diff options
author | Karl Berry <karl@freefriends.org> | 2018-01-16 22:45:03 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2018-01-16 22:45:03 +0000 |
commit | 7414d794c574611723435a79759fedf9fa30f4ff (patch) | |
tree | 6499448d6bb72b13632efe0945cd684c0fbf358a /Master/texmf-dist/source/latex | |
parent | d811e36dc59a626f32fe732ea5771b006a95a0d4 (diff) |
mandi (16jan18)
git-svn-id: svn://tug.org/texlive/trunk@46333 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex')
-rw-r--r-- | Master/texmf-dist/source/latex/mandi/mandi.dtx | 1198 | ||||
-rw-r--r-- | Master/texmf-dist/source/latex/mandi/mandi.ins | 4 |
2 files changed, 759 insertions, 443 deletions
diff --git a/Master/texmf-dist/source/latex/mandi/mandi.dtx b/Master/texmf-dist/source/latex/mandi/mandi.dtx index b885828e801..9afe4a374a6 100644 --- a/Master/texmf-dist/source/latex/mandi/mandi.dtx +++ b/Master/texmf-dist/source/latex/mandi/mandi.dtx @@ -1,7 +1,7 @@ % \iffalse meta-comment % !TEX TS-program = dtxmk % -% Copyright (C) 2016 by Paul J. Heafner <heafnerj@gmail.com> +% Copyright (C) 2018 by Paul J. Heafner <heafnerj@gmail.com> % --------------------------------------------------------------------------- % This work may be distributed and/or modified under the conditions of the % LaTeX Project Public License, either version 1.3 of this license or (at @@ -32,13 +32,13 @@ %</internal> % %<*package> -\ProvidesPackage{mandi}[2016/06/30 2.6.1 Macros for physics and astronomy] +%%\ProvidesPackage{mandi}[2018/01/15 2.7.1 Macros for physics and astronomy] \NeedsTeXFormat{LaTeX2e}[1999/12/01] %</package> % %<*vdemo> -from __future__ import division, print_function -from visual import * +# +from vpython import * G = 6.7e-11 @@ -71,6 +71,14 @@ while 1: \fi %</internal> % +%<*internal> +\ifx\fmtname\nameofplainTeX + \expandafter\endbatchfile +\else + \expandafter\endgroup +\fi +%</internal> +% %<*driver> \ProvidesFile{mandi.dtx} %</driver> @@ -84,7 +92,10 @@ while 1: \usepackage[left=0.75in,right=1.00in]{geometry} % main documentation \usepackage{array,rotating,microtype} % accessory packages \usepackage[listings,documentation]{tcolorbox} % workhorse package +\usepackage{anyfontsize} +\usepackage{float} \usepackage{changepage} %%%%%%%%%% +\usepackage{nameref} \hypersetup{colorlinks, linktoc=all} \tcbset{index german settings} \tcbset{color hyperlink=blue} @@ -92,6 +103,7 @@ while 1: \tcbset{color command=red} \tcbset{doc head environment={interior style={fill,left color=red!15!white}}} \tcbset{color environment=red} +\tcbset{lefthand ratio=0.70} \newcommandx{\ntodo}[2][1,usedefault]{% \ifthenelse{\equal{#1}{}} {\todo[size=\footnotesize,fancyline,caption={#2},color=yellow!40] @@ -116,16 +128,16 @@ while 1: % \newcommand*{\mi}{\textit{Matter \& Interactions}} % \hyphenation{Matter Interactions} % \newcommand*{\opt}[1]{\textsf{\textbf{#1}}} -% \newcommand*{\baseunits}{\textit{baseunits}} -% \newcommand*{\drvdunits}{\textit{drvdunits}} -% \newcommand*{\tradunits}{\textit{tradunits}} +% \newcommand*{\baseunits}{\emph{baseunits}} +% \newcommand*{\drvdunits}{\emph{drvdunits}} +% \newcommand*{\tradunits}{\emph{tradunits}} % % \IndexPrologue{\section{Index}Page numbers refer to page where the % corresponding entry is described. Not every command defined in the % package is indexed. There may be commands similar to indexed commands % described in relevant parts of the documentation.} % -% \CheckSum{6357} +% \CheckSum{6548} % % \CharacterTable % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z @@ -149,10 +161,17 @@ while 1: % \author{Paul J. Heafner % (\href{mailto:heafnerj@gmail.com?subject=[Heafner]\%20mandi} % {\nolinkurl{heafnerj@gmail.com}})} -% \date{Version \fileversion~dated \filedate} +% ^^A \date{Version \fileversion~dated \filedate} +% \date{Version \mandiversion} % % \newgeometry{left=1.0in,right=1.0in,top=4.0in} +% \pagenumbering{gobble} +% \hypersetup{pageanchor=false} +% \begin{titlepage} % \maketitle +% \end{titlepage} +% \hypersetup{pageanchor=true} +% \pagenumbering{arabic} % \restoregeometry % % ^^A \centerline{\textbf{PLEASE DO NOT DISTRIBUTE THIS VERSION.}} @@ -179,7 +198,7 @@ while 1: % type only what is necessary to get the desired result. What one types should % correspond as closely as possible to what one thinks when writing. The package % name derives from \mi -% \footnote{See the \mi\ home page at \url{http://www.matterandinteractions.org/} +% \footnote{See the \mi\ home page at \url{https://www.matterandinteractions.org/} % for more information about this innovative introductory calculus-based physics % curriculum.} by Ruth Chabay and Bruce Sherwood. The package certainly is rather % tightly tied to that textbook but can be used for typesetting any document that @@ -190,7 +209,7 @@ while 1: % There are other underlying philosophies and goals embedded within \mandi, % all of which are summarized here. These philosophies are % \begin{itemize} -% \item to employ a \textit{type what you think} model for remembering commands +% \item to employ a \emph{type what you think} model for remembering commands % \item to relieve the user of having to explicitly worry about typesetting SI % units % \item to enforce certain concepts that are too frequently merged, such as the @@ -198,7 +217,7 @@ while 1: % the same name for both) % \item to enforce consistent terminology in the naming of quantities, with names % that are both meaningful to introductory students and accurate -% (e.g.\ \textit{duration} vs.\ \textit{time}) +% (e.g.\ \emph{duration} vs.\ \emph{time}) % \item to enforce consistent notation, especially for vector quantities % \end{itemize} % @@ -210,8 +229,17 @@ while 1: % to build the documentation. I have not tested the build with with standard \LaTeX, % which creates DVI files. % +% \changes{v2.7.0}{2018/01/11}{Added instructions for Overleaf users.} +% \section{Overleaf Users} +% \href{https://www.overleaf.com}{Overleaf} is an online \LaTeX\ environment with +% widespread use. It uses a full \TeX/\LaTeX\ installation but doesn't always +% have the latest version of every package installed. Sometimes packages are updated +% more frequently than the large distributions are updated. If you want to always be +% sure you're using the latest version of \mandi\ make sure the files +% \pkgname{mandi.sty} and \pkgname{mandi.pdf} are in your Overleaf project folder. +% % \newpage -% \section{Loading the Package} +% \section{Loading the Package}\label{LoadingthePackage} % To load \mandi\ with its default options, simply put the line |\usepackage{mandi}| % in your document's preamble. To use the package's available options, put the line % |\usepackage|\textbf{[}\opt{options}\textbf{]}|{mandi}| in your document's preamble. @@ -227,6 +255,8 @@ while 1: % \changes{v2.6.0}{2016/05/18}{Option \opt{singleabsbars} renamed to % \opt{singlemagbars}.} % \changes{v2.6.0}{2016/05/23}{Loads the \pkgname{tensor} package for future use.} +% \changes{v2.7.0}{2017/02/02}{Added blank output lines around mandi messages +% during compilation.} % % \begin{itemize} % \item \opt{boldvectors} gives bold letters for the kernels of vector names. @@ -239,7 +269,7 @@ while 1: % \item \opt{singlemagbars} gives single bars in symbols for vector magnitudes. % Double bars may be more familiar to students from their calculus courses. % Double bars is the default. -% \item \opt{approxconsts} gives \hypertarget{target4}{approximate} values of +% \item \opt{approxconsts} gives \hypertarget{target1}{approximate} values of % constants to one or two significant figures, depending on how they appear in % \mi. Otherwise, the most precise currently available values are used. Precise % constants is the default. @@ -284,6 +314,10 @@ while 1: % \changes{v2.6.1}{2016/06/30}{Fixed \cs{mandiversion} so it displays correctly % in math mode.} % +%\mandi\ loads the \pkgname{tensor} for likely future use. See that package's +% documentation for its commands and how to use them. There are no known conflicts +% between \mandi\ and \pkgname{tensor}. +% %\iffalse %<*example> %\fi @@ -300,6 +334,8 @@ Gives the current package version number and build date. % \changes{v2.6.0}{2016/05/16}{Extensive revisions to documentation.} % \changes{v2.6.0}{2016/05/02}{Created a student guide.} % \changes{v2.6.1}{2016/06/30}{Fixed errors in Student Quick Guide documentation.} +% \changes{v2.6.2}{2016/07/31}{Made minor changes to the documentation.} +% \changes{v2.7.0}{2017/02/02}{Made numerous internal changes to eliminate warnings.} % \newpage % \section{Student Quick Guide} % Use \refCom{vect} to put an arrow over a symbol to make it the symbol for a vector. @@ -309,8 +345,8 @@ Gives the current package version number and build date. % gives \vectsub{p}{ball}. % % Use \refCom{magvect} or \refCom{magvectsub} to get the symbol for a vector's -% magnitude. Typing |\magvect{p}| or |\magvectsub{p}{ball}| gives \magvect{p} or -% \magvectsub{p}{ball}. +% magnitude. Typing |\magvect{p}| gives \magvect{p}. Typing |\magvectsub{p}{ball}| +% gives \magvectsub{p}{ball}. % % Use \refCom{dirvect} or \refCom{dirvectsub} to get the symbol for a vector's % direction. Typing |\dirvect{p}| or |\dirvectsub{p}{ball}| gives \dirvect{p} or @@ -355,6 +391,41 @@ Gives the current package version number and build date. % Use \refCom{define} to create a variable that can be used in an intermediate % step in a solution. This is discussed later in this section. % +% To typeset a matrix in parentheses, use the \cs{pmatrix} environment by putting +% the rows, between |\begin{pmatrix}| and |\end{pmatrix}|. Each row, except the +% last, must end with |\\|. Within each row, separate the columns with |&|. Note +% that \cs{pmatrix} typesets the matrix in parentheses. Use \cs{bmatrix} to typeset +% it in square brackets and \cs{vmatrix} to typeset it in single vertical bars +% to indicate a determinant. Use \cs{Vmatrix} to typeset it in double vertical +% bars. +% +%\iffalse +%<*example> +%\fi + \begin{dispExample*}{sidebyside,colframe=white,colback=white, lefthand ratio=0.70} + A second rank tensor represented as a matrix. + \[\begin{pmatrix} + \hphantom{-}T_{00} & T_{01} & -T_{02} \\ + -T_{10} & T_{11} & -T_{12} \\ + \hphantom{-}T_{20} & T_{21} & \hphantom{-}T_{22} + \end{pmatrix}\] + Alternate notation for a matrix. + \[\begin{bmatrix} + \hphantom{-}T_{00} & T_{01} & -T_{02} \\ + -T_{10} & T_{11} & -T_{12} \\ + \hphantom{-}T_{20} & T_{21} & \hphantom{-}T_{22} + \end{bmatrix}\] + The determinant of a matrix. + \[\begin{vmatrix} + \hphantom{-}T_{00} & T_{01} & -T_{02} \\ + -T_{10} & T_{11} & -T_{12} \\ + \hphantom{-}T_{20} & T_{21} & \hphantom{-}T_{22} + \end{vmatrix}\] + \end{dispExample*} +%\iffalse +%</example> +%\fi +% % Encapsulate an entire problem solution in a \refEnv{problem} environment by % putting it between |\begin{problem}| and |\end{problem}|. % @@ -364,9 +435,14 @@ Gives the current package version number and build date. % Use \cs{href} from the \pkgname{hyperref} package to link to URLs. % |\href{http://glowscript.org}{GlowScript}| gives % \href{http://glowscript.org}{GlowScript}. You can link to a specific -% \href{http://goo.gl/wPMqjp}{GlowScript program} for this course. Links are +% \href{http://goo.gl/wPMqjp}{GlowScript program} when necessary. Links are % active. % +% Use \refCom{image} to insert diagrams. The diagram should be a PDF file. You +% \emph{must} remember to specify a meaningful caption for the diagram. You must +% also provide a unique label for the image so you can easily refer back to it +% elsewhere in your document. +% % There are two main design goals behind this package. The first is to typeset % numerical values of scalar and vector physical quantities and their SI units. The % idea is to simply type a command corresponding to the quantity's name, specifying @@ -382,7 +458,7 @@ Gives the current package version number and build date. %\iffalse %<*example> %\fi -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Efieldofparticle \end{dispExample*} %\iffalse @@ -441,11 +517,11 @@ Command for generic expression for an inverse square interaction. The five required arguments are, from left to right, a constant of proportionality, a physical property of object 1, a physical property of object 2, the objects' mutual separation, and a vector direction. In practice, these should all be -provided in numerical form. +provided in numerical form. Note that negative signs must be placed manually. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \genericinteractionplaces{}{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -458,11 +534,12 @@ provided in numerical form. Command for generic expression for an inverse square field. The four required arguments are, from left to right, a constant of proportionality, a physical property, relative distance to field point, and a vector direction. In practice, -these should all be provided in numerical form. +these should all be provided in numerical form. Note that negative signs must be +placed manually. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \genericfieldofparticleplaces{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -475,11 +552,12 @@ these should all be provided in numerical form. Command for generic expression for an inverse square energy. The four required arguments are, from left to right, a constant of proportionality, a physical property of object 1, a physical property of object 2, and the objects' mutual -separation. In practice, these should all be provided in numerical form. +separation. In practice, these should all be provided in numerical form. Note that +negative signs must be placed manually. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \genericpotentialenergyplaces{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -492,11 +570,11 @@ separation. In practice, these should all be provided in numerical form. Command for gravitational interaction. The four required arguments are, from left to right, the first object's mass, the second object's mass, the objects' mutual separation, and a vector direction. In practice, these should all be -provided in numerical form. +provided in numerical form. Note that negative signs must be placed manually. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \gravitationalinteractionplaces{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -509,11 +587,11 @@ provided in numerical form. Command for gravitational field of a particle. The three required arguments are, from left to right, the object's mass, the distance from the source to the field point, and a vector direction. In practice, these should all be provided in -numerical form. +numerical form. Note that negative signs must be placed manually. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \gfieldofparticleplaces{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -526,11 +604,11 @@ numerical form. Command for gravitational potential energy. The three required arguments are, from left to right, the first object's mass, the second object's mass, and the object's mutual distance. In practice, these should all be provided in -numerical form. +numerical form. Note the inclusion of the leading negative sign. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \gravitationalpotentialenergyplaces{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -542,11 +620,12 @@ numerical form. {\marg{stiffness}\marg{stretch}\marg{direction}} Command for a spring interaction. The three required arguments are, from left to right, the spring stiffness, the spring's stretch, and a vector direction. -In practice, these should all be provided in numerical form. +In practice, these should all be provided in numerical form. Note that negative +signs must be placed manually or absorbed into the displacement vector. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \springinteractionplaces{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -560,9 +639,9 @@ Command for spring potential energy. The two required arguments are, from left to right, the spring stiffness and the spring stretch. In practice, these should be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \springpotentialenergyplaces{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -577,9 +656,9 @@ required arguments are, from left to right, a constant of proportionality, a cha a dipole separation, the distance to the field point, and a vector direction. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \genericelectricdipoleonaxisplaces{}{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -594,9 +673,9 @@ from left to right, a constant of proportionality, a charge, a dipole separation the distance to the field point, and a vector direction. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \genericelectricdipoleplaces{}{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -611,9 +690,9 @@ right, the first object's charge, the second object's charge, the objects' mutua separation, and a vector direction. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \electricinteractionplaces{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -628,9 +707,9 @@ left to right, the particle's charge, the distance form the source to the field point, and a vector direction. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \Efieldofparticleplaces{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -646,9 +725,9 @@ the source to the field point, the velocity's direction, and a direction vector from the source to the field point. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \Bfieldofparticleplaces{}{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -663,9 +742,9 @@ left to right, the first object's charge, the second object's charge, and the objects' mutual distance. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \electricpotentialenergyplaces{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -680,9 +759,9 @@ are, from left to right, a charge, a dipole separation, the distance to the fiel point, and a vector direction. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \electricdipoleonaxisplaces{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -696,14 +775,14 @@ Command for dipole electric field. The four required arguments are, from left to right, a charge, a dipole separation, the distance to the field point, and a vector direction. In practice, these should all be provided in numerical form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \electricdipoleonbisectorplaces{}{}{}{} -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi % -% The underlying strategy is to \textit{think about how you would say what you want +% The underlying strategy is to \emph{think about how you would say what you want % to write and then write it the way you would say it}. With a few exceptions, this % is how \mandi\ works. You need not worry about units because \mandi\ knows what % SI units go with which physical quantities. You can define new quantities so that @@ -767,15 +846,16 @@ in \LaTeX.} % \hyperlink{target2}{SI units} and the section on % \hyperlink{target3}{physics quantities}. % +% \newpage % \section{Features and Commands} % \subsection{SI Base Units and Dimensions} % This is not a tutorial on \hypertarget{target2}{SI units} and the user is assumed % to be familiar with SI rules and usage. Begin by defining shortcuts for the units % for the seven SI base quantities: -% \textit{spatial displacement} (what others call \textit{length}), \textit{mass}, -% \textit{temporal displacement} (what others call \textit{time}, but we will call -% it \textit{duration} in most cases), \textit{electric current}, \textit -% {thermodynamic temperature}, \textit{amount}, and \textit{luminous intensity}. +% \emph{spatial displacement} (what others call \emph{length}), \emph{mass}, +% \emph{temporal displacement} (what others call \emph{time}, but we will call +% it \emph{duration} in most cases), \emph{electric current}, \emph +% {thermodynamic temperature}, \emph{amount}, and \emph{luminous intensity}. % These shortcuts are used internally and need not explicitly be invoked by the % user. % @@ -783,7 +863,7 @@ in \LaTeX.} %<*example> %\fi \begin{docCommand}{m}{} - Command for \href{http://en.wikipedia.org/wiki/metre}{metre}, the SI unit of + Command for \href{https://en.wikipedia.org/wiki/metre}{metre}, the SI unit of spatial displacement (length). \end{docCommand} %\iffalse @@ -794,7 +874,7 @@ in \LaTeX.} %<*example> %\fi \begin{docCommand}{kg}{} - Command for \href{http://en.wikipedia.org/wiki/kilogram}{kilogram}, the SI unit + Command for \href{https://en.wikipedia.org/wiki/kilogram}{kilogram}, the SI unit of mass. \end{docCommand} %\iffalse @@ -805,7 +885,7 @@ in \LaTeX.} %<*example> %\fi \begin{docCommand}{s}{} - Command for \href{http://en.wikipedia.org/wiki/second}{second}, the SI unit + Command for \href{https://en.wikipedia.org/wiki/second}{second}, the SI unit of temporal displacement (duration). \end{docCommand} %\iffalse @@ -816,7 +896,7 @@ in \LaTeX.} %<*example> %\fi \begin{docCommand}{A}{} - Command for \href{http://en.wikipedia.org/wiki/ampere}{ampere}, the SI unit + Command for \href{https://en.wikipedia.org/wiki/ampere}{ampere}, the SI unit of electric current. \end{docCommand} %\iffalse @@ -827,7 +907,7 @@ in \LaTeX.} %<*example> %\fi \begin{docCommand}{K}{} - Command for \href{http://en.wikipedia.org/wiki/kelvin}{kelvin}, the SI unit + Command for \href{https://en.wikipedia.org/wiki/kelvin}{kelvin}, the SI unit of thermodynamic temperature. \end{docCommand} %\iffalse @@ -838,7 +918,7 @@ in \LaTeX.} %<*example> %\fi \begin{docCommand}{mol}{} - Command for \href{http://en.wikipedia.org/wiki/mole}{mole}, the SI unit of + Command for \href{https://en.wikipedia.org/wiki/mole}{mole}, the SI unit of amount. \end{docCommand} %\iffalse @@ -849,7 +929,7 @@ in \LaTeX.} %<*example> %\fi \begin{docCommand}{cd}{} - Command for \href{http://en.wikipedia.org/wiki/candela}{candela}, the SI + Command for \href{https://en.wikipedia.org/wiki/candela}{candela}, the SI unit of luminous intensity. \end{docCommand} %\iffalse @@ -862,15 +942,15 @@ in \LaTeX.} % depending upon the application. Again, this is what we mean by \baseunits\ form. % % Certain combinations of the SI base units have nicknames and each such -% combination and nickname constitutes a \textit{derived unit}. Derived units are +% combination and nickname constitutes a \emph{derived unit}. Derived units are % no more physically meaningful than the base units, they are merely nicknames for % particular combinations of base units. An example of a derived unit is the % newton, for which the symbol (it is not an abbreviation) is \newton. However, % the symbol \newton\ is merely a nickname for a particular combination of base % units. It is not the case that every unique combination of base units has a % nickname, but those that do are usually named in honor of a scientist. -% Incidentally, in such cases, the symbol is capitalized but the \textit{name} -% of the unit is \textbf{never} capitalized. Thus we would write the name of the +% Incidentally, in such cases, the symbol is capitalized but the \emph{name} +% of the unit is \emph{never} capitalized. Thus we would write the name of the % derived unit of force as newton and not Newton. Again, using these select % nicknames for certain combinations of base units is what we mean by \drvdunits\ % form. @@ -1161,7 +1241,34 @@ Command for luminous intensity. %\fi % % While we're at it, let's also go ahead and define a few non-SI units from -% astronomy and astrophysics. +% astronomy, astrophysics, and old school physics. +% +%\changes{v2.6.3}{2016/09/08}{Added \cs{infeet}.} +%\changes{v2.6.3}{2016/09/07}{Added \cs{infeetpersecond}.} +%\changes{v2.6.3}{2016/09/08}{Added \cs{infeetpersecondsquared}.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{infeet}{\marg{magnitude}} +Command for magnitude of displacement in feet. This is still sometimes used +in engineering applications and is frequently seen in older physics textbooks. +\end{docCommand} +\begin{docCommand}{infeetpersecond}{\marg{magnitude}} +Command for magnitude of velocity in feet per second. This is still sometimes used +in engineering applications and is frequently seen in older physics textbooks. +\end{docCommand} +\begin{docCommand}{infeetpersecondsquared}{\marg{magnitude}} +Command for magnitude of acceleration in feet per second. This is still sometimes +used in engineering applications and is frequently seen in older physics textbooks. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\infeet{5} \\ +\infeetpersecond{5} \\ +\infeetpersecondsquared{32} +\end{dispExample*} +%\iffalse +%</example> +%\fi % %\iffalse %<*example> @@ -2796,6 +2903,8 @@ below. %\chkquantity{temperature} %\chkquantity{amount} %\chkquantity{luminous} +%\chkquantity{infeetpersecond} +%\chkquantity{infeet} %\chkquantity{planeangle} %\chkquantity{solidangle} %\chkquantity{velocity} @@ -2868,12 +2977,29 @@ below. %\chkquantity{magneticcharge} %\end{adjustwidth} % +% \subsection{When to Write Radians}\label{WhentoWriteRadians} +% A word of clarification is in order for plane angles, solid angles, and other +% angular quantities. There is the perpetually confusing issue of when to explicitly +% write radians as a unit and when to omit it. The answer is that if the numerical +% value of a quantity explicitly depends on the angular unit, then the unit should +% be written. An example would be angular displacement; the numerical value obviously +% depends on the unit used. If the numerical value of a quantity does not explicitly +% depend on the angular unit, then the unit is omitted. An example would be the linear, +% or translational, velocity or a particle in circular motion. This quantity doesn't +% explicitly depends on the angular unit, so the angular unit is not written. +% +% Torque, angular impulse, and angular momentum present special a special problem +% in that it is sometimes pedagogically helpful to explicitly include angular units +% in their operational definitions. While this may not be in strict accordance +% with SI standards, loading \mandi\ with the \opt{useradians} option includes +% angular units in these quantities. See \nameref{LoadingthePackage} for details. +% % \newpage %\changes{v2.5.0}{2015/10/09}{Documented precise and approximate % constant values.} % \subsection{Physical Constants} % \subsubsection{Defining Physical Constants} -% \mandi\ has many predefined \hypertarget{target1}{physical constants}. +% \mandi\ has many predefined \hypertarget{target4}{physical constants}. % This section explains how to use them. % %\iffalse @@ -2894,7 +3020,7 @@ Here is how \planck (Planck's constant) is defined internally, showing each part of the definition on a separate line. \newphysicsconstant{planck} {\ensuremath{h}} - {\mi@p{6.6}{6.6261}\timestento{-34}} + {\mi@p{6.6}{6.626070040}\timestento{-34}} {\m\squared\usk\kg\usk\reciprocal\s} [\J\usk\s] [\J\usk\s] @@ -2934,7 +3060,10 @@ each part of the definition on a separate line. % \subsubsection{Predefined Physical Constants} % % In this section, precise values of constants are used. Approximate -% values are available as an option when the package is loaded. +% values are available as an option when the package is loaded. Precise values +% are sourced as accurately as possible, beginning with Wikipedia and following +% sources therein. I tried to use the most recent NIST or similarly authoritative +% values. In no case did I make up any values. % %\iffalse %<*example> @@ -2942,9 +3071,9 @@ each part of the definition on a separate line. \begin{docCommand}{oofpez}{} Coulomb constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\oofpezmathsymbol \approx \oofpez\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -2955,9 +3084,9 @@ Coulomb constant. \begin{docCommand}{oofpezcs}{} Alternate form of Coulomb constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\oofpezcsmathsymbol \approx \oofpezcs\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -2981,9 +3110,9 @@ Vacuum permittivity. \begin{docCommand}{mzofp}{} Biot-Savart constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\mzofpmathsymbol \approx \mzofp\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -2994,9 +3123,9 @@ Biot-Savart constant. \begin{docCommand}{vacuumpermeability}{} Vacuum permeability. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\vacuumpermeabilitymathsymbol \approx \vacuumpermeability\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3007,9 +3136,9 @@ Vacuum permeability. \begin{docCommand}{boltzmann}{} Boltzmann constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\boltzmannmathsymbol \approx \boltzmann\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3020,9 +3149,9 @@ Boltzmann constant. \begin{docCommand}{boltzmannineV}{} Alternate form of Boltlzmann constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\boltzmannineVmathsymbol \approx \boltzmannineV\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3046,9 +3175,9 @@ Stefan-Boltzmann constant. \begin{docCommand}{planck}{} Planck constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\planckmathsymbol \approx \planck\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3059,9 +3188,9 @@ Planck constant. \begin{docCommand}{planckineV}{} Alternate form of Planck constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\planckmathsymbol \approx \planckineV\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3072,9 +3201,9 @@ Alternate form of Planck constant. \begin{docCommand}{planckbar}{} Reduced Planck constant (Dirac constant). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\planckbarmathsymbol \approx \planckbar\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3085,9 +3214,9 @@ Reduced Planck constant (Dirac constant). \begin{docCommand}{planckbarineV}{} Alternate form of reduced Planck constant (Dirac constant). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\planckbarmathsymbol \approx \planckbarineV\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3098,9 +3227,9 @@ Alternate form of reduced Planck constant (Dirac constant). \begin{docCommand}{planckc}{} Planck constant times light speed. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\planckcmathsymbol \approx \planckc\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3111,9 +3240,9 @@ Planck constant times light speed. \begin{docCommand}{planckcineV}{} Alternate form of Planck constant times light speed. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\planckcineVmathsymbol \approx \planckcineV\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3124,9 +3253,9 @@ Alternate form of Planck constant times light speed. \begin{docCommand}{rydberg}{} Rydberg constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\rydbergmathsymbol \approx \rydberg\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3137,9 +3266,9 @@ Rydberg constant. \begin{docCommand}{bohrradius}{} Bohr radius. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\bohrradiusmathsymbol \approx \bohrradius\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3163,9 +3292,9 @@ Fine structure constant. \begin{docCommand}{avogadro}{} Avogadro constant. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\avogadromathsymbol \approx \avogadro\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3202,9 +3331,9 @@ Earth's surface gravitational field strength. \begin{docCommand}{clight}{} Magnitude of light's velocity (photon constant). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\clightmathsymbol \approx \clight\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3215,9 +3344,9 @@ Magnitude of light's velocity (photon constant). \begin{docCommand}{clightinfeet}{} Alternate of magnitude of light's velocity (photon constant). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\clightinfeetmathsymbol \approx \clightinfeet\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3228,9 +3357,9 @@ Alternate of magnitude of light's velocity (photon constant). \begin{docCommand}{Ratom}{} Approximate atomic radius. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\Ratommathsymbol \approx \Ratom\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3241,9 +3370,9 @@ Approximate atomic radius. \begin{docCommand}{Mproton}{} Proton mass. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\Mprotonmathsymbol \approx \Mproton\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3254,9 +3383,9 @@ Proton mass. \begin{docCommand}{Mneutron}{} Neutron mass. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\Mneutronmathsymbol \approx \Mneutron\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3267,9 +3396,9 @@ Neutron mass. \begin{docCommand}{Mhydrogen}{} Hydrogen atom mass. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\Mhydrogenmathsymbol \approx \Mhydrogen\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3280,9 +3409,9 @@ Hydrogen atom mass. \begin{docCommand}{Melectron}{} Electron mass. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\Melectronmathsymbol \approx \Melectron\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3293,9 +3422,9 @@ Electron mass. \begin{docCommand}{echarge}{} Elementary charge quantum. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\echargemathsymbol \approx \echarge\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3309,9 +3438,9 @@ Electron charge. \begin{docCommand}{qelectron}{} Alias for \cs{Qelectron}. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\Qelectronmathsymbol \approx \Qelectron\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3325,9 +3454,9 @@ Proton charge. \begin{docCommand}{qproton}{} Alias for \cs{Qproton}. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\Qprotonmathsymbol \approx \Qproton\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3338,9 +3467,9 @@ Alias for \cs{Qproton}. \begin{docCommand}{MEarth}{} Earth's mass. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\MEarthmathsymbol \approx \MEarth\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3351,9 +3480,9 @@ Earth's mass. \begin{docCommand}{MMoon}{} Moon's mass. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\MMoonmathsymbol \approx \MMoon\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3364,9 +3493,9 @@ Moon's mass. \begin{docCommand}{MSun}{} Sun's mass. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\MSunmathsymbol \approx \MSun\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3377,9 +3506,9 @@ Sun's mass. \begin{docCommand}{REarth}{} Earth's radius. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\REarthmathsymbol \approx \REarth\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3390,9 +3519,9 @@ Earth's radius. \begin{docCommand}{RMoon}{} Moon's radius. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\RMoonmathsymbol \approx \RMoon\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3403,9 +3532,9 @@ Moon's radius. \begin{docCommand}{RSun}{} Sun's radius. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\RSunmathsymbol \approx \RSun\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3419,9 +3548,9 @@ Earth-Sun distance. \begin{docCommand}{SEdist}{} Alias for \refCom{ESdist}. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\ESdistmathsymbol \approx \SEdist\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3435,9 +3564,9 @@ Earth-Moon distance. \begin{docCommand}{MEdist}{} Alias for \refCom{EMdist}. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \(\EMdistmathsymbol \approx \EMdist\) -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -3460,7 +3589,7 @@ was loaded), and units for a defined physical constant. See table below. %\fi % % Here are all the predefined constants and their units. -%\begin{adjustwidth}{-0.5in}{-0.5in} +%\begin{adjustwidth}{}{} % %\chkconstant{oofpez} %\chkconstant{oofpezcs} @@ -3851,7 +3980,21 @@ Symbol for magnitude of a vector quantity to arbitrary power. Symbol for direction of a vector quantity. \end{docCommand} \begin{dispExample*}{sidebyside} -\dirvect{p} or \direction{p} +\dirvect{p} +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\changes{v2.7.0}{2017/04/13}{Added \cs{factorvect}.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{factorvect}{\marg{kernel}} +Symbol for a vector factored into its magnitude and direction. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\factorvect{E} \end{dispExample*} %\iffalse %</example> @@ -4375,11 +4518,8 @@ Symbol for a subscripted vector's magnitude to an arbitrary power. \begin{docCommand}{dirvectsub}{\marg{kernel}\marg{sub}} Symbol for a subscripted vector's direction. \end{docCommand} -\begin{docCommand}{directionsub}{\marg{kernel}\marg{sub}} -Alias for \refCom{dirvectsub}. -\end{docCommand} \begin{dispExample*}{sidebyside} -\dirvectsub{p}{ball} or \directionsub{p}{ball} +\dirvectsub{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -4392,7 +4532,7 @@ Alias for \refCom{dirvectsub}. Symbolic components of a subscripted vector. \end{docCommand} \begin{dispExample*}{sidebyside} -the vector \scompsvectsub{p}{ball} +\scompsvectsub{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -4405,7 +4545,7 @@ the vector \scompsvectsub{p}{ball} Isolates one component of a subscripted vector. \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compvectsub{p}{ball}{z} +\compvectsub{p}{ball}{z} \end{dispExample*} %\iffalse %</example> @@ -4419,7 +4559,7 @@ Expression for a subscripted vector's magnitude in terms of symbolic components. \end{docCommand} \begin{dispExample*}{sidebyside} -the magnitude \magvectsubscomps{p}{ball} +\magvectsubscomps{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -4435,8 +4575,8 @@ Differential of a subscripted vector. Identical to \refCom{dvectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the change \dvectsub{p}{ball} \\ -the change \Dvectsub{p}{ball} +\dvectsub{p}{ball} \\ +\Dvectsub{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -4452,8 +4592,8 @@ Symbolic components of a subscripted vector's differential. Identical to \refCom{scompsdvectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the vector \scompsdvectsub{p}{ball} \\ -the vector \scompsDvectsub{p}{ball} +\scompsdvectsub{p}{ball} \\ +\scompsDvectsub{p}{ball} \end{dispExample*} %\iffalse %</example> @@ -4469,8 +4609,8 @@ Isolates one component of a subscripted vector's differential. Identical to \refCom{compdvectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compdvectsub{p}{ball}{y} \\ -the component \compDvectsub{p}{ball}{y} +\compdvectsub{p}{ball}{y} \\ +\compDvectsub{p}{ball}{y} \end{dispExample*} %\iffalse %</example> @@ -4487,8 +4627,8 @@ independent variable. Identical to \refCom{dervectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the derivative \dervectsub{p}{ball}{t} \\ -the derivative \Dervectsub{p}{ball}{t} +\dervectsub{p}{ball}{t} \\ +\Dervectsub{p}{ball}{t} \end{dispExample*} %\iffalse %</example> @@ -4505,8 +4645,8 @@ to an independent variable. Identical to \refCom{dermagvectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the derivative \dermagvectsub{E}{ball}{t} \\ -the derivative \Dermagvectsub{E}{ball}{t} +\dermagvectsub{E}{ball}{t} \\ +\Dermagvectsub{E}{ball}{t} \end{dispExample*} %\iffalse %</example> @@ -4523,8 +4663,8 @@ an independent variable. Identical to \refCom{scompsdervectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the vector \scompsdervectsub{p}{ball}{t} \\ -the vector \scompsDervectsub{p}{ball}{t} +\scompsdervectsub{p}{ball}{t} \\ +\scompsDervectsub{p}{ball}{t} \end{dispExample*} %\iffalse %</example> @@ -4543,8 +4683,8 @@ to an independent variable. Identical to \refCom{compdervectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the component \compdervectsub{p}{ball}{y}{t} \\ -the component \compDervectsub{p}{ball}{y}{t} +\compdervectsub{p}{ball}{y}{t} \\ +\compDervectsub{p}{ball}{y}{t} \end{dispExample*} %\iffalse %</example> @@ -4561,8 +4701,8 @@ to an independent variable. Identical to \refCom{magdervectsub} but uses \(\Delta\). \end{docCommand} \begin{dispExample*}{sidebyside} -the derivative \magdervectsub{p}{ball}{t} \\ -the derivative \magDervectsub{p}{ball}{t} +\magdervectsub{p}{ball}{t} \\ +\magDervectsub{p}{ball}{t} \end{dispExample*} %\iffalse %</example> @@ -4572,19 +4712,25 @@ the derivative \magDervectsub{p}{ball}{t} % Now we get to commands that will save you many, many keystrokes. All of % the naming conventions documented in earlier commands still apply. There % are some new ones though. Every time you see |dot| you should think -% \textit{dot product}. When you see |dots| you should think \textit{dot +% \emph{dot product}. When you see |dots| you should think \emph{dot % product in terms of symbolic components}. When you see |dote| you should -% think \textit{dot product expanded as a sum}. These, along with the previous +% think \emph{dot product expanded as a sum}. These, along with the previous % naming conventions, handle many dot product expressions. % +%\changes{v2.7.0}{2.16/12/16}{Changed \cs{vectdotvect} to use \cs{cdot}.} +%\changes{v2.7.0}{2016/12/16}{Added \cs{vectDotvect} to use \cs{bullet}.} %\iffalse %<*example> %\fi \begin{docCommand}{vectdotvect}{\marg{kernel1}\marg{kernel2}} Symbol for dot of two vectors as a single symbol. \end{docCommand} +\begin{docCommand}{vectDotvect}{\marg{kernel1}\marg{kernel2}} +Same as \cs{vectdotvect} but uses \cs{bullet}. +\end{docCommand} \begin{dispExample*}{sidebyside} -\vectdotvect{\vect{F}}{\vect{v}} +\vectdotvect{\vect{F}}{\vect{v}} \\ +\vectDotvect{\vect{F}}{\vect{v}} \end{dispExample*} %\iffalse %</example> @@ -4596,8 +4742,12 @@ Symbol for dot of two vectors as a single symbol. \begin{docCommand}{vectdotsvect}{\marg{kernel1}\marg{kernel2}} Symbol for dot of two vectors with symbolic components. \end{docCommand} +\begin{docCommand}{vectDotsvect}{\marg{kernel1}\marg{kernel2}} +Same as \cs{vectdotsvect} but uses \cs{bullet}. +\end{docCommand} \begin{dispExample*}{sidebyside} -\vectdotsvect{F}{v} +\vectdotsvect{F}{v} \\ +\vectDotsvect{F}{v} \end{dispExample*} %\iffalse %</example> @@ -4657,7 +4807,7 @@ Identical to \refCom{vectdotedvect} but uses \(\Delta\). {\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Dot of two subscripted vectors with symbolic components. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \vectsubdotsvectsub{F}{grav}{r}{ball} \end{dispExample*} %\iffalse @@ -4671,7 +4821,7 @@ Dot of two subscripted vectors with symbolic components. {\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Dot of two subscripted vectors as an expanded sum. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \vectsubdotevectsub{F}{grav}{r}{ball} \end{dispExample*} %\iffalse @@ -4690,7 +4840,7 @@ symbolic components. {\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Identical to \refCom{vectsubdotsdvectsub} but uses \(\Delta\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \vectsubdotsdvectsub{A}{ball}{B}{car} \\ \vectsubdotsDvectsub{A}{ball}{B}{car} \end{dispExample*} @@ -4710,7 +4860,7 @@ as an expanded sum. {\marg{kernel1}\marg{sub1}\marg{kernel2}\marg{sub2}} Identical to \refCom{vectsubdotedvectsub} but uses \(\Delta\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \vectsubdotedvectsub{A}{ball}{B}{car} \\ \vectsubdoteDvectsub{A}{ball}{B}{car} \end{dispExample*} @@ -4728,7 +4878,7 @@ components. \begin{docCommand}{vectsubdotsDvect}{\marg{kernel1}\marg{sub1}\marg{kernel2}} Identical to \refCom{vectsubdotsdvect} but uses \(\Delta\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \vectsubdotsdvect{A}{ball}{B} \\ \vectsubdotsDvect{A}{ball}{B} \end{dispExample*} @@ -4745,7 +4895,7 @@ Dot of a subscripted vector and a vector's differential as an expanded sum. \begin{docCommand}{vectsubdoteDvect}{\marg{kernel1}\marg{sub1}\marg{kernel2}} Identical to \refCom{vectsubdotedvect} but uses \(\Delta\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \vectsubdotedvect{A}{ball}{B} \\ \vectsubdoteDvect{A}{ball}{B} \end{dispExample*} @@ -4831,7 +4981,7 @@ components. \begin{docCommand}{DervectdotsDvect}{\marg{kernel1}\marg{indvar}\marg{kernel2}} Identical to \refCom{dervectdotsdvect} but uses \(\Delta\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \dervectdotsdvect{A}{t}{B} \\ \DervectdotsDvect{A}{t}{B} \end{dispExample*} @@ -5018,13 +5168,11 @@ Symbols for basis bivectors with lower indices up to 4. \begin{docCommand}{efourfour}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\ezerozero, \ezeroone, \ezerotwo, \\ -\ezerothree, \ezerofour, \eoneone, \\ -\eonetwo, \eonethree, \eonefour, \\ -\etwoone, \etwotwo, \etwothree, \\ -\etwofour, \ethreeone, \ethreetwo, \\ -\ethreethree, \ethreefour, \efourone,\\ - \efourtwo, \efourthree, \efourfour +\ezerozero, \ezeroone, \ezerotwo, \ezerothree, \ezerofour, \\ +\eoneone, \eonetwo, \eonethree, \eonefour, \etwoone, \\ +\etwotwo, \etwothree, \etwofour, \ethreeone, \ethreetwo, \\ +\ethreethree, \ethreefour, \efourone, \efourtwo, \efourthree, \\ +\efourfour \end{dispExample*} %\iffalse %</example> @@ -5120,13 +5268,11 @@ Symbols for basis bivectors with upper indices up to 4. \begin{docCommand}{eufourfour}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\euzerozero, \euzeroone, \euzerotwo, \\ -\euzerothree, \euzerofour, \euoneone, \\ -\euonetwo, \euonethree, \euonefour, \\ -\eutwoone, \eutwotwo, \eutwothree, \\ -\eutwofour, \euthreeone, \euthreetwo, \\ -\euthreethree, \euthreefour, \eufourone, \\ -\eufourtwo, \eufourthree, \eufourfour +\euzerozero, \euzeroone, \euzerotwo, \euzerothree, \euzerofour, \\ +\euoneone, \euonetwo, \euonethree, \euonefour, \eutwoone, \\ +\eutwotwo, \eutwothree, \eutwofour, \euthreeone, \euthreetwo, \\ +\euthreethree, \euthreefour, \eufourone, \eufourtwo, \eufourthree, \\ +\eufourfour \end{dispExample*} %\iffalse %</example> @@ -5208,13 +5354,11 @@ up to 4. \begin{docCommand}{gfourfour}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\gzerozero, \gzeroone, \gzerotwo, \\ -\gzerothree, \gzerofour, \goneone, \\ -\gonetwo, \gonethree, \gonefour, \\ -\gtwoone, \gtwotwo, \gtwothree, \\ -\gtwofour, \gthreeone, \gthreetwo, \\ -\gthreethree, \gthreefour, \gfourone, \\ -\gfourtwo, \gfourthree, \gfourfour +\gzerozero, \gzeroone, \gzerotwo, \gzerothree, \gzerofour, \\ +\goneone, \gonetwo, \gonethree, \gonefour, \gtwoone, \\ +\gtwotwo, \gtwothree, \gtwofour, \gthreeone, \gthreetwo, \\ +\gthreethree, \gthreefour, \gfourone, \gfourtwo, \gfourthree, \\ +\gfourfour \end{dispExample*} %\iffalse %</example> @@ -5268,13 +5412,11 @@ up to 4. \begin{docCommand}{gufourfour}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\guzerozero, \guzeroone, \guzerotwo, \\ -\guzerothree, \guzerofour, \guoneone, \\ -\guonetwo, \guonethree, \guonefour, \\ -\gutwoone, \gutwotwo, \gutwothree, \\ -\gutwofour, \guthreeone, \guthreetwo, \\ -\guthreethree, \guthreefour, \gufourone, \\ -\gufourtwo, \gufourthree, \gufourfour +\guzerozero, \guzeroone, \guzerotwo, \guzerothree, \guzerofour, \\ +\guoneone, \guonetwo, \guonethree, \guonefour, \gutwoone, \\ +\gutwotwo, \gutwothree, \gutwofour, \guthreeone, \guthreetwo, \\ +\guthreethree, \guthreefour, \gufourone, \gufourtwo, \gufourthree, \\ +\gufourfour \end{dispExample*} %\iffalse %</example> @@ -5447,9 +5589,8 @@ Small fractions with numerator 1 and denominators up to 10. \begin{docCommand}{onetenth}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\(\onehalf, \onethird, \onefourth, \onefifth, \\ -\onesixth, \oneseventh, \oneeighth, \oneninth, \\ -\onetenth\) +\(\onehalf, \onethird, \onefourth, \onefifth, \onesixth, \\ +\oneseventh, \oneeighth, \oneninth, \onetenth\) \end{dispExample*} %\iffalse %</example> @@ -5480,10 +5621,8 @@ Small fractions with numerator 2 and denominators up to 10. \begin{docCommand}{twotenths}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\(\twooneths, \twohalves, \twothirds, \\ -\twofourths, \twofifths, \twosixths, \\ -\twosevenths, \twoeighths, \twoninths, \\ -\twotenths\) +\(\twooneths, \twohalves, \twothirds, \twofourths, \twofifths, \\ +\twosixths, \twosevenths, \twoeighths, \twoninths, \twotenths\) \end{dispExample*} %\iffalse %</example> @@ -5514,10 +5653,8 @@ Small fractions with numerator 3 and denominators up to 10. \begin{docCommand}{threetenths}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\(\threeoneths, \threehalves, \threethirds, \\ -\threefourths, \threefifths, \threesixths, \\ -\threesevenths, \threeeighths, \threeninths, \\ -\threetenths\) +\(\threeoneths, \threehalves, \threethirds, \threefourths, \threefifths, \\ +\threesixths, \threesevenths, \threeeighths, \threeninths, \threetenths\) \end{dispExample*} %\iffalse %</example> @@ -5548,10 +5685,8 @@ Small fractions with numerator 4 and denominators up to 10. \begin{docCommand}{fourtenths}{} \end{docCommand} \begin{dispExample*}{sidebyside} -\(\fouroneths, \fourhalves, \fourthirds, \\ -\fourfourths, \fourfifths, \foursixths, \\ -\foursevenths, \foureighths, \fourninths, \\ -\fourtenths\) +\(\fouroneths, \fourhalves, \fourthirds, \fourfourths, \fourfifths, \\ +\foursixths, \foursevenths, \foureighths, \fourninths, \fourtenths\) \end{dispExample*} %\iffalse %</example> @@ -5586,6 +5721,20 @@ italics and should be properly spaced relative to the integrand). %</example> %\fi % +%\changes{v2.7.0}{2017/03/17}{Added \cs{dslashx} for inexact differentials.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{dslashx}{\marg{variable}} +Symbol indicating an inexact differential. Frequently used in physics. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\( \dslashx{Q} \) +\end{dispExample*} +%\iffalse +%</example> +%\fi +% %\changes{v2.6.0}{2016/05/10}{Replaced \cs{evalfromto} with \cs{evaluatedfromto}.} %\iffalse %<*example> @@ -5963,9 +6112,9 @@ Series expansion of \(f(x)\) around \(x=a\). \begin{docCommand}{seriesexpx}{} Series expansion of \(e^x\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \seriesexpx -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -5976,9 +6125,9 @@ Series expansion of \(e^x\). \begin{docCommand}{seriessinx}{} Series expansion of \(\sin x\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \seriessinx -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -5989,9 +6138,9 @@ Series expansion of \(\sin x\). \begin{docCommand}{seriescosx}{} Series expansion of \(\cos x\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \seriescosx -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -6002,9 +6151,9 @@ Series expansion of \(\cos x\). \begin{docCommand}{seriestanx}{} Series expansion of \(\tan x\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \seriestanx -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -6015,9 +6164,9 @@ Series expansion of \(\tan x\). \begin{docCommand}{seriesatox}{} Series expansion of \(a^x\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \seriesatox -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -6028,9 +6177,9 @@ Series expansion of \(a^x\). \begin{docCommand}{serieslnoneplusx}{} Series expansion of \(\ln(1+x)\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \serieslnoneplusx -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -6041,9 +6190,9 @@ Series expansion of \(\ln(1+x)\). \begin{docCommand}{binomialseries}{} Series expansion of \((1+x)^n\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample} \binomialseries -\end{dispExample*} +\end{dispExample} %\iffalse %</example> %\fi @@ -6085,7 +6234,7 @@ Euler-Lagrange equation. \begin{docCommand}{Eulerlagrange}{\oarg{operand}} Like \refCom{eulerlagrange} but uses \(\Delta\). \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \( \eulerlagrange \) or \( \eulerlagrange[x] \) \\ \( \Eulerlagrange \) or \( \Eulerlagrange[x] \) \end{dispExample*} @@ -6251,6 +6400,20 @@ Symbol for flux of a vector field. %</example> %\fi % +%\changes{v2.7.0}{2017/04/13}{Added \cs{circulation}.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{circulation}{\oarg{label}} +Symbol for circulation of a vector field. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\circulation, \circulation[E] +\end{dispExample*} +%\iffalse +%</example> +%\fi +% %\changes{v2.5.0}{2015/09/13}{Added \cs{inparens} for grouping with % parentheses.} %\changes{v2.6.0}{2016/05/02}{Changed placeholder to underscore.} @@ -6342,7 +6505,7 @@ this same idea in other sources. A blank argument generates a placeholder. %<*example> %\fi \begin{docCommand}{Changein}{\marg{arg}} -Notation for \textit{the change in a quantity}. +Notation for \emph{the change in a quantity}. \end{docCommand} \begin{dispExample*}{sidebyside} \Changein{\vect{E}} @@ -6756,7 +6919,7 @@ you will see where the name comes from. %<*example> %\fi \begin{docCommand}{isequals}{} -Command for \textit{test-for-equality} operator. +Command for \emph{test-for-equality} operator. \end{docCommand} \begin{dispExample*}{sidebyside} 5 \isequals 3 @@ -6811,7 +6974,7 @@ Operator useful for comparing times and clock readings. Same as \refCom{adjustedby} but puts parentheses around the operator. \end{docCommand} \begin{docCommand}{forevery}{} -Operator the idea of for every. +Operator for conveying the idea of for every. \end{docCommand} \begin{docCommand}{pforevery}{} Same as \refCom{forevery} but puts parentheses around the operator. @@ -6844,7 +7007,7 @@ Same as \refCom{associated} but puts parentheses around the operator. %<*example> %\fi \begin{docCommand}{defines}{} -Command for \textit{defines} or \textit{defined by} operator. +Command for \emph{defines} or \emph{defined by} operator. \end{docCommand} \begin{dispExample*}{sidebyside} \vect{p} \defines \(\gamma m\)\vect{v} @@ -6872,7 +7035,7 @@ in a particular reference frame denoted by a capital letter. %<*example> %\fi \begin{docCommand}{associates}{} -Command for \textit{associated with} or \textit{associates with} operator +Command for \emph{associated with} or \emph{associates with} operator (for verbal concepts). This is conceptually different from the \refCom{associated} or \refCom{passociated} operators. \end{docCommand} @@ -6887,7 +7050,7 @@ kinetic energy \associates velocity %<*example> %\fi \begin{docCommand}{becomes}{} -Command for \textit{becomes} operator. +Command for \emph{becomes} operator. \end{docCommand} \begin{dispExample*}{sidebyside} \(\gamma m\)\vect{v} \becomes \(m\)\vect{v} @@ -6951,7 +7114,7 @@ Just the left hand side. \begin{docCommand}{RHSmomentumprinciple}{} Just the right hand side. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \momentumprinciple \\ \LHSmomentumprinciple \\ \RHSmomentumprinciple @@ -6966,7 +7129,7 @@ Just the right hand side. \begin{docCommand}{momentumprinciplediff}{} Expression for the momentum principle in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \momentumprinciplediff \end{dispExample*} %\iffalse @@ -6986,8 +7149,8 @@ Just the left hand side. \begin{docCommand}{RHSenergyprinciple}{} Just the right hand side. \end{docCommand} -\begin{dispExample*}{sidebyside} -\energyprinciple \\ +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} +\energyprinciple \\ \LHSenergyprinciple \\ \RHSenergyprinciple \end{dispExample*} @@ -7001,7 +7164,7 @@ Just the right hand side. \begin{docCommand}{energyprinciplediff}{} Expression for the energy principle in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \energyprinciplediff \end{dispExample*} %\iffalse @@ -7020,7 +7183,7 @@ Just the left hand side. \begin{docCommand}{RHSangularmomentumprinciple}{} Just the right hand side. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \angularmomentumprinciple \\ \LHSangularmomentumprinciple \\ \RHSangularmomentumprinciple @@ -7035,7 +7198,7 @@ Just the right hand side. \begin{docCommand}{angularmomentumprinciplediff}{} Expression for the angular momentum principle in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \angularmomentumprinciplediff \end{dispExample*} %\iffalse @@ -7048,7 +7211,7 @@ Expression for the angular momentum principle in differential form. \begin{docCommand}{gravitationalinteraction}{} Expression for gravitational interaction. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \gravitationalinteraction \end{dispExample*} %\iffalse @@ -7061,7 +7224,7 @@ Expression for gravitational interaction. \begin{docCommand}{electricinteraction}{} Expression for electric interaction. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \electricinteraction \end{dispExample*} %\iffalse @@ -7074,7 +7237,7 @@ Expression for electric interaction. \begin{docCommand}{springinteraction}{} Expression for spring interaction. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \springinteraction \end{dispExample*} %\iffalse @@ -7087,7 +7250,7 @@ Expression for spring interaction. \begin{docCommand}{gfieldofparticle}{} Expression for a particle's gravitational field. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \gfieldofparticle \end{dispExample*} %\iffalse @@ -7100,7 +7263,7 @@ Expression for a particle's gravitational field. \begin{docCommand}{Efieldofparticle}{} Expression for a particle's electric field. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Efieldofparticle \end{dispExample*} %\iffalse @@ -7113,7 +7276,7 @@ Expression for a particle's electric field. \begin{docCommand}{Bfieldofparticle}{} Expression for a particle's magnetic field. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Bfieldofparticle \end{dispExample*} %\iffalse @@ -7129,7 +7292,7 @@ Expression for a particle's magnetic field. \begin{docCommand}{Esys}{\oarg{label}} Symbol for system energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Esys, \Esys[final], \Esys[initial] \end{dispExample*} %\iffalse @@ -7142,7 +7305,7 @@ Symbol for system energy. \begin{docCommand}{Us}{\oarg{label}} Symbol for spring potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Us, \Us[final], \Us[initial] \end{dispExample*} %\iffalse @@ -7155,7 +7318,7 @@ Symbol for spring potential energy. \begin{docCommand}{Ug}{\oarg{label}} Symbol for gravitational potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Ug, \Ug[final], \Ug[initial] \end{dispExample*} %\iffalse @@ -7168,7 +7331,7 @@ Symbol for gravitational potential energy. \begin{docCommand}{Ue}{\oarg{label}} Symbol for electric potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Ue, \Ue[final], \Ue[initial] \end{dispExample*} %\iffalse @@ -7181,7 +7344,7 @@ Symbol for electric potential energy. \begin{docCommand}{Ktrans}{\oarg{label}} Symbol for translational kinetic energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Ktrans, \Ktrans[final], \Ktrans[initial] \end{dispExample*} %\iffalse @@ -7194,7 +7357,7 @@ Symbol for translational kinetic energy. \begin{docCommand}{Krot}{\oarg{label}} Symbol for rotational kinetic energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Krot, \Krot[final], \Krot[initial] \end{dispExample*} %\iffalse @@ -7207,7 +7370,7 @@ Symbol for rotational kinetic energy. \begin{docCommand}{Kvib}{\oarg{label}} Symbol for vibrational kinetic energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Kvib, \Evib[final], \Evib[initial] \end{dispExample*} %\iffalse @@ -7220,7 +7383,7 @@ Symbol for vibrational kinetic energy. \begin{docCommand}{Eparticle}{\oarg{label}} Symbol for particle energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Eparticle, \Eparticle[final], \Eparticle[initial] \end{dispExample*} %\iffalse @@ -7233,7 +7396,7 @@ Symbol for particle energy. \begin{docCommand}{Einternal}{\oarg{label}} Symbol for internal energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Einternal, \Einternal[final], \Einternal[initial] \end{dispExample*} %\iffalse @@ -7246,7 +7409,7 @@ Symbol for internal energy. \begin{docCommand}{Erest}{\oarg{label}} Symbol for rest energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Erest, \Erest[final], \Erest[initial] \end{dispExample*} %\iffalse @@ -7259,7 +7422,7 @@ Symbol for rest energy. \begin{docCommand}{Echem}{\oarg{label}} Symbol for chemical energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Echem, \Echem[final], \Echem[initial] \end{dispExample*} %\iffalse @@ -7272,7 +7435,7 @@ Symbol for chemical energy. \begin{docCommand}{Etherm}{\oarg{label}} Symbol for thermal energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Etherm, \Etherm[final], \Etherm[initial] \end{dispExample*} %\iffalse @@ -7285,7 +7448,7 @@ Symbol for thermal energy. \begin{docCommand}{Evib}{\oarg{label}} Symbol for vibrational energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Evib, \Evib[final], \Evib[initial] \end{dispExample*} %\iffalse @@ -7298,7 +7461,7 @@ Symbol for vibrational energy. \begin{docCommand}{Ephoton}{\oarg{label}} Symbol for photon energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Ephoton, \Ephoton[final], \Ephoton[initial] \end{dispExample*} %\iffalse @@ -7311,7 +7474,7 @@ Symbol for photon energy. \begin{docCommand}{DEsys}{} Symbol for change in system energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DEsys \end{dispExample*} %\iffalse @@ -7324,7 +7487,7 @@ Symbol for change in system energy. \begin{docCommand}{DUs}{} Symbol for change in spring potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DUs \end{dispExample*} %\iffalse @@ -7337,7 +7500,7 @@ Symbol for change in spring potential energy. \begin{docCommand}{DUg}{} Symbol for change in gravitational potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DUg \end{dispExample*} %\iffalse @@ -7350,7 +7513,7 @@ Symbol for change in gravitational potential energy. \begin{docCommand}{DUe}{} Symbol for change in electric potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DUe \end{dispExample*} %\iffalse @@ -7363,7 +7526,7 @@ Symbol for change in electric potential energy. \begin{docCommand}{DKtrans}{} Symbol for change in translational kinetic energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DKtrans \end{dispExample*} %\iffalse @@ -7376,7 +7539,7 @@ Symbol for change in translational kinetic energy. \begin{docCommand}{DKrot}{} Symbol for change in rotational kinetic energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DKrot \end{dispExample*} %\iffalse @@ -7389,7 +7552,7 @@ Symbol for change in rotational kinetic energy. \begin{docCommand}{DKvib}{} Symbol for change in vibrational kinetic energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DKvib \end{dispExample*} %\iffalse @@ -7402,7 +7565,7 @@ Symbol for change in vibrational kinetic energy. \begin{docCommand}{DEparticle}{} Symbol for change in particle energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DEparticle \end{dispExample*} %\iffalse @@ -7415,7 +7578,7 @@ Symbol for change in particle energy. \begin{docCommand}{DEinternal}{} Symbol for change in internal energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DEinternal \end{dispExample*} %\iffalse @@ -7428,7 +7591,7 @@ Symbol for change in internal energy. \begin{docCommand}{DErest}{} Symbol for change in rest energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DErest \end{dispExample*} %\iffalse @@ -7441,7 +7604,7 @@ Symbol for change in rest energy. \begin{docCommand}{DEchem}{} Symbol for change in chemical energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DEchem \end{dispExample*} %\iffalse @@ -7454,7 +7617,7 @@ Symbol for change in chemical energy. \begin{docCommand}{DEtherm}{} Symbol for change in thermal energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DEtherm \end{dispExample*} %\iffalse @@ -7467,7 +7630,7 @@ Symbol for change in thermal energy. \begin{docCommand}{DEvib}{} Symbol for change in vibrational energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DEvib \end{dispExample*} %\iffalse @@ -7480,7 +7643,7 @@ Symbol for change in vibrational energy. \begin{docCommand}{DEphoton}{} Symbol for change in photon energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \DEphoton \end{dispExample*} %\iffalse @@ -7493,7 +7656,7 @@ Symbol for change in photon energy. \begin{docCommand}{springpotentialenergy}{} Expression for spring potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \springpotentialenergy \end{dispExample*} %\iffalse @@ -7506,7 +7669,7 @@ Expression for spring potential energy. \begin{docCommand}{finalspringpotentnialenergy}{} Expression for final spring potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \finalspringpotentialenergy \end{dispExample*} %\iffalse @@ -7519,7 +7682,7 @@ Expression for final spring potential energy. \begin{docCommand}{initialspringpotentialenergy}{} Expression for initial spring potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \initialspringpotentialenergy \end{dispExample*} %\iffalse @@ -7532,7 +7695,7 @@ Expression for initial spring potential energy. \begin{docCommand}{electricpotentialenergy}{} Expression for electric potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \electricpotentialenergy \end{dispExample*} %\iffalse @@ -7545,7 +7708,7 @@ Expression for electric potential energy. \begin{docCommand}{finalelectricpotentialenergy}{} Expression for final electric potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \finalelectricpotentialenergy \end{dispExample*} %\iffalse @@ -7558,7 +7721,7 @@ Expression for final electric potential energy. \begin{docCommand}{initialelectricpotentialenergy}{} Expression for initial electric potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \initialelectricpotentialenergy \end{dispExample*} %\iffalse @@ -7571,7 +7734,7 @@ Expression for initial electric potential energy. \begin{docCommand}{gravitationalpotentialenergy}{} Expression for gravitational potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \gravitationalpotentialenergy \end{dispExample*} %\iffalse @@ -7584,7 +7747,7 @@ Expression for gravitational potential energy. \begin{docCommand}{finalgravitationalpotentialenergy}{} Expression for final gravitational potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \finalgravitationalpotentialenergy \end{dispExample*} %\iffalse @@ -7597,7 +7760,7 @@ Expression for final gravitational potential energy. \begin{docCommand}{initialgravitationalpotentialenergy}{} Expression for initial gravitational potential energy. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \initialgravitationalpotentialenergy \end{dispExample*} %\iffalse @@ -7610,7 +7773,7 @@ Expression for initial gravitational potential energy. \begin{docCommand}{ks}{} Symbol for spring stiffness. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \ks \end{dispExample*} %\iffalse @@ -7623,7 +7786,7 @@ Symbol for spring stiffness. \begin{docCommand}{Fnet}{} Various symbols for net force. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Fnet, \Fnetext, \Fnetsys, \Fsub{ball,bat} \end{dispExample*} %\iffalse @@ -7636,7 +7799,7 @@ Various symbols for net force. \begin{docCommand}{Tnet}{} Various symbols for net torque. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Tnet, \Tnetext, \Tnetsys, \Tsub{ball} \end{dispExample*} %\iffalse @@ -7649,7 +7812,7 @@ Various symbols for net torque. \begin{docCommand}{Ltotal}{} Various symbols for total angular momentum. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \Ltotal, \Lsys, \Lsub{ball} \end{dispExample*} %\iffalse @@ -7665,7 +7828,7 @@ Various symbols for total angular momentum. Left hand side of Maxwell's first equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\LHSmaxwelliint \\ &\LHSmaxwelliint[S] @@ -7681,7 +7844,7 @@ default value of the optional argument. \begin{docCommand}{RHSmaxwelliint}{} Right hand side of Maxwell's first equation in integral form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliint \] \end{dispExample*} %\iffalse @@ -7695,7 +7858,7 @@ Right hand side of Maxwell's first equation in integral form. Alternate form of right hand side of Maxwell's first equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwelliinta \\ &\RHSmaxwelliinta[\upsilon] @@ -7712,7 +7875,7 @@ integral form. Note the default value of the optional argument. Right hand side of Maxwell's first equation in integral form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliintfree \] \end{dispExample*} %\iffalse @@ -7726,7 +7889,7 @@ free space. Maxwell's first equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliint \\ &\maxwelliint[S] @@ -7743,7 +7906,7 @@ Note the default value of the optional argument. Alternate form of Maxwell's first equation in integral form. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliinta \\ &\maxwelliinta[S][\upsilon] @@ -7760,7 +7923,7 @@ Note the default values of the optional arguments. Maxwell's first equation in integral form in free space. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliintfree \\ &\maxwelliintfree[S] @@ -7777,7 +7940,7 @@ Note the default value of the optional argument. Left hand side of Maxwell's second equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\LHSmaxwelliiint \\ &\LHSmaxwelliiint[S] @@ -7793,7 +7956,7 @@ Note the default value of the optional argument. \begin{docCommand}{RHSmaxwelliiint}{} Right hand side of Maxwell's second equation in integral form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliiint \] \end{dispExample*} %\iffalse @@ -7807,7 +7970,7 @@ Right hand side of Maxwell's second equation in integral form. Right hand side of Maxwell's second equation in integral form with magnetic monopoles. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliiintm \] \end{dispExample*} %\iffalse @@ -7822,7 +7985,7 @@ Alternate form of right hand side of Maxwell's second equation in integral form with magnetic monopoles. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwelliiintma \\ &\RHSmaxwelliiintma[\upsilon] @@ -7839,7 +8002,7 @@ the optional argument. Right hand side of Maxwell's second equation in integral form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliiintfree \] \end{dispExample*} %\iffalse @@ -7853,7 +8016,7 @@ free space. Maxwell's second equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiint \\ &\maxwelliiint[S] @@ -7870,7 +8033,7 @@ of the optional argument. Maxwell's second equation in integral form with magnetic monopoles. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiintm \\ &\maxwelliiintm[S] @@ -7887,7 +8050,7 @@ Note the default value of the optional argument. Alternate form of Maxwell's second equation in integral form with magnetic monopoles. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiintma \\ &\maxwelliiintma[S][\upsilon] @@ -7904,7 +8067,7 @@ magnetic monopoles. Note the default values of the optional arguments. Maxwell's second equation in integral form in free space. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiintfree \\ &\maxwelliiintfree[S] @@ -7921,7 +8084,7 @@ Note the default value of the optional argument. Left hand side of Maxwell's third equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\LHSmaxwelliiiint \\ &\LHSmaxwelliiiint[C] @@ -7938,7 +8101,7 @@ Note the default value of the optional argument. Right hand side of Maxwell's third equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwelliiiint \\ &\RHSmaxwelliiiint[S] @@ -7955,7 +8118,7 @@ Note the default value of the optional argument. Right hand side of Maxwell's third equation in integral form with magnetic monopoles. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwelliiiintm \\ &\RHSmaxwelliiiintm[S] @@ -7973,7 +8136,7 @@ Alternate form of right hand side of Maxwell's third equation in integral form with magnetic monopoles. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwelliiiintma \\ &\RHSmaxwelliiiintma[S] @@ -7990,7 +8153,7 @@ the optional argument. Right hand side of Maxwell's third equation in integral form in free space. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwelliiiintfree \\ &\RHSmaxwelliiiintfree[S] @@ -8007,7 +8170,7 @@ free space. Note the default value of the optional argument. Maxwell's third equation in integral form. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiiint \\ &\maxwelliiiint[C][S] @@ -8024,7 +8187,7 @@ the optional arguments. Maxwell's third equation in integral form with magnetic monopoles. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiiintm \\ &\maxwelliiiintm[C][S] @@ -8041,7 +8204,7 @@ Note the default values of the optional arguments. Alternate form of Maxwell's third equation in integral form with magnetic monopoles. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiiintma \\ &\maxwelliiiintma[C][S] @@ -8058,7 +8221,7 @@ monopoles. Note the default values of the optional arguments. Maxwell's third equation in integral form in free space. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwelliiiintfree \\ &\maxwelliiiintfree[C][S] @@ -8075,7 +8238,7 @@ values of the optional arguments. Left hand side of Maxwell's fourth equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\LHSmaxwellivint \\ &\LHSmaxwellivint[C] @@ -8092,7 +8255,7 @@ Note the default value of the optional argument. Right hand side of Maxwell's fourth equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwellivint \\ &\RHSmaxwellivint[S] @@ -8109,7 +8272,7 @@ Note the default value of the optional argument. Alternate form of right hand side of Maxwell's fourth equation in integral form. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwellivinta \\ &\RHSmaxwellivinta[S] @@ -8126,7 +8289,7 @@ integral form. Note the default value of the optional argument. Right hand side of Maxwell's fourth equation in integral form in free space. Note the default value of the optional argument. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\RHSmaxwellivintfree \\ &\RHSmaxwellivintfree[S] @@ -8143,7 +8306,7 @@ free space. Note the default value of the optional argument. Maxwell's fourth equation in integral form. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwellivint \\ &\maxwellivint[C][S] @@ -8160,7 +8323,7 @@ the optional arguments. Alternate form of Maxwell's fourth equation in integral form. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwellivinta \\ &\maxwellivinta[C][S] @@ -8177,7 +8340,7 @@ Note the default values of the optional arguments. Maxwell's fourth equation in integral form in free space. Note the default values of the optional arguments. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{mysolution*} &\maxwellivintfree \\ &\maxwellivintfree[C][S] @@ -8193,7 +8356,7 @@ Note the default values of the optional arguments. \begin{docCommand}{LHSmaxwellidif}{} Left hand side of Maxwell's first equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \LHSmaxwellidif \] \end{dispExample*} %\iffalse @@ -8206,7 +8369,7 @@ Left hand side of Maxwell's first equation in differential form. \begin{docCommand}{RHSmaxwellidif}{} Right hand side of Maxwell's first equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwellidif \] \end{dispExample*} %\iffalse @@ -8220,7 +8383,7 @@ Right hand side of Maxwell's first equation in differential form. Right hand side of Maxwell's first equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwellidiffree \] \end{dispExample*} %\iffalse @@ -8233,7 +8396,7 @@ in free space. \begin{docCommand}{maxwellidif}{} Maxwell's first equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwellidif \] \end{dispExample*} %\iffalse @@ -8246,7 +8409,7 @@ Maxwell's first equation in differential form. \begin{docCommand}{maxwellidiffree}{} Maxwell's first equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwellidiffree \] \end{dispExample*} %\iffalse @@ -8259,7 +8422,7 @@ Maxwell's first equation in differential form in free space. \begin{docCommand}{LHSmaxwelliidif}{} Left hand side of Maxwell's second equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \LHSmaxwelliidif \] \end{dispExample*} %\iffalse @@ -8272,7 +8435,7 @@ Left hand side of Maxwell's second equation in differential form. \begin{docCommand}{RHSmaxwelliidif}{} Right hand side of Maxwell's second equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliidif \] \end{dispExample*} %\iffalse @@ -8286,7 +8449,7 @@ Right hand side of Maxwell's second equation in differential form. Right hand side of Maxwell's second equation in differential form with magnetic monopoles. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliidifm \] \end{dispExample*} %\iffalse @@ -8300,7 +8463,7 @@ form with magnetic monopoles. Right hand side of Maxwell's second equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliidiffree \] \end{dispExample*} %\iffalse @@ -8313,7 +8476,7 @@ form in free space. \begin{docCommand}{maxwelliidif}{} Maxwell's second equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwelliidif \] \end{dispExample*} %\iffalse @@ -8327,7 +8490,7 @@ Maxwell's second equation in differential form. Maxwell's second equation in differential form with magnetic monopoles. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwelliidifm \] \end{dispExample*} %\iffalse @@ -8340,7 +8503,7 @@ monopoles. \begin{docCommand}{maxwellidiiffree}{} Maxwell's second equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwelliidiffree \] \end{dispExample*} %\iffalse @@ -8353,7 +8516,7 @@ Maxwell's second equation in differential form in free space. \begin{docCommand}{LHSmaxwelliiidif}{} Left hand side of Maxwell's third equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \LHSmaxwelliiidif \] \end{dispExample*} %\iffalse @@ -8366,7 +8529,7 @@ Left hand side of Maxwell's third equation in differential form. \begin{docCommand}{RHSmaxwelliiidif}{} Right hand side of Maxwell's third equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliiidif \] \end{dispExample*} %\iffalse @@ -8380,7 +8543,7 @@ Right hand side of Maxwell's third equation in differential form. Right hand side of Maxwell's third equation in differential form with magnetic monopoles. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliiidifm \] \end{dispExample*} %\iffalse @@ -8394,7 +8557,7 @@ with magnetic monopoles. Right hand side of Maxwell's third equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwelliiidiffree \] \end{dispExample*} %\iffalse @@ -8407,7 +8570,7 @@ in free space. \begin{docCommand}{maxwelliiidif}{} Maxwell's third equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwelliiidif \] \end{dispExample*} %\iffalse @@ -8421,7 +8584,7 @@ Maxwell's third equation in differential form. Maxwell's third equation in differential form with magnetic monopoles. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwelliiidifm \] \end{dispExample*} %\iffalse @@ -8434,7 +8597,7 @@ monopoles. \begin{docCommand}{maxwelliiidiffree}{} Maxwell's third equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwelliiidiffree \] \end{dispExample*} %\iffalse @@ -8447,7 +8610,7 @@ Maxwell's third equation in differential form in free space. \begin{docCommand}{LHSmaxwellivdif}{} Left hand side of Maxwell's fourth equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \LHSmaxwellivdif \] \end{dispExample*} %\iffalse @@ -8460,7 +8623,7 @@ Left hand side of Maxwell's fourth equation in differential form. \begin{docCommand}{RHSmaxwellivdif}{} Right hand side of Maxwell's fourth equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwellivdif \] \end{dispExample*} %\iffalse @@ -8474,7 +8637,7 @@ Right hand side of Maxwell's fourth equation in differential form. Right hand side of Maxwell's fourth equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSmaxwellivdiffree \] \end{dispExample*} %\iffalse @@ -8487,7 +8650,7 @@ in free space. \begin{docCommand}{maxwellivdif}{} Maxwell's fourth equation in differential form. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwellivdif \] \end{dispExample*} %\iffalse @@ -8500,7 +8663,7 @@ Maxwell's fourth equation in differential form. \begin{docCommand}{maxwellivdiffree}{} Maxwell's fourth equation in differential form in free space. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \maxwellivdiffree \] \end{dispExample*} %\iffalse @@ -8515,7 +8678,7 @@ Maxwell's fourth equation in differential form in free space. \begin{docCommand}{RHSlorentzforce}{} Right hand side of Lorentz force. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSlorentzforce \] \end{dispExample*} %\iffalse @@ -8528,7 +8691,7 @@ Right hand side of Lorentz force. \begin{docCommand}{RHSlorentzforcem}{} Right hand side of Lorentz force with magnetic monopoles. \end{docCommand} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \[ \RHSlorentzforcem \] \end{dispExample*} %\iffalse @@ -8537,16 +8700,20 @@ Right hand side of Lorentz force with magnetic monopoles. % % \subsection{VPython and GlowScript Code} % There are three ways to deal with VPython\footnote{See the VPython home page at -% \url{http://vpython.org/} for more information.} and GlowScript\footnote{See the -% GlowScript home page at \url{http://glowscript.org/} for more information.} code. +% \url{https://vpython.org/} for more information.} and GlowScript\footnote{See the +% GlowScript home page at \url{https://glowscript.org/} for more information.} code. % With very few exceptions, VPython code and GlowScript code are identical. The % commands with |vpython| in their names can handle both, but for semantic % completeness there are corresponding commands with |glowscript| in their names. +% Because Classic VPython will no longer be developed, the first line of all +% VPython programs not used in GlowScript will conform to Jupyter syntax. % %\changes{v2.4.0}{2014/12/16}{\cs{vpythonline} now uses a uniform style.} %\changes{v2.4.1}{2015/01/23}{Added more VPython keywords.} %\changes{v2.5.0}{2016/01/26}{Added explicit mention of VPython and GlowScript.} %\changes{v2.5.0}{2016/01/26}{Added GlowScript keywords.} +%\changes{v2.7.0}{2017/02/02}{Changed first line of VPython programs to match +% Jupyter syntax.} %\iffalse %<*example> %\fi @@ -8554,7 +8721,7 @@ Right hand side of Lorentz force with magnetic monopoles. Command for a single line of VPython or GlowScript code used inline. \end{docCommand} \begin{dispExample} -\vpythonline{from __future__ import division, print_function} +\vpythonline{from vpython import *} \end{dispExample} %\iffalse %</example> @@ -8585,8 +8752,8 @@ Environment for a block of VPython or GlowScript code. \end{docEnvironment} \begin{dispExample} \begin{vpythonblock}[Example VPython Listing] - from __future__ import division,print_function - from visual import * + from vpython import * + sphere(pos=vector(1,2,3),color=color.green) # create a named arrow MyArrow=arrow(pos=earth.pos,axis=fscale*Fnet,color=color.green) @@ -8606,7 +8773,7 @@ Environment for a block of GlowScript code. \end{docEnvironment} \begin{dispExample} \begin{glowscriptblock}[Example GlowScript Listing] -GlowScript 2.1 VPython +GlowScript 2.3 VPython Aarr = arrow(pos=vector(0,0,0),axis=A,color=color.red) label(pos=Aarr.axis,text='A') @@ -8869,7 +9036,7 @@ and width 0.90 that of current \cs{linewidth} (too large to show here). \begin{docCommand}{smallanswerform}{\oarg{name}\oarg{prompt}} Editable answer form with height 0.10 that of current \cs{textheight} and width 0.90 that of current \cs{linewidth}. The first argument isn't -really optional, and \textbf{must} be different for each form used. +really optional, and \emph{must} be different for each form used. Content can be typed in the box and saved with a PDF editor or viewer that supports PDF forms. \end{docCommand} @@ -9030,6 +9197,9 @@ Environment for highlighting notes to students. \begin{docEnvironment}{miderivation}{} Environment for mathematical derivations based on the |align| environment. See \refEnv{mysolution} for how to handle long lines in this environment. +Note that using this environment resets the counter for equation numbering. +If you want continuous numbering throughout your document, use the |align| +environment. \end{docEnvironment} \begin{docEnvironment}{miderivation*}{} Like \refEnv{miderivation} but suppresses line numbers. @@ -9051,6 +9221,22 @@ Like \refEnv{miderivation} but suppresses line numbers. %</example> %\fi % +%\changes{v2.6.3}{2016/09/02}{Added \cs{mistandard} for standards.} +%\iffalse +%<*example> +%\fi +\begin{docEnvironment}{mistandard}{} +Environment for standards for standards-based grading. +\end{docEnvironment} +\begin{dispExample} +\begin{mistandard} + I can create a standard which reflects deep student learning. +\end{mistandard} +\end{dispExample} +%\iffalse +%</example> +%\fi +% %\iffalse %<*example> %\fi @@ -9127,6 +9313,22 @@ Like \refEnv{bwderivation} but suppresses line numbers. %</example> %\fi % +%\changes{v2.6.3}{2016/09/02}{Added \cs{bwstandard} for standards.} +%\iffalse +%<*example> +%\fi +\begin{docEnvironment}{bwstandard}{} +Like \refEnv{mistandard} but in black and grey. +\end{docEnvironment} +\begin{dispExample} +\begin{bwstandard} + I can create a standard which reflects deep student learning. +\end{bwstandard} +\end{dispExample} +%\iffalse +%</example> +%\fi +% %\changes{v2.5.0}{2015/10/14}{\cs{mysolution} now prints line numbers.