summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2013-01-02 22:58:30 +0000
committerKarl Berry <karl@freefriends.org>2013-01-02 22:58:30 +0000
commit974049fc5bfe6f05001c1e9ea136448852679a0e (patch)
treef4d7cc769bb15ab31990f90060b7d6ba1688fadd /Master/texmf-dist/source/latex
parent8b511d7868b89cd4504656503dc9e3f4f8c2a1f6 (diff)
new latex package xpicture (2jan13)
git-svn-id: svn://tug.org/texlive/trunk@28704 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex')
-rw-r--r--Master/texmf-dist/source/latex/xpicture/xpicture.dtx3570
1 files changed, 3570 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/xpicture/xpicture.dtx b/Master/texmf-dist/source/latex/xpicture/xpicture.dtx
new file mode 100644
index 00000000000..65aab3c5fca
--- /dev/null
+++ b/Master/texmf-dist/source/latex/xpicture/xpicture.dtx
@@ -0,0 +1,3570 @@
+% \iffalse meta-comment
+%<*internal>
+\begingroup
+\input docstrip.tex
+\keepsilent
+\declarepreamble\packagepreamble
+********************************************************************
+The xpicture package
+Copyright (C) 2010, 2011, 2012 by Robert Fuster <rfuster@mat.upv.es>
+All rights reserved
+
+This file may be distributed and/or modified under the
+conditions of the LaTeX Project Public License, either version 1.3c
+of this license or (at your option) any later version.
+The latest version of this license is in
+
+ http://www.latex-project.org/lppl.txt
+
+and version 1.3c or later is part of all distributions of LaTeX
+version 2005/12/01 or later.
+********************************************************************
+\endpreamble
+\declarepreamble\cfgpreamble
+************************************************************************
+This is xpicture.cfgxmpl, part of the xpicture distribution
+Copyright (C) 2010, 2011, 2012 by Robert Fuster <rfuster@mat.upv.es>
+All rights reserved
+
+ This is a model for the xpicture configuration file
+
+You should not modify this file.
+To costumize your xpicture installation, make a copy of this file,
+save it as 'xpicture.cfg' and modify this new file at your convenience.
+************************************************************************
+
+\endpreamble
+\postamble
+\endpostamble
+
+\askforoverwritefalse
+\generate{\usepreamble\packagepreamble
+ \file{xpicture.sty}{\from{xpicture.dtx}{xpicture,defaults}}
+ \usepreamble\cfgpreamble
+ \file{xpicture.cfgxmpl}{\from{xpicture.dtx}{defaults,cfg}}
+ }
+
+\def\tmpa{plain}
+\ifx\tmpa\fmtname\endgroup\expandafter\bye\fi
+\endgroup
+%</internal>
+%
+% Copyright (C) 2010, 2011, 2012 by Robert Fuster <rfuster@mat.upv.es>
+%
+% This file may be distributed and/or modified under the
+% conditions of the LaTeX Project Public License, either version 1.3c
+% of this license or (at your option) any later version.
+% The latest version of this license is in
+%
+% http://www.latex-project.org/lppl.txt
+%
+% and version 1.3c or later is part of all distributions of LaTeX
+% version 2005/12/01 or later.
+%
+% \fi
+% \CheckSum{2978}
+%% \CharacterTable
+%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
+%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
+%% Digits \0\1\2\3\4\5\6\7\8\9
+%% Exclamation \! Double quote \" Hash (number) \#
+%% Dollar \$ Percent \% Ampersand \&
+%% Acute accent \' Left paren \( Right paren \)
+%% Asterisk \* Plus \+ Comma \,
+%% Minus \- Point \. Solidus \/
+%% Colon \: Semicolon \; Less than \<
+%% Equals \= Greater than \> Question mark \?
+%% Commercial at \@ Left bracket \[ Backslash \\
+%% Right bracket \] Circumflex \^ Underscore \_
+%% Grave accent \` Left brace \{ Vertical bar \|
+%% Right brace \} Tilde \~}
+%
+% \iffalse
+%<*driver>
+\documentclass{ltxdoc}
+\ProvidesFile{xpicture.dtx}
+ [2012/12/17 v.1.2a documented xpicture package]
+\GetFileInfo{xpicture.dtx}
+\usepackage[lmargin=5cm,rmargin=2cm]{geometry}
+
+\usepackage{xpicture}
+
+\newcommand{\environ}[1]{\textnormal{\texttt{#1}}}
+\newcommand{\package}[1]{\textnormal{\texttt{#1}}}
+\newcommand{\option}[1]{\textnormal{\texttt{#1}}}
+\newcommand{\optionindex}[1]{%
+ \index{#1=\texttt{#1} (package option)|usage}%
+ \index{options:>#1=\texttt{#1}|usage}}
+
+\newcommand{\starred}{\textnormal{\texttt{*}}}
+\newcommand{\Parg}[1]{\textnormal{\texttt(\textit{#1}\texttt)}}
+\makeatletter
+\newcommand{\myDescribeMacro}{\@ifstar
+ \xpct@myDescribeMacrostar
+ \xpct@myDescribeMacro
+ }
+\newcommand{\xpct@myDescribeMacro}[1]{\smallskip\par\DescribeMacro{#1}}
+\newcommand{\xpct@myDescribeMacrostar}[1]{\myDescribeMacro{#1}{ }}
+\newcommand{\myDescribeEnv}[1]{\smallskip\par
+ \DescribeEnv{#1}{ }\cs{begin}\{\texttt{#1}\}}
+\makeatother
+
+\def\fileversion{1.2a}
+\def\filedate{2012/12/17}
+\title{The \textsf{xpicture} package\thanks{This document
+ corresponds to \textsf{xpicture}~\fileversion, dated \filedate.}\\
+ (\texttt{http://www.upv.es/\~{}rfuster/xpicture}) \\
+ Several extensions of the \textsf{picture} standard environment\\
+ Reference manual and documented source}
+\author{Robert Fuster\\
+ Universitat Polit\`ecnica de Val\`encia \\
+ \texttt{rfuster@mat.upv.es}}
+\date{\filedate}
+\EnableCrossrefs
+\CodelineIndex
+
+\begin{document}
+ \DocInput{xpicture.dtx}
+ \newpage
+
+ \PrintIndex
+\end{document}
+%</driver>
+%
+% \fi
+%
+%
+% \DoNotIndex{\NeedsTeXFormat}
+% \DoNotIndex{\RequirePackage,\ProcessOptions,\ProvidesPackage}
+% \DoNotIndex{\CurrentOption,\DeclareOption}
+% \DoNotIndex{\MessageBreak,\PackageError,\PackageInfo,\PackageWarning}
+% \DoNotIndex{\PassOptionsToPackage,\InputIfFileExists}
+% \DoNotIndex{\begingroup,\endgroup,\begin,\end}
+% \DoNotIndex{\def,\let,\edef,\xdef,\newcommand,\newenvironment}
+% \DoNotIndex{\if,\ifx,\ifnum,\ifdim,\else,\fi,\@whilenum,\@whiledim,\value}
+% \DoNotIndex{\@ifnextchar,\@ifstar,\@ifundefined,\@killglue,\do,\newif}
+% \DoNotIndex{\undefined,\newcounter,\newdimen,\stepcounter}
+% \DoNotIndex{\setcounter,\setlength,\unitlength,\settoheight,\settowidth}
+% \DoNotIndex{\p@,\z@}
+% \DoNotIndex{\noexpand,\ignorespaces}
+% \DoNotIndex{\normalfont,\normalsize,\small}
+% \DoNotIndex{\circle,\line,\linethickness,\makebox,\put,\multiput,\qbezier}
+% \DoNotIndex{\ensuremath,\mathrm,\mathversion}
+% \DoNotIndex{\scshape}
+% \DoNotIndex{\color,\textcolor,\colorlet}
+% \DoNotIndex{\moveto,\lineto,\closepath,\fillpath}
+% \DoNotIndex{\LINE,\VECTOR,\segment}
+% \DoNotIndex{\x,\Dx,\y,\Dy,\t,\Dt}
+% \DoNotIndex{\Picture,\endPicture}
+% \DoNotIndex{\ADD,\COPY,\GLOBALCOPY}
+% \DoNotIndex{\COS,\RADtoDEG,\COSH,\COTAN,\COTANH,\CUBE,\DIVIDE,\EXP,\LOG}
+% \DoNotIndex{\MULTIPLY,\POWER,\SIN,\SINH,\SQRT,\SQUARE,\SUBTRACT,\TAN,\TANH}
+% \DoNotIndex{\ABSVALUE,\DEGREESCOS,\DEGREESSIN,\DEGREESTAN,\DEGREESCOT}
+% \DoNotIndex{\COS,\SIN,\TAN,\COT,\pi}
+% \DoNotIndex{\DETERMINANT,\MATRIXVECTORPRODUCT,\SCALARVECTORPRODUCT}
+% \DoNotIndex{\MAX,\MIN,\ROUND,\TRUNCATE}
+% \DoNotIndex{\FLOOR,\FRACTIONSIMPLIFY,\LENGTHDIVIDE,\SQUAREROOT}
+% \DoNotIndex{\numberTWOPI,\newvectorfunction}
+% \DoNotIndex{\UNITVECTOR,\VECTORADD,\VECTORCOPY,\VECTORNORM,\VECTORSUB}
+
+% \maketitle
+% \begin{abstract}
+% The \package{xpicture} package extends the graphic abilities
+% of the \environ{picture} standard environment and packages \package{pict2e}
+% and \package{curve2e}, adding the ability to work with arbitrary
+% In addition to other utilities,
+% the greater interest of \package{xpicture}
+% lies in its capacity to draw function graphs,
+% conic sections and arcs, and parametrically defined curves.
+
+% This is the technical documentation and reference manual
+% of package \package{xpicture}, but not its user manual.
+% User manual is on file \texttt{xpicture-doc.pdf},
+% distributed together with the package.
+% \end{abstract}
+% \tableofcontents
+% \newpage
+%
+% \section{Introduction}
+% The \package{xpicture} package introduces several new graphical
+% instructions,
+% and some enriched versions of standard
+% instructions used inside the \environ{picture} environment.
+% All these new instructions can be classified as follows:
+% \begin{enumerate}
+% \item Reference systems and coordinates:
+% \begin{itemize}
+% \item Declaration and use of different reference systems,
+% with Cartesian or polar coordinates.
+% \item Instructions to show Cartesian or polar reference systems.
+% \end{itemize}
+% \item An alternative to the \environ{picture} environment,
+% compatible with the new reference systems.
+% \item Alternative instructions or extensions of the standard
+% \environ{picture} commands and those defined by the packages
+% \package{pict2e} and \package{curve2e}:
+% \begin{itemize}
+% \item Enriched versions of marks \cs{put} and \cs{multiput},
+% providing an adequate control of the precise position
+% in which objects are composed
+% (this functionality is especially useful in the composition
+% of not strictly graphical objects, such as formulas or labels).
+% \item Instructions for drawing straight segments, vectors
+% (in any direction and using any reference system), polylines,
+% polygons, regular and arbitrary polygons .
+% \end{itemize}
+% \item Regular curves:
+% \begin{itemize}
+% \item Instructions for drawing conic sections (circles, ellipses,
+% hyperbolas and parabolas) and arcs of these curves.
+% \item Instructions to graph functions and parametrically defined curves
+% (this is the most interesting feature of this package).
+% \end{itemize}
+% \end{enumerate}
+%
+% To enjoy this package you need to have an adequate knowledge of the commands
+% defined in packages \package{calculator} and \package{calculus},
+% especially concerning to the definition of
+% functions and operations with functions.
+%
+%
+% \setlength{\marginparsep}{0pt}
+% \setlength{\parindent}{0pt}
+% \section{Usage}
+% This package is loaded as usual, using the instruction
+% \cs{usepackage}\oarg{list of options}|{xpicture}|.
+% Then, packages \package{pict2e}, \package{curve2e}, \package{xcolor},
+% \package{calculator}, and \package{calculus} are automatically loaded.
+% This package is compatible with any system that supports
+% \package{xcolor} and \package{pict2e} packages.\footnote{%
+% Earlier versions supports \option{dvi} option,
+% which was compatible with a pure \texttt{dvi} output,
+% but this possibility has been eliminated in version 2.1a,
+% because it was too expensive and probably unhelpful.}
+%
+% Options are passed directly to packages
+% \package{pict2e}, \package{curve2e}, and \package{xcolor}, excerpt option
+% \option{draft}\optionindex{draft},
+% which disables all the instructions defined in this package,
+% replacing each picture set in a \environ{Picture} environment
+% by a blank rectangle.\footnote{If you use an instruction
+% not directly defined by \package{xpicture},
+% this instruction may take effect.}
+% Using this option is very convenient throughout the production
+% of the document,
+% since the composition of the drawings slows considerably
+% the compilation time.
+% The |\draftPictures| declaration performs a similar work,
+% allowing the user to locally disable |Picture| commands.
+%
+% An interesting option (from package \package{pict2e}) is
+% \option{pstarrows};\optionindex{pstarrows}
+% if used, arrowheads in vectors are drawn in PSTricks style (instead of the
+% standard \LaTeX{} style).
+%
+% If exists, the local configuration file \texttt{xpicture.cfg} is loaded.
+% This file allows the user to customize all configurable
+% \package{xpicture} parameters;
+% if you want to use it, copy the file \texttt{xpicture.cfgxmpl},
+% which is distributed along with package \package{xpicture},
+% call your copy as \texttt{xpicture.cfg}, put it in your local
+% \texttt{texmf} tree
+% and edit this file to modify everything agreed.
+%
+% \section{The user interface}
+% \subsection{Color selection}
+%
+% \myDescribeMacro\pictcolor\marg{color}
+% select a color without spurious spaces.
+%
+% Example: |\pictcolor{blue}|
+%
+% \subsection{Reference systems}
+% \myDescribeMacro\referencesystem\parg{x0,y0}\parg{x1,y1}\parg{x2,y2}
+% selects the affine reference system with origin in point
+% (\textit{x0},\textit{y0}) and coordinate vectors (\textit{x1},\textit{y1})
+% and (\textit{x2},\textit{y2}).
+%
+% Coordinates are refered to the standard reference system.
+%
+% Example: |\referencesystem(0,0)(1,-1)(1,1)|
+%
+% \myDescribeMacro\changereferencesystem\parg{x0,y0}\parg{x1,y1}\parg{x2,y2}
+% selects the affine reference system with origin in point
+% (\textit{x0},\textit{y0}) and coordinate vectors (\textit{x1},\textit{y1})
+% and (\textit{x2},\textit{y2}).
+%
+% Coordinates are refered to the active reference system.
+%
+% Example: |\changereferencesystem(0,0)(1,-1)(1,1)|
+%
+% \myDescribeMacro\translateorigin\parg{x0,y0}
+% translates origin to the given point.
+%
+% Coordinates are refered to the active reference system.
+%
+% Example: |\translateorigin(2,-3)|
+%
+% \myDescribeMacro\rotateaxes\marg{angle}
+% rotates the axes.
+% The angle parameter is interpreted as the rotation angle in radians
+% (if the \cs{radiansangles} declaration is active)
+% or in sexagesimal degrees (if the \cs{degreesangles} declaration is active).
+%
+% Coordinates are refered to the active reference system.
+%
+% Example: |\rotateaxes{\numberQUARTERPI}|
+%
+% \myDescribeMacro\symmetrize\marg{angle}
+% performs a symmetry, being \textit{angle}
+% the angle between the symmetry axis and the $x$ axis.
+% The \cs{radiansangles} and \cs{degreesangles} declarations determine
+% if angles are interpreted as radians or degrees.
+%
+% Coordinates are refered to the active reference system.
+%
+% Example: |\symmetrize{\numberPI}|
+%
+% \myDescribeMacro*\radiansangles
+% declares that angles are measured in radians (default).
+%
+% \myDescribeMacro*\degreesangles
+% declares that angles are measured in degrees.
+%
+% \myDescribeMacro*\cartesianreference
+% declares Cartesian coordinates (default).
+%
+% \myDescribeMacro*\polarreference
+% declares polar coordinates.
+%
+% \myDescribeMacro\polarcoor\parg{radius,angle}\parg{x,y}
+% changes from polar to Cartesian coordinates.
+%
+% \subsection{The \environ{Picture} environment}
+%
+% \myDescribeEnv{Picture}\oarg{color}\parg{x0,y0}\parg{x1,y1}
+% starts a picture, refered to rectangle
+% $[\textit{x0},\textit{y0}]\times[\textit{x1},\textit{y1}]$.
+% If optional argument is present, background is colored with
+% this \textit{color}. By default, background is not colored.
+%
+% Coordinates are refered to the active reference system and are always
+% Cartesian coordinates.
+%
+% Example: |\begin{Picture}[black!10!white](-3.5,-4)(3.5,4)|
+%
+% \myDescribeEnv{xpicture}
+% is an alias for \cs{begin\{Picture\}}.
+%
+% Example: |\begin{xpicture}[black!10!white](-3.5,-4)(3.5,4)|
+%
+% \myDescribeMacro*{\draftPictures}
+% disables |Picture| commands, showing only the picture area.
+%
+% Example: |\begin{xpicture}[black!10!white](-3.5,-4)(3.5,4)|
+%
+% \subsection{Cartesian and polar coordinate axes and grids}
+%
+% \myDescribeMacro{\cartesianaxes}\parg{x0,y0}\parg{x1,y1}
+% draws the coordinate axes corresponding to the
+% $[\textit{x0},\textit{y0}]\times[\textit{x1},\textit{y1}]$ rectangle.
+%
+% Example: |\cartesianaxes(-3.25,-4.5)(3.25,4.25)|
+%
+% \myDescribeMacro{\cartesiangrid}\parg{x0,y0}\parg{x1,y1}
+% draws a coordinate grid corresponding to the
+% $[\textit{x0},\textit{y0}]\times[\textit{x1},\textit{y1}]$ rectangle.
+%
+% Example: |\cartesiangrid(-3.25,-4.5)(3.25,4.25)|
+%
+% \myDescribeMacro{\polargrid}\marg{radius}\marg{circledivs}
+% draws a polar grid. |radius| is the radius of the circle and |circledivs|
+% (an integer) the number of angular divisions.
+%
+% Example: |\polargrid{3.5}{16}|
+%
+% \subsubsection{The style of the axes}
+%
+% \myDescribeMacro*{\axescolor} User can change the axes color
+% by redefining the \cs{axescolor} declaration.
+%
+% Example: |\renewcommand{\axescolor}{orange}| (default is \texttt{black}).
+%
+% \myDescribeMacro*{\axesthickness} Length determining the thickness of axes
+% (default \verb+1 pt+).
+%
+% Example: |\setlength{\axesthickness}{1mm}|
+%
+% \myDescribeMacro*{\xunitdivisions} Number of subdivisions of
+% the unit in the $x$ axis (must a positive integer).
+%
+% Example:|\renewcommand{\xunitdivisions}{5}|
+% (default is \texttt{1}).
+%
+% \myDescribeMacro*{\yunitdivisions} Number of subdivisions of
+% the unit in the $y$ axis (must a positive integer).
+%
+% Example:|\renewcommand{\yunitdivisions}{3}|
+% (default is \texttt{1}).
+%
+% \myDescribeMacro*{\runitdivisions} Number of subdivisions of
+% the unit in the polar axis (must a positive integer).
+%
+% Example:|\renewcommand{\runitdivisions}{3}|
+% (default is \texttt{1}).
+%
+% \subsubsection{Axes position}
+%
+% \myDescribeMacro*{\internalaxes}
+% Cartesian axes lies on $y=0$ and $x=0$ (default).
+%
+% \myDescribeMacro*{\externalaxes}
+% Cartesian axes lies on $y=\textit{y0}$ and $x=\textit{x0}$.
+%
+% \subsubsection{Style of numerical labels}
+%
+% \myDescribeMacro*{\axeslabelcolor}
+% User can change the color of labels by redefining the
+% \cs{axeslabelcolor} declaration.
+%
+% Example: |\renewcommand{\axeslabelcolor}{red}|
+% (default is equal to the axes color).
