diff options
author | Karl Berry <karl@freefriends.org> | 2018-05-13 21:56:47 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2018-05-13 21:56:47 +0000 |
commit | e6d38f40f0132914020c723840be3489c4b692f0 (patch) | |
tree | dac2c281e93cba461b3ff2c1e4b8e34aad401716 /Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx | |
parent | 55be422dc01e60cfae781a9a4a310a96c9e99256 (diff) |
l3 (13may18)
git-svn-id: svn://tug.org/texlive/trunk@47705 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx')
-rw-r--r-- | Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx | 485 |
1 files changed, 286 insertions, 199 deletions
diff --git a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx index 223e28a1ba7..165301268b0 100644 --- a/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx +++ b/Master/texmf-dist/source/latex/l3kernel/l3fp-trig.dtx @@ -38,7 +38,7 @@ % {latex-team@latex-project.org}^^A % }^^A % } -% \date{Released 2018-04-30} +% \date{Released 2018-05-12} % % \maketitle % @@ -512,178 +512,231 @@ % 24 - 5 = 23$ significant digits, enough to round correctly up to % $0.6\cdot\text{ulp}$ in all cases. % -% ^^A todo: if the exponent range is reduced, store 1/2pi as a simple tl -% \begin{variable}[EXP]{\@@_trig_inverse_two_pi:} -% This macro expands to |,,!| or~|,!| followed by $10112$~decimals of +% \begin{variable}[EXP]{\c_@@_trig_intarray} +% This integer array stores blocks of $8$~decimals of +% $10^{-16}/(2\pi)$. Each entry is $10^8$ plus an $8$~digit number +% storing $8$ decimals. In total we store $10112$~decimals of % $10^{-16}/(2\pi)$. The number of decimals we really need is the % maximum exponent plus the number of digits we later need,~$52$, -% plus~$12$ ($4-1$~groups of $4$~digits). We store the decimals as a -% control sequence name, and convert it to a token list when required: -% strings take up less memory than their token list representation. +% plus~$12$ ($4-1$~groups of $4$~digits). The memory footprint ($1/2$ +% byte per digit) is the same as an earlier method of storing the data +% as a control sequence name, but the major advantage is that we can +% unpack specific subsets of the digits without unpacking the $10112$ +% decimals. % \begin{macrocode} -\cs_new:Npx \@@_trig_inverse_two_pi: +\intarray_const_from_clist:Nn \c_@@_trig_intarray { - \exp_not:n { \exp_after:wN \use_none:n \token_to_str:N } - \cs:w , , ! - 0000000000000000159154943091895335768883763372514362034459645740 ~ - 4564487476673440588967976342265350901138027662530859560728427267 ~ - 5795803689291184611457865287796741073169983922923996693740907757 ~ - 3077746396925307688717392896217397661693362390241723629011832380 ~ - 1142226997557159404618900869026739561204894109369378440855287230 ~ - 9994644340024867234773945961089832309678307490616698646280469944 ~ - 8652187881574786566964241038995874139348609983868099199962442875 ~ - 5851711788584311175187671605465475369880097394603647593337680593 ~ - 0249449663530532715677550322032477781639716602294674811959816584 ~ - 0606016803035998133911987498832786654435279755070016240677564388 ~ - 8495713108801221993761476813777647378906330680464579784817613124 ~ - 2731406996077502450029775985708905690279678513152521001631774602 ~ - 0924811606240561456203146484089248459191435211575407556200871526 ~ - 6068022171591407574745827225977462853998751553293908139817724093 ~ - 5825479707332871904069997590765770784934703935898280871734256403 ~ - 6689511662545705943327631268650026122717971153211259950438667945 ~ - 0376255608363171169525975812822494162333431451061235368785631136 ~ - 3669216714206974696012925057833605311960859450983955671870995474 ~ - 6510431623815517580839442979970999505254387566129445883306846050 ~ - 7852915151410404892988506388160776196993073410389995786918905980 ~ - 9373777206187543222718930136625526123878038753888110681406765434 ~ - 0828278526933426799556070790386060352738996245125995749276297023 ~ - 5940955843011648296411855777124057544494570217897697924094903272 ~ - 9477021664960356531815354400384068987471769158876319096650696440 ~ - 4776970687683656778104779795450353395758301881838687937766124814 ~ - 9530599655802190835987510351271290432315804987196868777594656634 ~ - 6221034204440855497850379273869429353661937782928735937843470323 ~ - 0237145837923557118636341929460183182291964165008783079331353497 ~ - 7909974586492902674506098936890945883050337030538054731232158094 ~ - 3197676032283131418980974982243833517435698984750103950068388003 ~ - 9786723599608024002739010874954854787923568261139948903268997427 ~ - 0834961149208289037767847430355045684560836714793084567233270354 ~ - 8539255620208683932409956221175331839402097079357077496549880868 ~ - 6066360968661967037474542102831219251846224834991161149566556037 ~ - 9696761399312829960776082779901007830360023382729879085402387615 ~ - 5744543092601191005433799838904654921248295160707285300522721023 ~ - 6017523313173179759311050328155109373913639645305792607180083617 ~ - 9548767246459804739772924481092009371257869183328958862839904358 ~ - 6866663975673445140950363732719174311388066383072592302759734506 ~ - 0548212778037065337783032170987734966568490800326988506741791464 ~ - 6835082816168533143361607309951498531198197337584442098416559541 ~ - 5225064339431286444038388356150879771645017064706751877456059160 ~ - 8716857857939226234756331711132998655941596890719850688744230057 ~ - 5191977056900382183925622033874235362568083541565172971088117217 ~ - 9593683256488518749974870855311659830610139214454460161488452770 ~ - 2511411070248521739745103866736403872860099674893173561812071174 ~ - 0478899368886556923078485023057057144063638632023685201074100574 ~ - 8592281115721968003978247595300166958522123034641877365043546764 ~ - 6456565971901123084767099309708591283646669191776938791433315566 ~ - 5066981321641521008957117286238426070678451760111345080069947684 ~ - 2235698962488051577598095339708085475059753626564903439445420581 ~ - 7886435683042000315095594743439252544850674914290864751442303321 ~ - 3324569511634945677539394240360905438335528292434220349484366151 ~ - 4663228602477666660495314065734357553014090827988091478669343492 ~ - 2737602634997829957018161964321233140475762897484082891174097478 ~ - 2637899181699939487497715198981872666294601830539583275209236350 ~ - 6853889228468247259972528300766856937583659722919824429747406163 ~ - 8183113958306744348516928597383237392662402434501997809940402189 ~ - 6134834273613676449913827154166063424829363741850612261086132119 ~ - 9863346284709941839942742955915628333990480382117501161211667205 ~ - 1912579303552929241134403116134112495318385926958490443846807849 ~ - 0973982808855297045153053991400988698840883654836652224668624087 ~ - 2540140400911787421220452307533473972538149403884190586842311594 ~ - 6322744339066125162393106283195323883392131534556381511752035108 ~ - 7459558201123754359768155340187407394340363397803881721004531691 ~ - 8295194879591767395417787924352761740724605939160273228287946819 ~ - 3649128949714953432552723591659298072479985806126900733218844526 ~ - 7943350455801952492566306204876616134365339920287545208555344144 ~ - 0990512982727454659118132223284051166615650709837557433729548631 ~ - 2041121716380915606161165732000083306114606181280326258695951602 ~ - 4632166138576614804719932707771316441201594960110632830520759583 ~ - 4850305079095584982982186740289838551383239570208076397550429225 ~ - 9847647071016426974384504309165864528360324933604354657237557916 ~ - 1366324120457809969715663402215880545794313282780055246132088901 ~ - 8742121092448910410052154968097113720754005710963406643135745439 ~ - 9159769435788920793425617783022237011486424925239248728713132021 ~ - 7667360756645598272609574156602343787436291321097485897150713073 ~ - 9104072643541417970572226547980381512759579124002534468048220261 ~ - 7342299001020483062463033796474678190501811830375153802879523433 ~ - 4195502135689770912905614317878792086205744999257897569018492103 ~ - 2420647138519113881475640209760554895793785141404145305151583964 ~ - 2823265406020603311891586570272086250269916393751527887360608114 ~ - 5569484210322407772727421651364234366992716340309405307480652685 ~ - 0930165892136921414312937134106157153714062039784761842650297807 ~ - 8606266969960809184223476335047746719017450451446166382846208240 ~ - 8673595102371302904443779408535034454426334130626307459513830310 ~ - 2293146934466832851766328241515210179422644395718121717021756492 ~ - 1964449396532222187658488244511909401340504432139858628621083179 ~ - 3939608443898019147873897723310286310131486955212620518278063494 ~ - 5711866277825659883100535155231665984394090221806314454521212978 ~ - 9734471488741258268223860236027109981191520568823472398358013366 ~ - 0683786328867928619732367253606685216856320119489780733958419190 ~ - 6659583867852941241871821727987506103946064819585745620060892122 ~ - 8416394373846549589932028481236433466119707324309545859073361878 ~ - 6290631850165106267576851216357588696307451999220010776676830946 ~ - 9814975622682434793671310841210219520899481912444048751171059184 ~ - 4139907889455775184621619041530934543802808938628073237578615267 ~ - 7971143323241969857805637630180884386640607175368321362629671224 ~ - 2609428540110963218262765120117022552929289655594608204938409069 ~ - 0760692003954646191640021567336017909631872891998634341086903200 ~ - 5796637103128612356988817640364252540837098108148351903121318624 ~ - 7228181050845123690190646632235938872454630737272808789830041018 ~ - 9485913673742589418124056729191238003306344998219631580386381054 ~ - 2457893450084553280313511884341007373060595654437362488771292628 ~ - 9807423539074061786905784443105274262641767830058221486462289361 ~ - 9296692992033046693328438158053564864073184440599549689353773183 ~ - 6726613130108623588021288043289344562140479789454233736058506327 ~ - 0439981932635916687341943656783901281912202816229500333012236091 ~ - 8587559201959081224153679499095448881099758919890811581163538891 ~ - 6339402923722049848375224236209100834097566791710084167957022331 ~ - 7897107102928884897013099533995424415335060625843921452433864640 ~ - 3432440657317477553405404481006177612569084746461432976543900008 ~ - 3826521145210162366431119798731902751191441213616962045693602633 ~ - 6102355962140467029012156796418735746835873172331004745963339773 ~ - 2477044918885134415363760091537564267438450166221393719306748706 ~ - 2881595464819775192207710236743289062690709117919412776212245117 ~ - 2354677115640433357720616661564674474627305622913332030953340551 ~ - 3841718194605321501426328000879551813296754972846701883657425342 ~ - 5016994231069156343106626043412205213831587971115075454063290657 ~ - 0248488648697402872037259869281149360627403842332874942332178578 ~ - 7750735571857043787379693402336902911446961448649769719434527467 ~ - 4429603089437192540526658890710662062575509930379976658367936112 ~ - 