summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2011-06-06 17:17:55 +0000
committerKarl Berry <karl@freefriends.org>2011-06-06 17:17:55 +0000
commit1116c441adede647c4931c6553046c8d9eb53e0c (patch)
treeeecba89f578294208292dcfcc70db6b8fb3432e8 /Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex
parent68598d9c664b3d4c11acabdd625b410e3f3d696a (diff)
new graphics package tkz-euclide (5jun11)
git-svn-id: svn://tug.org/texlive/trunk@22830 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex')
-rw-r--r--Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex416
1 files changed, 416 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex
new file mode 100644
index 00000000000..94c65930a41
--- /dev/null
+++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex
@@ -0,0 +1,416 @@
+% Copyright 2011 by Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+
+
+\def\fileversion{1.16 c}
+\def\filedate{2011/06/01}
+
+%<--------------------------------------------------------------------------–>
+% intersection de deux lignes
+%<--------------------------------------------------------------------------–>
+\def\tkzInterLL(#1,#2)(#3,#4){% méthode avec FP
+\tkz@InterLL(#1,#2)(#3,#4){tkzPointResult}
+}
+% méthode with tikz
+\def\tkz@InterLL(#1,#2)(#3,#4)#5{%
+%\path (intersection of #1--#2 and #3--#4) coordinate(#5);%
+\pgfextractx{\pgf@x}{\pgfpointanchor{#1}{center}}
+\pgfextracty{\pgf@y}{\pgfpointanchor{#1}{center}}
+\tkz@ax\pgf@x %
+\tkz@ay\pgf@y %
+\pgfextractx{\pgf@x}{\pgfpointanchor{#2}{center}}
+\pgfextracty{\pgf@y}{\pgfpointanchor{#2}{center}}
+\tkz@bx\pgf@x %
+\tkz@by\pgf@y %
+\pgfextractx{\pgf@x}{\pgfpointanchor{#3}{center}}
+\pgfextracty{\pgf@y}{\pgfpointanchor{#3}{center}}
+\tkz@cx\pgf@x %
+\tkz@cy\pgf@y %
+\pgfextractx{\pgf@x}{\pgfpointanchor{#4}{center}}
+\pgfextracty{\pgf@y}{\pgfpointanchor{#4}{center}}
+\tkz@dx\pgf@x %
+\tkz@dy\pgf@y %
+\FPeval\tkz@deltax{\pgf@sys@tonumber{\tkz@ax}-\pgf@sys@tonumber{\tkz@bx}}
+\FPdiv\tkz@deltax{\tkz@deltax}{28.45274}
+\FPeval\tkz@deltaxx{\pgf@sys@tonumber{\tkz@cx}-\pgf@sys@tonumber{\tkz@dx}}
+\FPdiv\tkz@deltaxx{\tkz@deltaxx}{28.45274}
+\FPeval\tkz@deltay{\pgf@sys@tonumber{\tkz@ay}-\pgf@sys@tonumber{\tkz@by}}
+\FPdiv\tkz@deltay{\tkz@deltay}{28.45274}
+\FPeval\tkz@deltayy{\pgf@sys@tonumber{\tkz@cy}-\pgf@sys@tonumber{\tkz@dy}}
+\FPdiv\tkz@deltayy{\tkz@deltayy}{28.45274}
+\FPeval\tkz@deltaxy{(\pgf@sys@tonumber{\tkz@ax}*\pgf@sys@tonumber{\tkz@by})-(\pgf@sys@tonumber{\tkz@ay}*\pgf@sys@tonumber{\tkz@bx})}
+\FPdiv\tkz@deltaxy{\tkz@deltaxy}{28.45274}
+\FPdiv\tkz@deltaxy{\tkz@deltaxy}{28.45274}
+\FPeval\tkz@deltaxxyy{(\pgf@sys@tonumber{\tkz@cx}*\pgf@sys@tonumber{\tkz@dy})-(\pgf@sys@tonumber{\tkz@cy}*\pgf@sys@tonumber{\tkz@dx})}