+%
+% \myDescribeMacro*{\axeslabelsize}
+% User can change the size of labels by redefining the
+% \cs{axeslabelsize} declaration.
+%
+% Example: |\renewcommand{\axeslabelsize}{\tiny}|
+% (default is |\small|).
+%
+% \myDescribeMacro*{\axeslabelmathversion}
+% User can change the mathversion of labels by redefining the
+% \cs{axeslabelmathversion} declaration.
+%
+% Example: |\renewcommand{\axeslabelmathversion}{bold}|
+% (default is |normal|).
+%
+% \myDescribeMacro*{\axeslabelmathalphabet}
+% User can change the math alphabet of labels by redefining the
+% \cs{axeslabelmathalphabet} declaration.
+%
+% Example: |\renewcommand{\axeslabelmathalphabet}{\mathsf}|
+% (default is |\mathrm|).
+%
+% \myDescribeMacro*{\radianspolarlabels}
+% when this declaration is active, angular labels in polar grids are printed
+% in radians (default).
+%
+% \myDescribeMacro*{\degreespolarlabels}
+% when this declaration is active, angular labels in polar grids are printed
+% in degrees.
+%
+% \myDescribeMacro*{\axislabelsep}
+% Distance between tags and cut marks, measured in \cs{unitlength} units;
+% the distance between axes and tags equals \cs{ticssize}$+$\cs{axislabelsep}.
+% (see description of \cs{makenotics}).
+%
+% Example: |\renewcommand{\axislabelsep}{0.3}|
+% (default is |0.1|).
+%
+% \subsubsection{Position of numerical labels}
+%
+% \myDescribeMacro{\xlabelpos}\marg{position}
+% Relative position of labels in $x$ axis.
+%
+% Example: |\xlabelpos{t}|
+% (default is |-90|).
+%
+% \myDescribeMacro{\ylabelpos}\marg{position}
+% Relative position of labels in $y$ axis.
+%
+% Example: |\ylabelpos{tl}|
+% (default is |180|).
+%
+% \subsubsection{Style of cut marks}
+%
+% \myDescribeMacro*{\ticssize}
+% half the length of main axes cuts.
+%
+% Example: |\setlength{\ticssize}{3mm}|
+% (default is |4pt|)
+%
+% \myDescribeMacro*{\secundaryticssize}
+% half the length of secundary axes cuts.
+%
+% Example: |\setlength{\secunadryticssize}{1mm}|
+% (default is |2pt|)
+%
+% \myDescribeMacro*{\ticsthickness}
+% thickness of the marks on axes.
+%
+% Example: |\setlength{\ticsthickness}{0.5pt}|
+% (default is |1pt|)
+%
+% \myDescribeMacro*{\ticscolor}
+% User can change the color of tics by redefining the
+% \cs{ticscolor} declaration.
+%
+% Example: |\renewcommand{\ticscolor}{lightgray}|
+% (default is |black|)
+%
+% \subsubsection{Grid style}
+%
+% \myDescribeMacro*{\gridthickness}
+% thickness of the main grid lines.
+%
+% Example: |\setlength{\gridthickness}{1pt}|
+% (default is |0.4pt|)
+%
+% \myDescribeMacro*{\secundarygridthickness}
+% thickness of the secundary grid lines.
+%
+% Example: |\setlength{\gridthickness}{0.25pt}|
+% (default is |0.2pt|)
+%
+% \myDescribeMacro*{\gridcolor}
+% User can change the color of main grid lines by redefining the
+% \cs{ticscolor} declaration.
+%
+% Example: |\renewcommand{\gridcolor}{blue}|
+% (default is |gray|)
+%
+% \myDescribeMacro*{\secundarygridcolor}
+% User can change the color of secundary grid lines by redefining the
+% \cs{ticscolor} declaration.
+%
+% Example: |\renewcommand{\secundarygridcolor}{blue}|
+% (default is |lightgray|)
+%
+% \subsubsection{Removing cut marks, labels and grids}
+% \myDescribeMacro*{\maketics}
+% when this declaration is active, divisions of axes are marked (default).
+%
+% \myDescribeMacro*{\makenotics}
+% when this declaration is active, divisions of axes are not marked.
+%
+% In this case, the distance between axes and tags equals \cs{axislabelsep}.
+%
+% \myDescribeMacro*{\makelabels}
+% when this declaration is active, numerical labels are printed (default).
+%
+% \myDescribeMacro*{\makenolabels}
+% when this declaration is active, numerical labels are not printed.
+%
+% \myDescribeMacro*{\makenogrid}
+% If the \cs{makenogrid} declaration is active,
+% then \cs{cartesianaxes} plots only the axes (default).
+%
+% \myDescribeMacro*{\makegrid}
+% If the \cs{makegrid} declaration is active,
+% then \cs{cartesianaxes} plots a Cartesian grid.
+%
+% In this case, \cs{cartesianaxes} is equivalent to \cs{cartesiangrid}.
+%
+% \subsection{Directly printing cuts and labels}
+%
+% \myDescribeMacro{\plotxtic}\marg{x-coor}
+% plot a tic for the given $x$ coordinate.
+%
+% \myDescribeMacro{\plotytic}\marg{y-coor}
+% plot a tic for the given $y$ coordinate.
+%
+% \myDescribeMacro{\printxlabel}\marg{x-coor}\marg{label}
+% print the required label at the given $x$ coordinate.
+%
+% \myDescribeMacro{\printylabel}\marg{y-coor}\marg{label}
+% print the required label at the given $y$ coordinate.
+%
+% \myDescribeMacro{\printxticlabel}\marg{x-coor}\marg{label}
+% print a tic and the required label at the given $x$ coordinate.
+%
+% \myDescribeMacro{\printyticlabel}\marg{y-coor}\marg{label}
+% print a tic and the required label at the given $y$ coordinate.
+%
+% \myDescribeMacro{\plotxtics}\marg{firstcoor}\marg{incr}\marg{bound}
+% plot several $x$ tics, from the initial coordinate \textit{firstcoor};
+% \textit{incr} is the distance between consecutive tics,
+% and the last tic is not in a position greater than \textit{bound}.
+%
+% \myDescribeMacro{\plotytics}\marg{firstcoor}\marg{incr}\marg{bound}
+% plot several $y$ tics, from the initial coordinate \textit{firstcoor};
+% \textit{incr} is the distance between consecutive tics,
+% and the last tic is not in a position greater than \textit{bound}.
+%
+% \myDescribeMacro{\printxlabels}%
+% \oarg{digits}\marg{firstcoor}\marg{incr}\marg{bound}
+% print several $x$ labels, from the initial coordinate \textit{firstcoor};
+% \textit{incr} is the distance between consecutive label positions,
+% and the last position is not greater than \textit{bound}.
+% The optional argument \textit{digits} is the number of decimal
+% digits to be printed
+% (by default, numbers are printed with its natural number of decimals).
+% \myDescribeMacro{\printylabels}%
+% \oarg{digits}\marg{firstcoor}\marg{incr}\marg{bound}
+% print several $x$ labels, from the initial coordinate \textit{firstcoor};
+% \textit{incr} is the distance between consecutive label positions,
+% and the last position is not greater than \textit{bound}.
+% The optional argument \textit{digits} is the number of decimal
+% digits to be printed
+% (by default, numbers are printed with its natural number of decimals).
+%
+% \myDescribeMacro{\printxticslabels}%
+% \oarg{digits}\marg{firstcoor}\marg{incr}\marg{bound}
+% print $x$ tics and labels simultaneously.
+%
+% \myDescribeMacro{\printyticslabels}%
+% \oarg{digits}\marg{firstcoor}\marg{incr}\marg{bound}
+% print $y$ tics and labels simultaneously.
+%
+% \subsection{\cs{put} and \cs{multiput} extensions}
+%
+% \myDescribeMacro{\cPut}\marg{position}\parg{x,y}\marg{object}
+% \myDescribeMacro{\rPut}\starred\marg{position}\parg{x,y}\marg{object}
+% \myDescribeMacro{\Put}\starred\oarg{position}\parg{x,y}\marg{object}
+%
+% draw \textit{object} in point \Parg{x,y}.
+% Argument \textit{position} fixes the precise position of \textit{object}
+% with respect \Parg{x,y}.
+%
+% In starred versions objects positioned below the reference point
+% are aligned at a fixed vertical distance (normally, by the baseline).
+% User must decide which is that amount (normally the higher object
+% to be positioned), and introduce it as an argument of
+% the \cs{highestlabel} declaration.
+%
+% Example: |\Put*[SSE](1,2){\Ellipse{2}{3}}|
+%
+% \medskip
+%
+% Argument \textit{position} supports the following values:
+% \begin{description}
+% \item[An integer or decimal number,] determining the angle (in degrees)
+% where \textit{object} is placed,
+% (with respect to the reference point \Parg{x,y}).
+% \item[Letter \texttt{c}]
+% which places the center of \textit{object} at
+% \Parg{x,y}).
+% \item[Letter or letter combinations \texttt N, \texttt E, \texttt S,
+% \texttt W,
+% \texttt{NE}, \texttt{SE}, \texttt{SW}, \texttt{NW},
+% \texttt{NNE}, \texttt{ENE}, \texttt{ESE}, \texttt{SSE}, \texttt{SSW},%
+% \texttt{WSW}, \texttt{WNW},
+% \texttt{NNW}]
+% Abbreviation of \emph{North}, \emph{East}\ldots, \emph{North-East}\ldots,
+% \emph{North-North-East}\ldots
+% \item[Letter o letter combinations \texttt t, \texttt r, \texttt b,%
+% \texttt l,
+% \texttt{tr}, \texttt{br}, \texttt{bl}, \texttt{tl},
+% \texttt{ttr}, \texttt{rtr}, \texttt{rbr}, \texttt{bbr}, \texttt{bbl},%
+% \texttt{lbl}, \texttt{ltl},
+% \texttt{ttl}]
+% Abbreviation of \emph{top}, \emph{right}\ldots, \emph{top-right}\ldots,
+% \emph{top-top-right}\ldots
+%
+% \end{description}
+% Without optional argument \textit{position} (in command \cs{Put})
+% the reference point of \textit{object} is placed at
+% \Parg{x,y})
+% (in a similar way to the \cs{put} command).
+%
+% \myDescribeMacro*{\Pictlabelsep}
+% determines the distance between the graphical object and the given point.
+% User can redefine this declaration by typing
+% \cs{renewcommand}\cs{Pictlabelsep}\marg{number}.
+% This number is interpreted as an amount of |\unitlength|.
+%
+% Example: |\renewcommand{\Pictlabelsep}{1}| (default is |0.1|).
+%
+% This distance is understood either as the Euclidean (circular) distance,
+% derived from the $2$-norm,
+% or as the distance derived from the $\infty$-norm (rectangular distance),
+% following these rules:
+% \begin{itemize}
+% \item If argument \textit{position} is a \textit{compass} argument
+% (like \texttt N or \texttt{SSW}), then circular distance is used.
+% \item If argument \textit{position} is like \texttt t, \texttt{bbl},\ldots
+% then rectangular distance is used.
+% In all other cases, |\cPut| uses circular distance,
+% |\rPut| uses rectangular distance and |\Put| uses distance established
+% by \cs{defaultPut}.
+% \end{itemize}
+%
+% \myDescribeMacro{\defaultPut}\marg{position}
+% fixes the default position for \cs{Put}, \cs{multiPut} and \cs{multiPlot}
+% commands. Argument \textit{position} can be \texttt c or \texttt r.
+%
+% Example: |\defaultPut{r}| (default is \texttt c).
+%
+% \myDescribeMacro{\highestlabel}\marg{text} declares the highest label to be
+% equal to height of \textit{text}.
+%
+% Example: |\highestlabel{\Huge A}| (default is |\normalfont\normalsize$1$|)
+%
+% \myDescribeMacro{\multicPut}
+% \marg{position}\parg{x,y}\parg{$\Delta$x,$\Delta$y}\marg{n}\marg{object}
+% \myDescribeMacro{\multirPut}\starred
+% \marg{position}\parg{x,y}\parg{$\Delta$x,$\Delta$y}\marg{n}\marg{object}
+% \myDescribeMacro{\multiPut}\starred
+% \oarg{position}\parg{x,y}\parg{$\Delta$x,$\Delta$y}\marg{n}\marg{object}
+%
+% put \textit{n} copies of \textit{object} in \textit{position}
+% at points
+% $(\textit{x0},\textit{y0})$, $(\textit{x0}+\Delta x,\textit{y0}+\Delta y)$,
+% $(\textit{x0}+2\Delta x,\textit{y0}+2\Delta y)$, \ldots,
+% $(\textit{x0}+(\textit n-1)\Delta x,\textit{y0}+(\textit n-1)\Delta y)$.
+%
+% Example: |\multicPut{c}(1,2)(1,-1){4}{\xVECTOR(0,0)(1,1)}|
+%
+% \myDescribeMacro{\multicPlot}
+% \marg{position}\marg{object}\parg{x0,y0}\parg{x1,y1}\ldots\parg{xn,yn}
+%
+% \myDescribeMacro{\multirPlot}\starred
+% \marg{position}\marg{object}\parg{x0,y0}\parg{x1,y1}\ldots\parg{xn,yn}
+%
+% \myDescribeMacro{\multiPlot}\starred
+% \oarg{position}\marg{object}\parg{x0,y0}\parg{x1,y1}\ldots\parg{xn,yn}
+%
+% put $\textit{n}+1$ copies of \textit{object} at points
+% \Parg{x0,y0},
+% \Parg{x1,y1},\ldots,
+% \Parg{xn,yn}
+%
+% Example: |\multirPlot{c}{\xVECTOR(0,0)(1,1)}(1,2)(2,1)(3,0)(4,-1)|
+%
+% \subsection{Drawing lines, vectors and polylines}
+%
+% \subsubsection{Lines and vectors}
+%
+% \myDescribeMacro{\xLINE}\parg{x0,y0}\parg{x1,y1}
+% draws a stright line between points \Parg{x0,y0}
+% and \Parg{x1,y1}.
+%
+% Example: |\xLINE(1,-2)(0,3)|.
+%
+% \myDescribeMacro{\xVECTOR}\parg{x0,y0}\parg{x1,y1}
+% draws an arrow from point \Parg{x0,y0}
+% to point \Parg{x1,y1}.
+%
+% Example: |\xVECTOR(1,-2)(0,3)|.
+%
+% \myDescribeMacro{\xtrivVECTOR}\parg{x0,y0}\parg{x1,y1}
+% draws an arrow from point \Parg{x0,y0}
+% to point \Parg{x1,y1}.
+% The arrowhead consists of two lines, controled by the |\arrowsize|
+% declaration.
+%
+% Example: |\xtrivVECTOR(1,-2)(0,3)|.
+%
+% \myDescribeMacro{\xline}\parg{x,y}\marg{size}
+% \myDescribeMacro{\xvector}\parg{x,y}\marg{size}
+% \myDescribeMacro{\xtrivvector}\parg{x,y}\marg{size}
+%
+% draw lines, vectors and triv vectors with the standard \LaTeX{} syntax,
+% but without any restriction.
+%
+% Example: |\Put(1,-2){\xline(-1,5){1}}|
+%
+% \myDescribeMacro{\zerovector}\parg{x,y}
+% \myDescribeMacro{\zerotrivvector}\parg{x,y}
+%
+% draw a zero-length vector (an arrowhead) in direction
+% \Parg{x,y}.
+%
+% Example: |\Put(0,3){\zerovector(-1,5)}|
+%
+% \myDescribeMacro\arrowsize\marg{xlen}\marg{ylen}
+% declares dimensions of triv arrowhead: |xlen|\,pt is its length, and
+% |ylen|\,pt is half of its aperture.
+%
+% Example: |\arrowsize{4}{2}| (default is |xlen=5|, |ylen=2|)
+%
+% \subsubsection{Polylines and polygons}
+%
+% \myDescribeMacro{\Polyline}\parg{x0,y0}\parg{x1,y1}\ldots\parg{xn,yn}
+% draws a polyline with vertices
+% \Parg{x0,y0}\Parg{x1,y1}\ldots\Parg{xn,yn}.
+%
+% Example: |\Polyline(1,1)(2,0)(0,-1)|
+%
+% \myDescribeMacro{\Polygon}\parg{x0,y0}\parg{x1,y1}\ldots\parg{xn,yn}
+% draws a polygon with vertices
+% \Parg{x0,y0}\Parg{x1,y1}\ldots\Parg{xn,yn}.
+%
+% Example: |\Polygon(1,1)(2,0)(0,-1)|
+%
+% \myDescribeMacro{\regularPolygon}\oarg{angle}\marg{radius}\marg{sides}
+% draws a regular polygon with the given \textit{radius} and \textit{sides}.
+% The optional argument (zero, by default) determines the inclination angle
+% of the first vertex, always measured in degrees.
+%
+% Example: |\regularPolygon[90]{4}{7}|
+%
+% \subsection{Drawing curves}
+% \subsubsection{Conic sections and arcs}
+%
+% \myDescribeMacro{\Circle}\marg{r}
+% draws the circle $x^2+y^2=\textit{r}^2$.
+%
+% Example: |\Circle{2.5}|
+%
+% \myDescribeMacro{\Ellipse}\marg{a}\marg{b}
+% draws the ellipse
+% $\displaystyle\frac{x^2}{\textit{a}^2}+\frac{y^2}{\textit{b}^2}=1$.
+%
+% Example: |\Ellipse{2}{3}|
+%
+% \myDescribeMacro{\Hyperbola}\marg{a}\marg{b}\marg{xmax}\marg{ymax}
+% draws the hyperbola
+% $\displaystyle\frac{x^2}{\textit{a}^2}-\frac{y^2}{\textit{b}^2}=1$.
+%
+% Variables $x$ and $y$ are limited, respectively,
+% to the $[-\textit{xmax},\textit{xmax}]$ and
+% $[-\textit{ymax},\textit{ymax}]$ intervals.
+% This curve is well defined if the parameter \textit{xmax}
+% is greater than \textit{a}. Otherwise, \package{xpicture} returns an error
+% message and does not draw any curve.
+%
+% Example: |\Hyperbola{2}{3}{5}{5}|
+%
+% \myDescribeMacro{\rHyperbola}\marg{a}\marg{b}\marg{xmax}\marg{ymax}
+% draws the \emph{right} branch of hyperbola
+% $\displaystyle\frac{x^2}{\textit{a}^2}-\frac{y^2}{\textit{b}^2}=1$.
+%
+% (parameters are restricted as in |\Hyperbola|).
+%
+% Example: |\rHyperbola{2}{3}{5}{5}|
+%
+% \myDescribeMacro{\lHyperbola}\marg{a}\marg{b}\marg{xmax}\marg{ymax}
+% draws the \emph{left} branch of hyperbola
+% $\displaystyle\frac{x^2}{\textit{a}^2}-\frac{y^2}{\textit{b}^2}=1$.
+%
+% (parameters are restricted as in |\Hyperbola|).
+%
+% Example: |\rHyperbola{2}{3}{5}{5}|
+%
+% \myDescribeMacro{\Parabola}\marg{a}\marg{xmax}\marg{ymax}
+% draws the parabola $x=ay^2$.
+%
+% Variable $x$ is limited, respectively,
+% to the $[0,\textit{xmax}]$ (if \textit{a} is positive)
+% or $[-\textit{xmax},0]$ (if negative) interval.
+% $[-\textit{ymax},\textit{ymax}]$ intervals.
+%
+% Example: |\Parabola{2}{5}{5}|
+%
+% \myDescribeMacro{\circularArc}\marg{r}\marg{angle1}\marg{angle2}
+% draws the arc of circle
+% $x=r\cos t,y=r\sin t,\ t\in[\textit{angle1},\textit{angle2}]$
+% (the arc of the circle centered at $(0,0)$ with radius $\textit{r}$
+% and limited between $\textit{angle1}$ and $\textit{angle2}$).
+%
+% Example: |\circularArc{3}{0}{\numberSIXTHPI}|
+%
+% \myDescribeMacro*{\xArc} is an alias for \cs{circularArc}.
