summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/polynomial/polynomial.dtx
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2007-03-18 23:52:04 +0000
committerKarl Berry <karl@freefriends.org>2007-03-18 23:52:04 +0000
commit3e9dc78c5b6a68fccecf16e7c6f0f1ebc782e68a (patch)
treea661914e73f05f838fa4f7350ff826519d3abf37 /Master/texmf-dist/source/latex/polynomial/polynomial.dtx
parent8550a5a737c909d12e87b3f1bad87c7975856072 (diff)
new latex package polynomial (18mar07)
git-svn-id: svn://tug.org/texlive/trunk@4060 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/polynomial/polynomial.dtx')
-rw-r--r--Master/texmf-dist/source/latex/polynomial/polynomial.dtx374
1 files changed, 374 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/polynomial/polynomial.dtx b/Master/texmf-dist/source/latex/polynomial/polynomial.dtx
new file mode 100644
index 00000000000..041759449e0
--- /dev/null
+++ b/Master/texmf-dist/source/latex/polynomial/polynomial.dtx
@@ -0,0 +1,374 @@
+% \iffalse meta-comment
+%
+% by Stefan Höst 2007
+%
+% This file may be distributed and/or modified under the
+% conditions of the LaTeX Project Public License, either
+% version 1.2 of this license or (at your option) any later
+% version. The latest version of this license is in:
+%
+% http://www.latex-project.org/lppl.txt
+%
+% and version 1.2 or later is part of all distributions of
+% LaTeX version 1999/12/01 or later.
+%
+% \fi
+%
+% \iffalse
+%<package>\NeedsTeXFormat{LaTeX2e}
+%<package>\ProvidesPackage{polynomial}
+%<*driver>
+\documentclass{ltxdoc}
+\usepackage{polynomial}
+\usepackage{amsmath}
+\usepackage{t1enc}
+\usepackage[a4paper,body={150mm,230mm}]{geometry}
+\def\labelitemi{$\blacktriangleright$}
+\def\labelitemii{$\triangleright$}
+\newdimen\tabsepadd
+\tabsepadd=2mm
+\EnableCrossrefs
+\CodelineIndex
+\RecordChanges
+\OnlyDescription
+\begin{document}
+\DocInput{polynomial.dtx}
+\end{document}
+%</driver>
+% \fi
+% \CheckSum{0}
+% \changes{v1.0}{2007/02/04}{Initial version}
+% \changes{v1.1}{2007/03/17}{Test}
+% \DoNotIndex{\#,\$,\%,\&,\@,\\,\{,\},\^,\_,\~,\ }
+% \title{The \textsf{polynomial.sty} package\thanks{Version 1.1, 2007/03/17}}
+% \author{Stefan Höst}
+% \date{}
+% \maketitle
+% \noindent
+% The package \texttt{polynomial.sty} offers an easy way to write
+% (univariate) polynomials and rational functions. It defines two commands,
+% one for polynomials \verb|\polynomial{coeffs}| and one for rational functions
+% \verb|\polynomialfrac{Numerator}{Denominator}|. The first of them,
+% \verb|\polynomial|, prints a polynomial with the coefficients in the
+% comma separated list of the argument. The second, \verb|\polynomialfrac|,
+% prints a fraction of two polynomials. There is also an optional
+% argument to the commands that changees the properties of the
+% polynomials. The default values can be changed
+% by the command \verb|\polynomialstyle|. In the following the commands
+% are described by a set of explained examples.
+
+% The coefficients of the polynomials are given as a comma separated
+% lists. If a coefficient is a zero it is not printed, and if it is 1
+% only the monomial is printed. By default there is a plus in
+% between two terms, but if the first character of the coefficient is
+% minus it is changed to minus.
+% \par\strut\par
+% \noindent
+% \textbf{Examples:}
+% \newline\strut
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial{1,2,3,4,5}|
+% & $\polynomial{1,2,3,4,5}$\\[\tabsepadd]
+% \verb|\polynomial{3,35,0,0,45}|
+% & $\polynomial{3,35,0,0,45}$\\[\tabsepadd]
+% \verb|\polynomial{c_0,-c_1,c_2,-c_3,c_4}|
+% & $\polynomial{c_0,-c_1,c_2,-c_3,c_4}$\\[\tabsepadd]
+% \verb|\polynomial{0,0,0,1,-1,1,0,1,0,0,1,0,0}|
+% & $\polynomial{0,0,0,1,-1,1,0,1,0,0,1,0,0}$\\[\tabsepadd]
+% \verb|\polynomial{-3,A\sin(\alpha t), e^{j\phi},|\newline
+% \verb| \left(\sum_{k=0}^{\infty}a^k\right)}|
+% & $\displaystyle\polynomial{-3,A\sin(\alpha t),e^{j\phi},
+% \left(\sum_{k=0}^{\infty}a^k\right)}$\\[\tabsepadd]
+% \verb|\polynomialfrac{a,b,c,-d,e}{f,g,h,i}|
+% & $\displaystyle\polynomialfrac{a,b,c,-d,e}{f,g,h,i}$
+% \end{tabular}
+% \par\strut\par
+% There is a set of variables that can be used in an optional
+% argument, using the keyval-style. By default the the exponents
+% increases from left to right. There are two Boolean variables,
+% \verb|falling| and \verb|reciprocal|, that change this. Both are used
+% as \verb|falling=true| or \verb|falling=false|. The default is
+% \verb|true| for both variables, meaning, e.g., that \verb|falling| is
+% the same as the first variant. The difference between the commands
+% is that the first uses decreasing exponents from left to right instead
+% of increasing, while the second uses increasing exponents from right
+% to left (hence giving the reciprocal polynomial). If both are true the
+% polynomial will be written with decreasing exponents from right to
+% left.