+\FPdiv\tkz@deltaxxyy{\tkz@deltaxxyy}{28.45274}
+\FPdiv\tkz@deltaxxyy{\tkz@deltaxxyy}{28.45274}
+\FPeval\tkz@div{(\tkz@deltax*\tkz@deltayy)-(\tkz@deltay*\tkz@deltaxx)}
+\FPeval\tkz@numx{(\tkz@deltaxy*\tkz@deltaxx)-(\tkz@deltax*\tkz@deltaxxyy)}
+\FPeval\tkz@numy{(\tkz@deltaxy*\tkz@deltayy)-(\tkz@deltay*\tkz@deltaxxyy)}
+\FPdiv\tkz@xs{\tkz@numx}{\tkz@div}
+\FPdiv\tkz@ys{\tkz@numy}{\tkz@div}
+\FPround\tkz@xs{\tkz@xs}{5}
+\FPround\tkz@ys{\tkz@ys}{5}
+\path[coordinate](\tkz@xs,\tkz@ys) coordinate (#5);
+}
+%<--------------------------------------------------------------------------–>
+% intersection de Ligne Cercle rayon connu
+%<--------------------------------------------------------------------------–>
+% /*
+% Calculate the intersection of a ray and a sphere
+% The line segment is defined from p1 to p2
+% The sphere is of radius r and centered at sc
+% There are potentially two points of intersection given by
+% p = p1 + mu1 (p2 - p1)
+% p = p1 + mu2 (p2 - p1)
+% Return FALSE if the ray doesn't intersect the sphere.
+% */
+% int RaySphere(XYZ p1,XYZ p2,XYZ sc,double r,double *mu1,double *mu2)
+% {
+% double a,b,c;
+% double bb4ac;
+% XYZ dp;
+%
+% dp.x = p2.x - p1.x;
+% dp.y = p2.y - p1.y;
+% dp.z = p2.z - p1.z;
+% a = dp.x * dp.x + dp.y * dp.y + dp.z * dp.z;
+% b = 2 * (dp.x * (p1.x - sc.x) + dp.y * (p1.y - sc.y) + dp.z * (p1.z - sc.z));
+% c = sc.x * sc.x + sc.y * sc.y + sc.z * sc.z;
+% c += p1.x * p1.x + p1.y * p1.y + p1.z * p1.z;
+% c -= 2 * (sc.x * p1.x + sc.y * p1.y + sc.z * p1.z);
+% c -= r * r;
+% bb4ac = b * b - 4 * a * c;
+% if (ABS(a) < EPS || bb4ac < 0) {
+% *mu1 = 0;
+% *mu2 = 0;
+% return(FALSE);
+% }
+%
+% *mu1 = (-b + sqrt(bb4ac)) / (2 * a);
+% *mu2 = (-b - sqrt(bb4ac)) / (2 * a);
+%
+% return(TRUE);
+% }
+%<--------------------------------------------------------------------------–>
+%<--------------------------------------------------------------------------–>
+\def\tkz@numlc{0}
+\pgfkeys{
+/linecircle/.cd,
+ node/.code = \def\tkz@numlc{0},
+ R/.code = \def\tkz@numlc{1},
+ with nodes/.code = \def\tkz@numlc{2}
+ }
+%<--------------------------------------------------------------------------–>
+\def\tkzInterLC{\pgfutil@ifnextchar[{\tkz@InterLC}{%
+ \tkz@InterLC[]}}
+\def\tkz@InterLC[#1](#2,#3)(#4,#5){%
+\begingroup
+\pgfkeys{/linecircle/.cd,node}
+\pgfqkeys{/linecircle}{#1}
+\ifcase\tkz@numlc%
+ % first case 0
+\tkzCalcLength(#4,#5)
+\tkzInterLCR(#2,#3)(#4,\tkzLengthResult pt){%
+ tkzFirstPointResult}{tkzSecondPointResult}
+ \or% 1
+\tkzInterLCR(#2,#3)(#4,#5){tkzFirstPointResult}{tkzSecondPointResult}%
+ \or% 2