} %\changes{v2.5.0}{2015/10/14}{Added \cs{mysolution*} to suppress line numbers.} %\changes{v2.5.0}{2016/01/26}{Added example showing how to handle long @@ -9179,7 +9381,7 @@ Like \refEnv{mysolution} but suppresses line numbers. %<*example> %\fi \begin{docEnvironment}{problem}{\marg{problemname}} -Creates a simple environment for \hypertarget{target1}{problem solutions}. This +Creates a simple environment for \hypertarget{target5}{problem solutions}. This environment is mainly for students. Each new problem starts on a new page in an effort to force organization upon students. The environment also creates a new |enumerate| environment called |parts| for which labels are alphabetic, @@ -9187,7 +9389,7 @@ reflecting the organization of multipart textbook problems. The \cs{item} comman is renamed \cs{problempart} to, again, help with organization for newcomers to \LaTeX. A typical example would be structured as follows. \end{docEnvironment} -\begin{dispExample*}{sidebyside} +\begin{dispExample*}{sidebyside, lefthand ratio=0.50} \begin{problem}{Chapter 2 Problem 1} This problem has two parts. \begin{parts} @@ -9203,6 +9405,7 @@ This problem has two parts. %\fi % %\changes{v2.6.0}{2016/05/02}{Added \cs{reason}.} +%\changes{v2.7.0}{2017/02/02}{Changed \cs{reason} to use minipage.} %\iffalse %<*example> %\fi @@ -9239,14 +9442,26 @@ Centered checkpoint for student discussion. %</example> %\fi % +%\changes{v2.6.3}{2016/09/11}{Loads the \pkgname{float} package for \cs{image}.} +%\changes{v2.6.3}{2016/09/08}{Added scaling options to \cs{image}.} +%\changes{v2.6.3}{2016/09/08}{Tweaked \cs{image} to work in documentation.} +%\changes{v2.7.0}{2017/02/02}{Added fourth argument to \cs{image} for a label.} %\iffalse %<*example> %\fi -\begin{docCommand}{image}{\marg{imagefilename}\marg{caption}} -Centered figure displayed actual size with caption. +\begin{docCommand}{image}{\oarg{scaleorsizes}\marg{imagefilename}\marg{caption}\marg{label}} +Centered figure displayed actual size with caption. The optional argument can be +a scale factor (with 1 being the original image size), explicit \texttt{width} +and/or \texttt{height} parameters, or even an \texttt{angle} for rotating the +image. Be sure to give each image a unique label. This allows you to refer back +to the image subsequently just by using the label. \end{docCommand} \begin{dispListing} -\image{satellite.pdf}{Photograph of satellite} + \image{sampleimage.pdf}{An image shown actual size.}{img-label1} + \image[scale=1.5]{sampleimage.pdf}{An image scaled by 1.5 times.}{img-label2} + \image[height=1cm,width=2cm]{sampleimage.pdf}{An image resized.}{img-label3} + \image[width=0.8\textwidth]{sampleimage.pdf}{An image 80 percent the text width.}{img-label4} + \image[angle=45]{sampleimage.pdf}{An image actual size, rotated.}{img-label5} \end{dispListing} %\iffalse %</example> @@ -9266,6 +9481,35 @@ Shows argument as a sneaky one. %</example> %\fi % +%\changes{v2.7.0}{2017/09/01}{Added better looking parallel symbol.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{parallelto}{\marg{thing}} +A better looking parallel symbol whose height is the same as the perpendicular +symbol's height. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\(\vect{A}_{\parallelto\vect{B}}\) and \(\vect{A}_{\perpendicularto\vect{B}}\) +\end{dispExample*} +%\iffalse +%</example> +%\fi +% +%\changes{v2.7.0}{2017/09/01}{Added an alias for the perpendicular symbol.} +%\iffalse +%<*example> +%\fi +\begin{docCommand}{perpendicularto}{\marg{thing}} +An alias for the perpendicular symbol. +\end{docCommand} +\begin{dispExample*}{sidebyside} +\(\vect{A}_{\parallelto\vect{B}}\) and \(\vect{A}_{\perpendicularto\vect{B}}\) +\end{dispExample*} +%\iffalse +%</example> +%\fi +% %\changes{v2.5.0}{2015/10/08}{Added \cs{qed} symbol.} %\iffalse %<*example> @@ -9301,6 +9545,7 @@ Command for QED symbol. \RequirePackage{etoolbox} \RequirePackage{filehook} \RequirePackage{extarrows} +\RequirePackage{float} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx} \RequirePackage{epstopdf} @@ -9317,7 +9562,7 @@ Command for QED symbol. \RequirePackage{xspace} \RequirePackage{ifthen} \RequirePackage{calligra} -\RequirePackage{hyperref} +\RequirePackage[hypertexnames=false]{hyperref} \hypersetup{colorlinks=true,urlcolor=blue} \DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n} \DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{} @@ -9336,10 +9581,10 @@ Command for QED symbol. line,linecolor,mag,mag2,make_trail,material,norm,normal,objects,opacity,points,pos,% print,print_function,proj,pyramid,radians,radius,rate,retain,ring,rotate,scene,% shaftwidth,shape,sign,size,space,sphere,text,trail_object,trail_type,True,twist,up,% - vector,visual,width,offset,yoffset,GlowScript,VPython,trail_color,trail_radius,% - pps,clear,False,CoffeeScript,graph,gdisplay,canvas,pause,vec,clone,compound,% - vertex,triangle,quad,attach_trail,attach_arrow,textures,bumpmaps,print_options,% - get_library,read_local_file},% + vector,visual,width,offset,yoffset,GlowScript,VPython,vpython,trail_color,% + trail_radius,pps,clear,False,CoffeeScript,graph,gdisplay,canvas,pause,vec,clone,% + compound,vertex,triangle,quad,attach_trail,attach_arrow,textures,bumpmaps,% + print_options,get_library,read_local_file},% captionpos=b,% % position caption frame=shadowbox,% % shadowbox around listing rulesepcolor=\color{vshadowcolor},% % shadow color @@ -9382,11 +9627,12 @@ Command for QED symbol. % % \begin{macrocode} \newcommand*{\mandiversion}{\ifmmode% - 2.6.1\mbox{ dated }2016/06/30% + 2.7.1\mbox{ dated }2018/01/15% \else% - 2.6.1 dated 2016/06/30% + 2.7.1 dated 2018/01/15% \fi }% +\typeout{ } \typeout{mandi: You're using mandi version \mandiversion.} % \end{macrocode} % @@ -9405,7 +9651,7 @@ Command for QED symbol. % \begin{macrocode} \newcommand*{\per}{\ensuremath{/}} \newcommand*{\usk}{\ensuremath{\cdot}} -\newcommand*{\unit}[2]{\ensuremath{{#1}\,{#2}}} +\newcommand*{\unit}[2]{\ensuremath{{#1}\;{#2}}} \newcommand*{\ampere}{\ensuremath{\mathrm{A}}} \newcommand*{\arcminute}{\ensuremath{'}} \newcommand*{\arcsecond}{\ensuremath{''}} @@ -9548,6 +9794,7 @@ Command for QED symbol. \ifthenelse{\boolean{@optuseradians}} {\typeout{mandi: You'll get radians in ang mom, ang impulse, and torque.}} {\typeout{mandi: You won't get radians in ang mom, ang impulse, and torque.}} +\typeout{ } % \end{macrocode} % % \noindent This is a utility command for picking constants. @@ -9600,11 +9847,14 @@ Command for QED symbol. \newcommand*{\dimtemperature}{\ensuremath{\mathrm{\Theta}}} \newcommand*{\dimamount}{\ensuremath{\mathrm{N}}} \newcommand*{\dimluminous}{\ensuremath{\mathrm{J}}} -\newcommand*{\indegrees}[1]{\unit{#1}{\degree}} -\newcommand*{\inFarenheit}[1]{\unit{#1}{\degree\mathrm{F}}} -\newcommand*{\inCelsius}[1]{\unit{#1}{\degree\mathrm{C}}} -\newcommand*{\inarcminutes}[1]{\unit{#1}{\arcminute}} -\newcommand*{\inarcseconds}[1]{\unit{#1}{\arcsecond}} +\newcommand*{\infeet}[1]{\unit{#1}{\mathrm{ft}}} +\newcommand*{\infeetpersecond}[1]{\unit{#1}{\mathrm{ft}\per\s}} +\newcommand*{\infeetpersecondsquared}[1]{\unit{#1}{\mathrm{ft}\per\s\squared}} +\newcommand*{\indegrees}[1]{\unit{#1}{\mkern-\thickmuskip\degree}} +\newcommand*{\inFarenheit}[1]{\unit{#1}{\mkern-\thickmuskip\degree\mathrm{F}}} +\newcommand*{\inCelsius}[1]{\unit{#1}{\mkern-\thickmuskip\degree\mathrm{C}}} +\newcommand*{\inarcminutes}[1]{\unit{#1}{\mkern-\thickmuskip\arcminute}} +\newcommand*{\inarcseconds}[1]{\unit{#1}{\mkern-\thickmuskip\arcsecond}} \newcommand*{\ineV}[1]{\unit{#1}{\electronvolt}} \newcommand*{\ineVocs}[1]{\unit{#1}{\mathrm{eV}\per c^2}} \newcommand*{\ineVoc}[1]{\unit{#1}{\mathrm{eV}\per c}} @@ -9665,11 +9915,11 @@ Command for QED symbol. \newphysicsquantity{planeangle}% {\m\usk\reciprocal\m}% [\rad]% - [] + [\rad] \newphysicsquantity{solidangle}% {\m\squared\usk\reciprocalsquare\m}% [\sr]% - [] + [\sr] \newphysicsquantity{velocity}% {\m\usk\reciprocal\s}% [\m\usk\reciprocal\s]% @@ -10033,6 +10283,7 @@ Command for QED symbol. {\newcommand*{\dirvect}[1]{\ensuremath{\widehat{#1}}}}} \newcommand*{\direction}[1]{\ensuremath{\mivector{#1}}} \newcommand*{\vectordirection}{\direction} +\newcommand*{\factorvect}[1]{\magvect{#1}\dirvect{#1}} \newcommand*{\componentalong}[2]{\ensuremath{\mathrm{comp}_{#1}{#2}}} \newcommand*{\expcomponentalong}[2]{\ensuremath{\frac{\vectdotvect{#2}{#1}} {\magof{#1}}}} @@ -10132,7 +10383,6 @@ Command for QED symbol. \ifthenelse{\boolean{@optromanvectors}} {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{\mathrm{#1}}}{#2}}}} {\newcommand*{\dirvectsub}[2]{\ensuremath{\ssub{\widehat{#1}}{#2}}}} -\newcommand*{\directionsub}{\dirvectsub} \newcommand*{\dvectsub}[2]{\ensuremath{\mathrm{d}\vectsub{#1}{#2}}} \newcommand*{\Dvectsub}[2]{\ensuremath{\Delta\vectsub{#1}{#2}}} \newcommand*{\compdvectsub}[3]{\ensuremath{\mathrm{d}\compvectsub{#1}{#2}{#3}}} @@ -10164,14 +10414,18 @@ Command for QED symbol. \compDervectsub{#1}{#2}{x}{#3},% \compDervectsub{#1}{#2}{y}{#3},% \compDervectsub{#1}{#2}{z}{#3}\rv}} -\newcommand*{\vectdotvect}[2]{\ensuremath{{#1}\bullet{#2}}} -\newcommand*{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}} +\newcommand*{\vectdotvect}[2]{\ensuremath{{#1}\cdot{#2}}} +\newcommand*{\vectDotvect}[2]{\ensuremath{{#1}\bullet{#2}}} +\newcommand*{\vectdotsvect}[2]{\ensuremath{\scompsvect{#1}\cdot\scompsvect{#2}}} +\newcommand*{\vectDotsvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsvect{#2}}} \newcommand*{\vectdotevect}[2]{\ensuremath{% \compvect{#1}{x}\compvect{#2}{x}+% \compvect{#1}{y}\compvect{#2}{y}+% \compvect{#1}{z}\compvect{#2}{z}}} -\newcommand*{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}} -\newcommand*{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}} +\newcommand*{\vectdotsdvect}[2]{\ensuremath{\scompsvect{#1}\cdot\scompsdvect{#2}}} +\newcommand*{\vectDotsdvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsdvect{#2}}} +\newcommand*{\vectdotsDvect}[2]{\ensuremath{\scompsvect{#1}\cdot\scompsDvect{#2}}} +\newcommand*{\vectDotsDvect}[2]{\ensuremath{\scompsvect{#1}\bullet\scompsDvect{#2}}} \newcommand*{\vectdotedvect}[2]{\ensuremath{% \compvect{#1}{x}\compdvect{#2}{x}+% \compvect{#1}{y}\compdvect{#2}{y}+% @@ -10181,14 +10435,20 @@ Command for QED symbol. \compvect{#1}{y}\compDvect{#2}{y}+% \compvect{#1}{z}\compDvect{#2}{z}}} \newcommand*{\vectsubdotsvectsub}[4]{\ensuremath{% + \scompsvectsub{#1}{#2}\cdot\scompsvectsub{#3}{#4}}} +\newcommand*{\vectsubDotsvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsvectsub{#3}{#4}}} \newcommand*{\vectsubdotevectsub}[4]{\ensuremath{% \compvectsub{#1}{#2}{x}\compvectsub{#3}{#4}{x}+% \compvectsub{#1}{#2}{y}\compvectsub{#3}{#4}{y}+% \compvectsub{#1}{#2}{z}\compvectsub{#3}{#4}{z}}} \newcommand*{\vectsubdotsdvectsub}[4]{\ensuremath{% + \scompsvectsub{#1}{#2}\cdot\scompsdvectsub{#3}{#4}}} +\newcommand*{\vectsubDotsdvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsdvectsub{#3}{#4}}} \newcommand*{\vectsubdotsDvectsub}[4]{\ensuremath{% + \scompsvectsub{#1}{#2}\cdot\scompsDvectsub{#3}{#4}}} +\newcommand*{\vectsubDotsDvectsub}[4]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsDvectsub{#3}{#4}}} \newcommand*{\vectsubdotedvectsub}[4]{\ensuremath{% \compvectsub{#1}{#2}{x}\compdvectsub{#3}{#4}{x}+% @@ -10199,8 +10459,12 @@ Command for QED symbol. \compvectsub{#1}{#2}{y}\compDvectsub{#3}{#4}{y}+% \compvectsub{#1}{#2}{z}\compDvectsub{#3}{#4}{z}}} \newcommand*{\vectsubdotsdvect}[3]{\ensuremath{% + \scompsvectsub{#1}{#2}\cdot\scompsdvect{#3}}} +\newcommand*{\vectsubDotsdvect}[3]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsdvect{#3}}} \newcommand*{\vectsubdotsDvect}[3]{\ensuremath{% + \scompsvectsub{#1}{#2}\cdot\scompsDvect{#3}}} +\newcommand*{\vectsubDotsDvect}[3]{\ensuremath{% \scompsvectsub{#1}{#2}\bullet\scompsDvect{#3}}} \newcommand*{\vectsubdotedvect}[3]{\ensuremath{% \compvectsub{#1}{#2}{x}\compdvect{#3}{x}+% @@ -10211,8 +10475,12 @@ Command for QED symbol. \compvectsub{#1}{#2}{y}\compDvect{#3}{y}+% \compvectsub{#1}{#2}{z}\compDvect{#3}{z}}} \newcommand*{\dervectdotsvect}[3]{\ensuremath{% + \scompsdervect{#1}{#2}\cdot\scompsvect{#3}}} +\newcommand*{\dervectDotsvect}[3]{\ensuremath{% \scompsdervect{#1}{#2}\bullet\scompsvect{#3}}} \newcommand*{\Dervectdotsvect}[3]{\ensuremath{% + \scompsDervect{#1}{#2}\cdot\scompsvect{#3}}} +\newcommand*{\DervectDotsvect}[3]{\ensuremath{% \scompsDervect{#1}{#2}\bullet\scompsvect{#3}}} \newcommand*{\dervectdotevect}[3]{\ensuremath{% \compdervect{#1}{x}{#2}\compvect{#3}{x}+% @@ -10223,8 +10491,12 @@ Command for QED symbol. \compDervect{#1}{y}{#2}\compvect{#3}{y}+% \compDervect{#1}{z}{#2}\compvect{#3}{z}}} \newcommand*{\vectdotsdervect}[3]{\ensuremath{% + \scompsvect{#1}\cdot\scompsdervect{#2}{#3}}} +\newcommand*{\vectDotsdervect}[3]{\ensuremath{% \scompsvect{#1}\bullet\scompsdervect{#2}{#3}}} \newcommand*{\vectdotsDervect}[3]{\ensuremath{% + \scompsvect{#1}\cdot\scompsDervect{#2}{#3}}} +\newcommand*{\vectDotsDervect}[3]{\ensuremath{% \scompsvect{#1}\bullet\scompsDervect{#2}{#3}}} \newcommand*{\vectdotedervect}[3]{\ensuremath{% \compvect{#1}{x}\compdervect{#2}{x}{#3}+% @@ -10235,8 +10507,12 @@ Command for QED symbol. \compvect{#1}{y}\compDervect{#2}{y}{#3}+% \compvect{#1}{z}\compDervect{#2}{z}{#3}}} \newcommand*{\dervectdotsdvect}[3]{\ensuremath{% + \scompsdervect{#1}{#2}\cdot\scompsdvect{#3}}} +\newcommand*{\dervectDotsdvect}[3]{\ensuremath{% \scompsdervect{#1}{#2}\bullet\scompsdvect{#3}}} \newcommand*{\DervectdotsDvect}[3]{\ensuremath{% + \scompsDervect{#1}{#2}\cdot\scompsDvect{#3}}} +\newcommand*{\DervectDotsDvect}[3]{\ensuremath{% \scompsDervect{#1}{#2}\bullet\scompsDvect{#3}}} \newcommand*{\dervectdotedvect}[3]{\ensuremath{% \compdervect{#1}{x}{#2}\compdvect{#3}{x}+% @@ -10253,8 +10529,12 @@ Command for QED