+% \par\strut\par
+% \noindent
+% \textbf{Examples:}
+% \newline\strut
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial[falling]{a,b,c,-d,e}|
+% & $\polynomial[falling]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[reciprocal]{a,b,c,-d,e}|
+% & $\polynomial[reciprocal]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[reciprocal,falling]{a,b,c,-d,e}|
+% & $\polynomial[reciprocal,falling]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomialfrac[falling]{a,b,c,-d,e}{f,g,h,i}|
+% & $\displaystyle\polynomialfrac[falling]{a,b,c,-d,e}{f,g,h,i}$\\[\tabsepadd]
+% \verb|\polynomialfrac[reciprocal]{a,b,c,-d,e}{f,g,h,i}|
+% & $\displaystyle\polynomialfrac[reciprocal]{a,b,c,-d,e}{f,g,h,i}$
+% \end{tabular}
+% \par\strut\par
+% It is also possible to change the polynomial variable through the
+% optional argument \verb|var=<nbr>|. The starting value of the
+% exponents can be changed through \verb|start=<nbr>|. There is also a
+% variable \verb|step=<nbr>| that changes the incrementation steps of the
+% exponents.
+% \par\strut\par
+% \noindent
+% \textbf{Examples:}
+% \newline\strut
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial[var=t]{a,b,c,-d,e}|
+% & $\polynomial[var=t]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[var=\Phi,start=2]{a,b,c,-d,e}|
+% & $\polynomial[var=\Phi,start=2]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[var=z,falling]{a,b,c,-d,e}|
+% & $\polynomial[var=z,falling]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomialfrac[var=\varphi,reciprocal,start=-3]|\newline
+% \verb| {a,b,c,-d,e}{f,g,h,i}|
+% & $\displaystyle\polynomialfrac[var=\varphi,reciprocal,start=-3]
+% {a,b,c,-d,e}{f,g,h,i}$\\[\tabsepadd]
+% \verb|\polynomial[step=3,var=\pi]{a,b,c,-d,e}|
+% & $\polynomial[step=3,var=\pi]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[step=2,reciprocal,falling,start=3]|\newline
+% \verb| {a,b,c,-d,e}|
+% & $\polynomial[step=2,reciprocal,falling,start=3]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[step=-3,start=2]{a,b,c,-d,e}|
+% & $\polynomial[step=-3,start=2]{a,b,c,-d,e}$\\[\tabsepadd]
+% \end{tabular}
+% \par\strut\par
+% Sometimes, it is desirable to use other addition and subtraction
+% symbols than the default. This is done by the variables \verb|add| and
+% \verb|sub|. If the first coefficient is negative this will also have
+% the subtraction sign specified in \verb|sub|. In some cases the
+% additive inverse is denoted by a normal minus, while the
+% subtraction (if defined) something else, e.g., $\ominus$. For this
+% purpose there is a third variable \verb|firstsub|.
+% \par\strut\par
+% \noindent
+% \textbf{Examples:}
+% \newline\strut
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial[add=\oplus,sub=\ominus]|\newline
+% \verb| {a,-b,c,-d,e}|
+% & $\polynomial[add=\oplus,sub=\ominus]{a,-b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[add=\oplus,sub=\ominus]|\newline
+% \verb| {-a,b,-c,d,-e}|
+% & $\polynomial[add=\oplus,sub=\ominus]{-a,b,-c,d,-e}$\\[\tabsepadd]
+% \verb|\polynomial[add=\oplus,sub=\ominus,firstsub=-]|\newline
+% \verb| {-a,b,-c,d,-e}|
+% & $\polynomial[add=\oplus,sub=\ominus,firstsub=-]{-a,b,-c,d,-e}$
+% \end{tabular}
+% \par\strut\par
+% All of the above variables can be set either for individual
+% commands, as shown, or for the rest of the document with the command
+% \verb|\polynomialstyle|. In this case there is also an option that
+% resets all values to the starting values, called \verb|default|.