+\tkzInterLCWithNodes(#2,#3)(#4,#5){tkzFirstPointResult}{tkzSecondPointResult}%
+\fi
+\endgroup
+}
+%<--------------------------------------------------------------------------–>
+%<--------------------------------------------------------------------------–>
+\def\tkzInterLCR(#1,#2)(#3,#4)#5#6{%
+\begingroup
+ \tkz@radi=#4%
+ \tkz@@extractxy{#3}
+ \tkz@bx =\pgf@x\relax%
+ \tkz@by =\pgf@y\relax%
+ \tkz@Projection(#1,#2)(#3){tkz@pth}
+ \tkz@@CalcLength(#3,tkz@pth){tkz@mathLen}
+ \ifdim\tkz@mathLen pt<0.05pt\relax%
+ \pgfpointdiff{\pgfpointanchor{#1}{center}}%
+ {\pgfpointanchor{#2}{center}}%
+ \tkz@ax=\pgf@x%
+ \tkz@ay=\pgf@y%
+ \tkzpointborderellipse{\pgfpoint{\tkz@ax}{\tkz@ay}}%
+ {\pgfpoint{\tkz@radi}{\tkz@radi}}
+ \tkz@ax=\pgf@x\relax%
+ \tkz@ay=\pgf@y\relax%
+ \advance\tkz@bx by\tkz@ax\relax%
+ \advance\tkz@by by\tkz@ay\relax%
+ \path[coordinate] (\tkz@bx,\tkz@by) coordinate (#6);
+ \tkzCSym(#3)(#6){#5}
+ \else
+ \FPdiv\pgfmathresult{\tkz@mathLen}{\pgfmath@tonumber{\tkz@radi}}
+ %\pgfmathparse{\tkz@mathLen / \tkz@radi}
+ \pgfmathacos@{\pgfmathresult}%
+ \let\tkz@angle\pgfmathresult%
+ \pgfpointdiff{\pgfpointanchor{#3}{center}}%
+ {\pgfpointanchor{tkz@pth}{center}}%
+ \tkz@ax=\pgf@x%
+ \tkz@ay=\pgf@y%
+ \tkzpointborderellipse{\pgfpoint{\tkz@ax}{\tkz@ay}}%
+ {\pgfpoint{\tkz@radi}{\tkz@radi}}
+ \tkz@ax =\pgf@x\relax%
+ \tkz@ay =\pgf@y\relax%
+ \advance\tkz@bx by\tkz@ax\relax%
+ \advance\tkz@by by\tkz@ay\relax%
+ \tkz@@extractxy{#3}
+ \tkz@ax =\pgf@x\relax%
+ \tkz@ay =\pgf@y\relax%
+ \tkz@@extractxy{tkz@pth}
+ %\ifdim\pgf@y<\tkz@ay \edef\tkz@angle{-\tkz@angle}%
+ % \fi
+ \tkzmathrotatepointaround{\pgfpoint{\tkz@bx}{\tkz@by}}%
+ {\pgfpoint{\tkz@ax}{\tkz@ay}}%
+ {\tkz@angle}
+ \path[coordinate] (\pgf@x,\pgf@y) coordinate (#5);
+ \tkzmathrotatepointaround{\pgfpoint{\tkz@bx}{\tkz@by}}%
+ {\pgfpoint{\tkz@ax}{\tkz@ay}}%
+ {-\tkz@angle}
+ \path[coordinate] (\pgf@x,\pgf@y) coordinate (#6);
+ \fi
+ \endgroup
+}
+%<--------------------------------------------------------------------------–>
+% intersection de Ligne Cercle
+% #4 center #5 point sur le cercle
+%<--------------------------------------------------------------------------–>
+% \def\tkzInterLC(#1,#2)(#3,#4)#5#6{%
+% \begingroup
+% \tkzCalcLength(#3,#4)\tkzGetLength{tkz@rad}
+% \tkzInterLCR(#1,#2)(#3,\tkz@rad pt){#5}{#6}
+% \endgroup
+% }
+%<--------------------------------------------------------------------------–>
+% intersection de Ligne Cercle rayon inconnu
+%<--------------------------------------------------------------------------–>
+\def\tkzInterLCWithNodes(#1,#2)(#3,#4,#5)#6#7{%
+\begingroup
+ \tkzCalcLength(#4,#5)\tkzGetLength{tkz@radius}