8137451104971506153783743579555867972129358764463093757203221320 ~ - 2460565661129971310275869112846043251843432691552928458573495971 ~ - 5042565399302112184947232132380516549802909919676815118022483192 ~ - 5127372199792134331067642187484426215985121676396779352982985195 ~ - 8545392106957880586853123277545433229161989053189053725391582222 ~ - 9232597278133427818256064882333760719681014481453198336237910767 ~ - 1255017528826351836492103572587410356573894694875444694018175923 ~ - 0609370828146501857425324969212764624247832210765473750568198834 ~ - 5641035458027261252285503154325039591848918982630498759115406321 ~ - 0354263890012837426155187877318375862355175378506956599570028011 ~ - 5841258870150030170259167463020842412449128392380525772514737141 ~ - 2310230172563968305553583262840383638157686828464330456805994018 ~ - 7001071952092970177990583216417579868116586547147748964716547948 ~ - 8312140431836079844314055731179349677763739898930227765607058530 ~ - 4083747752640947435070395214524701683884070908706147194437225650 ~ - 2823145872995869738316897126851939042297110721350756978037262545 ~ - 8141095038270388987364516284820180468288205829135339013835649144 ~ - 3004015706509887926715417450706686888783438055583501196745862340 ~ - 8059532724727843829259395771584036885940989939255241688378793572 ~ - 7967951654076673927031256418760962190243046993485989199060012977 ~ - 7469214532970421677817261517850653008552559997940209969455431545 ~ - 2745856704403686680428648404512881182309793496962721836492935516 ~ - 2029872469583299481932978335803459023227052612542114437084359584 ~ - 9443383638388317751841160881711251279233374577219339820819005406 ~ - 3292937775306906607415304997682647124407768817248673421685881509 ~ - 9133422075930947173855159340808957124410634720893194912880783576 ~ - 3115829400549708918023366596077070927599010527028150868897828549 ~ - 4340372642729262103487013992868853550062061514343078665396085995 ~ - 0058714939141652065302070085265624074703660736605333805263766757 ~ - 2018839497277047222153633851135483463624619855425993871933367482 ~ - 0422097449956672702505446423243957506869591330193746919142980999 ~ - 3424230550172665212092414559625960554427590951996824313084279693 ~ - 7113207021049823238195747175985519501864630940297594363194450091 ~ - 9150616049228764323192129703446093584259267276386814363309856853 ~ - 2786024332141052330760658841495858718197071242995959226781172796 ~ - 4438853796763139274314227953114500064922126500133268623021550837 - \cs_end: + 100000000, 100000000, 115915494, 130918953, 135768883, 176337251, + 143620344, 159645740, 145644874, 176673440, 158896797, 163422653, + 150901138, 102766253, 108595607, 128427267, 157958036, 189291184, + 161145786, 152877967, 141073169, 198392292, 139966937, 140907757, + 130777463, 196925307, 168871739, 128962173, 197661693, 136239024, + 117236290, 111832380, 111422269, 197557159, 140461890, 108690267, + 139561204, 189410936, 193784408, 155287230, 199946443, 140024867, + 123477394, 159610898, 132309678, 130749061, 166986462, 180469944, + 186521878, 181574786, 156696424, 110389958, 174139348, 160998386, + 180991999, 162442875, 158517117, 188584311, 117518767, 116054654, + 175369880, 109739460, 136475933, 137680593, 102494496, 163530532, + 171567755, 103220324, 177781639, 171660229, 146748119, 159816584, + 106060168, 103035998, 113391198, 174988327, 186654435, 127975507, + 100162406, 177564388, 184957131, 108801221, 199376147, 168137776, + 147378906, 133068046, 145797848, 117613124, 127314069, 196077502, + 145002977, 159857089, 105690279, 167851315, 125210016, 131774602, + 109248116, 106240561, 145620314, 