+% \par\strut\par
+% \noindent
+% \textbf{Examples:}
+% \newline\strut
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial{a,b,c,-d,e}|
+% & $\polynomial{a,b,c,-d,e}$
+% \end{tabular}\vspace*{\tabsepadd}\newline
+% \verb|\polynomialstyle{var=z,falling}|
+% \polynomialstyle{var=z,falling}\vspace*{\tabsepadd}\newline
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial{a,b,c,-d,e}|
+% & $\polynomial{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[reciprocal]{a,b,c,-d,e}|
+% & $\polynomial[reciprocal]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomial[start=3,falling=false]{a,b,c,-d,e}|
+% & $\polynomial[start=3,falling=false]{a,b,c,-d,e}$\\[\tabsepadd]
+% \verb|\polynomialfrac{a,b,c,-d,e}{f,g,h,i}|
+% & $\displaystyle\polynomialfrac{a,b,c,-d,e}{f,g,h,i}$
+% \end{tabular}\vspace*{\tabsepadd}\newline
+% \verb|\polynomialstyle{add=\oplus,sub=\ominus}|
+% \polynomialstyle{add=\oplus,sub=\ominus}\vspace*{\tabsepadd}\newline
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial{a,b,c,-d,e}|
+% & $\polynomial{a,b,c,-d,e}$
+% \end{tabular}\vspace*{\tabsepadd}\newline
+% \verb|\polynomialstyle{default}|
+% \polynomialstyle{default}\vspace*{\tabsepadd}\newline
+% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
+% \verb|\polynomial{a,b,c,-d,e}|
+% & $\polynomial{a,b,c,-d,e}$
+% \end{tabular}
+
+% \StopEventually{}
+%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%
+%% polynomial.sty
+%%
+%% v1.1
+%% 2007-03-17
+%%
+%% Stefan Höst
+%% (stefan.host@it.lth.se)
+%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%
+%% Problems:
+%% * Very long numbers in coefficient result in overflow.
+%%
+%% Fixes
+%% 2007-03-17: Removed allocation of counter for each call of \polynomial.
+%% 2007-03-17: Replaced some other counters with \def.
+%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% Counters
+\newcount\shpol@numcoeff% Number of coeffs parsed
+\newcount\shpol@coeffnum% loop var for coeffs
+\newcount\shpol@exponent% loop var for exponents (not same as coeffnum)
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% ifs
+\newif\if@shpol@firstterm% If first term no '+'
+\newif\if@shpol@falling% If exponents falling
+\newif\if@shpol@reciprocal% If reciprocal
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% variables
+\def\shpol@var{x}% keyval: poly var
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% keyval
+\RequirePackage{keyval}
+%% in function
+\define@key{shpol}{start}[0]{\def\shpol@start{#1}}%{\shpol@start=#1}
+\define@key{shpol}{var}[x]{\def\shpol@tmpvar{#1}}
+\define@key{shpol}{step}[1]{\def\shpol@expstep{#1}}%{\shpol@expstep=#1}
+\define@key{shpol}{falling}[true]{\csname @shpol@falling#1\endcsname}
+\define@key{shpol}{reciprocal}[true]{\csname @shpol@reciprocal#1\endcsname}
+\define@key{shpol}{add}[+]{\def\shpol@add{#1}}
+\define@key{shpol}{sub}[-]{\def\shpol@sub{#1}\def\shpol@firstsub{#1}}
+\define@key{shpol}{firstsub}[-]{\def\shpol@firstsub{#1}}
+%% default values
+\define@key{shpoldefault}{start}[0]{\def\shpol@start{#1}}%{\shpol@start=#1}
+\define@key{shpoldefault}{var}[x]{\def\shpol@var{#1}}
+\define@key{shpoldefault}{step}[1]{\def\shpol@expstep{#1}}%{\shpol@expstep=#1}
+\define@key{shpoldefault}{falling}[true]{\csname @shpol@falling#1\endcsname}
+\define@key{shpoldefault}{reciprocal}[true]{\csname @shpol@reciprocal#1\endcsname}
+\define@key{shpoldefault}{add}[+]{\def\shpol@add@default{#1}}
+\define@key{shpoldefault}{sub}[-]{%
+ \def\shpol@sub@default{#1}\def\shpol@firstsub@default{#1}}
