diff options
author | Karl Berry <karl@freefriends.org> | 2010-07-19 23:16:46 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2010-07-19 23:16:46 +0000 |
commit | 277ca449c86a187fe858defdcd6aa1830d3b2d0d (patch) | |
tree | a804dd4e397504655fc225e6f582554780c4115d /Master/texmf-dist/tex/latex/stex/cmathml | |
parent | d515f1120311798486a522c56170bd519d9c6a7a (diff) |
reinstate stex via new .tds.zip
git-svn-id: svn://tug.org/texlive/trunk@19538 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/stex/cmathml')
-rw-r--r-- | Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty | 450 | ||||
-rw-r--r-- | Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty.ltxml | 974 |
2 files changed, 1424 insertions, 0 deletions
diff --git a/Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty b/Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty new file mode 100644 index 00000000000..90b215dd2ab --- /dev/null +++ b/Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty @@ -0,0 +1,450 @@ +%% +%% This is file `cmathml.sty', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% cmathml.dtx (with options: `sty') +%% +\RequirePackage{presentation} +\newcommand{\Capply}[3][]{#2(#3)} +\def\CMathML@cn#1{#1} +\newcommand{\Ccn}[2][]{\CMathML@cn{#2}} +\def\CMathML@ci#1{#1} +\newcommand{\Cci}[2][]{\CMathML@ci{#2}} +\def\CMathML@csymbol#1{#1} +\newcommand{\Ccsymbol}[2][]{\CMathML@csymbol{#2}} +\def\CMathML@ccinterval#1#2{[#1,#2]} +\newcommand{\Cccinterval}[3][]{\CMathML@ccinterval{#2}{#3}} +\def\CMathML@cointerval#1#2{[#1,#2)} +\newcommand{\Ccointerval}[3][]{\CMathML@cointerval{#2}{#3}} +\def\CMathML@ocinterval#1#2{(#1,#2]} +\newcommand{\Cocinterval}[3][]{\CMathML@ocinterval{#2}{#3}} +\def\CMathML@oointerval#1#2{(#1,#2)} +\newcommand{\Coointerval}[3][]{\CMathML@oointerval{#2}{#3}} +\newcommand{\Cinverse}[2][]{#2^{-1}} +\def\CMathML@lambda#1#2{\lambda({#1},{#2})} +\newcommand{\Clambda}[3][]{\CMathML@lambda{#2}{#3}} +\def\CMathML@lambdaDA#1#2#3{\lambda({#1}\colon{#2},#3)} +\newcommand{\ClambdaDA}[4][]{\CMathML@lambdaDA{#2}{#3}{#4}} +\def\CMathML@restrict#1#2{\left.#1\right|_{#2}} +\newcommand{\Crestrict}[3][]{\CMathML@restrict{#2}{#3}} +\def\CMathML@composeOp{\circ} +\newcommand{\CcomposeOp}{\CMathML@composeOp} +\def\CMathML@compose#1{\assoc[p=500,pi=500]{\CMathML@composeOp}{#1}} +\newcommand{\Ccompose}[2][]{\CMathML@compose{#2}} +\def\CMathML@ident#1{\mathrm{id}} +\newcommand{\Cident}[1][]{\CMathML@ident{#1}} +\def\CMathML@domain#1{\mbox{dom}(#1)} +\newcommand{\Cdomain}[2][]{\CMathML@domain{#2}} +\def\CMathML@codomain#1{\mbox{codom}(#1)} +\newcommand{\Ccodomain}[2][]{\CMathML@codomain{#2}} +\def\CMathML@image#1{{\mathbf{Im}}(#1)} +\newcommand{\Cimage}[2][]{\CMathML@image{#2}} +\def\CMathML@piecewise#1{\left\{\begin{array}{ll}#1\end{array}\right.} +\newcommand{\Cpiecewise}[2][]{\CMathML@piecewise{#2}} +\def\CMathML@piece#1#2{#1&{\mathrm{if}}\;{#2}\\} +\newcommand{\Cpiece}[3][]{\CMathML@piece{#2}{#3}} +\def\CMathML@otherwise#1{#1&else\\} +\newcommand{\Cotherwise}[2][]{\CMathML@otherwise{#2}} +\def\CMathML@quotient#1#2{\frac{#1}{#2}} +\newcommand{\Cquotient}[3][]{\CMathML@quotient{#2}{#3}} +\def\CMathML@factorialOp{!} +\newcommand{\CfactorialOp}{\CMathML@factorialOp} +\def\CMathML@factorial#1{#1{\CMathML@factorialOp}} +\newcommand{\Cfactorial}[2][]{\CMathML@factorial{#2}} +\def\CMathML@divideOp{\div} +\newcommand{\CdivideOp}{\CMathML@divideOp} +\def\CMathML@divide#1#2{\infix[p=400]{\CMathML@divideOp}{#1}{#2}} +\newcommand{\Cdivide}[3][]{\CMathML@divide{#2}{#3}} +\def\CMathML@maxOp{\mathrm{max}} +\newcommand{\CmaxOp}{\CMathML@maxOp} +\def\CMathML@max#1{{\CMathML@maxOp}(#1)} +\newcommand{\Cmax}[2][]{\CMathML@max{#2}} +\def\CMathML@minOp{\mathrm{min}} +\newcommand{\CminOp}{\CMathML@minOp} +\def\CMathML@min#1{{\CMathML@minOp}(#1)} +\newcommand{\Cmin}[2][]{\CMathML@min{#2}} +\def\CMathML@minusOp{-} +\newcommand{\CminusOp}{\CMathML@minusOp} +\def\CMathML@minus#1#2{\infix[p=500]{\CMathML@minusOp}{#1}{#2}} +\newcommand{\Cminus}[3][]{\CMathML@minus{#2}{#3}} +\def\CMathML@uminus#1{\prefix[p=200]{\CMathML@minusOp}{#1}} +\newcommand{\Cuminus}[2][]{\CMathML@uminus{#2}} +\def\CMathML@plusOp{+} +\newcommand{\CplusOp}{\CMathML@plusOp} +\def\CMathML@plus#1{\assoc[p=500]{\CMathML@plusOp}{#1}} +\newcommand{\Cplus}[2][]{\CMathML@plus{#2}} +\def\CMathML@power#1#2{\infix[p=200]{^}{#1}{#2}} +\newcommand{\Cpower}[3][]{\CMathML@power{#2}{#3}} +\def\CMathML@remOp{\bmod} +\newcommand{\CremOp}{\CMathML@remOp} +\def\CMathML@rem#1#2{#1 \CMathML@remOp #2} +\newcommand{\Crem}[3][]{\CMathML@rem{#2}{#3}} +\def\CMathML@timesOp{\cdot} +\newcommand{\CtimesOp}{\CMathML@timesOp} +\def\CMathML@times#1{\assoc[p=400]{\CMathML@timesOp}{#1}} +\newcommand{\Ctimes}[2][]{\CMathML@times{#2}} +\def\CMathML@rootOp{\sqrt} +\newcommand{\CrootOp}{\CMathML@rootOp{}} +\def\CMathML@root#1#2{\CMathML@rootOp[#1]{#2}} +\newcommand{\Croot}[3][]{\CMathML@root{#2}{#3}} +\def\CMathML@gcd#1{\gcd(#1)} +\newcommand{\Cgcd}[2][]{\CMathML@gcd{#2}} +\def\CMathML@andOp{\wedge} +\newcommand{\CandOp}{\CMathML@andOp} +\def\CMathML@and#1{\assoc[p=400]{\CMathML@andOp}{#1}} +\newcommand{\Cand}[2][]{\CMathML@and{#2}} +\def\CMathML@orOp{\vee} +\newcommand{\CorOp}{\CMathML@orOp} +\def\CMathML@or#1{\assoc[p=500]{\CMathML@orOp}{#1}} +\newcommand{\Cor}[2][]{\CMathML@or{#2}} +\def\CMathML@xorOp{\oplus} +\newcommand{\CxorOp}{\CMathML@xorOp} +\def\CMathML@xor#1{\assoc[p=400]{\CMathML@xorOp}{#1}} +\newcommand{\Cxor}[2][]{\CMathML@xor{#2}} +\def\CMathML@notOp{\neg} +\newcommand{\CnotOp}{\CMathML@notOp} +\def\CMathML@not#1{\CMathML@notOp{#1}} +\newcommand{\Cnot}[2][]{\CMathML@not{#2}} +\def\CMathML@impliesOp{\Longrightarrow} +\newcommand{\CimpliesOp}{\CMathML@impliesOp} +\def\CMathML@implies#1#2{#1\CMathML@impliesOp{#2}} +\newcommand{\Cimplies}[3][]{\CMathML@implies{#2}{#3}} +\def\CMathML@AndDA#1#2{\bigwedge_{#1}{#2}} % set, scope +\newcommand{\CAndDA}[3][]{\CMathML@AndDA{#2}{#3}} +\def\CMathML@AndCond#1#2#3{\bigwedge_{#2}{#3}} % bvars,condition, scope +\newcommand{\CAndCond}[4][]{\CMathML@AndCond{#2}{#2}{#3}} +\def\CMathML@OrDA#1#2{\bigvee_{#1}{#2}} % set, scope +\newcommand{\COrDa}[3][]{\CMathML@OrDA{#2}{#3}} +\def\CMathML@OrCond#1#2#3{\bigvee_{#2}{#3}}% bvars,condition, scope +\newcommand{\COrCond}[4][]{\CMathML@OrCond{#2}{#3}{#4}} +\def\CMathML@XorDA#1#2{\bigoplus_{#1}{#2}} % set, scope +\newcommand{\CXorDA}[3][]{\CMathML@XorDA{#2}{#3}} +\def\CMathML@XorCond#1#2#3{\bigoplus_{#2}{#3}}% bvars,condition, scope +\newcommand{\CXorCond}[4][]{\CMathML@XorCond{#2}{#3}{#4}} +\def\CMathML@forall#1#2{\forall{#1}\colon{#2}} +\newcommand{\Cforall}[3][]{\CMathML@forall{#2}{#3}} +\def\CMathML@forallCond#1#2#3{\forall{#1},{#2}\colon{#3}} % list), condition, scope +\newcommand{\CforallCond}[4][]{\CMathML@forallCond{#2}{#3}{#4}} +\def\CMathML@exists#1#2{\exists{#1}\colon{#2}} +\newcommand{\Cexists}[3][]{\CMathML@exists{#2}{#3}} +\def\CMathML@esistsCont#1#2#3{\exists{#1},{#2}\colon{#3}} +\newcommand{\CexistsCond}[4][]{\CMathML@esistsCont{#2}{#3}{#4}} +\def\CMathML@abs#1{\left|#1\right|} +\newcommand{\Cabs}[2][]{\CMathML@abs{#2}} +\def\CMathML@conjugate#1{\overline{#1}} +\newcommand{\Cconjugate}[2][]{\CMathML@conjugate{#2}} +\def\CMathML@arg#1{\angle #1} +\newcommand{\Carg}[2][]{\CMathML@arg{#2}} +\def\CMathML@real#1{\Re #1} +\newcommand{\Creal}[2][]{\CMathML@real{#2}} +\def\CMathML@imaginary#1{\Im #1} +\newcommand{\Cimaginary}[2][]{\CMathML@imaginary{#2}} +\def\CMathML@lcm#1{\mbox{lcm}(#1)} +\newcommand{\Clcm}[2][]{\CMathML@lcm{#2}} +\def\CMathML@floor#1{\left\lfloor{#1}\right\rfloor} +\newcommand{\Cfloor}[2][]{\CMathML@floor{#2}} +\def\CMathML@ceiling#1{\left\lceil{#1}\right\rceil} +\newcommand{\Cceiling}[2][]{\CMathML@ceiling{#2}} +\def\CMathML@eqOp{=} +\newcommand{\CeqOp}{\CMathML@eqOp} +\def\CMathML@eq#1{\assoc[p=700]{\CMathML@eqOp}{#1}} +\newcommand{\Ceq}[2][]{\CMathML@eq{#2}} +\def\CMathML@neqOp{\neq} +\newcommand{\CneqOp}{\CMathML@neqOp} +\def\CMathML@neq#1#2{\infix[p=700]{\CMathML@neqOp}{#1}{#2}} +\newcommand{\Cneq}[3][]{\CMathML@neq{#2}{#3}} +\def\CMathML@gtOp{>} +\newcommand{\CgtOp}{\CMathML@gtOp} +\def\CMathML@gt#1{\assoc[p=700]{\CMathML@gtOp}{#1}} +\newcommand{\Cgt}[2][]{\CMathML@gt{#2}} +\def\CMathML@ltOp{<} +\newcommand{\CltOp}{\CMathML@ltOp} +\def\CMathML@lt#1{\assoc[p=700]{\CMathML@ltOp}{#1}} +\newcommand{\Clt}[2][]{\CMathML@lt{#2}} +\def\CMathML@geqOp{\geq} +\newcommand{\CgeqOp}{\CMathML@geqOp} +\def\CMathML@geq#1{\assoc[p=700]{\CMathML@geqOp}{#1}} +\newcommand{\Cgeq}[2][]{\CMathML@geq{#2}} +\def\CMathML@leqOp{\leq} +\newcommand{\CleqOp}{\CMathML@leqOp} +\def\CMathML@leq#1{\assoc[p=700]{\CMathML@leqOp}{#1}} +\newcommand{\Cleq}[2][]{\CMathML@leq{#2}} +\def\CMathML@equivalentOp{\equiv} +\newcommand{\CequivalentOp}{\CMathML@equivalentOp} +\def\CMathML@equivalent#1{\assoc[p=700]{\CMathML@equivalentOp}{#1}} +\newcommand{\Cequivalent}[2][]{\CMathML@equivalent{#2}} +\def\CMathML@approxOp{\approx} +\newcommand{\CapproxOp}{\CMathML@approxOp} +\def\CMathML@approx#1#2{#1\CMathML@approxOp{#2}} +\newcommand{\Capprox}[3][]{\CMathML@approx{#2}{#3}} +\def\CMathML@factorofOp{\mid} +\newcommand{\CfactorofOp}{\CMathML@factorofOp} +\def\CMathML@factorof#1#2{#1\CMathML@factorofOp{#2}} +\newcommand{\Cfactorof}[3][]{\CMathML@factorof{#2}{#3}} + +\def\CMathML@intOp{\int} +\newcommand{\CintOp}{\CMathML@intOp} +\def\CMathML@int#1{\CMathML@intOp{#1}} +\newcommand{\Cint}[2][]{\CMathML@int{#2}} +\def\CMathML@intLimits#1#2#3#4{\CMathML@intOp_{#2}^{#3}{#4}d{#1}} %bvars,llimit, ulimit,body +\newcommand{\CintLimits}[5][]{\CMathML@intLimits{#2}{#3}{#4}{#5}} +\def\CMathML@intSet#1#2{\CMathML@intOp_{#1}{#2}}% set,function +\newcommand{\CintDA}[3][]{\CMathML@intSet{#2}{#3}} +\def\CMathML@intCond#1#2#3{\CMathML@intOp_{#2}{#3}d{#1}} %bvars, condition, body +\newcommand{\CintCond}[4][]{\CMathML@intCond{#2}{#3}{#4}} + +\def\CMathML@diff#1{#1'} +\newcommand{\Cdiff}[2][]{\CMathML@diff{#2}} +\def\CMathML@ddiff#1#2{{d{#2}(#1)\over{d{#1}}}} +\newcommand{\Cddiff}[3][]{\CMathML@ddiff{#2}{#3}} +\def\CMathML@partialdiff#1#2#3{{\partial^{#1}\over\partial{#2}}{#3}}% degree, bvars, body +\newcommand{\Cpartialdiff}[4][]{\CMathML@partialdiff{#2}{#3}{#4}} +\newcommand{\Cdegree}[2]{#1^{#2}} +\def\CMathML@limit#1#2#3{\lim_{#1\rightarrow{#2}}{#3}} +\newcommand{\Climit}[4][]{\CMathML@limit{#2}{#3}{#4}} % bvar, lowlimit, scope +\def\CMathML@limitCond#1#2#3{\lim_{#2}{#3}} +\newcommand{\ClimitCond}[4][]{\CMathML@limitCond{#2}{#3}{#4}} % bvars, condition, scope +\def\CMathML@tendstoOp{\rightarrow} +\newcommand{\CtendstoOp}{\CMathML@tendstoOp} +\def\CMathML@tendsto#1#2{#1\CMathML@tendstoOp{#2}} +\newcommand{\Ctendsto}[3][]{\CMathML@tendsto{#2}{#3}} +\def\CMathML@tendstoAboveOp{\searrow} +\newcommand{\CtendstoAboveOp}{\CMathML@tendstoAboveOp} +\def\CMathML@tendstoAbove#1#2{#1\searrow{#2}} +\newcommand{\CtendstoAbove}[3][]{\CMathML@tendstoAbove{#2}{#3}} +\def\CMathML@tendstoBelowOp{\nearrow} +\newcommand{\CtendstoBelowOp}{\CMathML@tendstoBelowOp} +\def\CMathML@tendstoBelow#1#2{#1\CMathML@tendstoBelowOp{#2}} +\newcommand{\CtendstoBelow}[3][]{\CMathML@tendstoBelow{#2}{#3}} +\def\CMathML@divergence#1{\nabla\cdot{#1}} +\newcommand{\Cdivergence}[2][]{\CMathML@divergence{#2}} +\def\CMathML@grad#1{\nabla{#1}} +\newcommand{\Cgrad}[2][]{\CMathML@grad{#2}} +\def\CMathML@curl#1{\nabla\times{#1}} +\newcommand{\Ccurl}[2][]{\CMathML@curl{#2}} +\def\CMathML@laplacian#1{\nabla^2#1} +\newcommand{\Claplacian}[2][]{\CMathML@laplacian{#2}} +\def\CMathML@set#1{\left\{#1\right\}} +\newcommand{\Cset}[2][]{\CMathML@set{#2}} +\def\CMathML@setRes#1#2{\{#1|#2\}} +\newcommand{\CsetRes}[3][]{\CMathML@setRes{#2}{#3}} +\def\CMathML@setCond#1#2#3{\{#2|#3\}} +\newcommand{\CsetCond}[4][]{\CMathML@setCond{#2}{#3}{#4}} +\def\CMathML@setDA#1#2#3{\{#1\in{#2}|#3\}} +\newcommand{\CsetDA}[4][]{\CMathML@setDA{#2}{#3}{#4}} +\def\CMathML@listOp{\mbox{list}} +\newcommand{\ClistOp}{\CMathML@listOp} +\def\CMathML@list#1{\CMathML@listOp({#1})} +\newcommand{\Clist}[2][]{\CMathML@list{#2}} +\def\CMathML@unionOp{\cup} +\newcommand{\CunionOp}{\CMathML@unionOp} +\def\CMathML@union#1{\assoc[p=500]{\CMathML@unionOp}{#1}} +\newcommand{\Cunion}[2][]{\CMathML@union{#2}} +\def\CMathML@intersectOp{\cap} +\newcommand{\CintersectOp}{\CMathML@intersectOp} +\def\CMathML@intersect#1{\assoc[p=400]{\CMathML@intersectOp}{#1}} +\newcommand{\Cintersect}[2][]{\CMathML@intersect{#2}} +\def\CMathML@inOp{\in} +\newcommand{\CinOp}{\CMathML@inOp} +\def\CMathML@in#1#2{#1\CMathML@inOp{#2}} +\newcommand{\Cin}[3][]{\CMathML@in{#2}{#3}} +\def\CMathML@notinOp{\notin} +\newcommand{\CnotinOp}{\CMathML@notinOp} +\def\CMathML@notin#1#2{#1\CMathML@notinOp{#2}} +\newcommand{\Cnotin}[3][]{\CMathML@notin{#2}{#3}} +\def\CMathML@setdiffOp{\setminus} +\newcommand{\CsetdiffOp}{\CMathML@setdiffOp} +\def\CMathML@setdiff#1#2{#1\CMathML@setdiffOp{#2}} +\newcommand{\Csetdiff}[3][]{\CMathML@setdiff{#2}{#3}} +\def\CMathML@cardOp{\#} +\newcommand{\CcardOp}{\CMathML@cardOp} +\def\CMathML@card#1{\CMathML@cardOp #1} +\newcommand{\Ccard}[2][]{\CMathML@card{#2}} +\def\CMathML@cartesianproductOp{\times} +\newcommand{\CcartesianproductOp}{\CMathML@cartesianproductOp} +\def\CMathML@cartesianproduct#1{\assoc[p=400]{\CMathML@cartesianproductOp}{#1}} +\newcommand{\Ccartesianproduct}[2][]{\CMathML@cartesianproduct{#2}} +\def\CMathML@subsetOp{\subseteq} +\newcommand{\CsubsetOp}{\CMathML@subsetOp} +\def\CMathML@subset#1{\assoc[p=700]{\CMathML@subsetOp}{#1}} +\newcommand{\Csubset}[2][]{\CMathML@subset{#2}} +\def\CMathML@prsubsetOp{\subset} +\newcommand{\CprsubsetOp}{\CMathML@prsubsetOp} +\def\CMathML@prsubset#1{\assoc[p=700]{\CMathML@prsubsetOp}{#1}} +\newcommand{\Cprsubset}[2][]{\CMathML@prsubset{#2}} +\def\CMathML@notsubsetOp{\not\subseteq} +\newcommand{\CnotsubsetOp}{\CMathML@notsubsetOp} +\def\CMathML@notsubset#1#2{#1\CMathML@notsubsetOp{#2}} +\newcommand{\Cnotsubset}[3][]{\CMathML@notsubset{#2}{#3}} +\def\CMathML@notprsubsetOp{\not\subset} +\newcommand{\CnotprsubsetOp}{\CMathML@notprsubsetOp} +\def\CMathML@notprsubset#1#2{#1\CMathML@notprsubsetOp{#2}} +\newcommand{\Cnotprsubset}[3][]{\CMathML@notprsubset{#2}{#3}} +\def\CMathML@supsetOp{\supseteq} +\newcommand{\CsupsetOp}{\CMathML@supsetOp} +\def\CMathML@supset#1{\assoc[p=700]{\CMathML@supsetOp}{#1}} +\newcommand{\Csupset}[2][]{\CMathML@supset{#2}} +\def\CMathML@prsupsetOp{\supset} +\newcommand{\CprsupsetOp}{\CMathML@prsupsetOp} +\def\CMathML@prsupset#1{\assoc[p=700]{\CMathML@prsupsetOp}{#1}} +\newcommand{\Cprsupset}[2][]{\CMathML@prsupset{#2}} +\def\CMathML@notsupsetOp{\not\supseteq} +\newcommand{\CnotsupsetOp}{\CMathML@notsupsetOp} +\def\CMathML@notsupset#1#2{#1\CMathML@notsupsetOp{#2}} +\newcommand{\Cnotsupset}[3][]{\CMathML@notsupset{#2}{#3}} +\def\CMathML@notprsupsetOp{\not\supset} +\newcommand{\CnotprsupsetOp}{\CMathML@notprsupsetOp} +\def\CMathML@notprsupset#1#2{#1\CMathML@notprsupsetOp{#2}} +\newcommand{\Cnotprsupset}[3][]{\CMathML@notprsupset{#2}{#3}} +\def\CMathML@UnionDAOp{\bigwedge} +\newcommand{\CUnionDAOp}{\CMathML@UnionDAOp} +\def\CMathML@UnionDA#1#2{\CMathML@UnionDAOp_{#1}{#2}} % set, scope +\newcommand{\CUnionDA}[3][]{\CMathML@UnionDA{#2}{#3}} +\def\CMathML@UnionCond#1#2#3{\CMathML@UnionDAOp_{#2}{#3}} % bvars,condition, scope +\newcommand{\CUnionCond}[4][]{\CMathML@UnionCond{#2}{#2}{#3}} +\def\CMathML@IntersectDAOp{\bigvee} +\newcommand{\CIntersectDAOp}{\CMathML@IntersectDAOp} +\def\CMathML@IntersectDA#1#2{\CMathML@IntersectDAOp_{#1}{#2}} % set, scope +\newcommand{\CIntersectDa}[3][]{\CMathML@IntersectDA{#2}{#3}} +\def\CMathML@IntersectCond#1#2#3{\CMathML@IntersectDAOp_{#2}{#3}}% bvars,condition, scope +\newcommand{\CIntersectCond}[4][]{\CMathML@IntersectCond{#2}{#3}{#4}} +\def\CMathML@CartesianproductDAOp{\bigoplus} +\newcommand{\CCartesianproductDAOp}{\CMathML@CartesianproductDAOp} +\def\CMathML@CartesianproductDA#1#2{\CMathML@CartesianproductDAOp_{#1}{#2}} % set, scope +\newcommand{\CCartesianproductDA}[3][]{\CMathML@CartesianproductDA{#2}{#3}} +\def\CMathML@CartesianproductCond#1#2#3{\CMathML@CartesianproductDAOp_{#2}{#3}}% bvars,condition, scope +\newcommand{\CCartesianproductCond}[4][]{\CMathML@CartesianproductCond{#2}{#3}{#4}} +\def\CMathML@sumOp{\sum} +\newcommand{\CsumOp}{\CMathML@sumOp} +\def\CMathML@sumLimits#1#2#3#4{\CMathML@sumOp_{#1=#2}^{#3}#4}% bvar, llimit, ulimit, body +\newcommand{\CsumLimits}[5][]{\CMathML@sumLimits{#2}{#3}{#4}{#5}} +\def\CMathML@sumCond#1#2#3{\CMathML@sumOp_{#1\in{#2}}#3} % bvar, condition, body +\newcommand{\CsumCond}[4][]{\CMathML@sumCond{#2}{#3}{#4}} +\def\CMathML@sumDA#1#2{\CMathML@sumOp_{#1}#2} % set, body +\newcommand{\CsumDA}[3][]{\CMathML@sumDA{#2}{#3}} +\def\CMathML@prodOp{\prod} +\newcommand{\CprodOp}{\CMathML@prodOp} +\def\CMathML@prodLimits#1#2#3#4{\CMathML@prodOp_{#1=#32^{#3}#4}}% bvar, llimit, ulimit, body +\newcommand{\CprodLimits}[5][]{\CMathML@prodLimits{#2}{#3}{#4}{#5}} +\def\CMathML@prodCond#1#2#3{\CMathML@prodOp_{#1\in{#2}}#3} % bvar, condition, body +\newcommand{\CprodCond}[4][]{\CMathML@prodCond{#2}{#3}{#4}} +\def\CMathML@prodDA#1#2{\CMathML@prodOp_{#1}#2} % set, body +\newcommand{\CprodDA}[3]{\CMathML@prodDA{#2}{#3}} +\def\CMathML@sin#1{\sin(#1)} +\newcommand{\Csin}[2][]{\CMathML@sin{#2}} +\def\CMathML@cos#1{\cos(#1)} +\newcommand{\Ccos}[2][]{\CMathML@cos{#2}} +\def\CMathML@tan#1{\tan(#1)} +\newcommand{\Ctan}[2][]{\CMathML@tan{#2}} +\def\CMathML@sec#1{\sec(#1)} +\newcommand{\Csec}[2][]{\CMathML@sec{#2}} +\def\CMathML@csc#1{\csc(#1)} +\newcommand{\Ccsc}[2][]{\CMathML@csc{#2}} +\def\CMathML@cot#1{\cot(#1)} +\newcommand{\Ccot}[2][]{\CMathML@cot{#2}} +\def\CMathML@sinh#1{\sinh(#1)} +\newcommand{\Csinh}[2][]{\CMathML@sinh{#2}} +\def\CMathML@cosh#1{\cosh(#1)} +\newcommand{\Ccosh}[2][]{\CMathML@cosh{#2}} +\def\CMathML@tanh#1{\tanh(#1)} +\newcommand{\Ctanh}[2][]{\CMathML@tanh{#2}} +\def\CMathML@sech#1{\mbox{sech}(#1)} +\newcommand{\Csech}[2][]{\CMathML@sech{#2}} +\def\CMathML@csch#1{\mbox{csch}(#1)} +\newcommand{\Ccsch}[2][]{\CMathML@csch{#2}} +\def\CMathML@coth#1{\mbox{coth}(#1)} +\newcommand{\Ccoth}[2][]{\CMathML@coth{#2}} +\def\CMathML@arcsin#1{\arcsin(#1)} +\newcommand{\Carcsin}[2][]{\CMathML@arcsin{#2}} +\def\CMathML@arccos#1{\arccos(#1)} +\newcommand{\Carccos}[2][]{\CMathML@arccos{#2}} +\def\CMathML@arctan#1{\arctan(#1)} +\newcommand{\Carctan}[2][]{\CMathML@arctan{#2}} +\def\CMathML@arccosh#1{\mbox{arccosh}(#1)} +\newcommand{\Carccosh}[2][]{\CMathML@arccosh{#2}} +\def\CMathML@arccot#1{\mbox{arccot}(#1)} +\newcommand{\Carccot}[2][]{\CMathML@arccot{#2}} +\def\CMathML@arccoth#1{\mbox{arccoth}(#1)} +\newcommand{\Carccoth}[2][]{\CMathML@arccoth{#2}} +\def\CMathML@arccsc#1{\mbox{arccsc}(#1)} +\newcommand{\Carccsc}[2][]{\CMathML@arccsc{#2}} +\def\CMathML@arcsinh#1{\mbox{arcsinh}(#1)} +\newcommand{\Carcsinh}[2][]{\CMathML@arcsinh{#2}} +\def\CMathML@arctanh#1{\mbox{arctanh}(#1)} +\newcommand{\Carctanh}[2][]{\CMathML@arctanh{#2}} + +\def\CMathML@exp#1{\exp(#1)} +\newcommand{\Cexp}[2][]{\CMathML@exp{#2}} +\def\CMathML@ln#1{\ln(#1)} +\newcommand{\Cln}[2][]{\CMathML@ln{#2}} +\def\CMathML@log#1#2{\log_{#1}(#2)} +\newcommand{\Clog}[3][]{\CMathML@log{#2}{#3}} +\def\CMathML@mean#1{\mbox{mean}(#1)} +\newcommand{\Cmean}[2][]{\CMathML@mean{#2}} +\def\CMathML@sdev#1{\mbox{std}(#1)} +\newcommand{\Csdev}[2][]{\CMathML@sdev{#2}} +\def\CMathML@var#1{\mbox{var}(#1)} +\newcommand{\Cvar}[2][]{\CMathML@var{#2}} +\def\CMathML@median#1{\mbox{median}(#1)} +\newcommand{\Cmedian}[2][]{\CMathML@median{#2}} +\def\CMathML@mode#1{\mbox{mode}(#1)} +\newcommand{\Cmode}[2][]{\CMathML@mode{#2}} +\def\CMathML@moment#1#2{\langle{#2}^{#1}\rangle}% degree, momentabout, scope +\newcommand{\Cmoment}[3][]{\CMathML@moment{#2}{#3}} +\def\CMathML@momentA#1#2{\langle{#2}^{#1}\rangle}% degree, momentabout, scope +\newcommand{\CmomentA}[4][]{\CMathML@momentA{#2}{#3}{#4}} +\def\CMathML@vector#1{(#1)} +\newcommand{\Cvector}[2][]{\CMathML@vector{#2}} +\def\CMathML@matrix#1#2{\left(\begin{array}{#1}#2\end{array}\right)}% row pattern, body +\newcommand{\Cmatrix}[3][]{\CMathML@matrix{#2}{#3}} +\def\CMathML@determinant#1{\left|#1\right|} +\newcommand{\Cdeterminant}[2][]{\CMathML@determinant{#2}} +\def\CMathML@transpose#1{#1^\top} +\newcommand{\Ctranspose}[2][]{\CMathML@transpose{#2}} +\def\CMathML@selector#1#2{#1_{#2}} +\newcommand{\Cselector}[3][]{\CMathML@selector{#2}{#3}} +\def\CMathML@vectproductOp{\cdot} +\newcommand{\CvectproductOp}{\CMathML@vectproductOp} +\def\CMathML@vectproduct#1#2{#1\CMathML@vectproductOp{#2}} +\newcommand{\Cvectproduct}[3][]{\CMathML@vectproduct{#2}{#3}} +\def\CMathML@scalarproduct#1#2{{#1}#2} +\newcommand{\Cscalarproduct}[3][]{\CMathML@scalarproduct{#2}{#3}} +\def\CMathML@outerproductOp{\times} +\newcommand{\CouterproductOp}{\CMathML@outerproductOp} +\def\CMathML@outerproduct#1#2{#1\CMathML@outerproductOp{#2}} +\newcommand{\Couterproduct}[3][]{\CMathML@outerproduct{#2}{#3}} +\def\CMathML@integers{{\mathbb{Z}}} +\newcommand{\Cintegers}[1][]{\CMathML@integers} +\def\CMathML@reals{{\mathbb{R}}} +\newcommand{\Creals}[1][]{\CMathML@reals} +\def\CMathML@rationals{{\mathbb{Q}}} +\newcommand{\Crationals}[1][]{\CMathML@rationals} +\def\CMathML@naturalnumbers{{\mathbb{N}}} +\newcommand{\Cnaturalnumbers}[1][]{\CMathML@naturalnumbers} +\def\CMathML@complexes{{\mathbb{C}}} +\newcommand{\Ccomplexes}[1][]{\CMathML@complexes} +\def\CMathML@primes{{\mathbb{P}}} +\newcommand{\Cprimes}[1][]{\CMathML@primes} +\def\CMathML@exponemtiale{e} +\newcommand{\Cexponemtiale}[1][]{\CMathML@exponemtiale} +\def\CMathML@imaginaryi{i} +\newcommand{\Cimaginaryi}[1][]{\CMathML@imaginaryi} +\def\CMathML@notanumber{{\mathrm{NaN}}} +\newcommand{\Cnotanumber}[1][]{\CMathML@notanumber} +\def\CMathML@true{{\mathrm{true}}} +\newcommand{\Ctrue}[1][]{\CMathML@true} +\def\CMathML@false{{\mathrm{false}}} +\newcommand{\Cfalse}[1][]{\CMathML@false} +\def\CMathML@emptyset{\emptyset} +\newcommand{\Cemptyset}[1][]{\CMathML@emptyset} +\def\CMathML@pi{\pi} +\newcommand{\Cpi}[1][]{\CMathML@pi} +\def\CMathML@eulergamma{\gamma} +\newcommand{\Ceulergamma}[1][]{\CMathML@eulergamma} +\def\CMathML@infinit{\infty} +\newcommand{\Cinfinit}[1][]{\CMathML@infinit} +\endinput +%% +%% End of file `cmathml.sty'. diff --git a/Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty.ltxml b/Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty.ltxml new file mode 100644 index 00000000000..a6ce629f220 --- /dev/null +++ b/Master/texmf-dist/tex/latex/stex/cmathml/cmathml.sty.ltxml @@ -0,0 +1,974 @@ +# -*- CPERL -*- +package LaTeXML::Package::Pool; +use strict; +use LaTeXML::Package; +use LaTeXML::Document; +RequirePackage('LaTeX'); +sub remove_tokens_from_list { + my ($list, $pattern, $math) = @_; + if (ref $list) { + my @toks = $list->unlist; + @toks = grep($_->toString !~ /$pattern/, @toks); + ($math ? (LaTeXML::MathList->new(@toks)) : (LaTeXML::List)->new(@toks)); } + else { undef; } } + +sub remove_math_commas { + my ($whatsit, $argno) = @_; + my @args = $whatsit ? $whatsit->getArgs() : undef; + $argno--; + if ($args[$argno]) { + $args[$argno] = remove_tokens_from_list($args[$argno], ',', 1); + $whatsit->setArgs(@args); + } + return; +} +DefConstructor('\Capply [] {} {}', + "<ltx:XMApp ?#1(definitionURL='#1')()>#2 #3</ltx:XMApp>"); +DefConstructor('\Ccn [] {}',"#2"); +DefConstructor('\Cci [] {}',"#2"); +DefConstructor('\Ccsymbol [] {}', + "<ltx:XMTok role='CSYMBOL' meaning='#2' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cccinterval [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONSTRUCTOR' meaning='ccinterval' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg></ltx:XMApp>"); +DefConstructor('\Ccointerval [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONSTRUCTOR' meaning='cointerval' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg></ltx:XMApp>"); +DefConstructor('\Cocinterval [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONSTRUCTOR' meaning='ocinterval' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg></ltx:XMApp>"); +DefConstructor('\Coointerval [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONSTRUCTOR' meaning='oointerval' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg></ltx:XMApp>"); +DefConstructor('\Cinverse [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='inverse' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Clambda [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BINDER' meaning='lambda' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\ClambdaDA [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BINDER' meaning='lambda' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Crestrict [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='restrict' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CcomposeOp []', + "<ltx:XMTok meaning='compose' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ccompose [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='MULOP' meaning='compose' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\Cident []', + "<ltx:XMTok