symbol. \newcommand*{\rtriplecross}[3]{\ensuremath{{#1}\boldsymbol{\times}% \inparens{{#2}\boldsymbol{\times}{#3}}}} \newcommand*{\ltriplescalar}[3]{\ensuremath{% + {#1}\boldsymbol{\times}{#2}\cdot{#3}}} +\newcommand*{\ltripleScalar}[3]{\ensuremath{% {#1}\boldsymbol{\times}{#2}\bullet{#3}}} \newcommand*{\rtriplescalar}[3]{\ensuremath{% + {#1}\cdot{#2}\boldsymbol{\times}{#3}}} +\newcommand*{\rtripleScalar}[3]{\ensuremath{% {#1}\bullet{#2}\boldsymbol{\times}{#3}}} \newcommand*{\ezero}{\ensuremath{\boldsymbol{e}_0}} \newcommand*{\eone}{\ensuremath{\boldsymbol{e}_1}} @@ -10463,7 +10743,7 @@ Command for QED symbol. \left\lvert{#2}\right\rangle}} \newphysicsconstant{oofpez}% {\ensuremath{\frac{1}{\phantom{_o}4\pi\epsilon_0}}}% - {\mi@p{9}{8.9876}\timestento{9}}% + {\mi@p{9}{8.9875517873681764}\timestento{9}}% {\m\cubed\usk\kg\usk\reciprocalquartic\s\usk\A\reciprocalsquared}% [\m\per\farad]% [\newton\usk\m\squared\per\coulomb\squared] @@ -10475,7 +10755,7 @@ Command for QED symbol. [\N\usk\s\squared\per\C\squared] \newphysicsconstant{vacuumpermittivity}% {\ensuremath{\epsilon_0}}% - {\mi@p{9.0}{8.8542}\timestento{-12}}% + {\mi@p{9.0}{8.854187817}\timestento{-12}}% {\m\reciprocalcubed\usk\reciprocal\kg\usk\s\quarted\usk\A\squared}% [\F\per\m]% [\C\squared\per\N\usk\m\squared] @@ -10493,103 +10773,103 @@ Command for QED symbol. [\T\usk\m\per\A] \newphysicsconstant{boltzmann}% {\ensuremath{k_B}}% - {\mi@p{1.4}{1.3806}\timestento{-23}}% + {\mi@p{1.4}{1.38064852}\timestento{-23}}% {\m\squared\usk\kg\usk\reciprocalsquare\s\usk\reciprocal\K}% [\joule\per\K]% [\J\per\K] \newphysicsconstant{boltzmannineV}% {\ensuremath{k_B}}% - {\mi@p{8.6}{8.6173}\timestento{-5}}% + {\mi@p{8.6}{8.6173303}\timestento{-5}}% {\eV\usk\reciprocal\K}% [\eV\per\K]% [\eV\per\K] \newphysicsconstant{stefanboltzmann}% {\ensuremath{\sigma}}% - {\mi@p{5.7}{5.6704}\timestento{-8}}% + {\mi@p{5.7}{5.670367}\timestento{-8}}% {\kg\usk\s\reciprocalcubed\usk\K\reciprocalquarted}% [\W\per\m\squared\usk\K^4]% [\W\per\m\squared\usk\K\quarted] \newphysicsconstant{planck}% {\ensuremath{h}}% - {\mi@p{6.6}{6.6261}\timestento{-34}}% + {\mi@p{6.6}{6.626070040}\timestento{-34}}% {\m\squared\usk\kg\usk\reciprocal\s}% [\J\usk\s]% [\J\usk\s] \newphysicsconstant{planckineV}% {\ensuremath{h}}% - {\mi@p{4.1}{4.1357}\timestento{-15}}% + {\mi@p{4.1}{4.135667662}\timestento{-15}}% {\eV\usk\s}% [\eV\usk\s]% [\eV\usk\s] \newphysicsconstant{planckbar}% {\ensuremath{\hslash}}% - {\mi@p{1.1}{1.0546}\timestento{-34}}% + {\mi@p{1.1}{1.054571800}\timestento{-34}}% {\m\squared\usk\kg\usk\reciprocal\s}% [\J\usk\s]% [\J\usk\s] \newphysicsconstant{planckbarineV}% {\ensuremath{\hslash}}% - {\mi@p{6.6}{6.5821}\timestento{-16}}% + {\mi@p{6.6}{6.582119514}\timestento{-16}}% {\eV\usk\s}% [\eV\usk\s]% [\eV\usk\s] \newphysicsconstant{planckc}% {\ensuremath{hc}}% - {\mi@p{2.0}{1.9864}\timestento{-25}}% + {\mi@p{2.0}{1.98644568}\timestento{-25}}% {\m\cubed\usk\kg\usk\reciprocalsquare\s}% [\J\usk\m]% [\J\usk\m] \newphysicsconstant{planckcineV}% {\ensuremath{hc}}% - {\mi@p{2.0}{1.9864}\timestento{-25}}% + {\mi@p{1240}{1.23984193}\timestento{3}}% {\eV\usk\text{n}\m}% [\eV\usk\text{n}\m]% [\eV\usk\text{n}\m] \newphysicsconstant{rydberg}% {\ensuremath{\msub{R}{\infty}}}% - {\mi@p{1.1}{1.0974}\timestento{7}}% + {\mi@p{1.1}{1.0973731568508}\timestento{7}}% {\reciprocal\m}% [\reciprocal\m]% [\reciprocal\m] \newphysicsconstant{bohrradius}% {\ensuremath{a_0}}% - {\mi@p{5.3}{5.2918}\timestento{-11}}% + {\mi@p{5.3}{5.2917721067}\timestento{-11}}% {\m}% [\m]% [\m] \newphysicsconstant{finestructure}% {\ensuremath{\alpha}}% - {\mi@p{\frac{1}{137}}{7.2974\timestento{-3}}}% + {\mi@p{\frac{1}{137}}{7.2973525664\timestento{-3}}}% {}% []% [] \newphysicsconstant{avogadro}% {\ensuremath{N_A}}% - {\mi@p{6.0}{6.0221}\timestento{23}}% + {\mi@p{6.0}{6.022140857}\timestento{23}}% {\reciprocal\mol}% [\reciprocal\mol]% [\reciprocal\mol] \newphysicsconstant{universalgrav}% {\ensuremath{G}}% - {\mi@p{6.7}{6.6738}\timestento{-11}}% + {\mi@p{6.7}{6.67408}\timestento{-11}}% {\m\cubed\usk\reciprocal\kg\usk\s\reciprocalsquared}% [\J\usk\m\per\kg\squared]% [\N\usk\m\squared\per\kg\squared] \newphysicsconstant{surfacegravfield}% {\ensuremath{g}}% - {\mi@p{9.8}{9.80}}% + {\mi@p{9.8}{9.807}}% {\m\usk\s\reciprocalsquared}% [\N\per\kg]% [\N\per\kg] \newphysicsconstant{clight}% {\ensuremath{c}}% - {\mi@p{3}{2.9979}\timestento{8}}% + {\mi@p{3}{2.99792458}\timestento{8}}% {\m\usk\reciprocal\s}% [\m\per\s]% [\m\per\s] \newphysicsconstant{clightinfeet}% {\ensuremath{c}}% - {\mi@p{1}{0.9836}}% + {\mi@p{1}{0.983571}}% {\text{ft}\usk\reciprocal{\text{n}\s}}% [\text{ft}\per\text{n}\s]% [\text{ft}\per\mathrm{n}\s] @@ -10601,31 +10881,31 @@ Command for QED symbol. [\m] \newphysicsconstant{Mproton}% {\ensuremath{m_p}}% - {\mi@p{1.7}{1.6726}\timestento{-27}}% + {\mi@p{1.7}{1.672621898}\timestento{-27}}% {\kg}% [\kg]% [\kg] \newphysicsconstant{Mneutron}% {\ensuremath{m_n}}% - {\mi@p{1.7}{1.6749}\timestento{-27}}% + {\mi@p{1.7}{1.674927471}\timestento{-27}}% {\kg}% [\kg]% [\kg] \newphysicsconstant{Mhydrogen}% {\ensuremath{m_H}}% - {\mi@p{1.7}{1.6737}\timestento{-27}}% + {\mi@p{1.7}{1.6737236}\timestento{-27}}% {\kg}% [\kg]% [\kg] \newphysicsconstant{Melectron}% {\ensuremath{m_e}}% - {\mi@p{9.1}{9.1094}\timestento{-31}}% + {\mi@p{9.1}{9.10938356}\timestento{-31}}% {\kg}% [\kg]% [\kg] \newphysicsconstant{echarge}% {\ensuremath{e}}% - {\mi@p{1.6}{1.6022}\timestento{-19}}% + {\mi@p{1.6}{1.6021766208}\timestento{-19}}% {\A\usk\s}% [\C]% [\C] @@ -10655,61 +10935,61 @@ Command for QED symbol. [\C] \newphysicsconstant{MEarth}% {\ensuremath{M_{\text{Earth}}}}% - {\mi@p{6.0}{5.9736}\timestento{24}}% + {\mi@p{6.0}{5.97237}\timestento{24}}% {\kg}% [\kg]% [\kg] \newphysicsconstant{MMoon}% {\ensuremath{M_{\text{Moon}}}}% - {\mi@p{7.3}{7.3459}\timestento{22}}% + {\mi@p{7.3}{7.342}\timestento{22}}% {\kg}% [\kg]% [\kg] \newphysicsconstant{MSun}% {\ensuremath{M_{\text{Sun}}}}% - {\mi@p{2.0}{1.9891}\timestento{30}}% + {\mi@p{2.0}{1.98855}\timestento{30}}% {\kg}% [\kg]% [\kg] \newphysicsconstant{REarth}% {\ensuremath{R_{\text{Earth}}}}% - {\mi@p{6.4}{6.3675}\timestento{6}}% + {\mi@p{6.4}{6.371}\timestento{6}}% {\m}% [\m]% [\m] \newphysicsconstant{RMoon}% {\ensuremath{R_{\text{Moon}}}}% - {\mi@p{1.7}{1.7375}\timestento{6}}% + {\mi@p{1.7}{1.7371}\timestento{6}}% {\m}% [\m]% [\m] \newphysicsconstant{RSun}% {\ensuremath{R_{\text{Sun}}}}% - {\mi@p{7.0}{6.9634}\timestento{8}}% + {\mi@p{7.0}{6.957}\timestento{8}}% {\m}% [\m]% [\m] \newphysicsconstant{ESdist}% {\magvectsub{r}{ES}}% - {\mi@p{1.5}{1.4960}\timestento{11}}% + {\mi@p{1.5}{1.496}\timestento{11}}% {\m}% [\m]% [\m] \newphysicsconstant{SEdist}% {\magvectsub{r}{SE}}% - {\mi@p{1.5}{1.4960}\timestento{11}}% + {\mi@p{1.5}{1.496}\timestento{11}}% {\m}% [\m]% [\m] \newphysicsconstant{EMdist}% {\magvectsub{r}{EM}}% - {\mi@p{3.8}{3.8440}\timestento{8}}% + {\mi@p{3.8}{3.81550}\timestento{8}}% {\m}% [\m]% [\m] \newphysicsconstant{MEdist}% {\magvectsub{r}{ME}}% - {\mi@p{3.8}{3.8440}\timestento{8}}% + {\mi@p{3.8}{3.81550}\timestento{8}}% {\m}% [\m]% [\m] @@ -10818,6 +11098,7 @@ Command for QED symbol. \newcommand*{\sumoverall}[1]{\ensuremath{\displaystyle \sum_{\substack{\text{\tiny{all }}\text{\tiny{{#1}}}}}}} \newcommand*{\dx}[1]{\ensuremath{\,\mathrm{d}{#1}}} +\newcommand*{\dslashx}[1]{\ensuremath{\,\mathchar'26\mkern-12mu \mathrm{d}{#1}}} \newcommandx{\evaluatedfromto}[2][2,usedefault]{\ensuremath{% \Bigg.\Bigg\rvert_{#1}^{#2}}} \newcommand*{\evaluatedat}{\evaluatedfromto} @@ -10920,6 +11201,7 @@ Command for QED symbol. \newcommand*{\scripty}[1]{\ensuremath{\mathcalligra{#1}}} \newcommand*{\Lagr}{\ensuremath{\mathcal{L}}} \newcommandx{\flux}[1][1]{\ensuremath{\ssub{\Phi}{#1}}} +\newcommandx{\circulation}[1][1]{\ensuremath{\ssub{\Gamma}{#1}}} \newcommand*{\absof}[1]{\ensuremath{% \left\lvert{\ifblank{#1}{\:\_\:}{#1}}\right\rvert}} \newcommand*{\inparens}[1]{\ensuremath{% @@ -10948,12 +11230,12 @@ Command for QED symbol. \newcommand*{\hms}[3]{\ensuremath{% {#1}^{\hour}{#2}^{\mathrm{m}}{#3}^{\s}}} \newcommand*{\clockreading}{\hms} -\newcommand*{\latitude}[1]{\unit{#1}{\degree}} -\newcommand*{\latitudeN}[1]{\unit{#1}{\degree\;\mathrm{N}}} -\newcommand*{\latitudeS}[1]{\unit{#1}{\degree\;\mathrm{S}}} -\newcommand*{\longitude}[1]{\unit{#1}{\degree}} -\newcommand*{\longitudeE}[1]{\unit{#1}{\degree\;\mathrm{E}}} -\newcommand*{\longitudeW}[1]{\unit{#1}{\degree\;\mathrm{W}}} +\newcommand*{\latitude}[1]{\unit{#1}{\mkern-\thickmuskip\degree}} +\newcommand*{\latitudeN}[1]{\unit{#1}{\mkern-\thickmuskip\degree\;\mathrm{N}}} +\newcommand*{\latitudeS}[1]{\unit{#1}{\mkern-\thickmuskip\degree\;\mathrm{S}}} +\newcommand*{\longitude}[1]{\unit{#1}{\mkern-\thickmuskip\degree}} +\newcommand*{\longitudeE}[1]{\unit{#1}{\mkern-\thickmuskip\degree\;\mathrm{E}}} +\newcommand*{\longitudeW}[1]{\unit{#1}{\mkern-\thickmuskip\degree\;\mathrm{W}}} \newcommand*{\ssub}[2]{\ensuremath{#1_{\text{#2}}}} \newcommand*{\ssup}[2]{\ensuremath{#1^{\text{#2}}}} \newcommand*{\ssud}[3]{\ensuremath{#1^{\text{#2}}_{\text{#3}}}} @@ -11054,8 +11336,8 @@ Command for QED symbol. \mivector{\_ , \_ , \_}}{#4}}}\times{{\ifblank{#5}{\mivector{\_ , \_ , \_}}{#5}}}}} \newcommand*{\springinteractionplaces}[3]{\ensuremath{\inparens{#1} \inparens{#2}{{\ifblank{#3}{\mivector{\_ , \_ , \_}}{#3}}}}} -\newcommand*{\gravitationalpotentialenergyplaces}[3]{% - -\genericpotentialenergyplaces{\universalgrav}{#1}{#2}{#3}} +\newcommand*{\gravitationalpotentialenergyplaces}[3]{\ensuremath{% + -\genericpotentialenergyplaces{\universalgrav}{#1}{#2}{#3}}} \newcommand*{\electricpotentialenergyplaces}[3]{% \genericpotentialenergyplaces{\oofpez}{#1}{#2}{#3}} \newcommand*{\springpotentialenergyplaces}[2]{\ensuremath{% @@ -11590,6 +11872,21 @@ Command for QED symbol. \end{align*} \end{mdframed} }% +\mdfdefinestyle{mistandardstyle}{% + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, + nobreak=true, + frametitle={STANDARD}, + frametitlebackgroundcolor=cyan!60,frametitlerule=true,frametitlerulewidth=1, + backgroundcolor=cyan!25, + linecolor=black,fontcolor=black,shadow=true} +\NewEnviron{mistandard}{% + \begin{mdframed}[style=mistandardstyle] + \begin{adjactivityanswer}[cyan!25][cyan!25][black] + \BODY + \end{adjactivityanswer} + \end{mdframed} +}% \mdfdefinestyle{bwinstructornotestyle}{% hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, @@ -11644,6 +11941,21 @@ Command for QED symbol. \end{align*} \end{mdframed} }% +\mdfdefinestyle{bwstandardstyle}{% + hidealllines=false,skipbelow=\baselineskip,skipabove=\baselineskip, + leftmargin=40pt,rightmargin=40pt,linewidth=1,roundcorner=10, + nobreak=true, + frametitle={STANDARD}, + frametitlebackgroundcolor=gray!50,frametitlerule=true,frametitlerulewidth=1, + backgroundcolor=gray!20, + linecolor=black,fontcolor=black,shadow=true} +\NewEnviron{bwstandard}{% + \begin{mdframed}[style=bwstandardstyle] + \begin{adjactivityanswer}[gray!20][gray!20][black] + \BODY + \end{adjactivityanswer} + \end{mdframed} +}% \NewEnviron{mysolution}{% \setcounter{equation}{0} \begin{align} @@ -11662,21 +11974,23 @@ Command for QED symbol. \newlist{parts}{enumerate}{2}% \setlist[parts]{label=(\alph*)}}{\newpage} \newcommand{\problempart}{\item}% -\newcommand{\reason}[1]{\parbox{2cm}{#1}} +\newcommand{\reason}[1]{\begin{minipage}{5cm}{#1}\end{minipage}} \newcommand*{\checkpoint}{% \vspace{1cm}\begin{center}% \colorbox{yellow!80}{|--------- CHECKPOINT ---------|}% \end{center}}% -\newcommand*{\image}[2]{% - \begin{figure}[h!] +\newcommandx*{\image}[4][1={scale=1},usedefault]{% + \begin{figure}[H] \begin{center}% - \includegraphics[scale=1]{#1}% - \caption{#2}% - \label{#1}% + \includegraphics[#1]{#2}% \end{center}% + \caption{#3}% + \label{#4}% \end{figure}} -%\changes{v2.5.0}{2015/09/13}{Changed behavior of \cs{sneakyone}.} \newcommand*{\sneakyone}[1]{\ensuremath{\cancelto{1}{#1}}} +\newcommand*{\parallelto}{\ensuremath{{{\mkern3mu\vphantom{\perp}\vrule depth 0pt + \mkern2mu\vrule depth 0pt\mkern3mu}}}} +\newcommand*{\perpendicularto}{\ensuremath{\perp}} \newcommand*{\qed}{\ensuremath{\text{ Q.E.D.}}} \newcommand*{\chkquantity}[1]{% \begin{center} @@ -11689,11 +12003,13 @@ Command for QED symbol. }% \newcommand*{\chkconstant}[1]{% \begin{center} - \begin{tabular}{C{4cm} C{2cm} C{3cm} C{3cm} C{3cm} C{3cm}} - name & symbol & value & baseunit & drvdunit & tradunit \tabularnewline - \cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname & - \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & - \csname #1onlytradunit\endcsname + \begin{tabular}{C{4cm} C{4cm} C{4cm}} + name & symbol & value \tabularnewline + \cs{#1} & \csname #1mathsymbol\endcsname & \csname #1value\endcsname + \tabularnewline + baseunit & drvdunit & tradunit \tabularnewline + \csname #1onlybaseunit\endcsname & \csname #1onlydrvdunit\endcsname & + \csname #1onlytradunit\endcsname \end{tabular} \end{center} }% @@ -11706,7 +12022,7 @@ Command for QED symbol. % Special thanks also to Herbert Schulz for his custom \texttt{dtx} engine for % \texttt{TeXShop}. Very special thanks to Ulrich Diez for providing the mechanism % that defines physics quantities and constants. Also very special thanks to -% student who helped test recent version of this package. +% students who helped test recent versions of this package. % % \iffalse %</package> diff --git a/Master/texmf-dist/source/latex/mandi/mandi.ins b/Master/texmf-dist/source/latex/mandi/mandi.ins index ab4cb135ce5..363aaa3520c 100644 --- a/Master/texmf-dist/source/latex/mandi/mandi.ins +++ b/Master/texmf-dist/source/latex/mandi/mandi.ins @@ -6,7 +6,7 @@ %% %% mandi.dtx (with options: `install') %% -%% Copyright (C) 2016 by Paul J. Heafner <heafnerj@gmail.com> +%% Copyright (C) 2018 by Paul J. Heafner <heafnerj@gmail.com> %% --------------------------------------------------------------------------- %% This work may be distributed and/or modified under the conditions of the %% LaTeX Project Public License, either version 1.3 of this license or (at @@ -34,7 +34,7 @@ \usedir{tex/latex/mandi} \preamble -Copyright (C) 2016 by Paul J. Heafner <heafnerj@gmail.com> +Copyright (C) 2018 by Paul J. Heafner <heafnerj@gmail.com> --------------------------------------------------------------------------- This work may be distributed and/or modified under the conditions of the LaTeX Project Public License, either version 1.3 of this license or (at |