+\define@key{shpoldefault}{firstsub}[-]{\def\shpol@firstsub@default{#1}}
+%%
+\define@key{shpoldefault}{default}[true]{%
+ \setkeys{shpoldefault}{start,var,step,falling=false,reciprocal=false,add,sub,firstsub}}
+\setkeys{shpoldefault}{default}
+\def\polynomialstyle#1{\setkeys{shpoldefault}{#1}}
+%%%%%%%%%%%%%%%%%%%%%%%%
+%% help defs
+\def\shpol@splitcoeff#1{\shpol@@splitcoeff#1\@nil}
+\def\shpol@@splitcoeff#1#2\@nil{%
+ \def\shpol@firstofcoeff{#1}%
+ \def\shpol@restofcoeff{#2}
+}
+\def\shpol@minus{-}
+%% If #1 is a number that is =1 then #2 else #3
+%% see www.tex.ac.uk/cgi-bin/texfaq2html?label=isitanum
+\def\if@@one#1#2#3{%
+ \ifcat_\ifnum1=0#1 _\else A\fi #2\else #3\fi}
+%% If #1 a number that is =0 then #2 else #3
+\def\if@@zero#1#2#3{%
+ \ifcat_\ifnum0=0#1 _\else A\fi #2\else #3\fi}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% set one term in polynomial
+\def\shpol@setterm[#1]#2#3{% [variable]{koefficient}{exponent}
+ \def\@shpol@koeff{#2} %% To make it more clear
+ \ifnum#3=0 %% x^0
+ \@shpol@koeff
+ \else
+ \if@@one{#2}{}{\@shpol@koeff}
+ #1
+ \ifnum#3=1\else
+ ^{#3}
+ \fi
+ \fi}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\def\shpol@getcoeff#1{% Pars the coeffs and store in #1-vars
+ \shpol@numcoeff=0%
+ \@for\shpol@coeff:=#1\do{%
+ \advance\shpol@numcoeff by 1\relax%
+ \expandafter\let\csname shpol@coeff\romannumeral\shpol@numcoeff\endcsname\shpol@coeff%
+ }%
+}
+\def\shpol@writepoly{% Write the #1-vars as polynomial
+ \shpol@coeffnum=1
+ \shpol@exponent=0
+ \if@shpol@reciprocal
+ \if@shpol@falling
+ \advance\shpol@exponent by -\shpol@numcoeff
+ \advance\shpol@exponent by 1
+ \else
+ \advance\shpol@exponent by \shpol@numcoeff
+ \advance\shpol@exponent by -1
+ \fi
+ \multiply\shpol@exponent by \shpol@expstep
+ \fi
+ \advance\shpol@exponent by \shpol@start
+ \loop%
+ \expandafter\let\expandafter\shpol@coeff%
+ \csname shpol@coeff\romannumeral\shpol@coeffnum\endcsname
+ \if@@zero{\shpol@coeff}{}{% coeff not zero
+ %% Check if first char is '-'. Then remove it and replace + with -.
+ \expandafter\shpol@splitcoeff\expandafter{\shpol@coeff}
+ \ifx\shpol@firstofcoeff\shpol@minus
+ \if@shpol@firstterm\shpol@firstsub\else\shpol@sub\fi
+ \let\shpol@coeff\shpol@restofcoeff
+ \else
+ \if@shpol@firstterm\else\shpol@add\fi
+ \fi
+ %%\fi
+ \@shpol@firsttermfalse
+ \shpol@setterm[\shpol@tmpvar]%
+ {\shpol@coeff}%
+ {\the\shpol@exponent}%
+ }
+ \ifnum\shpol@coeffnum<\shpol@numcoeff
+ \advance\shpol@coeffnum by 1\relax%
+ \advance\shpol@exponent by
+ \if@shpol@falling
+ \if@shpol@reciprocal \shpol@expstep \else -\shpol@expstep \fi
+ \else
+ \if@shpol@reciprocal -\shpol@expstep \else \shpol@expstep \fi
+ \fi\relax%
+ \repeat
+}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\def\shpol@defaultvalues{% Set default values for keyval
+ \let\shpol@tmpvar\shpol@var
+ \let\shpol@add\shpol@add@default
+ \let\shpol@sub\shpol@sub@default
+ \let\shpol@firstsub\shpol@firstsub@default
+ \@shpol@firsttermtrue
+}
+\def\polynomial{%
+ \shpol@defaultvalues
+ \@ifnextchar[%]
+ {\opt@shpol@polynomial}{\shpol@polynomial}}
+\def\opt@shpol@polynomial[#1]{%
+ \setkeys{shpol}{#1}
+ \shpol@polynomial}
+\def\shpol@polynomial#1{%
+ \shpol@getcoeff{#1}
+ \shpol@writepoly
+}
+\def\polynomialfrac{%
+ \@ifnextchar[%]
+ {\opt@shpol@rational}{\@shpol@rational}}
+\def\@shpol@rational#1#2{%
+ \frac{\polynomial{#1}}{\polynomial{#2}}}
+\def\opt@shpol@rational[#1]#2#3{%
+ \frac{\polynomial[#1]{#2}}{\polynomial[#1]{#3}}}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\endinput
+% \Finale
+
+