summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/mandi
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2016-03-16 23:24:03 +0000
committerKarl Berry <karl@freefriends.org>2016-03-16 23:24:03 +0000
commita9987369125a138a236c5d31affb3ea7535be106 (patch)
tree9924aed95672832a3359a09c6bcfda8f59223fba /Master/texmf-dist/tex/latex/mandi
parentd1e6851ad63caca1829a5a975071721c6b2b7c56 (diff)
mandi (16mar16)
git-svn-id: svn://tug.org/texlive/trunk@40050 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/tex/latex/mandi')
-rw-r--r--Master/texmf-dist/tex/latex/mandi/mandi.sty1385
1 files changed, 1004 insertions, 381 deletions
diff --git a/Master/texmf-dist/tex/latex/mandi/mandi.sty b/Master/texmf-dist/tex/latex/mandi/mandi.sty
index 700d2db36c8..652a6bdbf6e 100644
--- a/Master/texmf-dist/tex/latex/mandi/mandi.sty
+++ b/Master/texmf-dist/tex/latex/mandi/mandi.sty
@@ -6,7 +6,7 @@
%%
%% mandi.dtx (with options: `package')
%%
-%% Copyright (C) 2014 by Paul J. Heafner <heafnerj@gmail.com>
+%% Copyright (C) 2016 by Paul J. Heafner <heafnerj@gmail.com>
%% ---------------------------------------------------------------------------
%% This work may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License, either version 1.3 of this license or (at
@@ -21,14 +21,14 @@
%%
%% This work consists of the files mandi.dtx
%% README
+%% mandi.pdf
%%
%% and includes the derived files mandi.ins
-%% mandi.sty
-%% vdemo.py and
-%% mandi.pdf.
+%% mandi.sty and
+%% vdemo.py.
%% ---------------------------------------------------------------------------
%%
-\ProvidesPackage{mandi}[2014/12/29 2.4.0 Macros for physics and astronomy]
+\ProvidesPackage{mandi}[2016/03/15 2.5.1 Macros for physics and astronomy]
\NeedsTeXFormat{LaTeX2e}[1999/12/01]
\RequirePackage{amsmath}
@@ -48,7 +48,9 @@
\RequirePackage{textcomp}
\RequirePackage{letltxmacro}
\RequirePackage{listings}
+\RequirePackage{mathtools}
\RequirePackage[framemethod=TikZ]{mdframed}
+\RequirePackage{stackengine}
\RequirePackage{suffix}
\RequirePackage{xargs}
\RequirePackage{xparse}
@@ -61,28 +63,37 @@
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `basename #1 .tif`.png}
\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}
\usetikzlibrary{shadows}
-\definecolor{vbgcolor}{rgb}{1,1,1}
-\definecolor{vshadowcolor}{rgb}{0.5,0.5,0.5}
-\lstdefinestyle{vpython}{% % style for VPython code
- language=Python,% % select language
- morekeywords={visual,arrow,box,cone,% % VPython specific keywords
- convex,curve,cylinder,ellipsoid,extrusion,faces,helix,label,points,pyramid,ring,%
- sphere,text,frame,graphs,vector,pos,axis,radius,color,opacity,material,up,%
- make_trail,trail_type,trail_object,scene,mag,mag2,norm,dot,cross,proj,comp,%
- diff_angle,rotate,astuple,radians,shaftwidth,headwidth,headlength,height,width,%
- size,degrees,interval,retain,__future__,division,print_function,rate},%
- frame=shadowbox,% % shadowbox around listing
- rulesepcolor=\color{vshadowcolor},% % shadow color
- basicstyle=\footnotesize,% % basic font for code listings
- commentstyle=\bfseries\color{red}, % font for comments
- keywordstyle=\bfseries\color{blue},% % font for keywords
- showstringspaces=true,% % show spaces in strings
- numbers=left,% % where to put line numbers
- numberstyle=\tiny,% % set to 'none' for no line numbers
- xleftmargin=20pt,% % extra left margin
- backgroundcolor=\color{vbgcolor},% % some people find this annoying
- upquote=true,% % how to typeset quotes
- breaklines=true}% % break long lines
+\definecolor{vbgcolor}{rgb}{1,1,1} % background for code listings
+\definecolor{vshadowcolor}{rgb}{0.5,0.5,0.5} % shadow for code listings
+\lstdefinestyle{vpython}{% % style for code listings
+ language=Python,% % select language
+ morekeywords={__future__,division,append, % VPython/GlowScript specific keywords
+ arange,arrow,astuple,axis,background,black,blue,cyan,green,%
+ magenta,orange,red,white,yellow,border,box,color,comp,%
+ cone,convex,cross,curve,cylinder,degrees,diff_angle,dot,ellipsoid,extrusion,faces,%
+ font,frame,graphs,headlength,height,headwidth,helix,index,interval,label,length,%
+ line,linecolor,mag,mag2,make_trail,material,norm,normal,objects,opacity,points,pos,%
+ print,print_function,proj,pyramid,radians,radius,rate,retain,ring,rotate,scene,%
+ shaftwidth,shape,sign,size,space,sphere,text,trail_object,trail_type,True,twist,up,%
+ vector,visual,width,offset,yoffset,GlowScript,VPython,trail_color,trail_radius,%
+ pps,clear,False,CoffeeScript,graph,gdisplay,canvas,pause,vec,clone,compound,%
+ vertex,triangle,quad,attach_trail,attach_arrow,textures,bumpmaps,print_options,%
+ get_library,read_local_file},%
+ captionpos=b,% % position caption
+ frame=shadowbox,% % shadowbox around listing
+ rulesepcolor=\color{vshadowcolor},% % shadow color
+ basicstyle=\footnotesize,% % basic font for code listings
+ commentstyle=\bfseries\color{red}, % font for comments
+ keywordstyle=\bfseries\color{blue},% % font for keywords
+ showstringspaces=true,% % show spaces in strings
+ stringstyle=\bfseries\color{green},% % color for strings
+ numbers=left,% % where to put line numbers
+ numberstyle=\tiny,% % set to 'none' for no line numbers
+ xleftmargin=20pt,% % extra left margin
+ backgroundcolor=\color{vbgcolor},% % some people find this annoying
+ upquote=true,% % how to typeset quotes
+ breaklines=true}% % break long lines
+\definecolor{formcolor}{gray}{0.90} % color for form background
\newcolumntype{C}[1]{>{\centering}m{#1}}
\newboolean{@optromanvectors}
\newboolean{@optboldvectors}
@@ -90,28 +101,31 @@
\newboolean{@optbaseunits}
\newboolean{@optdrvdunits}
\newboolean{@optapproxconsts}
+\newboolean{@optuseradians}
\setboolean{@optromanvectors}{false} % this is where you set the default option
\setboolean{@optboldvectors}{false} % this is where you set the default option
\setboolean{@optsingleabsbars}{false} % this is where you set the default option
\setboolean{@optbaseunits}{false} % this is where you set the default option
\setboolean{@optdrvdunits}{false} % this is where you set the default option
\setboolean{@optapproxconsts}{false} % this is where you set the default option
+\setboolean{@optuseradians}{false} % this is where you set the default option
\DeclareOption{romanvectors}{\setboolean{@optromanvectors}{true}}
\DeclareOption{boldvectors}{\setboolean{@optboldvectors}{true}}
\DeclareOption{singleabsbars}{\setboolean{@optsingleabsbars}{true}}
\DeclareOption{baseunits}{\setboolean{@optbaseunits}{true}}
\DeclareOption{drvdunits}{\setboolean{@optdrvdunits}{true}}
\DeclareOption{approxconsts}{\setboolean{@optapproxconsts}{true}}
+\DeclareOption{useradians}{\setboolean{@optuseradians}{true}}
\ProcessOptions\relax
+\newcommand*{\mandiversion}{2.5.0}
+\typeout{mandi: You're using mandi version \mandiversion.}
\@ifpackageloaded{amssymb}{%
\csundef{square}
- \typeout{mandi: Package amssymb detected. Its \protect\square\space has been
- redefined.}
+ \typeout{mandi: Package amssymb detected. Its \protect\square\space
+ has been redefined.}
}{%
\typeout{mandi: Package amssymb not detected.}
}%
-\newcommand*{\mandiversion}{2.4.0}
-\typeout{mandi: You're using mandi version \mandiversion.}
\newcommand*{\per}{\ensuremath{/}}
\newcommand*{\usk}{\ensuremath{\cdot}}
\newcommand*{\unit}[2]{\ensuremath{{#1}\,{#2}}}
@@ -242,21 +256,12 @@
\ifthenelse{\boolean{@optapproxconsts}}
{\typeout{mandi: You'll get approximate constants.}}
{\typeout{mandi: You'll get precise constants.}}
+\ifthenelse{\boolean{@optuseradians}}
+ {\typeout{mandi: You'll get radians in ang mom, ang impulse, and torque.}}
+ {\typeout{mandi: You won't get radians in ang mom, ang impulse, and torque.}}
\ifthenelse{\boolean{@optapproxconsts}}
{\newcommand*{\mi@p}[2]{#1}} % approximate value
{\newcommand*{\mi@p}[2]{#2}} % precise value
-\def\resetMathstrut@{%
- \setbox\z@\hbox{%
- \mathchardef\@tempa\mathcode`\[\relax
- \def\@tempb##1"##2##3{\the\textfont"##3\char"}%
- \expandafter\@tempb\meaning\@tempa \relax}%
- \ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@}
-\begingroup
- \catcode`(\active \xdef({\left\string(}
- \catcode`)\active \xdef){\right\string)}
-\endgroup
-\mathcode`(="8000 \mathcode`)="8000
-\typeout{mandi: Parentheses have been made adjustable in math mode.}
\newcommand*{\m}{\metre}
\newcommand*{\kg}{\kilogram}
\newcommand*{\s}{\second}
@@ -271,15 +276,6 @@
\newcommand*{\dimtemperature}{\ensuremath{\mathrm{\Theta}}}
\newcommand*{\dimamount}{\ensuremath{\mathrm{N}}}
\newcommand*{\dimluminous}{\ensuremath{\mathrm{J}}}
-\newphysicsquantity{displacement}{\m}[\m][\m]
-\newphysicsquantity{mass}{\kg}[\kg][\kg]
-\newphysicsquantity{duration}{\s}[\s][\s]
-\newphysicsquantity{current}{\A}[\A][\A]
-\newphysicsquantity{temperature}{\K}[\K][\K]
-\newphysicsquantity{amount}{\mol}[\mol][\mol]
-\newphysicsquantity{luminous}{\cd}[\cd][\cd]
-\newphysicsquantity{planeangle}{\m\usk\reciprocal\m}[\rad][\relax]
-\newphysicsquantity{solidangle}{\m\squared\usk\reciprocalsquare\m}[\sr][\relax]
\newcommand*{\indegrees}[1]{\unit{#1}{\degree}}
\newcommand*{\inFarenheit}[1]{\unit{#1}{\degree\mathrm{F}}}
\newcommand*{\inCelsius}[1]{\unit{#1}{\degree\mathrm{C}}}
@@ -312,120 +308,329 @@
\newcommand*{\insolarD}[1]{\unit{#1}{\Dsolar}}
\newcommand*{\insolard}[1]{\unit{#1}{\dsolar}}
\newcommand*{\velocityc}[1]{\ensuremath{#1c}}