+%
+% Example: |\xArc{3}{0}{\numberSIXTHPI}|
+%
+% \myDescribeMacro{\ellipticArc}\marg{a}\marg{b}\marg{angle1}\marg{angle2}
+% draws the arc of ellipse
+% $x=a\cos t,y=b\sin t,\ t\in[\textit{angle1},\textit{angle2}]$
+% (the arc of the ellipse centered at $(0,0)$ with semiaxes
+% $\textit{a}$ and $\textit{b}$
+% and limited between $\textit{angle1}$ and $\textit{angle2}$).
+%
+% Example: |\ellipticArc{2}{3}{-\numberSIXTHPI}{\numberSIXTHPI}|
+%
+% \myDescribeMacro{\rhyperbolicArc}\marg{a}\marg{b}\marg{y0}\marg{y1}
+% draws the right arc of hyperbola
+% $\displaystyle\frac{x^2}{\textit{a}^2}-\frac{y^2}{\textit{b}^2}=1$
+% included between
+% $\textit{y}=\textit{y0}$ and $\textit{y}=\textit{y1}$.
+%
+% Example: |\rhyperbolicArc{2}{3}{-2}{2}|
+%
+% \myDescribeMacro{\lhyperbolicArc}\marg{a}\marg{b}\marg{y0}\marg{y1}
+% draws the left arc of hyperbola
+% $\displaystyle\frac{x^2}{\textit{a}^2}-\frac{y^2}{\textit{b}^2}=1$
+% included between $\textit{y}=\textit{y0}$ and $\textit{y}=\textit{y1}$.
+%
+% Example: |\lhyperbolicArc{2}{3}{-2}{2}|
+%
+% \myDescribeMacro{\parabolicArc}\marg{a}\marg{y0}\marg{y1}
+% Draw the arc of the parabola $x=ay^2$ included between
+% $\textit{y}=\textit{y0}$ and $\textit{y}=\textit{y1}$.
+%
+% Example: |\parabolicArc{2}{-2}{2}|
+%
+% \myDescribeMacro{\defaultplotdivs}\marg{divisions}
+% declares the number of subintervals we divide the domain of curves
+% when plotting conic arcs.
+%
+% Example: |\defaultplotdivs{16}| (default is |8|).
+%
+% \subsubsection{Real variable functions}
+%
+% \myDescribeMacro{\PlotFunction}
+% \oarg{n}\marg{\textbackslash functionname}\marg{t0}\marg{t1}
+% draws the graph of function \cs{functionname}$(t)$,
+% $t\in[\textit{t0},\textit{t1}]$.
+% This interval is partitioned in \textit{n} subintervals (default for
+% \textit{n} is |2|).
+%
+% Example: |\PlotFunction[16]{\COSfunction}{-\numberTWOPI}{\numberTWOPI}|
+%
+% \myDescribeMacro{\PlotPointsOfFunction}
+% \marg{n}\marg{\textbackslash functionname}\marg{t0}\marg{t1}
+% draws $\textit{n}+1$ points of the graph of function \cs{functionname}$(t)$,
+% $t\in[\textit{t0},\textit{t1}]$.
+%
+% Example: |\PlotPointsOfFunction{20}{\SQRTfunction}{0}{4}|
+%
+% \myDescribeMacro*{\pointmarkdiam}
+% is the size of points printed by |\PlotPointsOfFunction|, measured in
+% |\unitlength| units. It may be
+% redefined with a |\renewcommand| declaration.
+%
+% Example: |\renewcommand{\pointmarkdiam}{0.3}|
+%
+% \myDescribeMacro*{\pointmark}
+% is the symbol printed at every point by |\PlotPointsOfFunction|. It may be
+% redefined with a |\renewcommand| declaration.
+%
+% Example: |\renewcommand{\pointmark}{$\diamond$}|
+%
+% \subsubsection{Parametrically defined curves}
+%
+% \myDescribeMacro{\PlotParametricFunction}
+% \oarg{n}\marg{\textbackslash functionname}\marg{t0}\marg{t1}
+% draws the graph of parametric curve \cs{functionname}$(t)$,
+% $t\in[\textit{t0},\textit{t1}]$.
+% This interval is partitioned in \textit{n} subintervals (default for
+% \textit{n} is |2|).
+%
+% Example: |\ParametricFunction{\F}{\SQUAREfunction}{CUBEfunction}|
+% \\
+% \phantom{Example:} |\PlotParametricFunction[15]{\F}{-2}{2}|
+%
+% \subsubsection{Drawing curves from a table of values}
+%
+% \myDescribeMacro{\qCurve}\parg{x0,y0}\parg{u0,v0}\parg{x1,y1}\parg{u1,v1}
+% draws the quadratic curve between points \textit{x0,y0} and \textit{x1,y1}
+% with tangent vectors \textit{u0,v0} nd \textit{u1,v1}.
+%
+% Example: |\qCurve(1,2)(1,2)(4,3)(-1,1)|
+%
+% \myDescribeMacro{\PlotQuadraticCurve}
+% \parg{x0,y0}\parg{u0,v0}\parg{x1,y1}\parg{u1,v1}\ldots%
+% \parg{xn,yn}\parg{un,vn}
+%
+% draws a curve through the points
+% \parg{x0,y0}, \parg{x1,y1},\ldots, \parg{xn,yn}
+% with tangent vectors
+% \parg{u0,v0}, \parg{u1,v1},\ldots, \parg{un,vn}.
+%
+% Example:
+% |\PlotQuadraticCurve(1,0)(1,0)(0,1)(0,1)(-1,0)(-1,0)(0,-1)(0,-1)|
+%
+% \myDescribeMacro{\PlotQuadraticCurve}
+% \parg{x0,y0}\marg{angle0}\parg{x1,y1}\marg{angle1}\ldots
+% \parg{xn,yn}\marg{anglen}
+%
+% draws a curve through the points
+% \parg{x0,y0}, \parg{x1,y1},\ldots, \parg{xn,yn}
+% the inclination angles of which, with respect to the $x$ axis,
+% are \textit{{angle0}, \textit{angle1}}\dots,
+% \textit{anglen} (always measured in degrees).
+%
+% Example:
+% |\PlotQuadraticCurve(1,0){0}(0,1){90}(-1,0){180}(0,-1){270}}|
+% \StopEventually{}
+%
+% \myDescribeMacro{\PlotxyDyData}
+% \parg{x0,y0,Dy0}\parg{x1,y1,Dy1}\ldots\parg{xn,yn,Dyn}
+% draws a curve through the points
+% \parg{x0,y0}, \parg{x1,y1},\ldots, \parg{xn,yn}
+% with derivatives \textit{Dy0}, \textit{Dy1}, \ldots, \textit{Dyn}.
+% \section{Implementation}
+% \begin{macrocode}
+%<*xpicture>
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{xpicture}[2012/12/17 v.1.2a picture environment extensions]
+% \end{macrocode}
+% \subsection{Package options}
+% If the |draft| option is selected,
+% |Picture| environments are shown
+% as a rectangular frame and |xpicture| commands are ignored
+% (Boolean |draft| controls whether this option has been selected).
+% \begin{macrocode}
+\newif\ifdraft\draftfalse
+\DeclareOption{draft}{\drafttrue}
+% \end{macrocode}
+% All other options are passed to packages |curve2e| and |xcolor|
+% (Old options |dvi|, |pict2e| and |curve2e| have been removed in
+% version 1.2a).
+% \begin{macrocode}
+\DeclareOption*{%
+ \PassOptionsToPackage{\CurrentOption}{curve2e}
+ \PassOptionsToPackage{\CurrentOption}{xcolor}}
+\ProcessOptions
+% \end{macrocode}
+% \subsection{Booleans for some command options}
+% Booleans used by several declarations
+% controlling the behavior of some |xpicture| commands.
+% \begin{macro}{\ifpolar}
+% True: polar coordinates. False: Cartesian coordinates.
+% \begin{macrocode}
+\newif\ifpolar\polarfalse
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ifrputstar}
+% True: |\rPut| starred.
+% \begin{macrocode}
+\newif\ifrputstar\rputstarfalse
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ifdegrees}
+% True: angles mesured in degrees. False: arcs mesured in radians.
+% \begin{macrocode}
+\newif\ifdegrees\degreesfalse
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\iftics}
+% True: coordinate axes include tic marks.
+% \begin{macrocode}
+\newif\iftics\ticstrue
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\iflabels}
+% True: coordinate axes include numeric labels.
+% \begin{macrocode}
+\newif\iflabels\labelstrue
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ifgrid}
+% True: Cartesian grids.
+% \begin{macrocode}
+\newif\ifgrid\gridfalse
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ifticslabelsgrid}
+% True: Tics, labels or grid must be printed.
+% \begin{macrocode}
+\newif\ifticslabelsgrid\ticslabelsgridfalse
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ifinzeroaxes}
+% True: Representation of axes passes through the origin (internal axes).
+% False: external axes.
+% \begin{macrocode}
+\newif\ifinzeroaxes\inzeroaxestrue
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ifbg}
+% True: Background will be colored.
+% \begin{macrocode}
+\newif\ifbg\bgfalse
+% \end{macrocode}
+% \end{macro}
+% \subsection{Required packages}
+% \begin{macrocode}
+\RequirePackage{curve2e}
+\RequirePackage{xcolor}
+\RequirePackage{calculus}
+% \end{macrocode}
+% \subsection{Error, Warning and Info messages}
+% \begin{macrocode}
+\def\xpct@Warnbadpos{%
+ \PackageWarning{xpicture}%
+ {Argument in \noexpand\defaultPut command must be either
+ 'c' or 'r'\MessageBreak
+ I will no change the default position for
+ \noexpand\Put commands}}
+\def\xpct@Infopos#1{%
+ \PackageInfo{xpicture}%
+ {Default position for \noexpand\Put commands changed to #1}}
+\def\xpct@WarnIncSys(#1,#2)(#3,#4){%
+ \PackageWarning{xpicture}{%
+ Incompatible linear system!\MessageBreak
+ Tangent lines are parallel}}
+\def\xpct@ErrHypCons{%
+ \PackageError{xpicture}{%
+ Inconsistent parameters in \noexpand\Hyperbola command}{%
+ The first and second parameters in a \noexpand\Hyperbola
+ command\MessageBreak
+ must be, respectively, lesser than the third and
+ the fourth ones.}}
+\def\xpct@Infocfg{\PackageInfo{xpicture}{%
+ Loading local configuration file xpicture.cfg}}
+\def\xpct@Infonocfg{\PackageInfo{xpicture}{%
+ Local configuration file xpicture.cfg does not exists}}
+% \end{macrocode}
+% \subsection{Internal counters and lengths and a special number}
+% Counters |xpct@counta| and |xpct@countb| will be used by several
+% internal commands (mainly in |while| clauses).
+% |xpct@step| is used when iterating functions plots, and
+% |multiput| by commands extending the |\multiput| command.
+% \begin{macrocode}
+\newcounter{xpct@counta}
+\newcounter{xpct@countb}
+\newcounter{xpct@step}
+\newcounter{multiput}
+% \end{macrocode}
+% \begin{macro}{\xpct@bxw}
+% \begin{macro}{\xpct@bxh}
+% Width and height of certain boxes.
+% \begin{macrocode}
+\newdimen\xpct@bxw
+\newdimen\xpct@bxh
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@maxnum}
+% The largest \TeX{} number.
+% \begin{macrocode}
+\def\xpct@maxnum{16383.99998}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Declarations and parameters controlling axes style}
+% \begin{macro}{\makenotics}
+% \begin{macro}{\maketics}
+% \begin{macro}{\makenolabels}
+% \begin{macro}{\makelabels}
+% \begin{macro}{\makegrid}
+% \begin{macro}{\makenogrid}
+% \begin{macro}{\externalaxes}
+% \begin{macro}{\internalaxes}
+% Four pairs of alternative declarations, switching booleans
+% |\iftics|, |\iflabels|, |\ifgrid|, and |\ifinzeroaxes|.
+% Defaults are |\maketics|, |\makelabels|, |\makenogrid|,
+% and |\internalaxes|.
+% \begin{macrocode}
+\def\makenotics{\ticsfalse}
+\def\maketics{\ticstrue}
+\def\makenolabels{\labelsfalse}
+\def\makelabels{\labelstrue}
+\def\makenogrid{\gridfalse}
+\def\makegrid{\gridtrue}
+\def\externalaxes{\inzeroaxesfalse}
+\def\internalaxes{\inzeroaxestrue}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\axesthickness}
+% Thickness of axes (it is a length).
+% \begin{macrocode}
+\newdimen\axesthickness
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@axeslabelattrib}
+% Attributes of labels. It is a private declaration, because you can select
+% attributes (size, color and mathversion) of labels independently.
+% \begin{macrocode}
+\def\xpct@axeslabelattrib{\axeslabelsize%
+ \pictcolor{\axeslabelcolor}%
+ \mathversion{\axeslabelmathversion}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ticsthickness}
+% \begin{macro}{\ticssize}
+% \begin{macro}{\secundaryticssize}
+% \begin{macro}{\gridthickness}
+% \begin{macro}{\secundarygridthickness}
+% Thickness and size of tics and grid lines.
+% \begin{macrocode}
+\newdimen\ticsthickness
+\newdimen\ticssize
+\newdimen\secundaryticssize
+\newdimen\gridthickness
+\newdimen\secundarygridthickness
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \subsection{Color selection}
+% \begin{macro}{\pictcolor}
+% Declaration |\pictcolor| supresses spureus spaces when selecting color.
+% \begin{macrocode}
+\def\pictcolor{\@killglue\color}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Reference systems}
+% \begin{macro}{\standardreferencesystem}
+% Declaration to select the standard reference system.
+% \begin{macrocode}
+\def\standardreferencesystem{\referencesystem(0,0)(1,0)(0,1)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\referencesystem}
+% \begin{macro}{\changereferencesystem}
+% \begin{macro}{\xpct@xorigin}
+% \begin{macro}{\xpct@yorigin}
+% \begin{macro}{\xpct@xI}
+% \begin{macro}{\xpct@yI}
+% \begin{macro}{\xpct@xII}
+% \begin{macro}{\xpct@yII}
+% |\referencesystem| changes to the affine reference centered
+% in P|(#1,#2)| with directions |(#3,#4)| and |(#5,#6)|.
+% These six numbers are stored in
+% |\xpct@xorigin|, |\xpct@yorigin|,
+% |\xpct@xI|, |\xpct@yI|, |\xpct@xII|, and |\xpct@yII|.
+% \begin{macrocode}
+\def\referencesystem(#1,#2)(#3,#4)(#5,#6){%
+ \COPY{#1}\xpct@xorigin
+ \COPY{#2}\xpct@yorigin
+ \COPY{#3}\xpct@xI
+ \COPY{#4}\xpct@yI
+ \COPY{#5}\xpct@xII
+ \COPY{#6}\xpct@yII}
+% \end{macrocode}
+% The |\changereferencesystem| changes from the active reference system.
+% \begin{macrocode}
+\def\changereferencesystem(#1)(#2)(#3){%
+ \refsysPoint(#1)(\xpct@newx,\xpct@newy)
+ \refsysVector(#2)(\xpct@newux,\xpct@newuy)
+ \refsysVector(#3)(\xpct@newvx,\xpct@newvy)
+ \referencesystem(\xpct@newx,\xpct@newy)(\xpct@newux,\xpct@newuy)%
+ (\xpct@newvx,\xpct@newvy)}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\translateorigin}
+% \begin{macro}{\rotateaxes}
+% \begin{macro}{\symmetrize}
+% Translations and orthogonal changes (rotations and symmetries)
+% of reference system.
+% \begin{macrocode}
+\def\translateorigin(#1){\changereferencesystem(#1)(1,0)(0,1)}
+\def\rotateaxes#1{%
+ \ifdegrees\DEGREESCOS{#1}\xpct@cosine\DEGREESSIN{#1}\xpct@sine
+ \else\COS{#1}\xpct@cosine\SIN{#1}\xpct@sine\fi
+ \changereferencesystem%
+ (0,0)(\xpct@cosine,\xpct@sine)(-\xpct@sine,\xpct@cosine)}
+% \end{macrocode}
+% \begin{macrocode}
+\def\symmetrize#1{%
+ \MULTIPLY{2}{#1}{\xpct@sym}
+ \ifdegrees
+ \DEGREESCOS{\xpct@sym}\xpct@cosine\DEGREESSIN{\xpct@sym}\xpct@sine
+ \else
+ \COS{\xpct@sym}\xpct@cosine\SIN{\xpct@sym}\xpct@sine\fi
+ \changereferencesystem%
+ (0,0)(\xpct@cosine,\xpct@sine)(\xpct@sine,-\xpct@cosine)}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \subsection{Coordinates}
+% \begin{macro}{\refsysxyVector}
+% \begin{macro}{\refsysxyPoint}
+% Canonical coordinates of a point or vector given in Cartesian coordinates
+% (change from the active r.s. to the standard one).
+% \begin{macrocode}
+\def\refsysxyVector(#1)(#2,#3){%
+ \MATRIXVECTORPRODUCT%
+ (\xpct@xI,\xpct@xII;\xpct@yI,\xpct@yII)(#1)(#2,#3)}
+\def\refsysxyPoint(#1)(#2,#3){%
+ \MATRIXVECTORPRODUCT(\xpct@xI,\xpct@xII;\xpct@yI,\xpct@yII)(#1)(#2,#3)
+ \VECTORADD(#2,#3)(\xpct@xorigin,\xpct@yorigin)(#2,#3)}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\refsyspVector}
+% \begin{macro}{\refsyspPoint}
+% Canonical coordinates of a point or vector given in polar coordinates.
+% \begin{macrocode}
+\def\refsyspVector(#1,#2)(#3,#4){%
+ \polarcoor(#1,#2)(\xpct@polarx,\xpct@polary)
+ \refsysxyVector(\xpct@polarx,\xpct@polary)(#3,#4)}
+\def\refsyspPoint(#1,#2)(#3,#4){%
+ \polarcoor(#1,#2)(\xpct@polarx,\xpct@polary)
+ \refsysxyPoint(\xpct@polarx,\xpct@polary)(#3,#4)}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\cartesianreference}
+% \begin{macro}{\polarreference}
+% Alternative declarations to switch between Cartesian or polar coordinates.
+%
+% \noindent In fact, they define |\refsysVector|/|\refsysPoint| to be
+% |\refsysxyVector|/|\refsysxyPoint| or |\refsyspVector|/|\refsyspPoint|.
+% \begin{macrocode}
+\def\cartesianreference{%
+ \def\refsysVector{\refsysxyVector}%
+ \def\refsysPoint{\refsysxyPoint}\polarfalse}
+\def\polarreference{%
+ \def\refsysVector{\refsyspVector}%
+ \def\refsysPoint{\refsyspPoint}\polartrue}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\polarcoor}
+% |\polarcoor| changes from polar to rectangular coordinates.
+% \begin{macrocode}
+\def\polarcoor(#1,#2)(#3,#4){%
+ \ifdegrees\DEGREESCOS{#2}{\xpct@Px}\DEGREESSIN{#2}{\xpct@Py}
+ \else\COS{#2}{\xpct@Px}\SIN{#2}{\xpct@Py}\fi
+ \MULTIPLY{\xpct@Px}{#1}{#3}
+ \MULTIPLY{\xpct@Py}{#1}{#4}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\degreesangles}
+% \begin{macro}{\radiansangles}
+% Switches to measure angles in degrees or radians.
+% \begin{macrocode}
+\def\degreesangles{\degreestrue}
+\def\radiansangles{\degreesfalse}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \subsection{The \texttt{Picture} environment}
+% \begin{environment}{Picture}
+% |Picture| is an extension of |picture| to refer points to the
+% active reference system.
+% It can take an optional argument (background color).
+% \begin{macrocode}
+\def\Picture{\@ifnextchar[{\xpct@@Picture}{\xpct@Picture}}
+% \end{macrocode}
+% \end{environment}
+% \begin{macro}{\xpct@Picture}
+% Compute the surrounding box and call |picture| with the appropriate
+% parameters.