164840892, 148459191, 143521157, + 154075562, 100871526, 160680221, 171591407, 157474582, 172259774, + 162853998, 175155329, 139081398, 117724093, 158254797, 107332871, + 190406999, 175907657, 170784934, 170393589, 182808717, 134256403, + 166895116, 162545705, 194332763, 112686500, 126122717, 197115321, + 112599504, 138667945, 103762556, 108363171, 116952597, 158128224, + 194162333, 143145106, 112353687, 185631136, 136692167, 114206974, + 169601292, 150578336, 105311960, 185945098, 139556718, 170995474, + 165104316, 123815517, 158083944, 129799709, 199505254, 138756612, + 194458833, 106846050, 178529151, 151410404, 189298850, 163881607, + 176196993, 107341038, 199957869, 118905980, 193737772, 106187543, + 122271893, 101366255, 126123878, 103875388, 181106814, 106765434, + 108282785, 126933426, 179955607, 107903860, 160352738, 199624512, + 159957492, 176297023, 159409558, 143011648, 129641185, 157771240, + 157544494, 157021789, 176979240, 194903272, 194770216, 164960356, + 153181535, 144003840, 168987471, 176915887, 163190966, 150696440, + 147769706, 187683656, 177810477, 197954503, 153395758, 130188183, + 186879377, 166124814, 195305996, 155802190, 183598751, 103512712, + 190432315, 180498719, 168687775, 194656634, 162210342, 104440855, + 149785037, 192738694, 129353661, 193778292, 187359378, 143470323, + 102371458, 137923557, 111863634, 119294601, 183182291, 196416500, + 187830793, 131353497, 179099745, 186492902, 167450609, 189368909, + 145883050, 133703053, 180547312, 132158094, 131976760, 132283131, + 141898097, 149822438, 133517435, 169898475, 101039500, 168388003, + 197867235, 199608024, 100273901, 108749548, 154787923, 156826113, + 199489032, 168997427, 108349611, 149208289, 103776784, 174303550, + 145684560, 183671479, 130845672, 133270354, 185392556, 120208683, + 193240995, 162211753, 131839402, 109707935, 170774965, 149880868, + 160663609, 168661967, 103747454, 121028312, 119251846, 122483499, + 111611495, 166556037, 196967613, 199312829, 196077608, 127799010, + 107830360, 102338272, 198790854, 102387615, 157445430, 192601191, + 100543379, 198389046, 154921248, 129516070, 172853005, 122721023, + 160175233, 113173179, 175931105, 103281551, 109373913, 163964530, + 157926071, 180083617, 195487672, 146459804, 173977292, 144810920, + 109371257, 186918332, 189588628, 139904358, 168666639, 175673445, + 114095036, 137327191, 174311388, 106638307, 125923027, 159734506, + 105482127, 178037065, 133778303, 121709877, 134966568, 149080032, + 169885067, 141791464, 168350828, 116168533, 114336160, 173099514, + 198531198, 119733758, 144420984, 116559541, 152250643, 139431286, + 144403838, 183561508, 179771645, 101706470, 167518774, 156059160, + 187168578, 157939226, 123475633, 117111329, 198655941, 159689071, + 198506887, 144230057, 151919770, 156900382, 118392562, 120338742, + 135362568, 108354156, 151729710, 188117217, 195936832, 156488518, + 174997487, 108553116, 159830610, 113921445, 144601614, 188452770, + 125114110, 170248521, 173974510, 138667364, 103872860, 109967489, + 131735618, 112071174, 104788993, 168886556, 192307848, 150230570, + 157144063, 163863202, 136852010, 174100574, 185922811, 115721968, + 100397824, 175953001, 166958522, 112303464, 118773650, 143546764, + 164565659, 171901123, 108476709, 193097085, 191283646, 166919177, + 169387914, 133315566, 150669813, 121641521, 100895711, 172862384, + 126070678, 145176011, 113450800, 169947684, 122356989, 162488051, + 157759809, 153397080, 185475059, 175362656, 149034394, 145420581, + 178864356, 183042000, 131509559, 147434392, 152544850, 167491429, + 108647514, 142303321, 133245695, 