-\newphysicsquantity{velocity}{\m\usk\reciprocal\s}[\m\usk\reciprocal\s][\m\per\s]
+\newcommand*{\lorentz}[1]{\ensuremath{#1}}
\newcommand*{\speed}{\velocity}
-\newphysicsquantity{acceleration}{\m\usk\s\reciprocalsquared}[\N\per\kg]%
+\newphysicsquantity{displacement}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsquantity{mass}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsquantity{duration}%
+ {\s}%
+ [\s]%
+ [\s]
+\newphysicsquantity{current}%
+ {\A}%
+ [\A]%
+ [\A]
+\newphysicsquantity{temperature}%
+ {\K}%
+ [\K]%
+ [\K]
+\newphysicsquantity{amount}%
+ {\mol}%
+ [\mol]%
+ [\mol]
+\newphysicsquantity{luminous}%
+ {\cd}%
+ [\cd]%
+ [\cd]
+\newphysicsquantity{planeangle}%
+ {\m\usk\reciprocal\m}%
+ [\rad]%
+ []
+\newphysicsquantity{solidangle}%
+ {\m\squared\usk\reciprocalsquare\m}%
+ [\sr]%
+ []
+\newphysicsquantity{velocity}%
+ {\m\usk\reciprocal\s}%
+ [\m\usk\reciprocal\s]%
+ [\m\per\s]
+\newphysicsquantity{acceleration}%
+ {\m\usk\s\reciprocalsquared}%
+ [\N\per\kg]%
[\m\per\s\squared]
-\newphysicsquantity{gravitationalfield}{\m\usk\s\reciprocalsquared}[\N\per\kg]%
+\newphysicsquantity{gravitationalfield}%
+ {\m\usk\s\reciprocalsquared}%
+ [\N\per\kg]%
[\N\per\kg]
-\newphysicsquantity{gravitationalpotential}{\square\m\usk\reciprocalsquare\s}%
- [\J\per\kg][\J\per\kg]
-\newcommand*{\lorentz}[1]{\ensuremath{#1}}
-\newphysicsquantity{momentum}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\kg\usk\m\per\s]
-\newphysicsquantity{impulse}{\m\usk\kg\usk\reciprocal\s}[\N\usk\s][\N\usk\s]
-\newphysicsquantity{force}{\m\usk\kg\usk\s\reciprocalsquared}[\N][\N]
-\newphysicsquantity{springstiffness}{\kg\usk\s\reciprocalsquared}[\N\per\m][\N\per\m]
-\newphysicsquantity{springstretch}{\m}
-\newphysicsquantity{area}{\m\squared}
-\newphysicsquantity{volume}{\cubic\m}
-\newphysicsquantity{linearmassdensity}{\reciprocal\m\usk\kg}[\kg\per\m][\kg\per\m]
-\newphysicsquantity{areamassdensity}{\m\reciprocalsquared\usk\kg}[\kg\per\m\squared]%
+\newphysicsquantity{gravitationalpotential}%
+ {\square\m\usk\reciprocalsquare\s}%
+ [\J\per\kg]%
+ [\J\per\kg]
+\newphysicsquantity{momentum}%
+ {\m\usk\kg\usk\reciprocal\s}%
+ [\N\usk\s]%
+ [\kg\usk\m\per\s]
+\newphysicsquantity{impulse}%
+ {\m\usk\kg\usk\reciprocal\s}%
+ [\N\usk\s]%
+ [\N\usk\s]
+\newphysicsquantity{force}%
+ {\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N]%
+ [\N]
+\newphysicsquantity{springstiffness}%
+ {\kg\usk\s\reciprocalsquared}%
+ [\N\per\m]%
+ [\N\per\m]
+\newphysicsquantity{springstretch}%
+ {\m}%
+ []%
+ []
+\newphysicsquantity{area}%
+ {\m\squared}%
+ []%
+ []
+\newphysicsquantity{volume}%
+ {\cubic\m}%
+ []%
+ []
+\newphysicsquantity{linearmassdensity}%
+ {\reciprocal\m\usk\kg}%
+ [\kg\per\m]%
+ [\kg\per\m]
+\newphysicsquantity{areamassdensity}%
+ {\m\reciprocalsquared\usk\kg}%
+ [\kg\per\m\squared]%
[\kg\per\m\squared]
-\newphysicsquantity{volumemassdensity}{\m\reciprocalcubed\usk\kg}[\kg\per\m\cubed]%
+\newphysicsquantity{volumemassdensity}%
+ {\m\reciprocalcubed\usk\kg}%
+ [\kg\per\m\cubed]%
[\kg\per\m\cubed]
-\newphysicsquantity{youngsmodulus}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
- [\N\per\m\squared][\Pa]
-\newphysicsquantity{stress}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
- [\N\per\m\squared][\Pa]
-\newphysicsquantity{pressure}{\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
- [\N\per\m\squared][\Pa]
-\newphysicsquantity{strain}{\relax}[\relax][\relax]
-\newphysicsquantity{work}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J][\N\usk\m]
-\newphysicsquantity{energy}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\N\usk\m][\J]
-\newphysicsquantity{power}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\J\per\s][\W]
-\newphysicsquantity{specificheatcapacity}{\J\per\K\usk\kg}[\J\per\K\usk\kg]%
+\newphysicsquantity{youngsmodulus}%
+ {\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared]%
+ [\Pa]
+\newphysicsquantity{stress}%
+ {\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared]%
+ [\Pa]
+\newphysicsquantity{pressure}%
+ {\reciprocal\m\usk\kg\usk\s\reciprocalsquared}%
+ [\N\per\m\squared]%
+ [\Pa]
+\newphysicsquantity{strain}%
+ {}%
+ []%
+ []
+\newphysicsquantity{work}%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared}%
+ [\N\usk\m]%
+ [\J]
+\newphysicsquantity{energy}%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared}%
+ [\N\usk\m]%
+ [\J]
+\newphysicsquantity{power}%
+ {\m\squared\usk\kg\usk\s\reciprocalcubed}%
+ [\J\per\s]%
+ [\W]
+\newphysicsquantity{specificheatcapacity}%
+ {\J\per\K\usk\kg}%
+ [\J\per\K\usk\kg]%
[\J\per\K\usk\kg]
-\newphysicsquantity{angularvelocity}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
-\newphysicsquantity{angularacceleration}{\rad\usk\s\reciprocalsquared}%
- [\rad\per\s\squared][\rad\per\s\squared]
-\newphysicsquantity{angularmomentum}{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s]%
- [\kg\usk\m\squared\per\s]
-\newphysicsquantity{momentofinertia}{\m\squared\usk\kg}[\J\usk\s\squared]%
- [\kg\usk\m\squared]
-\newphysicsquantity{torque}{\m\squared\usk\kg\usk\s\reciprocalsquared}[\J\per\rad]%
- [\N\usk\m]
-\newphysicsquantity{entropy}{\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K}
- [\J\per\K][\J\per\K]
-\newphysicsquantity{wavelength}{\m}[\m][\m]
-\newphysicsquantity{wavenumber}{\reciprocal\m}[\per\m][\per\m]
-\newphysicsquantity{frequency}{\reciprocal\s}[\hertz][\hertz]
-\newphysicsquantity{angularfrequency}{\rad\usk\reciprocal\s}[\rad\per\s][\rad\per\s]
-\newphysicsquantity{charge}{\A\usk\s}[\C][\C]
-\newphysicsquantity{permittivity}
-{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}%
- [\F\per\m][\C\squared\per\N\usk\m\squared]
+\newphysicsquantity{angularvelocity}%
+ {\rad\usk\reciprocal\s}%
+ [\rad\per\s]%
+ [\rad\per\s]
+\newphysicsquantity{angularacceleration}%
+ {\rad\usk\s\reciprocalsquared}%
+ [\rad\per\s\squared]%
+ [\rad\per\s\squared]
+\newphysicsquantity{momentofinertia}%
+ {\m\squared\usk\kg}%
+ [\m\usk\kg\squared]%
+ [\J\usk\s\squared]
+\ifthenelse{\boolean{@optuseradians}}
+ {%
+ \newphysicsquantity{angularmomentum}%
+ {\m\squared\usk\kg\usk\reciprocal\s\usk\reciprocal\rad}%
+ [\N\usk\m\usk\s\per\rad]%
+ [\m\squared\usk\kg\usk\reciprocal\s\usk\reciprocal\rad]
+ \newphysicsquantity{angularimpulse}%
+ {\m\squared\usk\kg\usk\reciprocal\s\usk\reciprocal\rad}%
+ [\N\usk\m\usk\s\per\rad]%
+ [\J\usk\s\per\rad]
+ \newphysicsquantity{torque}%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\rad}%
+ [\N\usk\m\per\rad]%
+ [\J\per\rad]
+ }%
+ {%
+ \newphysicsquantity{angularmomentum}%
+ {\m\squared\usk\kg\usk\reciprocal\s}%
+ [\N\usk\m\usk\s]%
+ [\m\squared\usk\kg\usk\reciprocal\s]
+ \newphysicsquantity{angularimpulse}%
+ {\m\squared\usk\kg\usk\reciprocal\s}%
+ [\N\usk\m\usk\s]%
+ [\J\usk\s]
+ \newphysicsquantity{torque}%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared}%
+ [\N\usk\m]%
+ [\J]
+ }%
+\newphysicsquantity{entropy}%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\K}%
+ [\J\per\K]%
+ [\J\per\K]
+\newphysicsquantity{wavelength}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsquantity{wavenumber}%
+ {\reciprocal\m}%
+ [\per\m]%
+ [\per\m]
+\newphysicsquantity{frequency}%
+ {\reciprocal\s}%
+ [\hertz]%
+ [\hertz]
+\newphysicsquantity{angularfrequency}%
+ {\rad\usk\reciprocal\s}%
+ [\rad\per\s]%
+ [\rad\per\s]
+\newphysicsquantity{charge}%
+ {\A\usk\s}%
+ [\C]%
+ [\C]
+\newphysicsquantity{permittivity}%
+ {\m\reciprocalcubed\usk\reciprocal\kg\usk\s\reciprocalquarted\usk\A\squared}%
+ [\F\per\m]%
+ [\C\squared\per\N\usk\m\squared]
\newphysicsquantity{permeability}%
- {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}[\henry\per\m]%
+ {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}%
+ [\henry\per\m]%
[\T\usk\m\per\A]
-\newphysicsquantity{electricfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
- [\V\per\m][\N\per\C]
-\newphysicsquantity{electricdipolemoment}{\m\usk\s\usk\A}[\C\usk\m][\C\usk\m]
+\newphysicsquantity{electricfield}%
+ {\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\per\m]%
+ [\N\per\C]
+\newphysicsquantity{electricdipolemoment}%
+ {\m\usk\s\usk\A}%
+ [\C\usk\m]%
+ [\C\usk\m]
\newphysicsquantity{electricflux}%
{\m\cubed\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
- [\V\usk\m][\N\usk\m\squared\per\C]
-\newphysicsquantity{magneticfield}{\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\T]%
+ [\V\usk\m]%
+ [\N\usk\m\squared\per\C]
+\newphysicsquantity{magneticfield}%
+ {\kg\usk\s\reciprocalsquared\usk\reciprocal\A}%
+ [\T]%
[\N\per\C\usk(\m\per\s)] % also \Wb\per\m\squared
\newphysicsquantity{magneticflux}%
- {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}[\volt\usk\s]%
+ {\m\squared\usk\kg\usk\s\reciprocalsquared\usk\reciprocal\A}%
+ [\volt\usk\s]%
[\T\usk\m\squared] % also \Wb and \J\per\A
-\newphysicsquantity{cmagneticfield}{\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
- [\V\per\m][\N\per\C]
-\newphysicsquantity{linearchargedensity}{\reciprocal\m\usk\s\usk\A}[\C\per\m][\C\per\m]
-\newphysicsquantity{areachargedensity}{\reciprocalsquare\m\usk\s\usk\A}%
- [\C\per\square\m][\C\per\square\m]
-\newphysicsquantity{volumechargedensity}{\reciprocalcubic\m\usk\s\usk\A}%
- [\C\per\cubic\m][\C\per\cubic\m]
+\newphysicsquantity{cmagneticfield}%
+ {\m\usk\kg\usk\s\reciprocalcubed\usk\reciprocal\A}%
+ [\V\per\m]%
+ [\N\per\C]