+% \begin{macrocode}
+\def\xpct@Picture(#1,#2)(#3,#4){%
+% \end{macrocode}
+% First, we determine the standard coordinates of the four vertices
+% \begin{macrocode}
+ \refsysxyPoint(#1,#2)(\xpct@xzero,\xpct@yzero)
+ \refsysxyPoint(#3,#4)(\xpct@xone,\xpct@yone)
+ \refsysxyPoint(#1,#4)(\xpct@xtwo,\xpct@ytwo)
+ \refsysxyPoint(#3,#2)(\xpct@xthree,\xpct@ythree)
+% \end{macrocode}
+% Now we calculate the maximum and minimum |x| and |y| coordinates.
+% \begin{macrocode}
+ \MIN{\xpct@xzero}{\xpct@xone}{\xpct@xmin}
+ \MIN{\xpct@xmin}{\xpct@xtwo}{\xpct@xmin}
+ \MIN{\xpct@xmin}{\xpct@xthree}{\xpct@xmin}
+ \MIN{\xpct@yzero}{\xpct@yone}{\xpct@ymin}
+ \MIN{\xpct@ymin}{\xpct@ytwo}{\xpct@ymin}
+ \MIN{\xpct@ymin}{\xpct@ythree}{\xpct@ymin}
+ \MAX{\xpct@xzero}{\xpct@xone}{\xpct@xmax}
+ \MAX{\xpct@xmax}{\xpct@xtwo}{\xpct@xmax}
+ \MAX{\xpct@xmax}{\xpct@xthree}{\xpct@xmax}
+ \MAX{\xpct@yzero}{\xpct@yone}{\xpct@ymax}
+ \MAX{\xpct@ymax}{\xpct@ytwo}{\xpct@ymax}
+ \MAX{\xpct@ymax}{\xpct@ythree}{\xpct@ymax}
+% \end{macrocode}
+% Width and height (|xmax-xmin| and |ymax-ymin|) of the sorrounding box.
+% \begin{macrocode}
+ \SUBTRACT{\xpct@xmax}{\xpct@xmin}{\xpct@pictwidth}
+ \SUBTRACT{\xpct@ymax}{\xpct@ymin}{\xpct@pictheight}
+% \end{macrocode}
+% Call |picture|.
+% \begin{macrocode}
+ \begin{picture}(\xpct@pictwidth,\xpct@pictheight)(%
+ \xpct@xmin,\xpct@ymin)
+% \end{macrocode}
+% Fix highest label to normal 1.
+% \begin{macrocode}
+ \highestlabel{\normalfont\normalsize$1$}
+% \end{macrocode}
+% If option |draft| was selected, background is colored,
+% a surrounding rectangle is drawn and a centered label is printed.
+% \begin{macrocode}
+ \ifdraft
+ \colorlet{backgroundcolor}{lightgray}
+ \xpct@backgrd
+ \put(\xpct@xmin,\xpct@ymin){\line(1,0){\xpct@pictwidth}}
+ \put(\xpct@xmin,\xpct@ymin){\line(0,1){\xpct@pictheight}}
+ \put(\xpct@xmin,\xpct@ymax){\line(1,0){\xpct@pictwidth}}
+ \put(\xpct@xmax,\xpct@ymin){\line(0,1){\xpct@pictheight}}
+ \VECTORADD(\xpct@xmax,\xpct@ymax)(\xpct@xmin,\xpct@ymin)(%
+ \xpct@xmed,\xpct@ymed)
+ \SCALARVECTORPRODUCT{0.5}(\xpct@xmed,\xpct@ymed)(%
+ \xpct@xmed,\xpct@ymed)
+ \put(\xpct@xmed,\xpct@ymed){\makebox(0,0){\scshape xpicture}}
+ \else
+% \end{macrocode}
+% Finally, if required, we color the background.
+% \begin{macrocode}
+ \ifbg\xpct@backgrd\fi
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@@Picture}
+% Set background color to |#1|, swich boolean |\ifbg|
+% to true and call |\xpct@Picture|.
+% \begin{macrocode}
+\def\xpct@@Picture[#1](#2,#3)(#4,#5){%
+ \colorlet{backgroundcolor}{#1}%
+ \bgtrue\xpct@Picture(#2,#3)(#4,#5)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@backgrd}
+% Fill background with |backgroundcolor|. We use |pict2e| path commands.
+% \begin{macrocode}
+\def\xpct@backgrd{\begingroup
+ \pictcolor{backgroundcolor}
+ \moveto(\xpct@xzero,\xpct@yzero)
+ \lineto(\xpct@xthree,\xpct@ythree)
+ \lineto(\xpct@xone,\xpct@yone)
+ \lineto(\xpct@xtwo,\xpct@ytwo)
+ \closepath\fillpath
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\endPicture}
+% Close |picture| environment.
+% \begin{macrocode}
+\def\endPicture{\end{picture}}
+% \end{macrocode}
+% \end{macro}
+% \begin{environment}{xpicture}
+% |xpicture| is an alias for |Picture|.
+% \begin{macrocode}
+\newenvironment{xpicture}{\begin{Picture}}{\end{Picture}}
+% \end{macrocode}
+% \end{environment}
+% \subsection{\cs{put} extensions}
+% User's commands are |\cPut|, |\rPut|, and |\Put|.
+% |\rPut| and |\Put| have starred versions. Related commands are
+% |\highestlabel| and |\defaultPut|.
+% \begin{macro}{\cPut}
+% |\cPut| puts the |#4| object in the |(#2,#3)| point at the |#1| position
+% (circular version).
+% \begin{macrocode}
+\def\cPut#1(#2,#3)#4{%
+% \end{macrocode}
+% Select circular trigonometry and call |\xpct@PUT|.
+% \begin{macrocode}
+ \COPY{0}{\xpct@CorRput}
+ \xpct@PUT{#1}(#2,#3){#4}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\rPut}
+% \begin{macro}{\rPut*}
+% |\rPut| puts the |#4| object in the |(#2,#3)| point at the |#1| position
+% (rectangular version).
+% Call |\xpct@rPut| (ordinary) or |\xpct@rPutstar| (starred).
+% \begin{macrocode}
+\def\rPut{\@ifstar
+ \xpct@rPutstar%
+ \xpct@rPut%
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\Put}
+% \begin{macro}{\Put*}
+% |\Put| is equivalent to |\cPut| or |\rPut|, and has a starred form.
+% Call |\xpct@Put| (ordinary) or |\xpct@Putstar| (starred).
+% \begin{macrocode}
+\def\Put{\@ifstar
+ \xpct@Putstar%
+ \xpct@Put%
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\defaultPut}
+% \begin{macro}{\xpct@defaultPut}
+% |\defaultPut| is a declaration to fix default position (|c| or |r|)
+% for the |\Put| command. It defines |\xpct@defaultPut| to be
+% |\rPut| or |\cPut|.
+% \begin{macrocode}
+\def\defaultPut#1{\def\xpct@tempa{#1}\def\xpct@tempb{r}
+ \ifx\xpct@tempa\xpct@tempb
+ \xpct@Infopos#1
+ \def\xpct@defaultPut{\rPut}
+ \else
+ \xpct@Infopos#1
+ \def\xpct@tempc{c}
+ \ifx\xpct@tempa\xpct@tempc
+ \def\xpct@defaultPut{\cPut}
+ \else
+ \xpct@Warnbadpos
+ \fi\fi}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\highestlabel}
+% The highest label for the starred |\Put| and |\rPut| commands.
+% First we mesure the label, then we convert this length to |\unitlength|.
+% This number is stored in |\xpct@rputmxhg|.
+% \begin{macrocode}
+\def\highestlabel#1{\settoheight{\xpct@bxh}{#1}%
+ \LENGTHDIVIDE{\xpct@bxh}{\unitlength}{\xpct@rputmxhg}}
+% \end{macrocode}
+% \end{macro}
+% Private commands. Main command is |\xpct@PUT|, all other commands are
+% intended to select appropiate geometry.
+% \begin{macro}{\xpct@rPut}
+% \begin{macro}{\xpct@rPutstar}
+% We give the appropriate value to boolean |\rputstar|, select rectangular
+% trigonometry and call |\xpct@PUT|.
+% \begin{macrocode}
+\def\xpct@rPutstar{\rputstartrue\COPY{1}{\xpct@CorRput}\xpct@PUT}
+\def\xpct@rPut{\rputstarfalse\COPY{1}{\xpct@CorRput}\xpct@PUT}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@Putstar}
+% \begin{macro}{\xpct@Put}
+% |\Put| can take an optional argument.
+% \begin{macrocode}
+\def\xpct@Putstar{\@ifnextchar[{\xpct@@Putstar}{\xpct@@Put}}
+\def\xpct@Put{\@ifnextchar[{\xpct@@@Put}{\xpct@@Put}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@@Putstar}
+% \begin{macro}{\xpct@@Put}
+% \begin{macro}{\xpct@@@Put}
+% |\Put[pos]| is |\rPut*{pos}| (for ``bl'' like pos),
+% |\cPut{pos}| (for ``SW'' like pos) and
+% |\defaultPut| pos otherwise.
+%
+% |\Put*[pos]| is |\rPut*{pos}|
+% or |\cPut{pos}| (only for ``SW'' like pos).
+% \begin{macrocode}
+\def\xpct@@Put(#1){\refsysPoint(#1)(\xpct@abscoorx,\xpct@abscoory)
+ \put(\xpct@abscoorx,\xpct@abscoory)}
+\def\xpct@@Putstar[#1](#2)#3{\xpct@convtoang{#1}{\xpct@putpos}{\xpct@CorR}
+ \if\xpct@CorR c
+ \cPut{#1}(#2){#3}
+ \else
+ \rPut*{#1}(#2){#3}
+ \fi}
+\def\xpct@@@Put[#1](#2)#3{\xpct@convtoang{#1}{\xpct@putpos}{\xpct@CorR}
+ \if\xpct@CorR c
+ \cPut{#1}(#2){#3}
+ \else
+ \if\xpct@CorR r
+ \rPut{#1}(#2){#3}
+ \else
+ \xpct@defaultPut{#1}(#2){#3}
+ \fi\fi}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@PUT}
+% This command puts object |#4| in |(#2,#3)| (active reference),
+% according to |#1| position.
+% \begin{macrocode}
+\def\xpct@PUT#1(#2,#3)#4{%
+% \end{macrocode}
+% Call |\xpct@alphaput| to compute |(\xpct@xPictsep,\xpct@yPictsep)|,
+% displacement of |\Pictlabelsep| units in direction |#1|.
+% Then, apply |\refsysxyVector| to get |(\xpct@Posx,\xpct@Posy)|,
+% standard coordinates of vector |(\xpct@xPictsep,\xpct@yPictsep)|.
+% \begin{macrocode}
+ \xpct@alphaput{#1}{\xpct@CorRput}
+ \refsysxyVector(\xpct@xPictsep,\xpct@yPictsep)(\xpct@Posx,\xpct@Posy)
+% \end{macrocode}
+% Compute |(\xpct@posx,\xpct@posy)|, standard coordinates of point |(#2,#3)|.
+% \begin{macrocode}
+ \refsysPoint(#2,#3)(\xpct@posx,\xpct@posy)
+% \end{macrocode}
+% Call |\xpct@alphamove| to adjust |(\xpct@Posx,\xpct@Posy)|
+% according to dimensions of |#4|.
+% Then add |(\xpct@posx,\xpct@posy)| to |(\xpct@Posx,\xpct@Posy)|.
+% \begin{macrocode}
+ \xpct@alphamove{#4}{\xpct@CorRput}
+ \VECTORADD(\xpct@posx,\xpct@posy)(\xpct@Posx,\xpct@Posy)(%
+ \xpct@Posx,\xpct@Posy)
+% \end{macrocode}
+% Now |(\xpct@Posx,\xpct@Posy)| is the absolute position where |#4|
+% must go.
+% \begin{macrocode}
+ \put(\xpct@Posx,\xpct@Posy){#4}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@alphaput}
+% Computes displacement vector required by |#1| and stores it in
+% |(\xpct@xPictsep},\xpct@yPictsep)|.
+% \begin{macrocode}
+\def\xpct@alphaput#1#2{\def\xpct@tempa{#1}\def\xpct@tempb{c}%
+ \ifx\xpct@tempa\xpct@tempb
+% \end{macrocode}
+% If |#1=c|, no displacement is required:
+%|(\xpct@xPictsep},\xpct@yPictsep)=(0,0)|.
+% \begin{macrocode}
+ \COPY{0}{\xpct@xPictsep}\COPY{0}{\xpct@yPictsep}
+ \else
+% \end{macrocode}
+% Else, call |\xpct@convtoang| to translate |#1| to a number (of degrees),
+% \begin{macrocode}
+ \xpct@convtoang{#1}{\xpct@putpos}{\xpct@CorR}
+% \end{macrocode}
+% and compute |(\xpct@xPictsep},\xpct@yPictsep)|.
+% \begin{macrocode}
+ \ifnum #2=0
+ \DEGREESCOS{\xpct@putpos}{\xpct@cosine}
+ \DEGREESSIN{\xpct@putpos}{\xpct@sine}
+ \else
+ \qCOS{\xpct@putpos}{\xpct@cosine}
+ \qSIN{\xpct@putpos}{\xpct@sine}
+ \fi
+ \MULTIPLY{\Pictlabelsep}{\xpct@cosine}{\xpct@xPictsep}
+ \MULTIPLY{\Pictlabelsep}{\xpct@sine}{\xpct@yPictsep}
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@alphamove}
+% Adjust |(\xpct@Posx,\xpct@Posy)| to required position, according to
+% |#1| dimensions. If |#2| equals |0|, it uses circular trigonometry, else
+% it uses square trigonometry.
+% \begin{macrocode}
+\def\xpct@alphamove#1#2{%
+% \end{macrocode}
+% Computes half of dimensions of |#1|,
+% \begin{macrocode}
+ \xpct@halfbox{#1}{\xpct@amplada}{\xpct@altura}
+ \ifx\xpct@tempa\xpct@tempb
+ \else
+% \end{macrocode}
+% If required position is not centered, move |(\xpct@Posx,\xpct@Posy)|
+% (circular or square cases). First, compute a unitary vector in
+% |(\xpct@Posx,\xpct@Posy)| direction.
+% \begin{macrocode}
+ \ifnum #2=0
+ \UNITVECTOR(\xpct@Posx,\xpct@Posy)(\xpct@xdir,\xpct@ydir)
+ \else
+ \qUNITVECTOR(\xpct@Posx,\xpct@Posy)(\xpct@xdir,\xpct@ydir)
+% \end{macrocode}
+% If starred, change height to half |\xpct@rputmxhg|.
+% \begin{macrocode}
+ \ifrputstar
+ \ifdim\xpct@ydir\p@=-1\p@
+ \DIVIDE{\xpct@rputmxhg}{2}{\xpct@altura}
+ \fi
+ \fi
+ \fi
+% \end{macrocode}
+% Adjust |(\xpct@xdir,\xpct@ydir)| to |#1| dimensions.
+% \begin{macrocode}
+ \MULTIPLY{\xpct@ydir}{\xpct@altura}{\xpct@ydir}
+ \MULTIPLY{\xpct@xdir}{\xpct@amplada}{\xpct@xdir}
+ \VECTORADD(\xpct@Posx,\xpct@Posy)(\xpct@xdir,\xpct@ydir)%
+ (\xpct@Posx,\xpct@Posy)
+ \fi
+% \end{macrocode}
+% Move |(\xpct@Posx,\xpct@Posy)| according to |#1| dimensions.
+% \begin{macrocode}
+ \VECTORSUB(\xpct@Posx,\xpct@Posy)(\xpct@amplada,\xpct@altura)(%
+ \xpct@Posx,\xpct@Posy)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@convtoang}
+% Literal specifiers in |\Put|-like commands must be converted to angles.
+% |c| or |r| (circular or rectangular) distance is also selected.
+% \begin{macrocode}
+\def\xpct@convtoang#1#2#3{%
+ \def\xpct@tempc{#1}
+ \def\xpct@tempd{r}\ifx\xpct@tempc\xpct@tempd\COPY{0}{#2}\def#3{r}\else
+ \def\xpct@tempd{tr}\ifx\xpct@tempc\xpct@tempd\COPY{45}{#2}\def#3{r}\else
+ \def\xpct@tempd{t}\ifx\xpct@tempc\xpct@tempd\COPY{90}{#2}\def#3{r}\else
+ \def\xpct@tempd{tl}\ifx\xpct@tempc\xpct@tempd\COPY{135}{#2}\def#3{r}\else
+ \def\xpct@tempd{l}\ifx\xpct@tempc\xpct@tempd\COPY{180}{#2}\def#3{r}
+ \else
+ \def\xpct@tempd{bl}\ifx\xpct@tempc\xpct@tempd\COPY{-135}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{b}\ifx\xpct@tempc\xpct@tempd\COPY{-90}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{br}\ifx\xpct@tempc\xpct@tempd\COPY{-45}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{rtr}\ifx\xpct@tempc\xpct@tempd\COPY{22.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{ttr}\ifx\xpct@tempc\xpct@tempd\COPY{67.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{ttl}\ifx\xpct@tempc\xpct@tempd\COPY{112.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{ltl}\ifx\xpct@tempc\xpct@tempd\COPY{157.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{lbl}\ifx\xpct@tempc\xpct@tempd\COPY{-157.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{bbl}\ifx\xpct@tempc\xpct@tempd\COPY{-112.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{bbr}\ifx\xpct@tempc\xpct@tempd\COPY{-67.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{rbr}\ifx\xpct@tempc\xpct@tempd\COPY{-22.5}{#2}
+ \def#3{r}\else
+ \def\xpct@tempd{E}\ifx\xpct@tempc\xpct@tempd\COPY{0}{#2}\def#3{c}\else
+ \def\xpct@tempd{NE}\ifx\xpct@tempc\xpct@tempd\COPY{45}{#2}\def#3{c}\else
+ \def\xpct@tempd{N}\ifx\xpct@tempc\xpct@tempd\COPY{90}{#2}\def#3{c}\else
+ \def\xpct@tempd{NW}\ifx\xpct@tempc\xpct@tempd\COPY{135}{#2}\def#3{c}\else
+ \def\xpct@tempd{W}\ifx\xpct@tempc\xpct@tempd\COPY{180}{#2}\def#3{c}\else
+ \def\xpct@tempd{SW}\ifx\xpct@tempc\xpct@tempd\COPY{-135}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{S}\ifx\xpct@tempc\xpct@tempd\COPY{-90}{#2}\def#3{c}\else
+ \def\xpct@tempd{SE}\ifx\xpct@tempc\xpct@tempd\COPY{-45}{#2}\def#3{c}\else
+ \def\xpct@tempd{ENE}\ifx\xpct@tempc\xpct@tempd\COPY{22.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{NNE}\ifx\xpct@tempc\xpct@tempd\COPY{67.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{NNW}\ifx\xpct@tempc\xpct@tempd\COPY{112.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{WNW}\ifx\xpct@tempc\xpct@tempd\COPY{157.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{WSW}\ifx\xpct@tempc\xpct@tempd\COPY{-157.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{SSW}\ifx\xpct@tempc\xpct@tempd\COPY{-112.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{SSE}\ifx\xpct@tempc\xpct@tempd\COPY{-67.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{ESE}\ifx\xpct@tempc\xpct@tempd\COPY{-22.5}{#2}
+ \def#3{c}\else
+ \def\xpct@tempd{c}\ifx\xpct@tempc\xpct@tempd\COPY{0}{#2}\def#3{c}\else
+ \COPY{#1}{#2}\def#3{a}
+\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
+\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
+\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
+}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@halfbox}
+% Half of dimensions of a box.
