \xa\qr@sanitize@output@int\qr@argument% +} + +\def\qr@sanitize@output@int(#1#2){% + % #1 = first character + % #2 = rest of output, including terminator + \edef\testi{#1}% + \ifx\testi\@relax + % Done. + \let\qr@next=\relax + \else + \ifx\testi\qr@otherrightbrace + \edef\qr@sanitized@result{\qr@sanitized@result\qr@otherbackslash}% + \else\ifx\testi\qr@otherleftbrace + \edef\qr@sanitized@result{\qr@sanitized@result\qr@otherbackslash}% + \else\ifx\testi\qr@otherbackslash + \edef\qr@sanitized@result{\qr@sanitized@result\qr@otherbackslash}% + \fi + \fi + \fi + \edef\qr@sanitized@result{\qr@sanitized@result#1}% + \def\qr@next{\qr@sanitize@output@int(#2)}% + \fi + \qr@next +} + +\def\@qr@TRUE{TRUE}% +\def\qr@writebinarymatrixtoauxfile#1{% + \qr@sanitize@output{\qr@texttoencode}% + \edef\theargument{{\qr@sanitized@result}{\qr@version}{\qr@level}{#1}}% + \xa\write\xa\@auxout\xa{\xa\string\xa\qr@savematrix\theargument}% + % + % Now set a flag, so we don't write this again. + \xa\gdef\csname qr@savedflag@\qr@texttoencode @\qr@version @\qr@level\endcsname{TRUE}% +}% + +\gdef\dummyqrsavedefinition{}% +\begingroup + \catcode`\#=12\relax + \catcode`\<=1\relax + \catcode`\{=12\relax + \catcode`\>=2\relax + \catcode`\}=12\relax + \catcode`\|=0\relax + \catcode`\\=12|relax + |gdef|dummyqrsavedefinition<% + \ifx\qr@savematrix\@undefined% + \def\qr@savematrix{\begingroup\let\do\@makeother\dospecials\catcode`\{=1\catcode`\}=2\relax + \qr@savematrix@int}% + \def\qr@savematrix@int#1#2#3#4{\endgroup}% + \fi% + > +|endgroup + +\edef\qr@argument{(\dummyqrsavedefinition)}% +\xa\write\xa\@auxout\xa{\dummyqrsavedefinition}% + +\def\qr@savematrix{\bgroup\qr@verbatimcatcodes\qr@setescapedspecials\qr@savematrix@int}% + +\def\qr@savematrix@int#1{\xdef\qr@savedmatrix@name{#1}\egroup\qr@savematrix@int@int}% + +\def\qr@savematrix@int@int#1#2#3{% + % \qr@savedmatrix@name = encoded text + % #1 = version + % #2 = level + % #3 = binary text + \def\ds{<Reading QR code for "\qr@savedmatrix@name" at level #1-\qr@level@char{#2} from aux file.>^^J}\xa\message\xa{\ds}% + {\let\%=\qr@otherpercent + \xa\gdef\csname qr@savedbinarymatrix@\qr@savedmatrix@name @#1@#2\endcsname{#3}% + }% +}% +\endinput +%% +%% End of file `qrcode.sty'. |