+\newphysicsquantity{linearchargedensity}%
+ {\reciprocal\m\usk\s\usk\A}%
+ [\C\per\m]%
+ [\C\per\m]
+\newphysicsquantity{areachargedensity}%
+ {\reciprocalsquare\m\usk\s\usk\A}%
+ [\C\per\square\m]%
+ [\C\per\square\m]
+\newphysicsquantity{volumechargedensity}%
+ {\reciprocalcubic\m\usk\s\usk\A}%
+ [\C\per\cubic\m]%
+ [\C\per\cubic\m]
\newphysicsquantity{mobility}%
- {\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}[\m\squared\per\volt\usk\s]
+ {\m\squared\usk\kg\usk\s\reciprocalquarted\usk\reciprocal\A}%
+ [\m\squared\per\volt\usk\s]%
[(\m\per\s)\per(\N\per\C)]
-\newphysicsquantity{numberdensity}{\reciprocalcubic\m}[\per\cubic\m][\per\cubic\m]
-\newphysicsquantity{polarizability}{\reciprocal\kg\usk\s\quarted\usk\square\A}%
- [\C\usk\square\m\per\V][\C\usk\m\per(\N\per\C)]
+\newphysicsquantity{numberdensity}%
+ {\reciprocalcubic\m}%
+ [\per\cubic\m]%
+ [\per\cubic\m]
+\newphysicsquantity{polarizability}%
+ {\reciprocal\kg\usk\s\quarted\usk\square\A}%
+ [\C\usk\square\m\per\V]%
+ [\C\usk\m\per(\N\per\C)]
\newphysicsquantity{electricpotential}%
- {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}[\J\per\C][\V]
-\newphysicsquantity{emf}{\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}%
- [\J\per\C][\V]
-\newphysicsquantity{dielectricconstant}{}[][]
-\newphysicsquantity{indexofrefraction}{}[][]
-\newphysicsquantity{relativepermittivity}{}[][]
-\newphysicsquantity{relativepermeability}{}[][]
-\newphysicsquantity{energydensity}{\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}%
- [\J\per\cubic\m][\J\per\cubic\m]
-\newphysicsquantity{energyflux}{\kg\usk\s\reciprocalcubed}%
- [\W\per\m\squared][\W\per\m\squared]
-\newphysicsquantity{electroncurrent}{\reciprocal\s}%
- [\ensuremath{\mathrm{e}}\per\s][\ensuremath{\mathrm{e}}\per\s]
-\newphysicsquantity{conventionalcurrent}{\A}[\C\per\s][\A]
-\newphysicsquantity{magneticdipolemoment}{\square\m\usk\A}[\J\per\T][\A\usk\square\m]
-\newphysicsquantity{currentdensity}{\reciprocalsquare\m\usk\A}[\C\usk\s\per\square\m]%
+ {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}%
+ [\J\per\C]%
+ [\V]
+\newphysicsquantity{emf}%
+ {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocal\A}%
+ [\J\per\C]%
+ [\V]
+\newphysicsquantity{dielectricconstant}%
+ {}%
+ []%
+ []
+\newphysicsquantity{indexofrefraction}%
+ {}%
+ []%
+ []
+\newphysicsquantity{relativepermittivity}%
+ {}%
+ []%
+ []
+\newphysicsquantity{relativepermeability}
+ {}%
+ []%
+ []
+\newphysicsquantity{energydensity}%
+ {\m\reciprocaled\usk\kg\usk\reciprocalsquare\s}%
+ [\J\per\cubic\m]%
+ [\J\per\cubic\m]
+\newphysicsquantity{energyflux}%
+ {\kg\usk\s\reciprocalcubed}%
+ [\W\per\m\squared]%
+ [\W\per\m\squared]
+\newphysicsquantity{electroncurrent}%
+ {\reciprocal\s}%
+ [\ensuremath{\mathrm{e}}\per\s]%
+ [\ensuremath{\mathrm{e}}\per\s]
+\newphysicsquantity{conventionalcurrent}%
+ {\A}%
+ [\C\per\s]%
+ [\A]
+\newphysicsquantity{magneticdipolemoment}%
+ {\square\m\usk\A}%
+ [\J\per\T]%
+ [\A\usk\square\m]
+\newphysicsquantity{currentdensity}%
+ {\reciprocalsquare\m\usk\A}%
+ [\C\usk\s\per\square\m]%
[\A\per\square\m]
\newphysicsquantity{capacitance}%
- {\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}[\F][\C\per\V]
- % also \C\squared\per\N\usk\m, \s\per\ohm
+ {\reciprocalsquare\m\usk\reciprocal\kg\usk\quartic\s\usk\square\A}%
+ [\F]%
+ [\C\per\V] % also \C\squared\per\N\usk\m, \s\per\ohm
\newphysicsquantity{inductance}%
- {\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}[\henry]%
+ {\square\m\usk\kg\usk\reciprocalsquare\s\usk\reciprocalsquare\A}%
+ [\henry]%
[\volt\usk\s\per\A] % also \square\m\usk\kg\per\C\squared, \Wb\per\A
\newphysicsquantity{conductivity}%
- {\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\siemens\per\m]%
+ {\reciprocalcubic\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}%
+ [\siemens\per\m]%
[(\A\per\square\m)\per(\V\per\m)]
\newphysicsquantity{resistivity}%
- {\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\ohm\usk\m]%
+ {\cubic\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}%
+ [\ohm\usk\m]%
[(\V\per\m)\per(\A\per\square\m)]
\newphysicsquantity{resistance}%
- {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}[\V\per\A][\ohm]
+ {\square\m\usk\kg\usk\reciprocalcubic\s\usk\reciprocalsquare\A}%
+ [\V\per\A]%
+ [\ohm]
\newphysicsquantity{conductance}%
- {\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}[\A\per\V][\siemens]
-\newphysicsquantity{magneticcharge}{\m\usk\A}[\m\usk\A][\m\usk\A]
+ {\reciprocalsquare\m\usk\reciprocal\kg\usk\cubic\s\usk\square\A}%
+ [\A\per\V]%
+ [\siemens]
+\newphysicsquantity{magneticcharge}%
+ {\m\usk\A}%
+ [\m\usk\A]%
+ [\m\usk\A]
\newcommand*{\lv}{\ensuremath{\left\langle}}
\newcommand*{\rv}{\ensuremath{\right\rangle}}
\ExplSyntaxOn % Written in LaTeX3
@@ -439,14 +644,15 @@
{%
\clist_set:Nn \l_tmpa_clist { #1 }
\ensuremath{%
- \sqrt{(\clist_use:Nnnn \l_tmpa_clist { )^2+( } { )^2+( } { )^2+( } )^2 }
+ \sqrt{\left(\clist_use:Nnnn \l_tmpa_clist { \right)^2+\left( } { \right)^2+
+ \left( } { \right)^2+\left( } \right)^2 }
}%
}%
{%
\clist_set:Nn \l_tmpa_clist { #1 }
\ensuremath{%
- \sqrt{(\clist_use:Nnnn \l_tmpa_clist {\;{ #2 })^2+(} {\;{ #2 })^2+(}
- {\;{ #2 })^2+(} \;{ #2 })^2}
+ \sqrt{\left(\clist_use:Nnnn \l_tmpa_clist {\;{ #2 }\right)^2+\left(} {\;
+ { #2 }\right)^2+\left(} {\;{ #2 }\right)^2+\left(} \;{ #2 }\right)^2}
}%
}%
}%
@@ -459,7 +665,7 @@
{\newcommand*{\vect}[1]{\ensuremath{\vv{\mathrm{#1}}}}}
{\newcommand*{\vect}[1]{\ensuremath{\vv{#1}}}}}
\ifthenelse{\boolean{@optsingleabsbars}}
- {\newcommand*{\magvect}[1]{\ensuremath{\abs{\vect{#1}}}}}
+ {\newcommand*{\magvect}[1]{\ensuremath{\absof{\vect{#1}}}}}
{\newcommand*{\magvect}[1]{\ensuremath{\magof{\vect{#1}}}}}
\newcommand*{\magsquaredvect}[1]{\ensuremath{\magvect{#1}\squared}}
\newcommand*{\magnvect}[2]{\ensuremath{\magvect{#1}^{#2}}}
@@ -471,6 +677,15 @@
{\newcommand*{\dirvect}[1]{\ensuremath{\widehat{\mathrm{#1}}}}}
{\newcommand*{\dirvect}[1]{\ensuremath{\widehat{#1}}}}}
\newcommand*{\direction}{\dirvect}
+\newcommand*{\componentalong}[2]{\ensuremath{\mathrm{comp}_{#1}{#2}}}
+\newcommand*{\expcomponentalong}[2]{\ensuremath{\frac{\vectdotvect{#2}{#1}}
+{\magof{#1}}}}
+\newcommand*{\ucomponentalong}[2]{\ensuremath{\vectdotvect{#2}{#1}}}
+\newcommand*{\projectiononto}[2]{\ensuremath{\mathrm{proj}_{#1}{#2}}}
+\newcommand*{\expprojectiononto}[2]{\ensuremath{%
+ \inparens{\frac{\vectdotvect{#2}{#1}}{\magof{#1}}}\frac{#1}{\magof{#1}}}}
+\newcommand*{\uprojectiononto}[2]{\ensuremath{%
+ \inparens{\vectdotvect{#2}{#1}}#1}}
\ifthenelse{\boolean{@optromanvectors}}
{\newcommand*{\compvect}[2]{\ensuremath{\ssub{\mathrm{#1}}{\(#2\)}}}}
{\newcommand*{\compvect}[2]{\ensuremath{\ssub{#1}{\(#2\)}}}}
@@ -478,6 +693,15 @@
\compvect{#1}{x},%
\compvect{#1}{y},%
\compvect{#1}{z}\rv}}
+\newcommand*{\scompsdirvect}[1]{\ensuremath{\lv%
+ \compvect{\widehat{#1}}{x},%
+ \compvect{\widehat{#1}}{y},%
+ \compvect{\widehat{#1}}{z}\rv}}
+\ifthenelse{\boolean{@optromanvectors}}
+ {\newcommand*{\compdirvect}[2]{\ensuremath{%
+ \ssub{\widehat{\mathrm{#1}}}{\(#2\)}}}}
+ {\newcommand*{\compdirvect}[2]{\ensuremath{%
+ \ssub{\widehat{#1}}{\(#2\)}}}}
\newcommand*{\magvectscomps}[1]{\ensuremath{\sqrt{%
\compvect{#1}{x}\squared +%
\compvect{#1}{y}\squared +%
@@ -491,8 +715,8 @@
\newcommand*{\Ddirvect}[1]{\ensuremath{\Delta\dirvect{#1}}}
\newcommand*{\Ddirection}{\Ddirvect}
\ifthenelse{\boolean{@optsingleabsbars}}
- {\newcommand*{\magdvect}[1]{\ensuremath{\abs{\dvect{#1}}}}
- \newcommand*{\magDvect}[1]{\ensuremath{\abs{\Dvect{#1}}}}}
+ {\newcommand*{\magdvect}[1]{\ensuremath{\absof{\dvect{#1}}}}
+ \newcommand*{\magDvect}[1]{\ensuremath{\absof{\Dvect{#1}}}}}
{\newcommand*{\magdvect}[1]{\ensuremath{\magof{\dvect{#1}}}}
\newcommand*{\magDvect}[1]{\ensuremath{\magof{\Dvect{#1}}}}}
\newcommand*{\compdvect}[2]{\ensuremath{\mathrm{d}\compvect{#1}{#2}}}
@@ -518,8 +742,8 @@
\compDervect{#1}{y}{#2},%
\compDervect{#1}{z}{#2}\rv}}
\ifthenelse{\boolean{@optsingleabsbars}}
- {\newcommand*{\magdervect}[2]{\ensuremath{\abs{\dervect{#1}{#2}}}}
- \newcommand*{\magDervect}[2]{\ensuremath{\abs{\Dervect{#1}{#2}}}}}
+ {\newcommand*{\magdervect}[2]{\ensuremath{\absof{\dervect{#1}{#2}}}}
+ \newcommand*{\magDervect}[2]{\ensuremath{\absof{\Dervect{#1}{#2}}}}}
{\newcommand*{\magdervect}[2]{\ensuremath{\magof{\dervect{#1}{#2}}}}
\newcommand*{\magDervect}[2]{\ensuremath{\magof{\Dervect{#1}{#2}}}}}
\newcommand*{\dermagvect}[2]{\ensuremath{\dbyd{\magvect{#1}}{#2}}}
@@ -541,7 +765,7 @@
\compvectsub{#1}{#2}{y},%
\compvectsub{#1}{#2}{z}\rv}}
\ifthenelse{\boolean{@optsingleabsbars}}
- {\newcommand*{\magvectsub}[2]{\ensuremath{\abs{\vectsub{#1}{#2}}}}}
+ {\newcommand*{\magvectsub}[2]{\ensuremath{\absof{\vectsub{#1}{#2}}}}}
{\newcommand*{\magvectsub}[2]{\ensuremath{\magof{\vectsub{#1}{#2}}}}}
\newcommand*{\magsquaredvectsub}[2]{\ensuremath{\magvectsub{#1}{#2}\squared}}
\newcommand*{\magnvectsub}[3]{\ensuremath{\magvectsub{#1}{#2}^{#3}}}
@@ -570,8 +794,8 @@
\newcommand*{\dervectsub}[3]{\ensuremath{\dbyd{\vectsub{#1}{#2}}{#3}}}
\newcommand*{\Dervectsub}[3]{\ensuremath{\DbyD{\vectsub{#1}{#2}}{#3}}}
\ifthenelse{\boolean{@optsingleabsbars}}
- {\newcommand*{\magdervectsub}[3]{\ensuremath{\abs{\dervectsub{#1}{#2}{#3}}}}
- \newcommand*{\magDervectsub}[3]{\ensuremath{\abs{\Dervectsub{#1}{#2}{#3}}}}}