+ \tkzInterLCR(#1,#2)(#3,\tkz@radius pt){#6}{#7}
+\endgroup
+}
+%<--------------------------------------------------------------------------–>
+% Intersection de deux cercles
+%<--------------------------------------------------------------------------–>
+\def\tkz@numcc{0}
+\pgfkeys{
+/circlecircle/.cd,
+ node/.code = {\global\def\tkz@numcc{0}},
+ R/.code = {\global\def\tkz@numcc{1}},
+ with nodes/.code = {\global\def\tkz@numcc{2}}
+}
+%<--------------------------------------------------------------------------–>
+\def\tkzInterCC{\pgfutil@ifnextchar[{\tkz@InterCC}{%
+ \tkz@InterCC[]}}
+\def\tkz@InterCC[#1](#2,#3)(#4,#5){%
+\begingroup
+\pgfkeys{/circlecircle/.cd,node}
+\pgfqkeys{/circlecircle}{#1}
+\ifcase\tkz@numcc%
+ % first case 0
+\tkz@save@length
+ \tkzCalcLength(#2,#3)\tkzGetLength{tkz@rayA}
+ \tkzCalcLength(#4,#5)\tkzGetLength{tkz@rayB}
+\tkz@restore@length
+ \tkzInterCCR(#2,\tkz@rayA pt)(#4,\tkz@rayB pt){tkzFirstPointResult}{%
+ tkzSecondPointResult}
+ \or% 1
+ \tkzInterCCR(#2,#3)(#4,#5){tkzFirstPointResult}{tkzSecondPointResult}%
+ \or%2
+\tkzInterCCWithNodes(#2,#3)(#4,#5){tkzFirstPointResult}{tkzSecondPointResult}
+ \fi
+\endgroup
+}
+%<--------------------------------------------------------------------------–>
+%<--------------------------------------------------------------------------–>
+
+% méthode
+% /* circle_circle_intersection() *
+% * Determine the points where 2 circles in a common plane intersect.
+% *
+% * int circle_circle_intersection(
+% * // center and radius of 1st circle
+% * double x0, double y0, double r0,
+% * // center and radius of 2nd circle
+% * double x1, double y1, double r1,
+% * // 1st intersection point
+% * // 2nd intersection point
+% *
+% * This is a public domain work. 3/26/2005 Tim Voght
+% *
+% int circle_circle_intersection(double x0, double y0, double r0,
+% double x1, double y1, double r1,
+% double *xi, double *yi,
+% double *xi_prime, double *yi_prime)
+% {
+% double a, dx, dy, d, h, rx, ry;
+% double x2, y2;
+%
+% /* dx and dy are the vertical and horizontal distances between
+% * the circle centers.
+% */
+% dx = x1 - x0;
+% dy = y1 - y0;
+%
+% /* Determine the straight-line distance between the centers. */
+% //d = sqrt((dy*dy) + (dx*dx));
+% d = hypot(dx,dy); // Suggested by Keith Briggs
+%
+% /* Check for solvability. */
+% if (d > (r0 + r1))
+% {
+% /* no solution. circles do not intersect. */
+% return 0;
+% }
+% if (d < fabs(r0 - r1))
+% {
+% /* no solution. one circle is contained in the other */
+% return 0;
+% }
+%
+% /* 'point 2' is the point where the line through the circle
+% * intersection points crosses the line between the circle
+% * centers.