+% \begin{macrocode}
+\def\xpct@halfbox#1#2#3{%
+ \settowidth\xpct@bxw{#1}%
+ \settoheight\xpct@bxh{#1}%
+ \LENGTHDIVIDE{\xpct@bxw}{\unitlength}{#2}
+ \LENGTHDIVIDE{\xpct@bxh}{\unitlength}{#3}
+ \MULTIPLY{0.5}{#2}{#2}
+ \MULTIPLY{0.5}{#3}{#3}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\qCOS}
+% \begin{macro}{\qSIN}
+% \begin{macro}{\qUNITVECTOR}
+% Square versions of |\DEGREESCOS|, |\DEGREESSIN| and |\UNITVECTOR|.
+% \begin{macrocode}
+\def\qCOS#1#2{%
+ \ifdim #1\p@<-135\p@
+ \ADD{360}{#1}{\xpct@angles}\qCOS{\xpct@angles}{#2}
+ \else
+ \ifdim #1\p@>225\p@ \SUBTRACT{#1}{360}{\xpct@angles}
+ \qCOS{\xpct@angles}{#2}
+ \else
+ \ifdim #1\p@<-45\p@ \DEGREESCOT{#1}{#2}\MULTIPLY{-1}{#2}{#2}
+ \else
+ \ifdim #1\p@<45\p@ \COPY{1}{#2}
+ \else
+ \ifdim #1\p@<135\p@ \DEGREESCOT{#1}{#2}
+ \else
+ \COPY{-1}{#2}
+ \fi
+ \fi
+ \fi
+ \fi
+ \fi
+}
+\def\qSIN#1#2{%
+ \ifdim #1\p@<-135\p@
+ \ADD{360}{#1}{\xpct@angles}\qSIN{\xpct@angles}{#2}
+ \else
+ \ifdim #1\p@>225\p@ \SUBTRACT{#1}{360}{\xpct@angles}
+ \qSIN{\xpct@angles}{#2}
+ \else
+ \ifdim #1\p@<-45\p@ \COPY{-1}{#2}
+ \else
+ \ifdim #1\p@<45\p@ \DEGREESTAN{#1}{#2}
+ \else
+ \ifdim #1\p@<135\p@ \COPY{1}{#2}
+ \else
+ \DEGREESTAN{#1}{#2}\MULTIPLY{-1}{#2}{#2}
+ \fi
+ \fi
+ \fi
+ \fi
+ \fi
+}
+\def\qUNITVECTOR(#1,#2)(#3,#4){%
+ \VECTORCOPY(#1,#2)(#3,#4)
+ \ABSVALUE{#4}{\xpct@Ydir}
+ \ifdim \xpct@Ydir\p@ < 0.00005\p@
+ \COPY{\xpct@maxnum}{\xpct@tan}
+ \else
+ \DIVIDE{#3}{#4}{\xpct@tan}
+ \fi
+ \ifdim #3\p@ > 0\p@
+ \ifdim #4\p@ > 0\p@
+ \ifdim #3\p@ > #4\p@
+ \COPY{1}{#3}\DIVIDE{#4}{\xpct@tan}{#4}
+ \else
+ \COPY{1}{#4}\COPY{\xpct@tan}{#3}
+ \fi
+ \else
+ \ifdim #3\p@ > -#4\p@
+ \COPY{1}{#3}\DIVIDE{-#4}{\xpct@tan}{#4}
+ \else
+ \COPY{-1}{#4}\MULTIPLY{-1}{\xpct@tan}{#3}
+ \fi
+ \fi
+ \else
+ \ifdim #4\p@ > 0\p@
+ \ifdim -#3\p@ > #4\p@
+ \COPY{-1}{#3}\DIVIDE{-#4}{\xpct@tan}{#4}
+ \else
+ \COPY{1}{#4}\COPY{\xpct@tan}{#3}
+ \fi
+ \else
+ \ifdim #3\p@ > #4\p@
+ \COPY{-1}{#4}\COPY{-\xpct@tan}{#3}
+ \else
+ \COPY{-1}{#3}\DIVIDE{#4}{\xpct@tan}{#4}
+ \fi
+ \fi
+ \fi
+}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \subsection{\cs{multiput} extensions}
+% User commands: |\multicPut|, |\multirPut|, |\multiPut|;
+% |\multicPlot|, |\multirPlot|, |\multiPlot|.
+% |\multirPut|, |\multiPut|, |\multirPlot|, and |\multiPlot|
+% have starred versions.
+% \begin{macro}{\multicPut}
+% Define |\xpct@mPut| as |\cPut{#1}| and call |\xpct@@mPut|.
+% \begin{macrocode}
+\def\multicPut#1{\def\xpct@mPut{\cPut{#1}}\xpct@@mPut}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\multirPut}
+% \begin{macro}{\multirPut*}
+% Call |\xpct@multirPut| or |\xpct@multirPutstar| (if starred).
+% \begin{macrocode}
+\def\multirPut{\@ifstar
+ \xpct@multirPutstar%
+ \xpct@multirPut%
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\multiPut}
+% \begin{macro}{\multiPut*}
+% Call |\xpct@multiPut| or |\xpct@multiPutstar| (if starred).
+% \begin{macrocode}
+\def\multiPut{\@ifstar
+ \xpct@multiPutstar%
+ \xpct@multiPut%
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@multirPutstar}
+% \begin{macro}{\xpct@multirPut}
+% Define |\xpct@mPut| as |\rPut*{#1}| or |\rPut{#1}| and call |\xpct@@mPut|.
+% \begin{macrocode}
+\def\xpct@multirPutstar#1{\def\xpct@mPut{\rPut*{#1}}\xpct@@mPut}
+\def\xpct@multirPut#1{\def\xpct@mPut{\rPut{#1}}\xpct@@mPut}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@multiPut}
+% \begin{macro}{\xpct@multiPutstar}
+% |\multiPut| can take an optional argument.
+% \begin{macrocode}
+\def\xpct@multiPut{\@ifnextchar[{\xpct@@@multiPut}{\xpct@@multiPut}}
+\def\xpct@multiPutstar{\@ifnextchar[{\xpct@@@multiPutstar}{\xpct@@multiPutstar}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@@multiPut}
+% \begin{macro}{\xpct@@multiPutstar}
+% Define |\xpct@mPut| as |\Put| or |\Put*| and call |\xpct@@mPut|.
+% \begin{macrocode}
+\def\xpct@@multiPut{\def\xpct@mPut{\Put}\xpct@@mPut}
+\def\xpct@@multiPutstar{\def\xpct@mPut{\Put*}\xpct@@mPut}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@@@multiPut}
+% \begin{macro}{\xpct@@@multiPutstar}
+% Define |\xpct@mPut| as |\Put[#1]| or |\Put*[#1]| and call |\xpct@@mPut|.
+% \begin{macrocode}
+\def\xpct@@@multiPut[#1]{\def\xpct@mPut{\Put[#1]}\xpct@@mPut}
+\def\xpct@@@multiPutstar[#1]{\def\xpct@mPut{\Put*[#1]}\xpct@@mPut}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@@mPut}
+% \begin{macro}{\xpct@mPut}
+% |\xpct@@mPut| is the main macro about |\multiPut|-like commands.
+% |\xpct@mPut| is already defined as the appropiate |\Put| command.
+% \begin{macrocode}
+\def\xpct@@mPut(#1,#2)(#3,#4)#5#6{%
+% \end{macrocode}
+% Use counter |multiput| to count iterations.
+% |(\xpct@@abscoorx,\xpct@@abscoory)| is the point to be ploted in each
+% iteration.
+% \begin{macrocode}
+ \COPY{#1}\xpct@@abscoorx\COPY{#2}\xpct@@abscoory
+ \setcounter{multiput}{0}%
+ \@whilenum\value{multiput}<#5 \do
+% \end{macrocode}
+% Plot the point, translate it, and update conter.
+% \begin{macrocode}
+ {\xpct@mPut(\xpct@@abscoorx,\xpct@@abscoory){#6}
+ \ADD{#3}\xpct@@abscoorx\xpct@@abscoorx
+ \ADD{#4}\xpct@@abscoory\xpct@@abscoory
+ \stepcounter{multiput}}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\multicPlot}
+% Execute |\cPut| and iterates itself while next character be |(|.
+% \begin{macrocode}
+\def\multicPlot#1#2(#3){\cPut{#1}(#3){#2}\@ifnextchar({\multicPlot{#1}{#2}}{}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\multirPlot}
+% \begin{macro}{\multirPlot*}
+% |\multirPlot| can take a starred form. Call |\xpct@multirPlot| or,
+% if starred, |\xpct@multirPlotstar|.
+% \begin{macrocode}
+\def\multirPlot{\@ifstar
+ \xpct@multirPlotstar%
+ \xpct@multirPlot%
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\multiPlot}
+% \begin{macro}{\multiPlot*}
+% |\multiPlot| can take a starred form. Call |\xpct@multiPlot| or,
+% if starred, |\xpct@multiPlotstar|.
+% \begin{macrocode}
+\def\multiPlot{\@ifstar
+ \xpct@multiPlotstar%
+ \xpct@multiPlot%
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@multirPlotstar}
+% \begin{macro}{\xpct@multirPlot}
+% Execute |\rPut*| or |\rPut| and iterates itself while next character be |(|.
+% \begin{macrocode}
+\def\xpct@multirPlotstar#1#2(#3){\rPut*{#1}(#3){#2}
+ \@ifnextchar({\xpct@multirPlotstar{#1}{#2}}{}}
+\def\xpct@multirPlot#1#2(#3){\rPut{#1}(#3){#2}
+ \@ifnextchar({\xpct@multirPlot{#1}{#2}}{}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@multiPlotstar}
+% \begin{macro}{\xpct@multiPlot}
+% |\multiPlot| (and |\multiPlot*|) can take an optional argument.
+% We have four cases: (starred or not) and (optional argument or not).
+% \begin{macrocode}
+\def\xpct@multiPlotstar{%
+ \@ifnextchar[{\xpct@@@multiPlotstar}{\xpct@@multiPlotstar}}
+\def\xpct@multiPlot{\@ifnextchar[{\xpct@@@multiPlot}{\xpct@@multiPlot}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@@multiPlot}
+% \begin{macro}{\xpct@@@multiPlot}
+% \begin{macro}{\xpct@@multiPlotstar}
+% \begin{macro}{\xpct@@@multiPlotstar}
+% Execute |\Put| (or |\Put*|) and iterates itself while next character be |(|.
+% \begin{macrocode}
+\def\xpct@@multiPlot#1(#2){\Put(#2){#1}\@ifnextchar({\xpct@@multiPlot{#1}}{}}
+\def\xpct@@@multiPlot[#1]#2(#3){\Put[#1](#3){#2}
+ \@ifnextchar({\xpct@@@multiPlot[#1]{#2}}{}}
+\def\xpct@@multiPlotstar#1(#2){\Put*(#2){#1}
+ \@ifnextchar({\xpct@@multiPlotstar{#1}}{}}
+\def\xpct@@@multiPlotstar[#1]#2(#3){\Put*[#1](#3){#2}
+ \@ifnextchar({\xpct@@@multiPlotstar[#1]{#2}}{}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \subsection{Strigth lines and vectors}
+% \begin{macro}{\xLINE}
+% \begin{macro}{\strline}
+% Compute standard coordinates of two points and call |\xpct@strline|
+% to plot a line.
+% \begin{macrocode}
+\def\xLINE(#1)(#2){%
+ \refsysPoint(#1)(\xpct@xzero,\xpct@yzero)
+ \refsysPoint(#2)(\xpct@xone,\xpct@yone)
+ \xpct@strline(\xpct@xzero,\xpct@yzero)(\xpct@xone,\xpct@yone)}
+\let\strline\xLINE
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@strline}
+% This command calls the |\segment| command from |curve2e|
+% (or |\LINE|, for old versions of |curve2e|).
+% \begin{macrocode}
+\def\xpct@strline{\@killglue\@ifundefined{segment}{\LINE}{\segment}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xVECTOR}
+% Compute standard coordinates of two points and call |\VECTOR|
+% to plot a vector.
+% \begin{macrocode}
+\def\xVECTOR(#1)(#2){%
+ \refsysPoint(#1)(\xpct@xzero,\xpct@yzero)
+ \refsysPoint(#2)(\xpct@xone,\xpct@yone)
+ \VECTOR(\xpct@xzero,\xpct@yzero)(\xpct@xone,\xpct@yone)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xtrivVECTOR}
+% Compute standard coordinates of two points and call |\xpct@xtrivVECTOR|
+% to plot a `triv' vector.
+% \begin{macrocode}
+\def\xtrivVECTOR(#1)(#2){%
+ \refsysPoint(#1)(\xpct@xzeropoint,\xpct@yzeropoint)
+ \refsysPoint(#2)(\xpct@xonepoint,\xpct@yonepoint)
+ \xpct@xtrivVECTOR(\xpct@xzeropoint,\xpct@yzeropoint)(%
+ \xpct@xonepoint,\xpct@yonepoint)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\arrowsize}
+% Store dimensions of triv arrows.
+% to plot a vector.
+% \begin{macrocode}
+\def\arrowsize#1#2{\COPY{#1}{\xpct@xarrowlen}
+ \COPY{#2}{\xpct@yarrowlen}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@xtrivVECTOR}
+% Plot a stright line, compute size of arrowhead and call |\xpct@arrow|
+% to plot it.
+% \begin{macrocode}
+\def\xpct@xtrivVECTOR(#1)(#2){%
+ \xpct@strline(#1)(#2)
+ \VECTORSUB(#2)(#1)(\xpct@xarrow,\xpct@yarrow)
+ \VECTORNORM(\xpct@xarrow,\xpct@yarrow){\xpct@xarrowunit}
+ \DIVIDE{\xpct@xarrow}{\xpct@xarrowunit}{\xpct@xarrow}
+ \DIVIDE{\xpct@yarrow}{\xpct@xarrowunit}{\xpct@yarrow}
+ \xpct@arrow(#2){\xpct@xarrow}{\xpct@yarrow}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@arrow}
+% Make an arrowhead as a small picture.
+% \begin{macrocode}
+\def\xpct@arrow(#1)#2#3{\begingroup%
+ \referencesystem(#1)(#2,#3)(-#3,#2)
+ \Put(0,0){\setlength{\unitlength}{1pt}%
+ \begin{Picture}(0,0)(0,0)\cartesianreference
+ \xLINE(-\xpct@xarrowlen,\xpct@yarrowlen)(0,0)
+ \xLINE(0,0)(-\xpct@xarrowlen,-\xpct@yarrowlen)
+ \end{Picture}}\endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\zerovector}
+% \begin{macro}{\zerotrivvector}
+% To have an arrowhead, draw a very short vector (of |0.01\unitlength|).
+% \begin{macrocode}
+\def\zerovector(#1){%
+ \UNITVECTOR(#1)(\xpct@dirx,\xpct@diry)
+ \SCALARVECTORPRODUCT{0.01}(\xpct@dirx,\xpct@diry)(\xpct@dirx,\xpct@diry)
+ \xVECTOR(0,0)(\xpct@dirx,\xpct@diry)}
+\def\zerotrivvector(#1){%
+ \UNITVECTOR(#1)(\xpct@dirx,\xpct@diry)
+ \SCALARVECTORPRODUCT{0.01}(\xpct@dirx,\xpct@diry)(\xpct@dirx,\xpct@diry)
+ \xtrivVECTOR(0,0)(\xpct@dirx,\xpct@diry)}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xline}
+% \begin{macro}{\xvector}
+% \begin{macro}{\xtrivvector}
+% Standard syntax strigth lines and vectors.
+% Call |\xpct@xline| to compute adequate coordinates of line or vector ends.
+% Then call |\xLINE|, |\xVECTOR| or |\xtrivVECTOR| command.
+% \begin{macrocode}
+\def\xline(#1,#2)#3{%
+ \xpct@xline(#1,#2){#3}
+ \xLINE(0,0)(\xpct@@xdir,\xpct@@ydir)}
+
+\def\xvector(#1,#2)#3{%
+ \ifdim #3 pt = 0 pt \zerovector(#1,#2)
+ \else
+ \xpct@xline(#1,#2){#3}
+ \xVECTOR(0,0)(\xpct@@xdir,\xpct@@ydir)
+ \fi}
+
+\def\xtrivvector(#1,#2)#3{%
+ \ifdim #3 pt = 0 pt \zerotrivvector(#1,#2)
+ \else
+ \xpct@xline(#1,#2){#3}
+ \xtrivVECTOR(0,0)(\xpct@@xdir,\xpct@@ydir)
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@xline}
+% Calculate the coordinates of the endpoint of |\xline(#1,#2){#3}| and stores
+% them in |(\xpct@@xdir,\xpct@@ydir)|.
+% \begin{macrocode}
+\def\xpct@xline(#1,#2)#3{%
+ \ABSVALUE{#1}{\xpct@modx}
+ \ifdim \xpct@modx pt < 0.0001 pt
+ \COPY{0}{\xpct@@xdir}
+ \ifdim #2\p@>\z@ \COPY{#3}{\xpct@@ydir}
+ \else \MULTIPLY{-1}{#3}{\xpct@@ydir}
+ \fi
+ \else
+ \DIVIDE{#1}{\xpct@modx}{\xpct@@xdir}
+ \DIVIDE{#2}{\xpct@modx}{\xpct@@ydir}
+ \SCALARVECTORPRODUCT{#3}(\xpct@@xdir,\xpct@@ydir)(%
+ \xpct@@xdir,\xpct@@ydir)
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Polygons and polylines}
+% \begin{macro}{\Polyline}
+% This command plots a line between the two first points and, if next
+% character is |(|, supresses first point and iterates itself.
+% \begin{macrocode}
+\def\Polyline(#1)(#2){%
+ \xLINE(#1)(#2)\@ifnextchar({\Polyline(#2)}{}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\Polygon}
+% Store the first point in |(\xpct@firstx,\xpct@firsty)| and call
+% |\xpct@Polygon|.
+% \begin{macrocode}
+\def\Polygon(#1,#2)(#3){%
+ \COPY{#1}{\xpct@firstx}\COPY{#2}{\xpct@firsty}
+ \xpct@Polygon(#1,#2)(#3)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@Polygon}
+% This command plots a line between the two first points and, if next
+% character is |(|, supresses first point and iterates itself.
+% When finished, adds a closing line to the previously stored first point.
+% \begin{macrocode}
+\def\xpct@Polygon(#1)(#2){%
+ \xLINE(#1)(#2)\@ifnextchar({\xpct@Polygon(#2)}{%
+ \xLINE(#2)(\xpct@firstx,\xpct@firsty)}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\regularPolygon}
+% |\regularPolygon| can take an optional argument.
+% \begin{macrocode}
+\def\regularPolygon{%
+ \@ifnextchar[{\xpct@regPolygon}{\xpct@@regPolygon}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@@regPolygon}
+% Default for optional argument is |0|.
+% \begin{macrocode}
+\def\xpct@@regPolygon#1#2{\xpct@regPolygon[0]{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@regPolygon}
+% |\xpct@regPolygon[#1]{#2}{#3}| uses the |xpct@counta| counter to
+% plot |#3| lines, in polar coordinates with |#2| radius,
+% startint with angle |#1| and using $360/|#3|$ to
+% incrementing angle in each step.
+% \begin{macrocode}
+\def\xpct@regPolygon[#1]#2#3{\begingroup%
+ \polarreference\degreesangles
+ \setcounter{xpct@counta}{0}%
+ \setcounter{xpct@countb}{#3}%
+ \DIVIDE{360}{#3}{\xpct@angles}
+ \COPY{#1}{\xpct@anglea}
+ \@whilenum\value{xpct@counta}<\value{xpct@countb} \do {%
+ \ADD{\xpct@anglea}{\xpct@angles}{\xpct@angleb}
+ \xLINE(#2,\xpct@anglea)(#2,\xpct@angleb)
+ \COPY{\xpct@angleb}{\xpct@anglea}\stepcounter{xpct@counta}}
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Quadratic curves}
+% \begin{macro}{\xpct@ctrlpoint}
+% The main command in this section is |\xpct@ctrlpoint|.
+% It computes the control point in a quadratic Bezier curve
+% from the coordinates and direction vectors of ending points.