+ {\newcommand*{\magdervectsub}[3]{\ensuremath{\absof{\dervectsub{#1}{#2}{#3}}}}
+ \newcommand*{\magDervectsub}[3]{\ensuremath{\absof{\Dervectsub{#1}{#2}{#3}}}}}
{\newcommand*{\magdervectsub}[3]{\ensuremath{\magof{\dervectsub{#1}{#2}{#3}}}}
\newcommand*{\magDervectsub}[3]{\ensuremath{\magof{\Dervectsub{#1}{#2}{#3}}}}}
\newcommand*{\compdervectsub}[4]{\ensuremath{\dbyd{\compvectsub{#1}{#2}{#3}}{#4}}}
@@ -666,26 +890,29 @@
\compDervect{#1}{x}{#2}\compDvect{#3}{x}+%
\compDervect{#1}{y}{#2}\compDvect{#3}{y}+%
\compDervect{#1}{z}{#2}\compDvect{#3}{z}}}
-\newcommand*{\vectcrossvect}[2]{\ensuremath{{#1}\boldsymbol{\times}{#2}}}
-\newcommand*{\ltriplecross}[3]{\ensuremath{({#1}\boldsymbol{\times}{#2})%
- \boldsymbol{\times}{#3}}}
+\newcommand*{\vectcrossvect}[2]{\ensuremath{%
+ {#1}\boldsymbol{\times}{#2}}}
+\newcommand*{\ltriplecross}[3]{\ensuremath{%
+ \inparens{{#1}\boldsymbol{\times}{#2}}\boldsymbol{\times}{#3}}}
\newcommand*{\rtriplecross}[3]{\ensuremath{{#1}\boldsymbol{\times}%
- ({#2}\boldsymbol{\times}{#3})}}
-\newcommand*{\ltriplescalar}[3]{\ensuremath{{#1}\boldsymbol{\times}{#2}\bullet{#3}}}
-\newcommand*{\rtriplescalar}[3]{\ensuremath{{#1}\bullet{#2}\boldsymbol{\times}{#3}}}
-\newcommand*{\ezero}{\ensuremath{\msub{\boldsymbol{e}}{0}}}
-\newcommand*{\eone}{\ensuremath{\msub{\boldsymbol{e}}{1}}}
-\newcommand*{\etwo}{\ensuremath{\msub{\boldsymbol{e}}{2}}}
-\newcommand*{\ethree}{\ensuremath{\msub{\boldsymbol{e}}{3}}}
-\newcommand*{\efour}{\ensuremath{\msub{\boldsymbol{e}}{4}}}
-\newcommand*{\ek}[1]{\ensuremath{\msub{\boldsymbol{e}}{#1}}}
+ \inparens{{#2}\boldsymbol{\times}{#3}}}}
+\newcommand*{\ltriplescalar}[3]{\ensuremath{%
+ {#1}\boldsymbol{\times}{#2}\bullet{#3}}}
+\newcommand*{\rtriplescalar}[3]{\ensuremath{%
+ {#1}\bullet{#2}\boldsymbol{\times}{#3}}}
+\newcommand*{\ezero}{\ensuremath{\boldsymbol{e}_0}}
+\newcommand*{\eone}{\ensuremath{\boldsymbol{e}_1}}
+\newcommand*{\etwo}{\ensuremath{\boldsymbol{e}_2}}
+\newcommand*{\ethree}{\ensuremath{\boldsymbol{e}_3}}
+\newcommand*{\efour}{\ensuremath{\boldsymbol{e}_4}}
+\newcommand*{\ek}[1]{\ensuremath{\boldsymbol{e}_{#1}}}
\newcommand*{\e}{\ek}
-\newcommand*{\uezero}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{0}}}
-\newcommand*{\ueone}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{1}}}
-\newcommand*{\uetwo}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{2}}}
-\newcommand*{\uethree}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{3}}}
-\newcommand*{\uefour}{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{4}}}
-\newcommand*{\uek}[1]{\ensuremath{\msub{\widehat{\boldsymbol{e}}}{#1}}}
+\newcommand*{\uezero}{\ensuremath{\widehat{\boldsymbol{e}}_0}}
+\newcommand*{\ueone}{\ensuremath{\widehat{\boldsymbol{e}}_1}}
+\newcommand*{\uetwo}{\ensuremath{\widehat{\boldsymbol{e}}_2}}
+\newcommand*{\uethree}{\ensuremath{\widehat{\boldsymbol{e}}_3}}
+\newcommand*{\uefour}{\ensuremath{\widehat{\boldsymbol{e}}_4}}
+\newcommand*{\uek}[1]{\ensuremath{\widehat{\boldsymbol{e}}_{#1}}}
\newcommand*{\ue}{\uek}
\newcommand*{\ezerozero}{\ek{00}}
\newcommand*{\ezeroone}{\ek{01}}
@@ -715,6 +942,13 @@
\newcommand*{\eufour}{\ensuremath{\boldsymbol{e}^4}}
\newcommand*{\euk}[1]{\ensuremath{\boldsymbol{e}^{#1}}}
\newcommand*{\eu}{\euk}
+\newcommand*{\ueuzero}{\ensuremath{\widehat{\boldsymbol{e}}^0}}
+\newcommand*{\ueuone}{\ensuremath{\widehat{\boldsymbol{e}}^1}}
+\newcommand*{\ueutwo}{\ensuremath{\widehat{\boldsymbol{e}}^2}}
+\newcommand*{\ueuthree}{\ensuremath{\widehat{\boldsymbol{e}}^3}}
+\newcommand*{\ueufour}{\ensuremath{\widehat{\boldsymbol{e}}^4}}
+\newcommand*{\ueuk}[1]{\ensuremath{\widehat{\boldsymbol{e}}^{#1}}}
+\newcommand*{\ueu}{\ueuk}
\newcommand*{\euzerozero}{\euk{00}}
\newcommand*{\euzeroone}{\euk{01}}
\newcommand*{\euzerotwo}{\euk{02}}
@@ -736,12 +970,12 @@
\newcommand*{\eufourtwo}{\euk{42}}
\newcommand*{\eufourthree}{\euk{43}}
\newcommand*{\eufourfour}{\euk{44}}
-\newcommand*{\gzero}{\ensuremath{\msub{\boldsymbol{\gamma}}{0}}}
-\newcommand*{\gone}{\ensuremath{\msub{\boldsymbol{\gamma}}{1}}}
-\newcommand*{\gtwo}{\ensuremath{\msub{\boldsymbol{\gamma}}{2}}}
-\newcommand*{\gthree}{\ensuremath{\msub{\boldsymbol{\gamma}}{3}}}
-\newcommand*{\gfour}{\ensuremath{\msub{\boldsymbol{\gamma}}{4}}}
-\newcommand*{\gk}[1]{\ensuremath{\msub{\boldsymbol{\gamma}}{#1}}}
+\newcommand*{\gzero}{\ensuremath{\boldsymbol{\gamma}_0}}
+\newcommand*{\gone}{\ensuremath{\boldsymbol{\gamma}_1}}
+\newcommand*{\gtwo}{\ensuremath{\boldsymbol{\gamma}_2}}
+\newcommand*{\gthree}{\ensuremath{\boldsymbol{\gamma}_3}}
+\newcommand*{\gfour}{\ensuremath{\boldsymbol{\gamma}_4}}
+\newcommand*{\gk}[1]{\ensuremath{\boldsymbol{\gamma}_{#1}}}
\newcommand*{\g}{\gk}
\newcommand*{\gzerozero}{\gk{00}}
\newcommand*{\gzeroone}{\gk{01}}
@@ -840,6 +1074,15 @@
\colvector{\msub{#2}{0},\msub{#2}{1},\msub{#2}{2},\msub{#2}{3}}%
}%
}%
+\newcommandx{\scompsCvect}[2][1,usedefault]{%
+ \ifthenelse{\equal{#1}{}}%
+ {%
+ \colvector{\msup{#2}{1},\msup{#2}{2},\msup{#2}{3}}%
+ }%
+ {%
+ \colvector{\msup{#2}{0},\msup{#2}{1},\msup{#2}{2},\msup{#2}{3}}%
+ }%
+}%
\newcommandx{\scompsrvect}[2][1,usedefault]{%
\ifthenelse{\equal{#1}{}}%
{%
@@ -849,131 +1092,314 @@
\rowvector[,]{\msub{#2}{0},\msub{#2}{1},\msub{#2}{2},\msub{#2}{3}}%
}%
}%
-\newphysicsconstant{oofpez}{\ensuremath{\frac{1}
-{\phantom{_o}4\pi\epsilon_0}}}{\mi@p{9}{8.9876}\timestento{9}}
-{\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}[\m\per\farad]
-[\newton\usk\m\squared\per\coulomb\squared]
+\newcommandx{\scompsRvect}[2][1,usedefault]{%
+ \ifthenelse{\equal{#1}{}}%
+ {%
+ \rowvector[,]{\msup{#2}{1},\msup{#2}{2},\msup{#2}{3}}%
+ }%
+ {%
+ \rowvector[,]{\msup{#2}{0},\msup{#2}{1},\msup{#2}{2},\msup{#2}{3}}%
+ }%
+}%
+\newcommand*{\bra}[1]{\ensuremath{\left\langle{#1}\right\lvert}}
+\newcommand*{\ket}[1]{\ensuremath{\left\lvert{#1}\right\rangle}}
+\newcommand*{\bracket}[2]{\ensuremath{\left\langle{#1}\!\!\right.%
+ \left\lvert{#2}\right\rangle}}
+\newphysicsconstant{oofpez}%
+ {\ensuremath{\frac{1}{\phantom{_o}4\pi\epsilon_0}}}%
+ {\mi@p{9}{8.9876}\timestento{9}}%
+ {\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}%
+ [\m\per\farad]%
+ [\newton\usk\m\squared\per\coulomb\squared]
+\newphysicsconstant{oofpezcs}%
+ {\ensuremath{\frac{1}{\phantom{_o}4\pi\epsilon_0 c^2\phantom{_o}}}}%
+ {\tento{-7}}%
+ {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}%
+ [\T\usk\m\squared]%
+ [\N\usk\s\squared\per\C\squared]
+\newphysicsconstant{vacuumpermittivity}%
+ {\ensuremath{\epsilon_0}}%
+ {\mi@p{9.0}{8.8542}\timestento{-12}}%
+ {\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}%
+ [\F\per\m]%
+ [\C\squared\per\N\usk\m\squared]
+\newphysicsconstant{mzofp}%
+ {\ensuremath{\frac{\phantom{_oo}\mu_0\phantom{_o}}{4\pi}}}%
+ {\tento{-7}}%
+ {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}%
+ [\henry\per\m]%
+ [\tesla\usk\m\per\A]
+\newphysicsconstant{vacuumpermeability}%
+ {\ensuremath{\mu_0}}%
+ {4\pi\timestento{-7}}%
+ {\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}%
+ [\henry\per\m]%
+ [\T\usk\m\per\A]
+\newphysicsconstant{boltzmann}%
+ {\ensuremath{k_B}}%
+ {\mi@p{1.4}{1.3806}\timestento{-23}}%
+ {\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}%
+ [\joule\per\K]%
+ [\J\per\K]
+\newphysicsconstant{boltzmannineV}%
+ {\ensuremath{k_B}}%
+ {\mi@p{8.6}{8.6173}\timestento{-5}}%
+ {\eV\usk\reciprocal\K}%
+ [\eV\per\K]%
+ [\eV\per\K]
+\newphysicsconstant{stefanboltzmann}%
+ {\ensuremath{\sigma}}%
+ {\mi@p{5.7}{5.6704}\timestento{-8}}%
+ {\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}%
+ [\W\per\m\squared\usk\K^4]%
+ [\W\per\m\squared\usk\K\quarted]
+\newphysicsconstant{planck}%
+ {\ensuremath{h}}%
+ {\mi@p{6.6}{6.6261}\timestento{-34}}%
+ {\m\squared\usk\kg\usk\reciprocal\s}%
+ [\J\usk\s]%
+ [\J\usk\s]
+\newphysicsconstant{planckineV}%
+ {\ensuremath{h}}%
+ {\mi@p{4.1}{4.1357}\timestento{-15}}%
+ {\eV\usk\s}%
+ [\eV\usk\s]%
+ [\eV\usk\s]
+\newphysicsconstant{planckbar}%
+ {\ensuremath{\hslash}}%
+ {\mi@p{1.1}{1.0546}\timestento{-34}}%
+ {\m\squared\usk\kg\usk\reciprocal\s}%
+ [\J\usk\s]%
+ [\J\usk\s]
+\newphysicsconstant{planckbarineV}%
+ {\ensuremath{\hslash}}%
+ {\mi@p{6.6}{6.5821}\timestento{-16}}%
+ {\eV\usk\s}%
+ [\eV\usk\s]%
+ [\eV\usk\s]
+\newphysicsconstant{planckc}%
+ {\ensuremath{hc}}%
+ {\mi@p{2.0}{1.9864}\timestento{-25}}%
+ {\m\cubed\usk\kg\usk\reciprocalsquare\s}%
+ [\J\usk\m]%
+ [\J\usk\m]
+\newphysicsconstant{planckcineV}%
+ {\ensuremath{hc}}%
+ {\mi@p{2.0}{1.9864}\timestento{-25}}%
+ {\eV\usk\text{n}\m}%
+ [\eV\usk\text{n}\m]%
+ [\eV\usk\text{n}\m]
+\newphysicsconstant{rydberg}%
+ {\ensuremath{\msub{R}{\infty}}}%
+ {\mi@p{1.1}{1.0974}\timestento{7}}%
+ {\reciprocal\m}%
+ [\reciprocal\m]%
+ [\reciprocal\m]
+\newphysicsconstant{bohrradius}%
+ {\ensuremath{a_0}}%
+ {\mi@p{5.3}{5.2918}\timestento{-11}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{finestructure}%
+ {\ensuremath{\alpha}}%
+ {\mi@p{\frac{1}{137}}{7.2974\timestento{-3}}}%
+ {}%
+ []%
+ []
+\newphysicsconstant{avogadro}%
+ {\ensuremath{N_A}}%
+ {\mi@p{6.0}{6.0221}\timestento{23}}%
+ {\reciprocal\mol}%
+ [\reciprocal\mol]%
+ [\reciprocal\mol]
+\newphysicsconstant{universalgrav}%
+ {\ensuremath{G}}%
+ {\mi@p{6.7}{6.6738}\timestento{-11}}%
+ {\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}%
+ [\J\usk\m\per\kg\squared]%
+ [\N\usk\m\squared\per\kg\squared]
+\newphysicsconstant{surfacegravfield}%