+% */
+%
+% /* Determine the distance from point 0 to point 2. */
+% a = ((r0*r0) - (r1*r1) + (d*d)) / (2.0 * d) ;
+%
+% /* Determine the coordinates of point 2. */
+% x2 = x0 + (dx * a/d);
+% y2 = y0 + (dy * a/d);
+%
+% /* Determine the distance from point 2 to either of the
+% * intersection points.
+% */
+% h = sqrt((r0*r0) - (a*a));
+%
+% /* Now determine the offsets of the intersection points from
+% * point 2.
+% */
+% rx = -dy * (h/d);
+% ry = dx * (h/d);
+%
+% /* Determine the absolute intersection points. */
+% *xi = x2 + rx;
+% *xi_prime = x2 - rx;
+% *yi = y2 + ry;
+% *yi_prime = y2 - ry;
+%
+% return 1;
+% }
+
+\def\tkzInterCCR(#1,#2)(#3,#4)#5#6{%
+\begingroup
+\tkz@save@length
+\tkzCalcLength(#1,#3)\tkzGetLength{tkz@dd}
+\tkz@restore@length
+\pgfextractx{\pgf@x}{\pgfpointanchor{#1}{center}}
+\pgfextracty{\pgf@y}{\pgfpointanchor{#1}{center}}
+\tkz@ax\pgf@x %
+\tkz@ay\pgf@y %
+\pgfextractx{\pgf@x}{\pgfpointanchor{#3}{center}}
+\pgfextracty{\pgf@y}{\pgfpointanchor{#3}{center}}
+\tkz@bx\pgf@x %
+\tkz@by\pgf@y %
+\tkz@cx#2 %
+\tkz@cy#4 %
+\FPeval\tkz@aa{((\pgf@sys@tonumber{\tkz@cx}+\pgf@sys@tonumber{\tkz@cy})/(2*\tkz@dd))*(\pgf@sys@tonumber{\tkz@cx}-\pgf@sys@tonumber{\tkz@cy})+\tkz@dd/2}
+
+\FPeval\tkz@xx{\pgf@sys@tonumber{\tkz@ax}+\tkz@aa/\tkz@dd*(\pgf@sys@tonumber{\tkz@bx} - \pgf@sys@tonumber{\tkz@ax})}
+\FPeval\tkz@yy{\pgf@sys@tonumber{\tkz@ay}+\tkz@aa/\tkz@dd*(\pgf@sys@tonumber{\tkz@by} - \pgf@sys@tonumber{\tkz@ay})}
+\path[coordinate](\tkz@xx pt,\tkz@yy pt) coordinate (tkzRadialCenter);
+\FPeval\tkz@hh{(\pgf@sys@tonumber{\tkz@cx}+\tkz@aa)*(\pgf@sys@tonumber{\tkz@cx}-\tkz@aa)}
+\FPpow\tkz@hh{\tkz@hh}{0.5}
+\FPeval\tkz@rx{\tkz@hh / \tkz@dd * (\pgf@sys@tonumber{\tkz@ay} - \pgf@sys@tonumber{\tkz@by}) }
+\FPeval\tkz@ry{\tkz@hh / \tkz@dd * (\pgf@sys@tonumber{\tkz@bx} - \pgf@sys@tonumber{\tkz@ax}) }
+\FPadd\tkz@xs{\tkz@xx}{\tkz@rx }
+\FPadd\tkz@ys{\tkz@yy}{\tkz@ry }
+\path[coordinate](\tkz@xs pt,\tkz@ys pt) coordinate (#5);
+\FPadd\tkz@xss{\tkz@xx}{-\tkz@rx }
+\FPadd\tkz@yss{\tkz@yy}{-\tkz@ry }
+\path[coordinate](\tkz@xss pt,\tkz@yss pt) coordinate (#6);
+\endgroup
+}
+%<--------------------------------------------------------------------------–>
+% #2 node #3 node #4 node #5 node
+% \def\tkzInterCC(#1,#2)(#3,#4)#5#6{%