+% \begin{macrocode}
+\def\xpct@ctrlpoint(#1,#2)(#3,#4)(#5,#6)(#7,#8){%
+ \DETERMINANT(#3,#4;#7,#8)\xpct@detA
+ \DETERMINANT(#1,#2;#3,#4)\xpct@detB
+ \DETERMINANT(#5,#6;#7,#8)\xpct@detC
+ \DETERMINANT(#3,#7;\xpct@detB,\xpct@detC)\xpct@detD
+ \DETERMINANT(#4,#8;\xpct@detB,\xpct@detC)\xpct@detE
+ \ABSVALUE{\xpct@detA}{\xpct@@detA}
+ \ABSVALUE{\xpct@detD}{\xpct@@detD}
+ \ABSVALUE{\xpct@detE}{\xpct@@detE}
+ \ifdim \xpct@@detA pt<0.00005 pt
+% \end{macrocode}
+% If |\xpct@detA| approaches zero, matrix is singular or close to singular.
+% Then tangent lines may be parallel or coincide.
+% \begin{macrocode}
+ \ifdim \xpct@@detD pt<0.00005 pt %\xpct@detD pt=0 pt
+ \ifdim \xpct@@detE pt<0.00005 pt %\xpct@detE pt=0 pt
+% \end{macrocode}
+% Indeterminate system. The curve is a straight line.
+% We take (as reference point) middle point between end points.
+% \begin{macrocode}
+ \ADD{#1}{#5}{\xpct@solx}\DIVIDE{\xpct@solx}{2}{\xpct@solx}
+ \ADD{#2}{#6}{\xpct@soly}\DIVIDE{\xpct@soly}{2}{\xpct@soly}
+ \fi\else
+% \end{macrocode}
+% Inconsistent case. Return a warning and undefine control point.
+% \begin{macrocode}
+ \xpct@WarnIncSys(#1,#2)(#5,#6)
+ \let\xpct@solx\undefined\let\xpct@soly\undefined
+ \fi
+ \else
+% \end{macrocode}
+% This is the regular case.
+% \begin{macrocode}
+ \DIVIDE{\xpct@detD}{\xpct@detA}{\xpct@solx}
+ \DIVIDE{\xpct@detE}{\xpct@detA}{\xpct@soly}
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\qCurve}
+% This macro accepts two alternative syntax (directions given by a vector
+% or by an angle).
+% \begin{macrocode}
+\def\qCurve(#1){\@ifnextchar({\xpct@@qCurve(#1)}{\xpct@@@qCurve(#1)}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@@qCurve}
+% Compute standard coordinates of points and vectors and call |\xpct@qCurve|.
+% \begin{macrocode}
+\def\xpct@@qCurve(#1)(#2)(#3)(#4){%
+ \refsysPoint(#1)(\xpct@@xzero,\xpct@@yzero)
+ \refsysPoint(#3)(\xpct@@xone,\xpct@@yone)
+ \refsysVector(#2)(\xpct@@dxzero,\xpct@@dyzero)
+ \refsysVector(#4)(\xpct@@dxone,\xpct@@dyone)
+ \xpct@qCurve(\xpct@@xzero,\xpct@@yzero)(\xpct@@dxzero,\xpct@@dyzero)(%
+ \xpct@@xone,\xpct@@yone)%
+ (\xpct@@dxone,\xpct@@dyone)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@@@qCurve}
+% Translate direction angles to vectors and call |\qCurve|.
+% \begin{macrocode}
+\def\xpct@@@qCurve(#1)#2(#3)#4{%
+ \ifpolar
+ \qCurve(#1)(1,#2)(#3)(1,#4)
+ \else
+ \DEGREESCOS{#2}{\xpct@angxz}
+ \DEGREESSIN{#2}{\xpct@angyz}
+ \DEGREESCOS{#4}{\xpct@angxo}
+ \DEGREESSIN{#4}{\xpct@angyo}
+ \qCurve(#1)(\xpct@angxz,\xpct@angyz)(#3)%
+ (\xpct@angxo,\xpct@angyo)\fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@qCurve}
+% Call |\xpct@ctrlpoint| to compute control point; then, use |\qbezier|
+% to plot the curve. If the control point is undefined, nothing is drawn.
+% \begin{macrocode}
+\def\xpct@qCurve(#1)(#2)(#3)(#4){%
+ \xpct@ctrlpoint(#1)(#2)(#3)(#4)
+ \ifx\xpct@solx\undefined
+ \else
+ \qbezier(#1)(\xpct@solx,\xpct@soly)(#3)\fi\ignorespaces}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\PlotQuadraticCurve}
+% Try between the two alternative sintax.
+% \begin{macrocode}
+\def\PlotQuadraticCurve(#1){%
+ \@ifnextchar({\xpct@PlotQuadraticCurve(#1)}{%
+ \xpct@@PlotQuadraticCurve(#1)}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@PlotQuadraticCurve}
+% \begin{macro}{\xpct@@PlotQuadraticCurve}
+% Call |\qCurve| and iterate |\PlotQuadraticCurve|.
+% \begin{macrocode}
+\def\xpct@PlotQuadraticCurve(#1)(#2)(#3)(#4){%
+ \qCurve(#1)(#2)(#3)(#4)
+ \@ifnextchar({\PlotQuadraticCurve(#3)(#4)}{}}
+\def\xpct@@PlotQuadraticCurve(#1)#2(#3)#4{%
+ \qCurve(#1){#2}(#3){#4}
+ \@ifnextchar({\PlotQuadraticCurve(#3){#4}}{}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \subsection{Conic sections and arcs}
+% \begin{macro}{\xpct@circulararc}
+% \begin{macro}{\xpct@hyperbolicarc}
+% \begin{macro}{\xpct@parabolicarc}
+% Parametric equations of circular, hyperbolic and parabolic arcs
+% defined as vector functions.
+% \begin{macrocode}
+\newvectorfunction{\xpct@circulararc}{%
+% \end{macrocode}
+% Unit circle equation $x^2+y^2=1$ can be parameterized as
+% $f(t)=(\cos t,\sin t)$.
+% If the angles are measured in degrees, the derivative is not correct.
+% Should be multiplied by $\pi/180$, but because what we want is the
+% direction of the derivative, we will not do.
+% \begin{macrocode}
+ \ifdegrees
+ \DEGREESCOS{\t}{\x}
+ \DEGREESSIN{\t}{\y}
+ \COPY{\x}{\Dy}
+ \MULTIPLY{-1}{\y}{\Dx}
+ \else
+ \COS{\t}{\x}
+ \SIN{\t}{\y}
+ \COPY{\x}{\Dy}
+ \MULTIPLY{-1}{\y}{\Dx}
+ \fi}
+\newvectorfunction{\xpct@hyperbolicarc}{%
+% \end{macrocode}
+% Hyperbola $x^2-y^2=1$, parameterized as $f(t)=\frac12(t+1/t,t-1/t)$.
+% This derivative is not correct.
+% We should divide it by $t$, but that did not change direction.
+% \begin{macrocode}
+ \DIVIDE{1}{\t}{\xpct@invt}
+ \ADD{\t}{\xpct@invt}{\x}
+ \SUBTRACT{\t}{\xpct@invt}{\y}
+ \MULTIPLY{0.5}{\x}{\x}
+ \MULTIPLY{0.5}{\y}{\y}
+ \COPY{\x}{\Dy}
+ \COPY{\y}{\Dx}}
+% \end{macrocode}
+% Parabola $x=y^2$ (or $f(t)=(t^2,t)$).
+% \begin{macrocode}
+\newvectorfunction{\xpct@parabolicarc}{%
+ \COPY{\t}{\y}
+ \COPY{1}{\Dy}
+ \SQUARE{\t}{\x}
+ \MULTIPLY{2}{\t}{\Dx}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\circularArc}
+% \begin{macro}{\xArc}
+% A circular arc is an elliptic arc with equal semiaxes.
+% \begin{macrocode}
+\def\circularArc#1#2#3{\ellipticArc{#1}{#1}{#2}{#3}}
+\let\xArc\circularArc
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\ellipticArc}
+% To draw an arc of ellipse of semiaxes |#1| and |#2|,
+% scale the axes and draw a circular arc.
+% |\defaultplotdivs| is the number of subintervals we divide |[#3,#4]|.
+% \begin{macrocode}
+\def\ellipticArc#1#2#3#4{%
+ \begingroup
+ \cartesianreference
+ \changereferencesystem(0,0)(#1,0)(0,#2)
+ \PlotParametricFunction[\defaultplotdivs]{\xpct@circulararc}{#3}{#4}
+ \endgroup\ignorespaces}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\Circle}
+% \begin{macro}{\Ellipse}
+% A circle (or ellipse) is a circular (elliptic) arc of amplitude $2\pi$.
+% \begin{macrocode}
+\def\Circle#1{\begingroup\radiansangles
+ \circularArc{#1}{0}{\numberTWOPI}\endgroup\ignorespaces}
+\def\Ellipse#1#2{\begingroup\radiansangles
+ \ellipticArc{#1}{#2}{0}{\numberTWOPI}
+ \endgroup\ignorespaces}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\lhyperbolicArc}
+% Change $x$-axis to $-x$, then draw a right hyperbolic arc.
+% \begin{macrocode}
+\def\lhyperbolicArc#1#2#3#4{%
+ \begingroup
+ \changereferencesystem(0,0)(-1,0)(0,1)
+ \rhyperbolicArc{#1}{#2}{#3}{#4}
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\rhyperbolicArc}
+% Call |\xpct@hypluy| to compute extreme variables, then draw a
+% normalized arc of hyperbola.
+% \begin{macrocode}
+\def\rhyperbolicArc#1#2#3#4{%
+ \xpct@hypluy{#2}{#3}{\xpct@uone}
+ \xpct@hypluy{#2}{#4}{\xpct@utwo}
+ \xpct@hyperbolicArc{#1}{#2}{\xpct@uone}{\xpct@utwo}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@hyperbolicArc}
+% To draw an arc of (right branch of) hyperbola of semiaxes |#1| and |#2|,
+% scale the axes and draw a normalized arc of hyperbola.
+% |\defaultplotdivs| is the number of subintervals we divide |[#3,#4]|.
+% \begin{macrocode}
+\def\xpct@hyperbolicArc#1#2#3#4{%
+ \begingroup
+ \cartesianreference
+ \changereferencesystem(0,0)(#1,0)(0,#2)
+ \PlotParametricFunction[\defaultplotdivs]{\xpct@hyperbolicarc}{#3}{#4}
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\lHyperbola}
+% Change $x$-axis to $-x$, then draw a right hyperbola branch.
+% \begin{macrocode}
+\def\lHyperbola#1#2#3#4{%
+ \begingroup
+ \changereferencesystem(0,0)(-1,0)(0,1)
+ \rHyperbola{#1}{#2}{#3}{#4}
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\rHyperbola}
+% Use |\xpct@hypconsist| to ensure parameters consistency,
+% call |\xpct@hyperbolalastu| to compute extreme variable,
+% then plot the right hyperbola branch.
+% Divide the curve into two arcs to ensure that
+% it includes point |(#1,0)|.
+% \begin{macrocode}
+\def\rHyperbola#1#2#3#4{%
+ \def\xpct@hycons{}\xpct@hypconsist{#1}{#3}%
+ \ifx\xpct@hycons\undefined
+ \else
+ \xpct@hyperbolalastu{#1}{#2}{#3}{#4}
+ \DIVIDE{1}{\xpct@umax}{\xpct@umin}
+ \xpct@hyperbolicArc{#1}{#2}{\xpct@umin}{1}
+ \xpct@hyperbolicArc{#1}{#2}{1}{\xpct@umax}
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\Hyperbola}
+% Use |\xpct@hypconsist| to ensure parameters consistency,
+% call |\xpct@hyperbolalastu| to compute extreme variable,
+% then plot the two branches.
+% \begin{macrocode}
+\def\Hyperbola#1#2#3#4{%
+ \begingroup
+ \def\xpct@hycons{}\xpct@hypconsist{#1}{#3}%
+ \ifx\xpct@hycons\undefined
+ \else
+ \xpct@hyperbolalastu{#1}{#2}{#3}{#4}
+ \DIVIDE{1}{\xpct@umax}{\xpct@umin}
+ \xpct@hyperbolicArc{#1}{#2}{\xpct@umin}{1}
+ \xpct@hyperbolicArc{#1}{#2}{1}{\xpct@umax}
+ \changereferencesystem(0,0)(-1,0)(0,1)
+ \xpct@hyperbolicArc{#1}{#2}{\xpct@umin}{1}
+ \xpct@hyperbolicArc{#1}{#2}{1}{\xpct@umax}
+ \fi\endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@hypconsist}
+% Ensures consistency of parameters in |\Hyperbola|-like commands.
+% This curve is not defined for $x<a$ values.
+% \begin{macrocode}
+\def\xpct@hypconsist#1#2{%
+ \ifnum #1<#2\else\xpct@ErrHypCons
+ \let\xpct@hycons\undefined\fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@hyperbolalastu}
+% Compute the max value of parameter ensuring restrictions
+% |x<#3| and |y<#4|.
+% \begin{macrocode}
+\def\xpct@hyperbolalastu#1#2#3#4{%
+ \xpct@hyplux{#1}{#3}{\xpct@umaxx}
+ \xpct@hypluy{#2}{#4}{\xpct@umaxy}
+ \MIN{\xpct@umaxx}{\xpct@umaxy}{\xpct@umax}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@hyplux}
+% To compute the max value of parameter ensuring restriction
+% |x<=#2|, solve equation |#2=(1/2)#1(u+1/u)| (|u=#3|).
+% \begin{macrocode}
+\def \xpct@hyplux#1#2#3{%
+ \DIVIDE{#2}{#1}{\xpct@xa}
+ \SQUARE{\xpct@xa}{#3}
+ \SUBTRACT{#3}{1}{#3}
+ \SQUAREROOT{#3}{\xpct@@umaxx}
+ \ADD{\xpct@xa}{\xpct@@umaxx}{#3}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@hypluy}
+% To compute the max value of parameter ensuring restriction
+% |y<#2|, solve equation |#2=(1/2)#1(u-1/u)| (|u=#3|).
+% \begin{macrocode}
+\def \xpct@hypluy#1#2#3{%
+ \DIVIDE{#2}{#1}{\xpct@xa}
+ \SQUARE{\xpct@xa}{#3}
+ \ADD{#3}{1}{#3}
+ \SQUAREROOT{#3}{\xpct@@umaxx}
+ \ADD{\xpct@xa}{\xpct@@umaxx}{#3}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\parabolicArc}
+% To draw an arc of parabola
+% scale the $x$-axis and draw a normalized arc of parabola.
+% |\defaultplotdivs| is the number of subintervals we divide |[#2,#3]|.
+% \begin{macrocode}
+\def\parabolicArc#1#2#3{%
+ \begingroup
+ \changereferencesystem(0,0)(#1,0)(0,1)
+ \PlotParametricFunction[\defaultplotdivs]{\xpct@parabolicarc}{#2}{#3}
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\Parabola}
+% Call |\xpct@parabolalasty| to compute extreme variable, then plot
+% the parabola. Divide the curve into two arcs to
+% ensure that it includes point |(0,0)|.
+% \begin{macrocode}
+\def\Parabola#1#2#3{%
+ \xpct@parabolalasty{#1}{#2}{#3}
+ \parabolicArc{#1}{-\xpct@maxy}{0}
+ \parabolicArc{#1}{0}{\xpct@maxy}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@parabolalasty}
+% Ensure restrictions |x<=#2|, |y<=#3|: solve equation |#2=#1 y^2|.
+% Then, |\xpct@maxy=min(y,#3)|.
+% \begin{macrocode}
+\def\xpct@parabolalasty#1#2#3{%
+ \ABSVALUE{#1}{\xpct@@maxy}
+ \DIVIDE{#2}{\xpct@@maxy}{\xpct@@maxy}
+ \SQUAREROOT{\xpct@@maxy}{\xpct@maxy}
+ \MIN{\xpct@maxy}{#3}{\xpct@maxy}}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Graphing functions}
+% \begin{macro}{\PlotFunction}
+% This command can take an optional argument.
+% \begin{macrocode}
+\def\PlotFunction{%
+ \@ifnextchar[{\xpct@iterateplotfunction}{\xpct@plotfunction}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@iterateplotfunction}
+% Compute |\xpct@step| as |(#4-#3)/#1| and iterate |\xpct@plotfunction|
+% |#1| times.
+% \begin{macrocode}
+\def\xpct@iterateplotfunction[#1]#2#3#4{%
+\setcounter{xpct@step}{0}%
+\COPY{#3}{\xpct@oldt}
+\SUBTRACT{#4}{#3}{\xpct@step}
+\DIVIDE{\xpct@step}{#1}{\xpct@step}
+\@whilenum \value{xpct@step}<#1 \do
+ {\ADD{\xpct@oldt}{\xpct@step}{\xpct@newt}
+ \xpct@plotfunction{#2}{\xpct@oldt}{\xpct@newt}
+ \stepcounter{xpct@step}%
+ \COPY\xpct@newt\xpct@oldt
+}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@plotfunction}
+% Draw graph of |#1| function between |#2| and |#3|.
+% \begin{macrocode}
+\def\xpct@plotfunction#1#2#3{\@killglue%
+% \end{macrocode}
+% Compute $f$ and $f'$ in |#2| and |#3|, and apply |\PlotxyDyData|.
+% \begin{macrocode}
+ #1{#2}{\yzero}{\Dyzero}%
+ #1{#3}{\yone}{\Dyone}%
+ \PlotxyDyData(#2,\yzero,\Dyzero)(#3,\yone,\Dyone)
+ \ifx\xpct@solx\undefined
+% \end{macrocode}
+% If tangent vectors are parallel, divide the interval into two halves
+% and recall |\xpct@plotfunction|.
+% \begin{macrocode}
+ \ADD{#2}{#3}{\xpct@middt}
+ \MULTIPLY{0.5}{\xpct@middt}{\xpct@middt}
+ \xpct@plotfunction{#1}{#2}{\xpct@middt}
+ \xpct@plotfunction{#1}{\xpct@middt}{#3}
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\PlotPointsOfFunction}
+% The |\PlotPointsOfFunction| command is essentialy equal to
+% |\xpct@iterateplotfunction|,
+% but instead of a curve between two adjacent points,
+% plots a |\pointmark| (user can redefine |\pointmark|).
+% \begin{macrocode}
+\def\PlotPointsOfFunction#1#2#3#4{%
+ \setcounter{xpct@step}{0}%
+\COPY{#3}{\xpct@oldt}
+\SUBTRACT{#4}{#3}{\xpct@step}
+\DIVIDE{\xpct@step}{#1}{\xpct@step}
+\ADD{#1}{1}{\xpct@lastt}
+\@whilenum \value{xpct@step}<\xpct@lastt \do
+ {\ADD{\xpct@oldt}{\xpct@step}{\xpct@newt}
+ #2{\xpct@oldt}{\xpct@oldy}{\xpct@oldDy}
+ \Put[c](\xpct@oldt,\xpct@oldy){\pointmark}
+ \stepcounter{xpct@step}%
+ \COPY\xpct@newt\xpct@oldt
+}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\PlotxyDyData}
+% |\PlotxyDyData(x0,y0,y0')(x1,y1,y1')(x2,y2,y2')...|
+% uses |\qCurve| to draw a curve between |(x0,y0)| and |(x1,y1)|
+% with tangent vectors |(1,y0')| and |(1,y1')|, then iterates itself.
+% \begin{macrocode}
+\def\PlotxyDyData(#1,#2,#3)(#4,#5,#6){%
+ \qCurve(#1,#2)(1,#3)(#4,#5)(1,#6)
+ \@ifnextchar({\PlotxyDyData(#4,#5,#6)}{}}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Graphing parametric curves}
+% \begin{macro}{\PlotParametricFunction}
+% Plot vectorial function |#2| between the parameter values |#3| and |#4|.
+% It can take an optional argument |#1|.
+% \begin{macrocode}
+\def\PlotParametricFunction{%
+ \@ifnextchar[{\xpct@iterateplotpfunction}{\xpct@plotpfunction}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@iterateplotpfunction}
+% Divide |[#3,#4]| in |#1| pieces, then iterate |\xpct@plotpfunction| |#1|
+% times.