+ {\ensuremath{g}}%
+ {\mi@p{9.8}{9.80}}%
+ {\m\usk\s\reciprocalsquared}%
+ [\N\per\kg]%
+ [\N\per\kg]
+\newphysicsconstant{clight}%
+ {\ensuremath{c}}%
+ {\mi@p{3}{2.9979}\timestento{8}}%
+ {\m\usk\reciprocal\s}%
+ [\m\per\s]%
+ [\m\per\s]
+\newphysicsconstant{clightinfeet}%
+ {\ensuremath{c}}%
+ {\mi@p{1}{0.9836}}%
+ {\text{ft}\usk\reciprocal{\text{n}\s}}%
+ [\text{ft}\per\text{n}\s]%
+ [\text{ft}\per\mathrm{n}\s]
+\newphysicsconstant{Ratom}%
+ {\ensuremath{r_{\text{atom}}}}%
+ {\tento{-10}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{Mproton}%
+ {\ensuremath{m_p}}%
+ {\mi@p{1.7}{1.6726}\timestento{-27}}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsconstant{Mneutron}%
+ {\ensuremath{m_n}}%
+ {\mi@p{1.7}{1.6749}\timestento{-27}}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsconstant{Mhydrogen}%
+ {\ensuremath{m_H}}%
+ {\mi@p{1.7}{1.6737}\timestento{-27}}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsconstant{Melectron}%
+ {\ensuremath{m_e}}%
+ {\mi@p{9.1}{9.1094}\timestento{-31}}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsconstant{echarge}%
+ {\ensuremath{e}}%
+ {\mi@p{1.6}{1.6022}\timestento{-19}}%
+ {\A\usk\s}%
+ [\C]%
+ [\C]
+\newphysicsconstant{Qelectron}%
+ {\ensuremath{Q_e}}%
+ {-\echargevalue}%
+ {\A\usk\s}%
+ [\C]%
+ [\C]
+\newphysicsconstant{qelectron}%
+ {\ensuremath{q_e}}%
+ {-\echargevalue}%
+ {\A\usk\s}%
+ [\C]%
+ [\C]
+\newphysicsconstant{Qproton}%
+ {\ensuremath{Q_p}}%
+ {+\echargevalue}%
+ {\A\usk\s}%
+ [\C]%
+ [\C]
+\newphysicsconstant{qproton}%
+ {\ensuremath{q_p}}%
+ {+\echargevalue}%
+ {\A\usk\s}%
+ [\C]%
+ [\C]
+\newphysicsconstant{MEarth}%
+ {\ensuremath{M_{\text{Earth}}}}%
+ {\mi@p{6.0}{5.9736}\timestento{24}}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsconstant{MMoon}%
+ {\ensuremath{M_{\text{Moon}}}}%
+ {\mi@p{7.3}{7.3459}\timestento{22}}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsconstant{MSun}%
+ {\ensuremath{M_{\text{Sun}}}}%
+ {\mi@p{2.0}{1.9891}\timestento{30}}%
+ {\kg}%
+ [\kg]%
+ [\kg]
+\newphysicsconstant{REarth}%
+ {\ensuremath{R_{\text{Earth}}}}%
+ {\mi@p{6.4}{6.3675}\timestento{6}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{RMoon}%
+ {\ensuremath{R_{\text{Moon}}}}%
+ {\mi@p{1.7}{1.7375}\timestento{6}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{RSun}%
+ {\ensuremath{R_{\text{Sun}}}}%
+ {\mi@p{7.0}{6.9634}\timestento{8}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{ESdist}%
+ {\magvectsub{r}{ES}}%
+ {\mi@p{1.5}{1.4960}\timestento{11}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{SEdist}%
+ {\magvectsub{r}{SE}}%
+ {\mi@p{1.5}{1.4960}\timestento{11}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{EMdist}%
+ {\magvectsub{r}{EM}}%
+ {\mi@p{3.8}{3.8440}\timestento{8}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{MEdist}%
+ {\magvectsub{r}{ME}}%
+ {\mi@p{3.8}{3.8440}\timestento{8}}%
+ {\m}%
+ [\m]%
+ [\m]
+\newphysicsconstant{LSun}%
+ {\ensuremath{L_{\text{Sun}}}}%
+ {\mi@p{3.8}{3.8460}\timestento{26}}%
+ {\m\squared\usk\kg\usk\s\reciprocalcubed}%
+ [\W]
+ [\J\per\s]
+\newphysicsconstant{TSun}%
+ {\ensuremath{T_{\text{Sun}}}}%
+ {\mi@p{5800}{5778}}%
+ {\K}%
+ [\K]%
+ [\K]
+\newphysicsconstant{MagSun}%
+ {\ensuremath{M_{\text{Sun}}}}%
+ {+4.83}%
+ {}%
+ []%
+ []
+\newphysicsconstant{magSun}%
+ {\ensuremath{m_{\text{Sun}}}}%
+ {-26.74}%
+ {}%
+ []%
+ []
\newcommand*{\coulombconstant}{\oofpez}
-\newphysicsconstant{oofpezcs}{\ensuremath{\frac{1}
-{\phantom{_o}4\pi\epsilon_0 c^2\phantom{_o}}}}{\tento{-7}}
-{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
-[\T\usk\m\squared][\N\usk\s\squared\per\C\squared]
\newcommand*{\altcoulombconstant}{\oofpezcs}
-\newphysicsconstant{vacuumpermittivity}{\ensuremath{\epsilon_0}}
-{\mi@p{9.0}{8.8542}\timestento{-12}}
-{\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}[\F\per\m]
-[\C\squared\per\N\usk\m\squared]
-\newphysicsconstant{mzofp}
-{\ensuremath{\frac{\phantom{_oo}\mu_0\phantom{_o}}{4\pi}}}
-{\tento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
-[\henry\per\m][\tesla\usk\m\per\A]
\newcommand*{\biotsavartconstant}{\mzofp}
-\newphysicsconstant{vacuumpermeability}{\ensuremath{\mu_0}}
-{4\pi\timestento{-7}}{\m\usk\kg\usk\s\reciprocalsquared\usk\A\reciprocalsquared}
-[\henry\per\m][\T\usk\m\per\A]
-\newphysicsconstant{boltzmann}{\ensuremath{k_B}}
-{\mi@p{1.4}{1.3806}\timestento{-23}}
-{\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}[\joule\per\K][\J\per\K]
\newcommand*{\boltzmannconstant}{\boltzmann}
-\newphysicsconstant{boltzmannineV}{\ensuremath{k_B}}
-{\mi@p{8.6}{8.6173}\timestento{-5}}
-{\eV\usk\reciprocal\K}[\eV\per\K][\eV\per\K]
-\newphysicsconstant{stefanboltzmann}{\ensuremath{\sigma}}
-{\mi@p{5.7}{5.6704}\timestento{-8}}
-{\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}[\W\per\m\squared\usk\K^4]
-[\W\per\m\squared\usk\K\quarted]
\newcommand*{\stefanboltzmannconstant}{\stefanboltzmann}
-\newphysicsconstant{planck}{\ensuremath{h}}{\mi@p{6.6}{6.6261}\timestento{-34}}
-{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
\newcommand*{\planckconstant}{\planck}
-\newphysicsconstant{planckineV}{\ensuremath{h}}{\mi@p{4.1}{4.1357}\timestento{-15}}
-{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
-\newphysicsconstant{planckbar}{\ensuremath{\hslash}}{\mi@p{1.1}{1.0546}\timestento{-34}}
-{\m\squared\usk\kg\usk\reciprocal\s}[\J\usk\s][\J\usk\s]
\newcommand*{\reducedplanckconstant}{\planckbar}
-\newphysicsconstant{planckbarineV}{\ensuremath{\hslash}}
-{\mi@p{6.6}{6.5821}\timestento{-16}}{\eV\usk\s}[\eV\usk\s][\eV\usk\s]
-\newphysicsconstant{planckc}{\ensuremath{hc}}{\mi@p{2.0}{1.9864}\timestento{-25}}
-{\m\cubed\usk\kg\usk\reciprocalsquare\s}[\J\usk\m][\J\usk\m]
\newcommand*{\planckconstanttimesc}{\planckc}
-\newphysicsconstant{planckcineV}{\ensuremath{hc}}
-{\mi@p{2.0}{1.9864}\timestento{-25}}{\eV\usk\text{n}\m}[\eV\usk\text{n}\m]
-[\eV\usk\text{n}\m]
-\newphysicsconstant{rydberg}{\ensuremath{\msub{R}{\infty}}}
-{\mi@p{1.1}{1.0974}\timestento{7}}{\reciprocal\m}[\reciprocal\m][\reciprocal\m]
\newcommand*{\rydbergconstant}{\rydberg}
-\newphysicsconstant{bohrradius}{\ensuremath{a_0}}{\mi@p{5.3}{5.2918}\timestento{-11}}
-{\m}[\m][\m]
-\newphysicsconstant{finestructure}{\ensuremath{\alpha}}
-{\mi@p{\frac{1}{137}}{7.2974\timestento{-3}}}{\relax}
\newcommand*{\finestructureconstant}{\finestructure}
-\newphysicsconstant{avogadro}{\ensuremath{N_A}}
-{\mi@p{6.0}{6.0221}\timestento{23}}{\reciprocal\mol}[\reciprocal\mol][\reciprocal\mol]
\newcommand*{\avogadroconstant}{\avogadro}
-\newphysicsconstant{universalgrav}{\ensuremath{G}}{\mi@p{6.7}{6.6738}\timestento{-11}}
-{\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}[\J\usk\m\per\kg\squared]
-[\N\usk\m\squared\per\kg\squared]
\newcommand*{\universalgravitationalconstant}{\universalgrav}
-\newphysicsconstant{surfacegravfield}{\ensuremath{g}}{\mi@p{9.8}{9.80}}
-{\m\usk\s\reciprocalsquared}[\N\per\kg][\N\per\kg]
\newcommand*{\earthssurfacegravitationalfield}{\surfacegravfield}
-\newphysicsconstant{clight}{\ensuremath{c}}
-{\mi@p{3}{2.9979}\timestento{8}}{\m\usk\reciprocal\s}[\m\per\s][\m\per\s]
\newcommand*{\photonconstant}{\clight}
-\newphysicsconstant{clightinfeet}{\ensuremath{c}}{\mi@p{1}{0.9836}}
-{\text{ft}\usk\reciprocal{\text{n}\s}}[\text{ft}\per\text{n}\s]
-[\text{ft}\per\mathrm{n}\s]
-\newphysicsconstant{Ratom}{\ensuremath{r_{\text{atom}}}}{\tento{-10}}{\m}[\m][\m]
-\newphysicsconstant{Mproton}{\ensuremath{m_p}}
-{\mi@p{1.7}{1.6726}\timestento{-27}}{\kg}[\kg][\kg]
-\newphysicsconstant{Mneutron}{\ensuremath{m_n}}
-{\mi@p{1.7}{1.6749}\timestento{-27}}{\kg}[\kg][\kg]
-\newphysicsconstant{Mhydrogen}{\ensuremath{m_H}}
-{\mi@p{1.7}{1.6737}\timestento{-27}}{\kg}[\kg][\kg]
-\newphysicsconstant{Melectron}{\ensuremath{m_e}}
-{\mi@p{9.1}{9.1094}\timestento{-31}}{\kg}[\kg][\kg]
-\newphysicsconstant{echarge}{\ensuremath{e}}
-{\mi@p{1.6}{1.6022}\timestento{-19}}{\A\usk\s}[\C][\C]
\newcommand*{\elementarycharge}{\echarge}
-\newphysicsconstant{Qelectron}{\ensuremath{Q_e}}{-\echargevalue}
-{\A\usk\s}[\C][\C]
-\newphysicsconstant{qelectron}{\ensuremath{q_e}}{-\echargevalue}
-{\A\usk\s}[\C][\C]
-\newphysicsconstant{Qproton}{\ensuremath{Q_p}}{+\echargevalue}
-{\A\usk\s}[\C][\C]
-\newphysicsconstant{qproton}{\ensuremath{q_p}}{+\echargevalue}
-{\A\usk\s}[\C][\C]
-\newphysicsconstant{MEarth}{\ensuremath{M_{\text{Earth}}}}
-{\mi@p{6.0}{5.9736}\timestento{24}}{\kg}[\kg][\kg]
-\newphysicsconstant{MMoon}{\ensuremath{M_{\text{Moon}}}}
-{\mi@p{7.3}{7.3459}\timestento{22}}{\kg}[\kg][\kg]
-\newphysicsconstant{MSun}{\ensuremath{M_{\text{Sun}}}}
-{\mi@p{2.0}{1.9891}\timestento{30}}
-{\kg}[\kg][\kg]
-\newphysicsconstant{REarth}{\ensuremath{R_{\text{Earth}}}}
-{\mi@p{6.4}{6.3675}\timestento{6}}{\m}[\m][\m]
-\newphysicsconstant{RMoon}{\ensuremath{R_{\text{Moon}}}}
-{\mi@p{1.7}{1.7375}\timestento{6}}{\m}[\m][\m]
-\newphysicsconstant{RSun}{\ensuremath{R_{\text{Sun}}}}{\mi@p{7.0}{6.9634}\timestento{8}}
-{\m}[\m][\m]
-\newphysicsconstant{ESdist}{\magvectsub{r}{ES}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m}
-[\m][\m]
-\newphysicsconstant{SEdist}{\magvectsub{r}{SE}}{\mi@p{1.5}{1.4960}\timestento{11}}{\m}
-[\m][\m]
\newcommand*{\EarthSundistance}{\ESdist}
\newcommand*{\SunEarthdistance}{\SEdist}
-\newphysicsconstant{EMdist}{\magvectsub{r}{EM}}
-{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m]