+% \begingroup
+% \tkzCalcLength(#1,#2)\tkzGetLength{tkz@rayA}
+% \tkzCalcLength(#3,#4)\tkzGetLength{tkz@rayB}
+% \tkzInterCCR(#1,\tkz@rayA pt)(#3,\tkz@rayB pt){#5}{#6}
+% \endgroup
+% }
+%<--------------------------------------------------------------------------–>
+% Intersection de deux cercles Avec deux points
+%<--------------------------------------------------------------------------–>
+% la première variante devrait être #2 #3 avec #4 #5
+\def\tkzInterCCWithNodes(#1,#2,#3)(#4,#5,#6)#7#8{%
+\begingroup
+ \tkzCalcLength(#2,#3)\tkzGetLength{tkz@rayA}
+ \tkzCalcLength(#5,#6)\tkzGetLength{tkz@rayB}
+ \tkzInterCCR(#1,\tkz@rayA pt)(#4,\tkz@rayB pt){#7}{#8}
+\endgroup
+}
+
+%<--------------------------------------------------------------------------–>
+% tangente à cercle passant par un point donné
+%<--------------------------------------------------------------------------–>
+\def\tkzTgtFromPR(#1,#2)(#3){%
+ \begingroup
+ \tkzDefMidPoint(#1,#3)
+ \tkzCalcLength(tkzPointResult,#1)
+ \tkzInterCCR(#1,#2)(tkzPointResult,\tkzLengthResult pt){%
+ tkzFirstPointResult}{%
+ tkzSecondPointResult}%
+ \endgroup
+}
+
+\def\tkzTgtFromP(#1,#2)(#3){%
+ \begingroup
+ \tkzDefMidPoint(#1,#3)
+ \tkzCalcLength(#1,#2)\tkzGetLength{tkz@radone}%
+ \tkzCalcLength(tkzPointResult,#1)\tkzGetLength{tkz@radtwo}%
+ \tkzInterCCR(#1,\tkz@radone pt)(tkzPointResult,\tkz@radtwo pt){%
+ tkzFirstPointResult}{%
+ tkzSecondPointResult}%
+ \endgroup
+}
+\def\tkzTgtAt(#1)(#2){%
+\begingroup
+ \tkz@VecKOrthNorm[-1](#2,#1){tkzPointResult}
+ \endgroup
+} %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–>
+\def\tkz@numtang{0}
+\pgfkeys{
+/tang/.cd,
+at/.code = {\global\def\tkz@numtang{0}\global\def\tkz@ptat{#1}},
+from/.code = {\global\def\tkz@numtang{1}\global\def\tkz@ptfrom{#1}},
+from with R/.code = {\global\def\tkz@numtang{2}\global\def\tkz@ptfrom{#1}}}
+%<--------------------------------------------------------------------------–>
+\def\tkzTangent{\pgfutil@ifnextchar[{\tkz@Tangent}{\tkz@Tangent[]}}
+
+\def\tkz@Tangent[#1](#2){%
+\begingroup
+\pgfkeys{tang/.cd}
+\pgfqkeys{/tang}{#1}
+\ifcase\tkz@numtang
+ \tkzTgtAt(#2)(\tkz@ptat)
+\or
+ \tkzTgtFromP(#2)(\tkz@ptfrom)
+ \or
+ \tkzTgtFromPR(#2)(\tkz@ptfrom)
+\fi
+\endgroup
+}
+
+\endinput \ No newline at end of file