meaning='ident' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cdomain [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='domain' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ccodomain [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='codomain' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cimage [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='image' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cpiecewise [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='piecewise' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cpiece [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='piece' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cotherwise [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='otherwise' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cquotient [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='quotient' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CfactorialOp []', + "<ltx:XMTok meaning='factorial' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cfactorial [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='factorial' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CdivideOp []', + "<ltx:XMTok meaning='divide' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cdivide [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='divide' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CmaxOp []', + "<ltx:XMTok meaning='max' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cmax [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='max' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CminOp []', + "<ltx:XMTok meaning='min' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cmin [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='min' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CminusOp []', + "<ltx:XMTok meaning='minus' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cminus [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='ADDOP' meaning='minus' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cuminus [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='uminus' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CplusOp []', + "<ltx:XMTok meaning='plus' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cplus [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='ADDOP' meaning='plus' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\Cpower [] {} {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='power' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CremOp []', + "<ltx:XMTok meaning='rem' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Crem [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='rem' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CtimesOp []', + "<ltx:XMTok meaning='times' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ctimes [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='MULOP' meaning='times' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CrootOp []', + "<ltx:XMTok meaning='root' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Croot [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='root' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cgcd [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='gcd' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CandOp []', + "<ltx:XMTok meaning='and' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cand [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONNECTIVE' meaning='and' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CorOp []', + "<ltx:XMTok meaning='or' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cor [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONNECTIVE' meaning='or' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CxorOp []', + "<ltx:XMTok meaning='xor' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cxor [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONNECTIVE' meaning='xor' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CnotOp []', + "<ltx:XMTok meaning='not' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cnot [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONNECTIVE' meaning='not' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CimpliesOp []', + "<ltx:XMTok meaning='implies' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cimplies [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONNECTIVE' meaning='implies' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CAndDa [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='and' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CAndCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='and' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\COrDa [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='or' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\COrCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='or' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CXorDa [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='xor' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CXorCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='xor' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cforall [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BINDER' meaning='forall' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CforallCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BINDER' meaning='forall' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cexists [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BINDER' meaning='exists' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CexistsCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BINDER' meaning='exists' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cabs [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='abs' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cconjugate [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='conjugate' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carg [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='arg' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Creal [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='real' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cimaginary [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='imaginary' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Clcm [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='lcm' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cfloor [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='floor' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cceiling [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='ceiling' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CeqOp []', + "<ltx:XMTok meaning='eq' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ceq [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='eq' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CneqOp []', + "<ltx:XMTok meaning='neq' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cneq [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='neq' role='RELOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CgtOp []', + "<ltx:XMTok meaning='gt' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cgt [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='gt' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CltOp []', + "<ltx:XMTok meaning='lt' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Clt [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='lt' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CgeqOp []', + "<ltx:XMTok meaning='geq' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cgeq [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='geq' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CleqOp []', + "<ltx:XMTok meaning='leq' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cleq [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='leq' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CequivalentOp []', + "<ltx:XMTok meaning='equivalent' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cequivalent [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='equivalent' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>"); +DefConstructor('\CapproxOp []', + "<ltx:XMTok meaning='approx' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Capprox [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='approx' role='RELOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CfactorofOp []', + "<ltx:XMTok meaning='factorof' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cfactorof [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='factorof' role='RELOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CintOp []', + "<ltx:XMTok meaning='int' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cint [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='int' role='INTOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CintLimits [] {}{}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='int' role='INTOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "<ltx:XMArg>#5</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CintDA [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='int' role='INTOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CintCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='int' role='INTOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cdiff [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='diff' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cddiff [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='diff' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cpartialdiff [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='diff' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "?#2(<ltx:XMArg>#2</ltx:XMArg>)()" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cdegree {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='degree'/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#1</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Climit [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='limit' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\ClimitCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='limit' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CtendstoOp []', + "<ltx:XMTok meaning='tendsto' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ctendsto [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='RELOP' meaning='tendsto' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CtendstoAboveOp []', + "<ltx:XMTok meaning='tendsto' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CtendstoAbove [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='RELOP'meaning='tendsto' type='above' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CtendstoBelowOp []', + "<ltx:XMTok meaning='tendsto' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CtendstoBelow [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='RELOP' meaning='tendsto' type='below' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cdivergence [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='divergence' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cgrad [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='grad' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Curl [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='url' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Claplacian [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='OPFUNCTION' meaning='laplacian' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cset [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='set' role='CONSTRUCTOR' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CsetRes [] {}{}', + "<ltx:XMApp role='BIGOP'>" + . "<ltx:XMTok role='BIGOP' meaning='set' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg role='BVAR'>#2</ltx:XMArg>" + . "<ltx:XMArg role='CONDITION'>#3</ltx:XMArg>" + . "<ltx:XMArg role='SCOPE'>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CsetCond [] {}{}{}', + "<ltx:XMApp role='BIGOP'>" + . "<ltx:XMTok role='BIGOP' meaning='set' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg role='BVAR'>#2</ltx:XMArg>" + . "<ltx:XMArg role='CONDITION'>#3</ltx:XMArg>" + . "<ltx:XMArg role='SCOPE'>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CsetDA [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='set' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg role='BVAR'>#2</ltx:XMArg>" + . "<ltx:XMArg role='DOMAINOFAPPLICATION'>#3</ltx:XMArg>" + . "<ltx:XMArg role='SCOPE'>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\ClistOp []', + "<ltx:XMTok meaning='list' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Clist [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='list' role='CONSTRUCTOR' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CunionOp []', + "<ltx:XMTok meaning='union' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cunion [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='union' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CintersectOp []', + "<ltx:XMTok meaning='intersect' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cintersect [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='intersect' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CinOp []', + "<ltx:XMTok meaning='in' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cin [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='in' role='RELOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CnotinOp []', + "<ltx:XMTok meaning='notin' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cnotin [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='notin' role='RELOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CsubsetOp []', + "<ltx:XMTok meaning='subset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Csubset [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='subset' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CprsubsetOp []', + "<ltx:XMTok meaning='prsubset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cprsubset [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='prsubset' role='RELOP' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CnotsubsetOp []', + "<ltx:XMTok meaning='notsubset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cnotsubset [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='notsubset' role='RELOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CnotprsubsetOp []', + "<ltx:XMTok meaning='notprsubset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cnotprsubset [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='notprsubset' role='RELOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CsetdiffOp []', + "<ltx:XMTok meaning='setdiff' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Csetdiff [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='setdiff' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CcardOp []', + "<ltx:XMTok meaning='card' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ccard [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='card' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CcartesianproductOp []', + "<ltx:XMTok meaning='cartesianproduct' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ccartesianproduct [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='cartesianproduct' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\CsupsetOp []', + "<ltx:XMTok meaning='supset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CprsupsetOp []', + "<ltx:XMTok meaning='prsupset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CnotsupsetOp []', + "<ltx:XMTok meaning='notsupset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CnotprsupsetOp []', + "<ltx:XMTok meaning='notprsupset' role='ID' ?#1(definitionURL='#1')()/>"); +DefMacro('\Csupset[]{}','\Csubset[#1]{#2}'); +DefMacro('\Cprsupset[]{}','\Cprsubset[#1]{#2}'); +DefMacro('\Cnotsupset[]{}{}','\Cnotsubset[#1]{#3}{#2}'); +DefMacro('\Cnotprsupset[]{}{}','\Cnotprsubset[#1]{#3}{#2}'); +DefConstructor('\CUnionDAOp []', + "<ltx:XMTok meaning='union' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CUnionDA [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='union' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CUnionCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='union' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CIntersectDaOp []', + "<ltx:XMTok meaning='intersect' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CIntersectDa [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='intersect' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CIntersectCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='intersect' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CCartesianproductDaOp []', + "<ltx:XMTok meaning='cartesianproduct' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CCartesianproductDa [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='cartesianproduct' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CCartesianproductCond [] {}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='BIGOP' meaning='cartesianproduct' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CsumOp []', + "<ltx:XMTok meaning='sum' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CsumLimits [] {}{}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='sum' role='SUMOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "#5</ltx:XMApp>"); +DefConstructor('\CprodOp []', + "<ltx:XMTok meaning='prod' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\CprodLimits [] {}{}{}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='prod' role='SUMOP' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg><ci>#2</ci></ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "<ltx:XMArg>#4</ltx:XMArg>" + . "#5</ltx:XMApp>"); +DefConstructor('\Csin [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='sin' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ccos [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='cos' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ctan [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='tan' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Csec [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='sec' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ccsc [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='csc' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ccot [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='cot' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Csinh [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='sinh' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ccosh [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='cosh' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ctanh [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='tanh' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Csech [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='sech' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ccsch [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='csch' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ccoth [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='coth' role='TRIGFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carcsin [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arcsin' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carccos [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arccos' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carctan [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arctan' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carcsec [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arcsec' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carccsc [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arccsc' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carccot [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arccot' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carcsinh [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arcsinh' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carccosh [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arccosh' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carctanh [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arctanh' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carcsech [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arcsech' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carccsch [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arccsch' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Carccoth [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='arccoth' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cexp [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='exp' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cln [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='ln' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Clog [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='log' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cmean [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='mean' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Csdev [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='sdev' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cvar [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='var' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cmedian [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='median' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cmode [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='mode' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cmoment [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='moment' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cvector [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONSTRUCTOR' meaning='vector' ?#1(definitionURL='#1')()/>" + . "#2" + . "</ltx:XMApp>", + afterDigest=>sub { remove_math_commas($_[1], 2); }); +DefConstructor('\Cmatrix [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok role='CONSTRUCTOR' meaning='matrix' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cdeterminant [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='determinant' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Ctranspose [] {}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='transpose' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cselector [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='selector' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CvectorproductOp []', + "<ltx:XMTok meaning='vectorproduct' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cvectorproduct [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='vectorproduct' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cscalarproduct [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='scalarproduct' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\CouterproductOp []', + "<ltx:XMTok meaning='outerproduct' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Couterproduct [] {}{}', + "<ltx:XMApp>" + . "<ltx:XMTok meaning='outerproduct' role='OPFUNCTION' ?#1(definitionURL='#1')()/>" + . "<ltx:XMArg>#2</ltx:XMArg>" + . "<ltx:XMArg>#3</ltx:XMArg>" + . "</ltx:XMApp>"); +DefConstructor('\Cintegers []', + "<ltx:XMTok meaning='integers' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Creals []', + "<ltx:XMTok meaning='reals' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Crationals []', + "<ltx:XMTok meaning='rationals' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cnaturalnumbers []', + "<ltx:XMTok meaning='naturalnumbers' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ccomplexes []', + "<ltx:XMTok meaning='complexes' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cprimes []', + "<ltx:XMTok meaning='primes' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cexponentiale []', + "<ltx:XMTok meaning='exponentiale' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cimaginaryi []', + "<ltx:XMTok meaning='imaginaryi' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cnotanumber []', + "<ltx:XMTok meaning='notanumber' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ctrue []', + "<ltx:XMTok meaning='true' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cfalse []', + "<ltx:XMTok meaning='false' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cemptyset []', + "<ltx:XMTok meaning='emptyset' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cpi []', + "<ltx:XMTok meaning='pi' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Ceulergamma []', + "<ltx:XMTok meaning='eulergamma' role='ID' ?#1(definitionURL='#1')()/>"); +DefConstructor('\Cinfinit []', + "<ltx:XMTok meaning='infinit' role='ID' ?#1(definitionURL='#1')()/>"); +1; |