-\newphysicsconstant{MEdist}{\magvectsub{r}{ME}}
-{\mi@p{3.8}{3.8440}\timestento{8}}{\m}[\m][\m]
\newcommand*{\EarthMoondistance}{\ESdist}
\newcommand*{\MoonEarthdistance}{\SEdist}
-\newphysicsconstant{LSun}{\ensuremath{L_{\text{Sun}}}}
-{\mi@p{3.8}{3.8460}\timestento{26}}{\m\squared\usk\kg\usk\s\reciprocalcubed}[\W]
-[\J\per\s]
-\newphysicsconstant{TSun}{\ensuremath{T_{\text{Sun}}}}{\mi@p{5800}{5778}}{\K}[\K][\K]
-\newphysicsconstant{MagSun}{\ensuremath{M_{\text{Sun}}}}{+4.83}{}[][]
-\newphysicsconstant{magSun}{\ensuremath{m_{\text{Sun}}}}{-26.74}{}[][]
\newcommand*{\Lstar}[1][\(\star\)]{\ensuremath{L_{\text{#1}}}\xspace}
\newcommand*{\Lsolar}{\ensuremath{\Lstar[\(\odot\)]}\xspace}
\newcommand*{\Tstar}[1][\(\star\)]{\ensuremath{T_{\text{#1}}}\xspace}
@@ -1033,15 +1459,16 @@
\newcommand*{\foureighths}{\ensuremath{\frac{4}{8}}\xspace}
\newcommand*{\fourninths}{\ensuremath{\frac{4}{9}}\xspace}
\newcommand*{\fourtenths}{\ensuremath{\frac{4}{10}}\xspace}
-\newcommand*{\sumoverall}[1]{\ensuremath{\displaystyle\sum_{\substack{\text{\tiny{all }}
- \text{\tiny{{#1}}}}}}}
+\newcommand*{\sumoverall}[1]{\ensuremath{\displaystyle
+ \sum_{\substack{\text{\tiny{all }}\text{\tiny{{#1}}}}}}}
\newcommand*{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}}
-\newcommand*{\evalfromto}[3]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}^{#3}}}
+\newcommand*{\evalfromto}[3]{\ensuremath{%
+ \Bigg.{#1}\Bigg\rvert_{#2}^{#3}}}
\newcommand*{\evalat}[2]{\ensuremath{\Bigg.{#1}\Bigg\rvert_{#2}}}
\newcommand*{\evaluatedat}[1]{\ensuremath{\Bigg.\Bigg\rvert_{#1}}}
\newcommandx{\integral}[4][1,2,usedefault]{\ensuremath{%
- \int_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{\equal{#2}{}}{}{#4=#2}}}
- {#3}\dx{#4}}
+ \int_{\ifthenelse{\equal{#1}{}}{}{#4=#1}}^{\ifthenelse{%
+ \equal{#2}{}}{}{#4=#2}}}{#3}\dx{#4}}
\newcommand*{\opensurfaceintegral}[2]{\ensuremath{%
\iint\nolimits_{#1}\vectdotvect{#2}{\dirvect{n}}\dx{A}}}
\newcommand*{\closedsurfaceintegral}[2]{\ensuremath{%
@@ -1050,41 +1477,64 @@
\int\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}}
\newcommand*{\closedlineintegral}[2]{\ensuremath{%
\oint\nolimits_{#1}\vectdotvect{#2}{\dirvect{t}}\dx{\ell}}}
-\newcommand*{\volumeintegral}[2]{\ensuremath{\iiint\nolimits_{#1}{#2}\dx{V}}}
-\newcommandx{\dbydt}[1][1]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}t}}}
-\newcommandx{\DbyDt}[1][1]{\ensuremath{\frac{\Delta{#1}}{\Delta t}}}
-\newcommandx{\ddbydt}[1][1]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}t^{2}}}}
-\newcommandx{\DDbyDt}[1][1]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta t^{2}}}}
-\newcommandx{\pbypt}[1][1]{\ensuremath{\frac{\partial{#1}}{\partial t}}}
-\newcommandx{\ppbypt}[1][1]{\ensuremath{\frac{\partial^{2}{#1}}{\partial t^{2}}}}
-\newcommand*{\dbyd}[2]{\ensuremath{\frac{\mathrm{d}{#1}}{\mathrm{d}{#2}}}}
-\newcommand*{\DbyD}[2]{\ensuremath{\frac{\Delta{#1}}{\Delta{#2}}}}
-\newcommand*{\ddbyd}[2]{\ensuremath{\frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}}
-\newcommand*{\DDbyD}[2]{\ensuremath{\frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}}
-\newcommand*{\pbyp}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}}
-\newcommand*{\ppbyp}[2]{\ensuremath{\frac{\partial^{2}{#1}}{\partial{#2}^{2}}}}
+\newcommand*{\volumeintegral}[2]{\ensuremath{%
+ \iiint\nolimits_{#1}{#2}\dx{V}}}
+\newcommandx{\dbydt}[1][1]{\ensuremath{%
+ \frac{\mathrm{d}{#1}}{\mathrm{d}t}}}
+\newcommandx{\DbyDt}[1][1]{\ensuremath{%
+ \frac{\Delta{#1}}{\Delta t}}}
+\newcommandx{\ddbydt}[1][1]{\ensuremath{%
+ \frac{\mathrm{d}^{2}{#1}}{\mathrm{d}t^{2}}}}
+\newcommandx{\DDbyDt}[1][1]{\ensuremath{%
+ \frac{\Delta^{2}{#1}}{\Delta t^{2}}}}
+\newcommandx{\pbypt}[1][1]{\ensuremath{%
+ \frac{\partial{#1}}{\partial t}}}
+\newcommandx{\ppbypt}[1][1]{\ensuremath{%
+ \frac{\partial^{2}{#1}}{\partial t^{2}}}}
+\newcommand*{\dbyd}[2]{\ensuremath{\frac{%
+ \mathrm{d}{#1}}{\mathrm{d}{#2}}}}
+\newcommand*{\DbyD}[2]{\ensuremath{\frac{%
+ \Delta{#1}}{\Delta{#2}}}}
+\newcommand*{\ddbyd}[2]{\ensuremath{%
+ \frac{\mathrm{d}^{2}{#1}}{\mathrm{d}{#2}^{2}}}}
+\newcommand*{\DDbyD}[2]{\ensuremath{%
+ \frac{\Delta^{2}{#1}}{\Delta{#2}^{2}}}}
+\newcommand*{\pbyp}[2]{\ensuremath{%
+ \frac{\partial{#1}}{\partial{#2}}}}
+\newcommand*{\ppbyp}[2]{\ensuremath{%
+ \frac{\partial^{2}{#1}}{\partial{#2}^{2}}}}
\newcommand*{\seriesfofx}{\ensuremath{%
-f(x) \approx f(a) + \frac{f^\prime (a)}{1!}(x-a) + \frac{f^{\prime\prime}(a)}{2!}(x-a)^2
-+ \frac{f^{\prime\prime\prime}(a)}{3!}(x-a)^3 + \ldots}\xspace}
+ f(x) \approx f(a) + \frac{f^\prime (a)}{1!}(x-a) + \frac{f^{\prime\prime}(a)}{2!}
+ (x-a)^2 + \frac{f^{\prime\prime\prime}(a)}{3!}(x-a)^3 + \ldots}\xspace}
\newcommand*{\seriesexpx}{\ensuremath{%
-e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots}\xspace}
+ e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots}\xspace}
\newcommand*{\seriessinx}{\ensuremath{%
-\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots}\xspace}
+ \sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots}\xspace}
\newcommand*{\seriescosx}{\ensuremath{%
-\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots}\xspace}
+ \cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots}\xspace}
\newcommand*{\seriestanx}{\ensuremath{%
-\tan x \approx x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots}\xspace}
+ \tan x \approx x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots}\xspace}
\newcommand*{\seriesatox}{\ensuremath{%
-a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ldots}
-\xspace}
+ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + %
+ \ldots}\xspace}
\newcommand*{\serieslnoneplusx}{\ensuremath{%
-\ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - \frac{x^4}{4} \pm
-\ldots}\xspace}
+ \ln(1 \pm x) \approx \pm\; x - \frac{x^2}{2} \pm \frac{x^3}{3} - %
+ \frac{x^4}{4} \pm \ldots}\xspace}
\newcommand*{\binomialseries}{\ensuremath{%
-(1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace}
+ (1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots}\xspace}
\newcommand*{\gradient}{\ensuremath{\boldsymbol{\nabla}}}
\newcommand*{\divergence}{\ensuremath{\boldsymbol{\nabla}\bullet}}
\newcommand*{\curl}{\ensuremath{\boldsymbol{\nabla\times}}}
+\newcommand{\taigrad}{\ensuremath{\nabla}}%
+\newcommand{\taisvec}{\ensuremath{%
+ \stackinset{c}{0.07ex}{c}{0.1ex}{\tiny$-$}{$\nabla$}}
+}%
+\newcommand{\taidivg}{\ensuremath{%
+ \stackinset{c}{0.07ex}{c}{0.1ex}{$\cdot$}{$\nabla$}}
+}%
+\newcommand{\taicurl}{\ensuremath{%
+ \stackinset{c}{0.04ex}{c}{0.32ex}{\tiny$\times$}{$\nabla$}}
+}%
\newcommand*{\laplacian}{\ensuremath{\boldsymbol{\nabla}^2}}
\newcommand*{\dalembertian}{\ensuremath{\boldsymbol{\Box}}}
\newcommand*{\diracdelta}[1]{\ensuremath{\delta}(#1)}
@@ -1113,18 +1563,18 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
{\newcommand*{\cB}{\ensuremath{c\mskip -3.00mu B}}}}
\newcommand*{\newpi}{\ensuremath{\pi\mskip -7.8mu\pi}}
\newcommand*{\scripty}[1]{\ensuremath{\mathcalligra{#1}}}
+\newcommand*{\Lagr}{\ensuremath{\mathcal{L}}}
\newcommandx{\flux}[1][1]{\ensuremath{\ssub{\Phi}{#1}}}
-\@ifpackageloaded{commath}{%
- \typeout{mandi: Package commath detected. Its \protect\abs\space command will
- be used.}
-}{%
- \typeout{mandi: Package commath not detected. mandi's \protect\abs\space command
- will be used.}
- \newcommand*{\abs}[1]{\ensuremath{\left\lvert{#1}\right\rvert}}
-}%
-\newcommand*{\magof}[1]{\ensuremath{\left\lVert{#1}\right\rVert}}
-\newcommand*{\dimsof}[1]{\ensuremath{\left[{#1}\right]}}
-\newcommand*{\unitsof}[1]{\ensuremath{\left[{#1}\right]_u}}
+\newcommand*{\absof}[1]{\ensuremath{%
+ \left\lvert{\ifblank{#1}{\:\cdot\:}{#1}}\right\rvert}}
+\newcommand*{\inparens}[1]{\ensuremath{%
+ \left({\ifblank{#1}{\:\cdot\:}{#1}}\right)}}
+\newcommand*{\magof}[1]{\ensuremath{%
+ \left\lVert{\ifblank{#1}{\:\cdot\:}{#1}}\right\rVert}}
+\newcommand*{\dimsof}[1]{\ensuremath{%
+ \left[{\ifblank{#1}{\:\cdot\:}{#1}}\right]}}
+\newcommand*{\unitsof}[1]{\ensuremath{%
+ \left[{\ifblank{#1}{\:\cdot\:}{#1}}\right]_u}}
\newcommand*{\changein}[1]{\ensuremath{\delta{#1}}}
\newcommand*{\Changein}[1]{\ensuremath{\Delta{#1}}}
\newcommandx{\scin}[3][1,3=\!\!,usedefault]{\ensuremath{%
@@ -1142,8 +1592,10 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
{\unit{10^{#1}}{#2}}}}
\newcommand*{\ee}[2]{\texttt{{#1}e{#2}}}
\newcommand*{\EE}[2]{\texttt{{#1}E{#2}}}
-\newcommand*{\dms}[3]{\ensuremath{\indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}}
-\newcommand*{\hms}[3]{\ensuremath{{#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}}
+\newcommand*{\dms}[3]{\ensuremath{%
+ \indegrees{#1}\inarcminutes{#2}\inarcseconds{#3}}}
+\newcommand*{\hms}[3]{\ensuremath{%
+ {#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}}
\newcommand*{\clockreading}{\hms}
\newcommand*{\latitude}[1]{\unit{#1}{\degree}}
\newcommand*{\latitudeN}[1]{\unit{#1}{\degree\;\mathrm{N}}}
@@ -1157,8 +1609,10 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand*{\msub}[2]{\ensuremath{#1_{#2}}}
\newcommand*{\msup}[2]{\ensuremath{#1^{#2}}}
\newcommand*{\msud}[3]{\ensuremath{#1^{#2}_{#3}}}
-\newcommand*{\levicivita}[1]{\ensuremath{\varepsilon_{\scriptscriptstyle{#1}}}}
-\newcommand*{\kronecker}[1]{\ensuremath{\delta_{\scriptscriptstyle{#1}}}}
+\newcommand*{\levicivita}[1]{\ensuremath{%
+ \varepsilon_{\scriptscriptstyle{#1}}}}