+% \begin{macrocode}
+\def\xpct@iterateplotpfunction[#1]#2#3#4{%
+\setcounter{xpct@step}{0}%
+\COPY{#3}{\xpct@oldt}
+\SUBTRACT{#4}{#3}{\xpct@step}
+\DIVIDE{\xpct@step}{#1}{\xpct@step}
+\@whilenum \value{xpct@step}<#1 \do
+ {\ADD{\xpct@oldt}{\xpct@step}{\xpct@newt}
+ \xpct@plotpfunction{#2}{\xpct@oldt}{\xpct@newt}
+ \stepcounter{xpct@step}%
+ \COPY\xpct@newt\xpct@oldt}\ignorespaces}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@plotpfunction}
+% Compute function (and derivative of) |#1| in |#2| and |#3|, then
+% call |\qCurve|.
+% \begin{macrocode}
+\def\xpct@plotpfunction#1#2#3{%
+ \begingroup
+ #1{#2}\xzero\Dxzero\yzero\Dyzero
+ #1{#3}\xone\Dxone\yone\Dyone
+ \cartesianreference
+ \qCurve(\xzero,\yzero)(\Dxzero,\Dyzero)(\xone,\yone)(\Dxone,\Dyone)
+ \endgroup\ignorespaces}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Cartesian axes and grids}
+% Main commands: |\cartesianaxes| and |\cartesiangrid|.
+% \begin{macro}{\cartesiangrid}
+% Put |\ifgrid| to true, then call |\cartesianaxes|.
+% \begin{macrocode}
+\def\cartesiangrid(#1,#2)(#3,#4){%
+ \begingroup\gridtrue\cartesianaxes(#1,#2)(#3,#4)\endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\cartesianaxes}
+% \begin{macro}{\xpct@XZero}
+% \begin{macro}{\xpct@XOne}
+% \begin{macro}{\xpct@YZero}
+% \begin{macro}{\xpct@YOne}
+% |\cartesianaxes| makes axes and, optionally, grid, tics, and/or labels.
+% Cartesian rectangle limits are stored in
+% |\xpct@XZero|, |\xpct@XOne|, |\xpct@YZero|, and |\xpct@YOne|.
+% \begin{macrocode}
+\def\cartesianaxes(#1,#2)(#3,#4){%
+% \end{macrocode}
+% In this command, coordinates are Cartesian.
+% \begin{macrocode}
+ \begingroup\cartesianreference
+ \GLOBALCOPY{#1}{\xpct@XZero}\GLOBALCOPY{#2}{\xpct@YZero}
+ \GLOBALCOPY{#3}{\xpct@XOne}\GLOBALCOPY{#4}{\xpct@YOne}
+% \end{macrocode}
+% There shall be cuts, labels or grid?
+% \begin{macrocode}
+ \iftics
+ \ticslabelsgridtrue
+ \else
+ \iflabels
+ \ticslabelsgridtrue
+ \else
+ \ifgrid
+ \ticslabelsgridtrue
+ \fi\fi\fi
+ \ifticslabelsgrid
+ \xpct@plotticslabels
+ \fi
+% \end{macrocode}
+% Call |\xpct@plotaxes| to plot axes.
+% \begin{macrocode}
+ \xpct@plotaxes\endgroup}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\plotxtic}
+% \begin{macro}{\plotytic}
+% Put |\iftics| boolean to true, adjust tics lengths and position,
+% and call |\xpct@printtic|.
+% \begin{macrocode}
+\def\plotxtic#1{%
+ \maketics
+ \xpct@adjticssize
+ \xpct@adjxorytics{#1}{0}
+ \xpct@printtic}
+\def\plotytic#1{%
+ \maketics
+ \xpct@adjticssize
+ \xpct@adjxorytics{#1}{1}
+ \xpct@printtic}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\printxlabel}
+% \begin{macro}{\printylabel}
+% Adjust tics lengths and position, and call |\xpct@printlabel|.
+% \begin{macrocode}
+\def\printxlabel#1#2{%
+ \xpct@adjticssize
+ \xpct@adjxorytics{#1}{0}
+ \xpct@printlabel{0}{#2}}
+\def\printylabel#1#2{%
+ \xpct@adjticssize
+ \xpct@adjxorytics{#1}{1}
+ \xpct@printlabel{1}{#2}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\printxticlabel}
+% \begin{macro}{\printyticlabel}
+% Print tic and label.
+% \begin{macrocode}
+\def\printxticlabel#1#2{\plotxtic{#1}\printxlabel{#1}{#2}}
+\def\printyticlabel#1#2{\plotytic{#1}\printylabel{#1}{#2}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\plotxtics}
+% \begin{macro}{\plotytics}
+% Call |\xpct@plottics{0}}| or |\xpct@plottics{1}|.
+% \begin{macrocode}
+\def\plotxtics{\xpct@plottics{0}}
+\def\plotytics{\xpct@plottics{1}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\printxlabels}
+% \begin{macro}{\printylabels}
+% Call |\xpct@printlabels{0}| or |\xpct@printlabels{1}|.
+% By default, optional argument must be |-1|.
+% \begin{macrocode}
+\def\printxlabels{%
+ \@ifnextchar[{\xpct@printlabels{0}}{\xpct@printlabels{0}[-1]}}
+\def\printylabels{%
+ \@ifnextchar[{\xpct@printlabels{1}}{\xpct@printlabels{1}[-1]}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\printxticslabels}
+% \begin{macro}{\printyticslabels}
+% Call |\xpct@printxticslabels| or |\xpct@printyticslabels|.
+% By default, optional argument must be |-1|.
+% \begin{macrocode}
+\def\printxticslabels{%
+ \@ifnextchar[{\xpct@printxticslabels}{\xpct@printxticslabels[-1]}}
+\def\printyticslabels{%
+ \@ifnextchar[{\xpct@printyticslabels}{\xpct@printyticslabels[-1]}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+
+
+
+% \begin{macro}{\xpct@plotaxes}
+% Axes are simple lines, but its position depends on boolean |\inzeroaxes|.
+% \begin{macrocode}
+\def\xpct@plotaxes{\linethickness{\axesthickness}%
+ \pictcolor{\axescolor}
+ \ifinzeroaxes
+ \xLINE(\xpct@XZero,0)(\xpct@XOne,0)
+ \xLINE(0,\xpct@YZero)(0,\xpct@YOne)
+ \else
+ \xLINE(\xpct@XZero,\xpct@YZero)(\xpct@XOne,\xpct@YZero)
+ \xLINE(\xpct@XZero,\xpct@YZero)(\xpct@XZero,\xpct@YOne)
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@plotticslabels}
+% Adjust tics sizes to axes lengths
+% and call |\xpct@plotxticslabels| and |\xpct@plotyticslabels|.
+% \begin{macrocode}
+\def\xpct@plotticslabels{%
+ \xpct@adjticssize
+ \xpct@plotxticslabels\xpct@plotyticslabels}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@plotxticslabels}
+% Grid, tics and labels on the |x| axis.
+% If secundary divisions are required, this command iterates itself.
+% \begin{macrocode}
+\def\xpct@plotxticslabels{%
+% \end{macrocode}
+% If required, plot grid (in both directions, |x| and |y|).
+% \begin{macrocode}
+ \ifgrid\xpct@plotgrid\fi
+ \begingroup
+ \ifnum\xunitdivisions=1
+% \end{macrocode}
+% Call |\xpct@ticsinterval| to compute integer interval extremes
+% and number of tics;
+% then plot |x| tics.
+% \begin{macrocode}
+ \xpct@ticsinterval{\xpct@XZero}{\xpct@XOne}
+ \xpct@plotxtics
+ \else
+% \end{macrocode}
+% Secundary tics.
+% \begin{macrocode}
+ \begingroup
+% \end{macrocode}
+% Secundary tics. Change the reference system to the small unities,
+% and ajust tics sizes, thickness and colors.
+% \begin{macrocode}
+ \xpct@adjstics
+ \MULTIPLY{\secundaryyticssize}{\yunitdivisions}{\yticssize}
+% \end{macrocode}
+% At secundary level one must not print labels.
+% \begin{macrocode}
+ \makenolabels
+% \end{macrocode}
+% Print secundary tics.
+% \begin{macrocode}
+ \def\xunitdivisions{1}
+ \xpct@plotxticslabels
+ \endgroup
+% \end{macrocode}
+% Print primary tics and (perhaps) labels.
+% \begin{macrocode}
+ \def\xunitdivisions{1}
+ \xpct@plotxticslabels
+ \fi
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@plotyticslabels}
+% Tics and labels on the |y| axis.
+% If secundary divisions are required, this command iterates itself.
+% \begin{macrocode}
+\def\xpct@plotyticslabels{%
+ \begingroup
+ \ifnum\yunitdivisions=1
+% \end{macrocode}
+% Call |\xpct@ticsinterval| to compute integer interval extremes
+% and number of tics;
+% then plot |y| tics.
+% \begin{macrocode}
+ \xpct@ticsinterval{\xpct@YZero}{\xpct@YOne}
+ \xpct@plotytics
+ \else
+% \end{macrocode}
+% Secundary tics.
+% \begin{macrocode}
+ \begingroup
+% \end{macrocode}
+% Secundary tics. Change the reference system to the small unities,
+% and ajust tics sizes, thickness and colors.
+% \begin{macrocode}
+ \xpct@adjstics
+ \MULTIPLY{\secundaryxticssize}{\xunitdivisions}{\xticssize}
+% \end{macrocode}
+% At secundary level one must not print labels.
+% \begin{macrocode}
+ \makenolabels
+% \end{macrocode}
+% Print secundary tics.
+% \begin{macrocode}
+ \def\yunitdivisions{1}
+ \xpct@plotyticslabels
+ \endgroup
+% \end{macrocode}
+% Print primary tics and (perhaps) labels.
+% \begin{macrocode}
+ \def\yunitdivisions{1}
+ \xpct@plotyticslabels
+ \fi
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@adjstics}
+% Adjust length, color and thickness for secundary tics.
+% \begin{macrocode}
+\def\xpct@adjstics{%
+ \MULTIPLY{\xpct@XZero}{\xunitdivisions}{\xpct@XZero}
+ \MULTIPLY{\xpct@YZero}{\yunitdivisions}{\xpct@YZero}
+ \MULTIPLY{\xpct@XOne}{\xunitdivisions}{\xpct@XOne}
+ \MULTIPLY{\xpct@YOne}{\yunitdivisions}{\xpct@YOne}
+ \DIVIDE{1}{\xunitdivisions}{\xpct@xunit}
+ \DIVIDE{1}{\yunitdivisions}{\xpct@yunit}
+ \changereferencesystem(0,0)(\xpct@xunit,0)(0,\xpct@yunit)
+ \def\gridthickness{\secundarygridthickness}
+ \def\gridcolor{\secundarygridcolor}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@plotxtics}
+% \begin{macro}{\xpct@plotytics}
+% Call |\xpct@maketics| to make tics and/or labels (on |x| and |y| axes).
+% \begin{macrocode}
+\def\xpct@plotxtics{\xpct@maketics{\xpct@firstint}{\xpct@numtics}{0}}
+\def\xpct@plotytics{\xpct@maketics{\xpct@firstint}{\xpct@numtics}{1}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@maketics}
+% Makes tics and/or labels (|#2| points, begining in |#1|;
+% |#3=0| means |x| axis, |#3=1| means |y| axis).
+% \begin{macrocode}
+\def\xpct@maketics#1#2#3{%
+% \end{macrocode}
+% Call |\xpct@adjxorytics| to compute coordinates of extreme points of first
+% tic and translation vector from one tic to the next one.
+% \begin{macrocode}
+ \xpct@adjxorytics{#1}{#3}
+% \end{macrocode}
+% Use counter |xpct@counta| for tics and |xpct@countb| for labels
+% (number to print in each label).
+% \begin{macrocode}
+ \setcounter{xpct@counta}{0}%
+ \iflabels\setcounter{xpct@countb}{#1}\fi
+% \end{macrocode}
+% Main loop: |#2| steps, begining in |#1|.
+% \begin{macrocode}
+ \@whilenum \value{xpct@counta}<#2 \do {%
+ \iftics
+% \end{macrocode}
+% If required, print tic.
+% \begin{macrocode}
+ \xpct@printtic
+ \fi
+ \iflabels
+% \end{macrocode}
+% If labels are to be printed, adjust |\Pictlabelsep|; then print label
+% and step label (|xpct@countb| counter).
+% \begin{macrocode}
+ \highestlabel{\xpct@axeslabelattrib%
+ $\axeslabelmathalphabet{1}$}%
+ \xpct@printlabel{#3}{\thexpct@countb}
+ \stepcounter{xpct@countb}%
+ \fi
+% \end{macrocode}
+% Step tics counter and move coordinates to next point.
+% \begin{macrocode}
+ \stepcounter{xpct@counta}%
+ \VECTORADD(\xpct@@xzero,\xpct@@yzero)(\xpct@@xincr,\xpct@@yincr)%
+ (\xpct@@xzero,\xpct@@yzero)
+ \VECTORADD(\xpct@@xone,\xpct@@yone)(\xpct@@xincr,\xpct@@yincr)%
+ (\xpct@@xone,\xpct@@yone)
+ }}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@adjxorytics}
+% Compute coordinates of extreme points of first tic
+% and translation vector from one tic to the next one.
+% There are four cases: |x| or |y| axis, and external or internal axes.
+% \begin{macrocode}
+\def\xpct@adjxorytics#1#2{%
+ \ifnum #2=0
+ \COPY{#1}{\xpct@@xzero}
+ \COPY{-\yticssize}{\xpct@@yzero}
+ \COPY{#1}{\xpct@@xone}
+ \COPY{\yticssize}{\xpct@@yone}
+ \COPY{1}{\xpct@@xincr}
+ \COPY{0}{\xpct@@yincr}
+ \ifinzeroaxes\else
+ \ADD{\xpct@YZero}{\xpct@@yzero}{\xpct@@yzero}
+ \ADD{\xpct@YZero}{\xpct@@yone}{\xpct@@yone}
+ \fi
+ \else
+ \COPY{#1}{\xpct@@yzero}
+ \COPY{-\xticssize}{\xpct@@xzero}
+ \COPY{#1}{\xpct@@yone}
+ \COPY{\xticssize}{\xpct@@xone}
+ \COPY{1}{\xpct@@yincr}
+ \COPY{0}{\xpct@@xincr}
+ \ifinzeroaxes\else
+ \ADD{\xpct@XZero}{\xpct@@xzero}{\xpct@@xzero}
+ \ADD{\xpct@XZero}{\xpct@@xone}{\xpct@@xone}
+ \fi
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@printtic}
+% Plot a tic.
+% \begin{macrocode}
+\def\xpct@printtic{\pictcolor{\ticscolor}
+ \linethickness{\ticsthickness}
+ \xLINE(\xpct@@xzero,\xpct@@yzero)(\xpct@@xone,\xpct@@yone)}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@adjticssize}
+% Adjust size of tics according to axes length.
+% \begin{macrocode}
+\def\xpct@adjticssize{%
+% \end{macrocode}
+% First, convert absolute lenghts |\ticssize| and |\secundaryticssize| to
+% the |\unitlength| unity.
+% \begin{macrocode}
+ \LENGTHDIVIDE{\ticssize}{\unitlength}{\xpct@ticssize}
+ \LENGTHDIVIDE{\secundaryticssize}{\unitlength}{\xpct@sticssize}
+% \end{macrocode}
+% Calculate the size of vector |(1,0)|, converting it to standard coordinates
+% and computing its norm.
+% Then we adjust |\xticssize| and |\secundaryxticssize|; this ensures
+% the desired sizes.
+% \begin{macrocode}
+ \refsysxyVector(1,0)(\xpct@a,\xpct@b)
+ \VECTORNORM(\xpct@a,\xpct@b){\xpct@norm}
+ \DIVIDE{\xpct@ticssize}{\xpct@norm}{\xticssize}
+ \DIVIDE{\xpct@sticssize}{\xpct@norm}{\secundaryxticssize}
+ \DIVIDE{\axislabelsep}{\xpct@norm}{\xpct@xaxislabelsep}
+% \end{macrocode}
+% Repeat calculations for vector $(0,1)$,
+% adjusting |\yticssize| and |\secundaryyticssize|.
+% \begin{macrocode}
+ \refsysxyVector(0,1)(\xpct@a,\xpct@b)
+ \VECTORNORM(\xpct@a,\xpct@b){\xpct@norm}
+ \DIVIDE{\xpct@ticssize}{\xpct@norm}{\yticssize}
+ \DIVIDE{\xpct@sticssize}{\xpct@norm}{\secundaryyticssize}
+ \DIVIDE{\axislabelsep}{\xpct@norm}{\xpct@yaxislabelsep}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@printlabel}
+% Adjust highest label (for horizontal labels);
+% then print value of |#2|.
+% Four cases: |x| or |y|, external or internal.
+% \begin{macrocode}
+\def\xpct@printlabel#1#2{%
+ \iftics
+ \ifnum #1=0
+ \ADD{\yticssize}{\xpct@yaxislabelsep}{\Pictlabelsep}
+ \else
+ \ADD{\xticssize}{\xpct@xaxislabelsep}{\Pictlabelsep}
+ \fi
+ \else
+ \ifnum #1=0
+ \COPY{\xpct@yaxislabelsep}{\Pictlabelsep}
+ \else
+ \COPY{\xpct@xaxislabelsep}{\Pictlabelsep}
+ \fi
+ \fi
+ \ifinzeroaxes
+ \ifnum\thexpct@countb=0
+ \else
+ \ifnum #1=0
+ \rPut*{\xpct@xlblpos}(\xpct@@xzero,0){%
+ \xpct@axeslabelattrib%
+ \ensuremath{\axeslabelmathalphabet{#2}}}
+ \else
+ \rPut*{\xpct@ylblpos}(0,\xpct@@yzero){%
+ \xpct@axeslabelattrib%
+ \ensuremath{\axeslabelmathalphabet{#2}}}
+ \fi
+ \fi
+ \else
+ \ifnum #1=0
+ \rPut*{\xpct@xlblpos}(\xpct@@xzero,\xpct@YZero){%
+ \xpct@axeslabelattrib%
+ \ensuremath{\axeslabelmathalphabet{#2}}}
+ \else
+ \rPut*{\xpct@ylblpos}(\xpct@XZero,\xpct@@yzero){%
+ \xpct@axeslabelattrib%
+ \ensuremath{\axeslabelmathalphabet{#2}}}
+ \fi
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xlabelpos}
+% \begin{macro}{\ylabelpos}
+% Default position for labels on axes. Call |\xpct@convtoang| to define
+% |\xpct@xlblpos| or |\xpct@ylblpos|.
+% \begin{macrocode}
+\def\xlabelpos#1{\xpct@convtoang{#1}{\xpct@xlblpos}{\xpct@CorR}}
+\def\ylabelpos#1{\xpct@convtoang{#1}{\xpct@ylblpos}{\xpct@CorR}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@printxticslabels}
+% \begin{macro}{\xpct@printyticslabels}
+% Print tics and labels.
+% \begin{macrocode}
+\def\xpct@printxticslabels[#1]#2#3#4{%
+ \plotxtics{#2}{#3}{#4}\printxlabels[#1]{#2}{#3}{#4}}
+\def\xpct@printyticslabels[#1]#2#3#4{%
+ \plotytics{#2}{#3}{#4}\printylabels[#1]{#2}{#3}{#4}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@plottics}
+% Plot |x| or |y| tics (if |#1| equals |0| or |1|),
+% starting an |#2|. Distance between two consecutive tics is |#3|, and
+% position of last tic is not greather than |#4|.
+% \begin{macrocode}
+\def\xpct@plottics#1#2#3#4{%
+ \COPY{#2}{\xpct@ticcoor}
+% \end{macrocode}
+% |\xpct@ticcoor| is the position of next tic.