+\newcommand*{\kronecker}[1]{\ensuremath{%
+ \delta_{\scriptscriptstyle{#1}}}}
\newcommand*{\xaxis}{\ensuremath{x\text{-axis}}\xspace}
\newcommand*{\yaxis}{\ensuremath{y\text{-axis}}\xspace}
\newcommand*{\zaxis}{\ensuremath{z\text{-axis}}\xspace}
@@ -1179,9 +1633,9 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand*{\ffourthroot}[1]{\ensuremath{{#1}^\onefourth}}
\newcommand*{\ffifthroot}[1]{\ensuremath{{#1}^\onefifth}}
\newcommand*{\relgamma}[1]{\ensuremath{%
- \frac{1}{\sqrt{1-(\frac{#1}{c})\squared}}}}
+ \frac{1}{\sqrt{1-\inparens{\frac{#1}{c}}\squared}}}}
\newcommand*{\frelgamma}[1]{\ensuremath{%
- (1-\frac{{#1}\squared}{c\squared})^{-\onehalf}}}
+ \inparens{1-\frac{{#1}\squared}{c\squared}}^{-\onehalf}}}
\newcommand*{\oosqrtomxs}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}\squared}}}}
\newcommand*{\oosqrtomx}[1]{\ensuremath{\frac{1}{\sqrt{1-{#1}}}}}
\newcommand*{\ooomx}[1]{\ensuremath{\frac{1}{1-{#1}}}}
@@ -1208,60 +1662,76 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand*{\platerthan}{\pwordoperator{later}{than}\xspace}
\newcommand*{\pforevery}{\pwordoperator{for}{every}\xspace}
\newcommand*{\defines}{\ensuremath{\stackrel{\text{\tiny{def}}}{=}}\xspace}
-\newcommand*{\inframe}[1][\relax]{\ensuremath{\xrightarrow[\text\tiny{\mathcal #1}]{}}
- \xspace}
-\newcommand*{\associates}{\ensuremath{\xrightarrow{\text{\tiny{assoc}}}}\xspace}
-\newcommand*{\becomes}{\ensuremath{\xrightarrow{\text{\tiny{becomes}}}}\xspace}
-\newcommand*{\rrelatedto}[1]{\ensuremath{\xLongrightarrow{\text{\tiny{#1}}}}}
-\newcommand*{\lrelatedto}[1]{\ensuremath{\xLongleftarrow[\text{\tiny{#1}}]{}}}
+\newcommand*{\inframe}[1][\relax]{\ensuremath{%
+ \xrightarrow[\text\tiny{\mathcal #1}]{}}\xspace}
+\newcommand*{\associates}{\ensuremath{%
+ \xrightarrow{\text{\tiny{assoc}}}}\xspace}
+\newcommand*{\becomes}{\ensuremath{%
+ \xrightarrow{\text{\tiny{becomes}}}}\xspace}
+\newcommand*{\rrelatedto}[1]{\ensuremath{%
+ \xLongrightarrow{\text{\tiny{#1}}}}}
+\newcommand*{\lrelatedto}[1]{\ensuremath{%
+ \xLongleftarrow[\text{\tiny{#1}}]{}}}
\newcommand*{\brelatedto}[2]{\ensuremath{%
\xLongleftrightarrow[\text{\tiny{#1}}]{\text{\tiny{#2}}}}}
\newcommand*{\momentumprinciple}{\ensuremath{%
\vectsub{p}{sys,final}=\vectsub{p}{sys,initial}+\Fnetsys\Delta t}}
\newcommand*{\LHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,final}}}
-\newcommand*{\RHSmomentumprinciple}{\ensuremath{\vectsub{p}{sys,initial}+\Fnetsys
- \Delta t}}
-\newcommand*{\momentumprinciplediff}{\ensuremath{\Dvectsub{p}{sys}=\Fnetsys\Delta t}}
-\newcommand*{\energyprinciple}{\ensuremath{\ssub{E}{sys,final}=\ssub{E}{sys,initial}+W
- +Q}}
+\newcommand*{\RHSmomentumprinciple}{\ensuremath{%
+ \vectsub{p}{sys,initial}+\Fnetsys\Delta t}}
+\newcommand*{\momentumprinciplediff}{\ensuremath{%
+ \Dvectsub{p}{sys}=\Fnetsys\Delta t}}
+\newcommand*{\energyprinciple}{\ensuremath{%
+ \ssub{E}{sys,final}=\ssub{E}{sys,initial}+W+Q}}
\newcommand*{\LHSenergyprinciple}{\ensuremath{\ssub{E}{sys,final}}}
\newcommand*{\RHSenergyprinciple}{\ensuremath{\ssub{E}{sys,initial}+W+Q}}
\newcommand*{\energyprinciplediff}{\ensuremath{\Delta\ssub{E}{sys}=W+Q}}
-\newcommand*{\angularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}=
+\newcommand*{\angularmomentumprinciple}{\ensuremath{%
+ \vectsub{L}{\(A\),sys,final}=\vectsub{L}{\(A\),sys,initial}+\Tsub{net}\Delta t}}
+\newcommand*{\LHSangularmomentumprinciple}{\ensuremath{%
+ \vectsub{L}{\(A\),sys,final}}}
+\newcommand*{\RHSangularmomentumprinciple}{\ensuremath{%
\vectsub{L}{\(A\),sys,initial}+\Tsub{net}\Delta t}}
-\newcommand*{\LHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,final}}}
-\newcommand*{\RHSangularmomentumprinciple}{\ensuremath{\vectsub{L}{\(A\),sys,initial}+
- \Tsub{net}\Delta t}}
-\newcommand*{\angularmomentumprinciplediff}{\ensuremath{\Dvectsub{L}{\(A\),sys}=
- \Tsub{net}\Delta t}}
+\newcommand*{\angularmomentumprinciplediff}{\ensuremath{%
+ \Dvectsub{L}{\(A\),sys}=\Tsub{net}\Delta t}}
\newcommand*{\gravitationalinteraction}{\ensuremath{%
- \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{\magvectsub{r}{12}\squared}
- (-\dirvectsub{r}{12})}}
+ \universalgravmathsymbol\frac{\msub{M}{1}\msub{M}{2}}{%
+ \magvectsub{r}{12}\squared}(-\dirvectsub{r}{12})}}
\newcommand*{\electricinteraction}{\ensuremath{%
\oofpezmathsymbol\frac{\msub{Q}{1}\msub{Q}{2}}{\magvectsub{r}{12}\squared}
\dirvectsub{r}{12}}}
\newcommand*{\springinteraction}{\ensuremath{\ks\magvect{s}(-\dirvect{s})}}
\newcommand*{\Bfieldofparticle}{\ensuremath{%
- \mzofpmathsymbol\frac{Q\magvect{v}}{\magvect{r}\squared}\dirvect{v}\times\dirvect{r}}}
+ \mzofpmathsymbol\frac{Q\magvect{v}}{\magvect{r}\squared}\dirvect{v}\times
+ \dirvect{r}}}
\newcommand*{\Efieldofparticle}{\ensuremath{%
\oofpezmathsymbol\frac{Q}{\magvect{r}\squared}\dirvect{r}}}
-\newcommandx{\Esys}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{sys}}{\ssub{E}{sys,#1}}}
-\newcommandx{\Us}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(s\)}}{\ssub{U}{\(s\),#1}}}
-\newcommandx{\Ug}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(g\)}}{\ssub{U}{\(g\),#1}}}
-\newcommandx{\Ue}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{U}{\(e\)}}{\ssub{U}{\(e\),#1}}}
+\newcommandx{\Esys}[1][1]{\ifthenelse{%
+ \equal{#1}{}}{\ssub{E}{sys}}{\ssub{E}{sys,#1}}}
+\newcommandx{\Us}[1][1]{\ifthenelse{%
+ \equal{#1}{}}{\ssub{U}{\(s\)}}{\ssub{U}{\(s\),#1}}}
+\newcommandx{\Ug}[1][1]{\ifthenelse{%
+ \equal{#1}{}}{\ssub{U}{\(g\)}}{\ssub{U}{\(g\),#1}}}
+\newcommandx{\Ue}[1][1]{\ifthenelse{%
+ \equal{#1}{}}{\ssub{U}{\(e\)}}{\ssub{U}{\(e\),#1}}}
\newcommandx{\Ktrans}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{trans}}
{\ssub{K}{trans,#1}}}
-\newcommandx{\Krot}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{rot}}{\ssub{K}{rot,#1}}}
-\newcommandx{\Kvib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{K}{vib}}{\ssub{K}{vib,#1}}}
+\newcommandx{\Krot}[1][1]{\ifthenelse{%
+ \equal{#1}{}}{\ssub{K}{rot}}{\ssub{K}{rot,#1}}}
+\newcommandx{\Kvib}[1][1]{\ifthenelse{%
+ \equal{#1}{}}{\ssub{K}{vib}}{\ssub{K}{vib,#1}}}
\newcommandx{\Eparticle}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{particle}}
{\ssub{E}{particle,#1}}}
\newcommandx{\Einternal}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{internal}}
{\ssub{E}{internal,#1}}}
-\newcommandx{\Erest}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{rest}}{\ssub{E}{rest,#1}}}
-\newcommandx{\Echem}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{chem}}{\ssub{E}{chem,#1}}}
+\newcommandx{\Erest}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{rest}}{\ssub{E}
+ {rest,#1}}}
+\newcommandx{\Echem}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{chem}}{\ssub{E}
+ {chem,#1}}}
\newcommandx{\Etherm}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{therm}}
{\ssub{E}{therm,#1}}}
-\newcommandx{\Evib}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{vib}}{\ssub{E}{vib,#1}}}
+\newcommandx{\Evib}[1][1]{\ifthenelse{%
+ \equal{#1}{}}{\ssub{E}{vib}}{\ssub{E}{vib,#1}}}
\newcommandx{\Ephoton}[1][1]{\ifthenelse{\equal{#1}{}}{\ssub{E}{photon}}
{\ssub{E}{photon,#1}}}
\newcommand*{\DEsys}{\Changein\Esys}
@@ -1399,19 +1869,25 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\newcommand*{\RHSmaxwellivdif}{\ensuremath{\vacuumpermeabilitymathsymbol%
\vacuumpermittivitymathsymbol\pbypt[\vect{E}]+%
\vacuumpermeabilitymathsymbol\vectsub{J}{\(e\)}}}
-\newcommand*{\RHSmaxwellivdiffree}{\ensuremath{\vacuumpermeabilitymathsymbol\vacuumpermittivitymathsymbol\pbypt[\vect{E}]}}
+\newcommand*{\RHSmaxwellivdiffree}{\ensuremath{\vacuumpermeabilitymathsymbol
+ \vacuumpermittivitymathsymbol\pbypt[\vect{E}]}}
\newcommand*{\maxwellivdif}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdif}}
\newcommand*{\maxwellivdiffree}{\ensuremath{\LHSmaxwellivdif=\RHSmaxwellivdiffree}}
\newcommand*{\RHSlorentzforce}{\ensuremath{\msub{q}{e}\left(\vect{E}+%
\vectcrossvect{\vect{v}}{\vect{B}}\right)}}
\newcommand*{\RHSlorentzforcem}{\ensuremath{\RHSlorentzforce+\msub{q}{m}\left(%
\vect{B}-\vectcrossvect{\vect{v}}{\frac{\vect{E}}{c^2}}\right)}}
+\newcommandx{\eulerlagrange}[1][1={q_i},usedefault]{\ensuremath{%
+ \pbyp{\mathcal{L}}{#1}-\dbydt\inparens{\pbyp{\mathcal{L}}{\dot{#1}}} = 0}}
+\newcommandx{\Eulerlagrange}[1][1={q_i},usedefault]{\ensuremath{%
+ \DbyD{\mathcal{L}}{#1}-\DbyDt\inparens{\DbyD{\mathcal{L}}{\dot{#1}}} = 0}}
\newcommand*{\vpythonline}{\lstinline[style=vpython]}
-\lstnewenvironment{vpythonblock}{\lstset{style=vpython}}{}
-\newcommand*{\vpythonfile}{\lstinputlisting[style=vpython]}
+\lstnewenvironment{vpythonblock}[1][]{\lstset{style=vpython,caption={#1}}}{}
+\newcommand*{\vpythonfile}[1][]{\newpage\lstinputlisting[style=vpython,caption={#1}]}
\newcommandx{\emptyanswer}[2][1=0.80,2=0.1,usedefault]
{\begin{minipage}{#1\textwidth}\hfill\vspace{#2\textheight}\end{minipage}}
-\newenvironmentx{activityanswer}[5][1=white,2=black,3=black,4=0.90,5=0.10,usedefault]{%
+\newenvironmentx{activityanswer}[5][1=white,2=black,3=black,4=0.90,%
+ 5=0.10,usedefault]{%
\def\skipper{#5}%
\def\response@fbox{\fcolorbox{#2}{#1}}%
\begin{center}%
@@ -1438,7 +1914,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\response@fbox{\usebox{\@tempboxa}}%
\end{center}%
}%
-\newcommandx{\emptybox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10,usedefault]
+\newcommandx{\emptybox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.10,usedefault]%
{\begin{center}%
\fcolorbox{#3}{#2}{%
\begin{minipage}[c][#6\textheight][c]{#5\textwidth}\color{#4}%
@@ -1447,8 +1924,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
-\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,
-7=0.0,usedefault]
+\newcommandx{\adjemptybox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=,%
+ 7=0.0,usedefault]
{\begin{center}%
\fcolorbox{#3}{#2}{%
\begin{minipage}[c]{#5\textwidth}\color{#4}%
@@ -1459,7 +1936,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\vspace{\baselineskip}%
\end{center}%
}%
-\newcommandx{\answerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,usedefault]
+\newcommandx{\answerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.1,usedefault]%
{\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1468,8 +1946,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\adjanswerbox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.1,7=0.0,%
- usedefault]%
+\newcommandx{\adjanswerbox}[7][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.1,7=0.0,usedefault]%
{\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1478,8 +1956,8 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\adjemptybox[#1][#2][#3][#4][#5][#6][#7]}%
}%
-\newcommandx{\smallanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.10,%
- usedefault]%
+\newcommandx{\smallanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.10,usedefault]%
{\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1488,8 +1966,24 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\mediumanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.20,%
- usedefault]{%
+\newcommandx{\smallanswerform}[4][1=q1,2=Response,3=0.10,4=0.90,usedefault]{%
+ \vspace{\baselineskip}%
+ \begin{Form}
+ \begin{center}%
+ \TextField[value={#2},%
+ name=#1,%
+ width=#4\linewidth,%
+ height=#3\textheight,%
+ backgroundcolor=formcolor,%
+ multiline=true,%
+ charsize=10pt,%
+ bordercolor=black]{}%
+ \end{center}%
+ \end{Form}%
+ \vspace{\baselineskip}%
+}%
+\newcommandx{\mediumanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.20,usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1498,8 +1992,24 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.25,%
- usedefault]{%
+\newcommandx{\mediumanswerform}[4][1=q1,2=Response,3=0.20,4=0.90,usedefault]{%
+ \vspace{\baselineskip}%
+ \begin{Form}
+ \begin{center}%
+ \TextField[value={#2},%
+ name=#1,%
+ width=#4\linewidth,%
+ height=#3\textheight,%
+ backgroundcolor=formcolor,%
+ multiline=true,%
+ charsize=10pt,%
+ bordercolor=black]{}%
+ \end{center}%
+ \end{Form}%
+ \vspace{\baselineskip}%
+}%
+\newcommandx{\largeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.25,usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1508,8 +2018,24 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.33,%
- usedefault]{%
+\newcommandx{\largeanswerform}[4][1=q1,2=Response,3=0.25,4=0.90,usedefault]{%
+ \vspace{\baselineskip}%
+ \begin{Form}
+ \begin{center}%
+ \TextField[value={#2},%
+ name=#1,%
+ width=#4\linewidth,%
+ height=#3\textheight,%
+ backgroundcolor=formcolor,%
+ multiline=true,%
+ charsize=10pt,%
+ bordercolor=black]{}%
+ \end{center}%
+ \end{Form}%
+ \vspace{\baselineskip}%
+}%
+\newcommandx{\largeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.33,usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1518,8 +2044,25 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.50,%
+\newcommandx{\largeranswerform}[4][1=q1,2=Response,3=0.33,4=0.90,%
usedefault]{%
+ \vspace{\baselineskip}%
+ \begin{Form}
+ \begin{center}%
+ \TextField[value={#2},%
+ name=#1,%
+ width=#4\linewidth,%
+ height=#3\textheight,%
+ backgroundcolor=formcolor,%
+ multiline=true,%
+ charsize=10pt,%
+ bordercolor=black]{}%
+ \end{center}%
+ \end{Form}%
+ \vspace{\baselineskip}%
+}%
+\newcommandx{\hugeanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.50,usedefault]{%
\ifthenelse{\equal{#1}{}}
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1528,8 +2071,24 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=0.75,%
- usedefault]{%
+\newcommandx{\hugeanswerform}[4][1=q1,2=Response,3=0.50,4=0.90,usedefault]{%
+ \vspace{\baselineskip}%
+ \begin{Form}
+ \begin{center}%
+ \TextField[value={#2},%
+ name=#1,%
+ width=#4\linewidth,%
+ height=#3\textheight,%
+ backgroundcolor=formcolor,%
+ multiline=true,%
+ charsize=10pt,%
+ bordercolor=black]{}%
+ \end{center}%
+ \end{Form}%
+ \vspace{\baselineskip}%
+}%
+\newcommandx{\hugeranswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=0.75,usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1538,8 +2097,24 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
-\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,6=1.00,%
- usedefault]{%
+\newcommandx{\hugeranswerform}[4][1=q1,2=Response,3=0.75,4=0.90,usedefault]{%
+ \vspace{\baselineskip}%
+ \begin{Form}
+ \begin{center}%
+ \TextField[value={#2},%
+ name=#1,%
+ width=#4\linewidth,%
+ height=#3\textheight,%
+ backgroundcolor=formcolor,%
+ multiline=true,%
+ charsize=10pt,%
+ bordercolor=black]{}%
+ \end{center}%
+ \end{Form}%
+ \vspace{\baselineskip}%
+}%
+\newcommandx{\fullpageanswerbox}[6][1=\hfill,2=white,3=black,4=black,5=0.90,%
+ 6=1.00,usedefault]{%
\ifthenelse{\equal{#1}{}}%
{\begin{center}%
\fcolorbox{#3}{#2}{%
@@ -1548,9 +2123,26 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{center}}%
{\emptybox[#1][#2][#3][#4][#5][#6]}%
}%
+\newcommandx{\fullpageanswerform}[4][1=q1,2=Response,3=1.00,4=0.90,usedefault]{%
+ \vspace{\baselineskip}%
+ \begin{Form}
+ \begin{center}%
+ \TextField[value={#2},%
+ name=#1,%
+ width=#4\linewidth,%
+ height=#3\textheight,%
+ backgroundcolor=formcolor,%
+ multiline=true,%
+ charsize=10pt,%
+ bordercolor=black]{}%
+ \end{center}%
+ \end{Form}%
+ \vspace{\baselineskip}%
+}%
\mdfdefinestyle{miinstructornotestyle}{%
hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
+ nobreak=true,
frametitle={INSTRUCTOR NOTE},
frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=cyan!25,
@@ -1565,6 +2157,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\mdfdefinestyle{mistudentnotestyle}{%
hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
+ nobreak=true,
frametitle={STUDENT NOTE},
frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=cyan!25,
@@ -1579,6 +2172,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\mdfdefinestyle{miderivationstyle}{%
hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10,
+ nobreak=true,
frametitle={DERIVATION},
frametitlebackgroundcolor=orange!60,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=orange!25,
@@ -1586,6 +2180,14 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\NewEnviron{miderivation}{%
\begin{mdframed}[style=miderivationstyle]
\setcounter{equation}{0}
+ \begin{align}
+ \BODY
+ \end{align}
+ \end{mdframed}
+}%
+\NewEnviron{miderivation*}{%
+ \begin{mdframed}[style=miderivationstyle]
+ \setcounter{equation}{0}
\begin{align*}
\BODY
\end{align*}
@@ -1594,6 +2196,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\mdfdefinestyle{bwinstructornotestyle}{%
hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
+ nobreak=true,
frametitle={INSTRUCTOR NOTE},
frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
@@ -1608,6 +2211,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\mdfdefinestyle{bwstudentnotestyle}{%
hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10,
+ nobreak=true,
frametitle={STUDENT NOTE},
frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
@@ -1622,6 +2226,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\mdfdefinestyle{bwderivationstyle}{%
hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip,
leftmargin=0pt,rightmargin=0pt,linewidth=1,roundcorner=10,
+ nobreak=true,
frametitle={DERIVATION},
frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1,
backgroundcolor=gray!20,
@@ -1629,18 +2234,35 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\NewEnviron{bwderivation}{%
\begin{mdframed}[style=bwderivationstyle]
\setcounter{equation}{0}
+ \begin{align}
+ \BODY
+ \end{align}
+ \end{mdframed}
+}%
+\NewEnviron{bwderivation*}{%
+ \begin{mdframed}[style=bwderivationstyle]
+ \setcounter{equation}{0}
\begin{align*}
\BODY
\end{align*}
\end{mdframed}
}%
\NewEnviron{mysolution}{%
+ \setcounter{equation}{0}
+ \begin{align}
+ \BODY
+ \end{align}
+}%
+\NewEnviron{mysolution*}{%
+ \setcounter{equation}{0}
\begin{align*}
\BODY
\end{align*}
}%
\newcommand*{\checkpoint}{%
- \vspace{1cm}\begin{center}|--------- CHECKPOINT ---------|\end{center}}%
+ \vspace{1cm}\begin{center}%
+ \colorbox{yellow!80}{|--------- CHECKPOINT ---------|}%
+ \end{center}}%
\newcommand*{\image}[2]{%
\begin{figure}[h!]
\begin{center}%
@@ -1649,7 +2271,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\label{#1}%
\end{center}%
\end{figure}}
-\newcommand*{\sneakyone}[1]{\ensuremath{\cancelto{1}{\frac{#1}{#1}}}}
+\newcommand*{\sneakyone}[1]{\ensuremath{\cancelto{1}{#1}}}
\newcommand*{\chkquantity}[1]{%
\begin{center}
\begin{tabular}{C{4.5cm} C{4cm} C{4cm} C{4cm}}
@@ -1659,6 +2281,7 @@ a^x \approx 1 + x \ln{a} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \ld
\end{tabular}
\end{center}
}%
+\newcommand*{\qed}{\ensuremath{\text{ Q.E.D.}}}
\newcommand*{\chkconstant}[1]{%
\begin{center}
\begin{tabular}{C{4cm} C{2cm} C{3cm} C{3cm} C{3cm} C{3cm}}