+% \begin{macrocode}
+ \@whiledim\xpct@ticcoor\p@<#4\p@ \do {%
+% \end{macrocode}
+% Make a tic while |\xpct@ticcoor<#4|
+% \begin{macrocode}
+ \ifnum #1=0
+ \plotxtic{\xpct@ticcoor}
+ \else
+ \plotytic{\xpct@ticcoor}
+ \fi
+ \ADD{#3}{\xpct@ticcoor}{\xpct@ticcoor}
+ }
+% \end{macrocode}
+% If |\xpct@ticcoor=#4| then this is the last tic position.
+% \begin{macrocode}
+ \ifdim\xpct@ticcoor\p@>#4\p@
+ \else
+ \ifnum #1=0
+ \plotxtic{\xpct@ticcoor}
+ \else
+ \plotytic{\xpct@ticcoor}
+ \fi
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@printlabels}
+% Print |x| or |y| labels (if |#1| equals |0| or |1|),
+% starting an |#3|. Distance between two consecutive tics is |#4|, and
+% position of last tic is not greather than |#5|.
+% |#2| is the number of decimal digits to be printed
+% (default is |#2=-1|, meaning no control of digits in number printing).
+% \begin{macrocode}
+\def\xpct@printlabels#1[#2]#3#4#5{%
+ \COPY{#3}{\xpct@ticcoor}
+% \end{macrocode}
+% |\xpct@ticcoor| is the position of next label.
+% \begin{macrocode}
+ \@whiledim\xpct@ticcoor\p@<#5\p@ \do {%
+% \end{macrocode}
+% Print a label while |\xpct@ticcoor<#5|
+% |\xpct@Ticcoor| is the label with adjusted number of digits.
+% \begin{macrocode}
+ \ifnum #2=-1
+ \COPY{\xpct@ticcoor}{\xpct@Ticcoor}
+ \else
+ \ROUND[#2]{\xpct@ticcoor}{\xpct@Ticcoor}
+ \fi
+ \xpct@prtlbl{#1}
+ \ADD{#4}{\xpct@ticcoor}{\xpct@ticcoor}}
+ \ifdim\xpct@ticcoor\p@>#5\p@
+% \end{macrocode}
+% If |\xpct@ticcoor=#5| then this is the last label position.
+% \begin{macrocode}
+ \else
+ \ifnum #2=-1
+ \COPY{\xpct@ticcoor}{\xpct@Ticcoor}
+ \else
+ \ROUND[#2]{\xpct@ticcoor}{\xpct@Ticcoor}
+ \fi
+ \xpct@prtlbl{#1}
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@prtlbl}
+% Print the |x| or |y| label (for |#1=0| or |1|)
+% |\xpct@Ticcoor| at |\xpct@ticcoor|.
+% When |\ifinzeroaxes| is true label at |0| position is not printed.
+% \begin{macrocode}
+\def\xpct@prtlbl#1{%
+ \ifinzeroaxes
+ \ifdim \xpct@ticcoor\p@=\z@\else
+ \xpct@adjticssize
+ \xpct@adjxorytics{\xpct@ticcoor}{#1}
+ \xpct@printlabel{#1}{\xpct@Ticcoor}
+ \fi
+ \else
+ \xpct@adjticssize
+ \xpct@adjxorytics{\xpct@ticcoor}{#1}
+ \xpct@printlabel{#1}{\xpct@Ticcoor}\fi}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@plotgrid}
+% Plot a grid in a Cartesian rectangle.
+% \begin{macrocode}
+\def\xpct@plotgrid{%
+% \end{macrocode}
+% Call |\xpct@ticsinterval| to compute integer interval extremes
+% and number of tics;
+% then plot grid lines (for |x| axis).
+% \begin{macrocode}
+ \xpct@ticsinterval{\xpct@XZero}{\xpct@XOne}
+ \begingroup\setcounter{xpct@counta}{0}%
+ \pictcolor{\gridcolor}\linethickness{\gridthickness}
+ \COPY{\xpct@firstint}{\xpct@grid}
+ \@whilenum\value{xpct@counta}<\xpct@numtics\do{
+ \xLINE(\xpct@grid,\xpct@YZero)(\xpct@grid,\xpct@YOne)
+ \ADD{1}{\xpct@grid}{\xpct@grid}
+ \stepcounter{xpct@counta}}\endgroup
+% \end{macrocode}
+% Call |\xpct@ticsinterval| to compute integer interval extremes
+% and number of tics;
+% then plot grid lines (for |y| axis).
+% \begin{macrocode}
+ \xpct@ticsinterval{\xpct@YZero}{\xpct@YOne}
+ \begingroup\setcounter{xpct@counta}{0}%
+ \pictcolor{\gridcolor}\linethickness{\gridthickness}
+ \COPY{\xpct@firstint}{\xpct@grid}
+ \@whilenum\value{xpct@counta}<\xpct@numtics\do{
+ \xLINE(\xpct@XZero,\xpct@grid)(\xpct@XOne,\xpct@grid)
+ \ADD{1}{\xpct@grid}{\xpct@grid}
+ \stepcounter{xpct@counta}}\endgroup}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@ticsinterval}
+% Truncate extremes to integers, then compute the number of tics
+% (|\xpct@firstint-\xpct@lastint+1|).
+% \begin{macrocode}
+\def\xpct@ticsinterval#1#2{\TRUNCATE[0]{#1}{\xpct@firstint}
+ \TRUNCATE[0]{#2}{\xpct@lastint}
+ \SUBTRACT{\xpct@lastint}{\xpct@firstint}{\xpct@numtics}
+ \ADD{\xpct@numtics}{1}{\xpct@numtics}}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Polar grids}
+% \begin{macro}{\polargrid}
+% Plot a polar grid of radius |#1| and |#2| divisions of circle.
+% \begin{macrocode}
+\def\polargrid#1#2{%
+ \begingroup
+ \polarreference
+% \end{macrocode}
+% Compute integer part of radius, number of circles and distance
+% between circles.
+% \begin{macrocode}
+ \FLOOR{#1}{\xpct@rint}
+ \MULTIPLY{\xpct@rint}{\runitdivisions}{\xpct@rdivs}
+ \DIVIDE{1}{\runitdivisions}{\rincr}
+% \end{macrocode}
+% Use counter |xpct@counta| to control the number of printed circles
+% and |\xpct@radius| as radius of the current circle.
+% \begin{macrocode}
+ \COPY{0}{\xpct@radius}
+ \setcounter{xpct@counta}{1}%
+% \end{macrocode}
+% Plot |\xpct@rdivs| circles.
+% \begin{macrocode}
+ \begingroup
+ \pictcolor{\gridcolor}
+ \linethickness{\gridthickness}
+ \@whilenum \value{xpct@counta}<\xpct@rdivs\do {%
+ \ADD{\rincr}{\xpct@radius}{\xpct@radius}
+ \Ellipse{\xpct@radius}{\xpct@radius}
+ \stepcounter{xpct@counta}}%
+% \end{macrocode}
+% Plot external circle.
+% \begin{macrocode}
+ \pictcolor{\axescolor}
+ \linethickness{\axesthickness}
+ \Ellipse{\xpct@rint}{\xpct@rint}
+ \endgroup
+% \end{macrocode}
+% Use counter |xpct@counta| to control the number of printed lines and
+% |\xpct@angle| as arc (in radians) of the current line.
+% |\xpct@angincr| is the gap between two adjacent lines.
+% \begin{macrocode}
+ \COPY{0}{\xpct@angle}
+ \DIVIDE{\numberTWOPI}{#2}{\xpct@angincr}
+ \setcounter{xpct@counta}{0}%
+% \end{macrocode}
+% Plot |#2| lines.
+% \begin{macrocode}
+ \pictcolor{\gridcolor}
+ \linethickness{\gridthickness}
+ \@whilenum \value{xpct@counta}<#2 \do {%
+ \xLINE(0,0)(#1,\xpct@angle)
+% \end{macrocode}
+% If required, print angular label: evaluate the number |\xpct@arc|
+% such that angle is |(\xpct@arc/#2) pi| and call |\xpct@polarlabel|.
+% \begin{macrocode}
+ \iflabels
+ \COPY{\axislabelsep}{\Pictlabelsep}
+ \MULTIPLY{2}{\thexpct@counta}{\xpct@arc}
+ \xpct@polarlabel{#1}{\xpct@arc}{#2}\fi
+ \ADD{\xpct@angincr}{\xpct@angle}{\xpct@angle}
+ \stepcounter{xpct@counta}}%
+% \end{macrocode}
+% Plot the polar line.
+% \begin{macrocode}
+ \pictcolor{\axescolor}
+ \linethickness{\axesthickness}
+ \xLINE(0,0)(#1,0)
+% \end{macrocode}
+% If required, print radial labels.
+% \begin{macrocode}
+ \iflabels
+ \highestlabel{\xpct@axeslabelattrib$\axeslabelmathalphabet{1}$}
+ \multiPut*[\xpct@rlblpos](1,0)(1,0){\xpct@rint}{%
+ \ADD{\value{multiput}}{1}{\xpct@lbl}
+ \xpct@axeslabelattrib%
+ \ensuremath{\axeslabelmathalphabet{\xpct@lbl}}}%
+ \fi
+ \endgroup}
+% \end{macrocode}
+% \end{macro}
+
+% \begin{macro}{\rlabelpos}
+% Default position for labels on polar axis. Call |\xpct@convtoang| to define
+% |\xpct@rlblpos|.
+% \begin{macrocode}
+\def\rlabelpos#1{\xpct@convtoang{#1}{\xpct@rlblpos}{\xpct@CorR}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\degreespolarlabels}
+% \begin{macro}{\radianspolarlabels}
+% Define |\xpct@polarlabel| to be |\xpct@degreeslabel| or |\xpct@radianslabel|
+% (print polar label as degrees or radians).
+% \begin{macrocode}
+\def\degreespolarlabels{\def\xpct@polarlabel{\xpct@degreeslabel}}
+\def\radianspolarlabels{\def\xpct@polarlabel{\xpct@radianslabel}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{\xpct@degreeslabel}
+% Print the angle label |(#2/#3) pi| converted to degrees.
+% \begin{macrocode}
+\def\xpct@degreeslabel#1#2#3{%
+% \end{macrocode}
+% Adjust label position.
+% \begin{macrocode}
+% \end{macrocode}
+% Simplify |#2/#3|. Then convert |(#2/#3) pi| to degrees
+% (evaluate |(#2 180)/#3|).
+% \begin{macrocode}
+ \FRACTIONSIMPLIFY{#2}{#3}\xpct@num\xpct@den
+ \MULTIPLY{\xpct@num}{180}{\xpct@degangle}
+ \DIVIDE{\xpct@degangle}{\xpct@den}{\xpct@degangle}
+% \end{macrocode}
+% Print label.
+% \begin{macrocode}
+ \cPut{\xpct@degangle}(#1,\xpct@angle){%
+ \xpct@axeslabelattrib%
+ \ensuremath{\axeslabelmathalphabet{\xpct@degangle^\mathrm{o}}}}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@radianslabel}
+% Print the angle label |(#2/#3) pi|.
+% \begin{macrocode}
+\def\xpct@radianslabel#1#2#3{%
+% \end{macrocode}
+% Adjust label position and call |\xpct@prtfracrad|.
+% \begin{macrocode}
+ \RADtoDEG{\xpct@angle}{\xpct@angles}
+ \cPut{\xpct@angles}(#1,\xpct@angle){%
+ \xpct@axeslabelattrib%
+ \ensuremath{\axeslabelmathalphabet
+ {\xpct@prtfracrad{#2}{#3}}}}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\xpct@prtfracrad}
+% Pretty print |(#1/#2)pi|
+% \begin{macrocode}
+\def\xpct@prtfracrad#1#2{%
+ \FRACTIONSIMPLIFY{#1}{#2}\xpct@num\xpct@den
+ \ifnum \xpct@num = 0 0
+ \else
+ \ifnum \xpct@num = 1
+ \ifnum \xpct@den = 1 \pi
+ \else \pi/\xpct@den
+ \fi
+ \else \xpct@num\pi/\xpct@den
+ \fi
+ \fi}
+% \end{macrocode}
+% \end{macro}
+% \subsection{Configurable parameters}
+% These are the parameters the user can customize.
+% Default values ​​are written to |xpicture.sty| and |xpicture.cfgxmpl|.
+% \begin{macrocode}
+%</xpicture>
+%<*defaults>
+%<+cfg>%%
+%<+cfg>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%<+cfg>% xpicture configurable parameters %
+%<+cfg>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%<+cfg>%%
+%<+cfg>%%%%% Cartesian and polar axes
+%<+cfg> % Thickness and color of axes
+\axesthickness=1pt
+\def\axescolor{black}
+%<+cfg> % Color, size, mathversion and mathalphabet of numeric labels
+\def\axeslabelcolor{\axescolor}
+\def\axeslabelsize{\small}
+\def\axeslabelmathversion{normal}
+\def\axeslabelmathalphabet{\mathrm}
+%<+cfg> % Relative position of numeric labels on x- y- and r- axes
+\xlabelpos{-90}
+\ylabelpos{180}
+\rlabelpos{bbr}
+%<+cfg> % Distance between tags and cut marks,
+%<+cfg> % is is a number (not a lenght) of \unitlength units
+\def\axislabelsep{0.1}
+%<+cfg> % Color, thickness and size of tics
+\def\ticscolor{\axescolor}
+\ticsthickness=1pt
+\ticssize=4pt
+%<+cfg> % Size of secundary tics
+\secundaryticssize=2pt
+%<+cfg> % Thickness and color of Cartesian or polar grid
+\gridthickness=0.4pt
+\def\gridcolor{gray}
+%<+cfg> % Thickness and color of Cartesian or polar secundary grid
+\secundarygridthickness=0.2pt
+\def\secundarygridcolor{lightgray}
+%<+cfg> % Number of divisions of unity in x- y- and r-axis
+\def\xunitdivisions{1}
+\def\yunitdivisions{1}
+\def\runitdivisions{1}
+%<+cfg> % Arc labels in radians (\xpct@radianslabel)
+%<+cfg> % or degrees (\xpct@degreeslabel)
+\def\xpct@polarlabel{\xpct@radianslabel}
+%<+cfg>%%%%% \put and \multiput extensions
+%<+cfg> % Distance from label to reference point,
+%<+cfg> % is is a number (not a lenght) of \unitlength units
+\def\Pictlabelsep{0.1}
+%<+cfg> % Default layout for distance (\defaultPut{c} or \defaultPut{r})
+\defaultPut{c}
+%<+cfg>%%%%% Reference systems
+%<+cfg> % Default reference system
+\referencesystem(0,0)(1,0)(0,1)
+%<+cfg> % Cartesian or polar reference
+\cartesianreference
+%<+cfg>%%%%% Arrow size in \xtrivVECTOR
+\arrowsize{5}{2}
+%<+cfg>%%%%% Default interval divisions
+%<+cfg> % (used when plotting conic sections and arcs)
+\def\defaultplotdivs{8}
+%<+cfg>%%%%% Size to be used by \pointmark
+\def\pointmarkdiam{0.1}
+%<+cfg>%%%%% Point mark used by \PlotPointsOfFunction
+\def\pointmark{\circle*{\pointmarkdiam}}
+%</defaults>
+%<*xpicture>
+% \end{macrocode}
+% \subsection{Commands to be ignored if draft option or \cs{draftPicture}
+% declaration is active}
+% \begin{macro}{\draftPictures}
+% This declaration allow user to locally disable |Picture| drawns.
+% \begin{macrocode}
+\def\draftPictures{%
+ \drafttrue
+ \def\cPut##1(##2,##3)##4{}
+ \def\xpct@@Put(##1)##2{}
+ \def\xpct@@Putstar[##1](##2)##3{}
+ \def\xpct@@@Put[##1](##2)##3{}
+ \def\defaultPut##1{\def\xpct@defaultPut{\cPut}}
+ \def\xpct@@mPut(##1,##2)(##3,##4)##5##6{}
+ \def\xpct@PUT##1(##2,##3)##4{}
+ \def\xLINE(##1)(##2){}
+ \def\xtrivVECTOR(##1)(##2){}
+ \def\xVECTOR(##1)(##2){}
+ \def\zerovector(##1){}
+ \def\zerotrivvector(##1){}
+ \def\xline(##1,##2)##3{}
+ \def\xvector(##1,##2)##3{}
+ \def\xtrivvector(##1,##2)##3{}
+ \def\xpct@regPolygon[##1]##2##3{}
+ \def\xpct@@qCurve(##1)(##2)(##3)(##4){}
+ \def\xpct@PlotQuadraticCurve(##1)(##2)(##3)(##4){%
+ \@ifnextchar({\PlotQuadraticCurve(##3)(##4)}{}}
+ \def\xpct@@PlotQuadraticCurve(##1)##2(##3)##4{%
+ \@ifnextchar({\PlotQuadraticCurve(##3){##4}}{}}
+ \def\circularArc##1##2##3{}
+ \def\ellipticArc##1##2##3##4{}
+ \def\Ellipse##1##2{}
+ \def\Circle##1{}
+ \def\xpct@hyperbolicArc##1##2##3##4{}
+ \def\lHyperbola##1##2##3##4{}
+ \def\rHyperbola##1##2##3##4{}
+ \def\Hyperbola##1##2##3##4{}
+ \def\rhyperbolicArc##1##2##3##4{}
+ \def\lhyperbolicArc##1##2##3##4{}
+ \def\parabolicArc##1##2##3{}
+ \def\Parabola##1##2##3{}
+ \def\PlotPointsOfFunction##1##2##3##4{}
+ \def\xpct@iterateplotfunction[##1]##2##3##4{}
+ \def\xpct@plotfunction##1##2##3{}
+ \def\xpct@iterateplotpfunction[##1]##2##3##4{}
+ \def\xpct@plotpfunction##1##2##3{}
+ \def\cartesianaxes(##1,##2)(##3,##4){}
+ \def\cartesiangrid(##1,##2)(##3,##4){}
+ \def\plotxtic##1{}
+ \def\plotytic##1{}
+ \def\printxlabel##1##2{}
+ \def\printylabel##1##2{}
+ \def\printxticlabel##1##2{}
+ \def\printyticlabel##1##2{}
+ \def\plotxtics##1##2##3{}
+ \def\plotytics##1##2##3{}
+ \def\xpct@printlabels##1[##2]##3##4##5{}
+ \def\polargrid##1##2{}
+}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{\ifdraft}
+% If |draft| option is active |\draftPictures| is executed.
+% Then all |Picture| commands are disabled.
+% \begin{macrocode}
+\ifdraft
+ \draftPictures
+\fi
+% \end{macrocode}
+% \end{macro}
+% Input local defaults (file |xpicture.cfg|).
+% \begin{macrocode}
+\InputIfFileExists{xpicture.cfg}{\xpct@Infocfg}{\xpct@Infonocfg}
+%</xpicture>
+% \end{macrocode}
+% \section{Change history}
+% \begin{description}
+% \item[v1.2a] (2012/11/17)
+%
+% Documented source.\par
+% Many internal c.s. renamed and/or rewrited.\par
+% dvi/pict2e/curve2e options supressed.\par
+% draft option added.\par
+% Background color added to Picture environment.\par
+% \cs{Pictlabelsep} is set to \verb+\normalfont\normalsize$1$+
+% when a \verb+Picture+ environment starts.\par
+% New commands: \cs{draftPictures},\cs{symmetrize},
+% \cs{xlabelpos}, \cs{ylabelpos},
+% \cs{plotxtic}, \cs{plotytic}, \cs{plotxtics}, \cs{plotytics},
+% \cs{printxlabel}, \cs{printylabel}, \cs{printxlabels}, \cs{printylabels},
+% \cs{printxticlabel}, \cs{printyticlabel},
+% \cs{printxticslabels}, \cs{printyticslabels},
+% \cs{makegrid}, \cs{makenogrid},
+% \cs{PlotPointsOfFunction}, \cs{pointmark}, \cs{pointmarkdiam}.
+%
+% \item[v1.2] (2012/04/25)
+%
+% First public version.
+% \end{description}
+% \Finale
+% \ No newline at end of file