111634945, 167753939, 142403609, + 105438335, 152829243, 142203494, 184366151, 146632286, 102477666, + 166049531, 140657343, 157553014, 109082798, 180914786, 169343492, + 127376026, 134997829, 195701816, 119643212, 133140475, 176289748, + 140828911, 174097478, 126378991, 181699939, 148749771, 151989818, + 172666294, 160183053, 195832752, 109236350, 168538892, 128468247, + 125997252, 183007668, 156937583, 165972291, 198244297, 147406163, + 181831139, 158306744, 134851692, 185973832, 137392662, 140243450, + 119978099, 140402189, 161348342, 173613676, 144991382, 171541660, + 163424829, 136374185, 106122610, 186132119, 198633462, 184709941, + 183994274, 129559156, 128333990, 148038211, 175011612, 111667205, + 119125793, 103552929, 124113440, 131161341, 112495318, 138592695, + 184904438, 146807849, 109739828, 108855297, 104515305, 139914009, + 188698840, 188365483, 166522246, 168624087, 125401404, 100911787, + 142122045, 123075334, 173972538, 114940388, 141905868, 142311594, + 163227443, 139066125, 116239310, 162831953, 123883392, 113153455, + 163815117, 152035108, 174595582, 101123754, 135976815, 153401874, + 107394340, 136339780, 138817210, 104531691, 182951948, 179591767, + 139541778, 179243527, 161740724, 160593916, 102732282, 187946819, + 136491289, 149714953, 143255272, 135916592, 198072479, 198580612, + 169007332, 118844526, 179433504, 155801952, 149256630, 162048766, + 116134365, 133992028, 175452085, 155344144, 109905129, 182727454, + 165911813, 122232840, 151166615, 165070983, 175574337, 129548631, + 120411217, 116380915, 160616116, 157320000, 183306114, 160618128, + 103262586, 195951602, 146321661, 138576614, 180471993, 127077713, + 116441201, 159496011, 106328305, 120759583, 148503050, 179095584, + 198298218, 167402898, 138551383, 123957020, 180763975, 150429225, + 198476470, 171016426, 197438450, 143091658, 164528360, 132493360, + 143546572, 137557916, 113663241, 120457809, 196971566, 134022158, + 180545794, 131328278, 100552461, 132088901, 187421210, 192448910, + 141005215, 149680971, 113720754, 100571096, 134066431, 135745439, + 191597694, 135788920, 179342561, 177830222, 137011486, 142492523, + 192487287, 113132021, 176673607, 156645598, 127260957, 141566023, + 143787436, 129132109, 174858971, 150713073, 191040726, 143541417, + 197057222, 165479803, 181512759, 157912400, 125344680, 148220261, + 173422990, 101020483, 106246303, 137964746, 178190501, 181183037, + 151538028, 179523433, 141955021, 135689770, 191290561, 143178787, + 192086205, 174499925, 178975690, 118492103, 124206471, 138519113, + 188147564, 102097605, 154895793, 178514140, 141453051, 151583964, + 128232654, 106020603, 131189158, 165702720, 186250269, 191639375, + 115278873, 160608114, 155694842, 110322407, 177272742, 116513642, + 134366992, 171634030, 194053074, 180652685, 109301658, 192136921, + 141431293, 171341061, 157153714, 106203978, 147618426, 150297807, + 186062669, 169960809, 118422347, 163350477, 146719017, 145045144, + 161663828, 146208240, 186735951, 102371302, 190444377, 194085350, + 134454426, 133413062, 163074595, 113830310, 122931469, 134466832, + 185176632, 182415152, 110179422, 164439571, 181217170, 121756492, + 119644493, 196532222, 118765848, 182445119, 109401340, 150443213, + 198586286, 121083179, 139396084, 143898019, 114787389, 177233102, + 186310131, 148695521, 126205182, 178063494, 157118662, 177825659, + 188310053, 151552316, 165984394, 109022180, 163144545, 121212978, + 197344714, 188741258, 126822386, 102360271, 109981191, 152056882, + 134723983, 158013366, 106837863, 128867928, 161973236, 172536066, + 185216856, 132011948, 197807339, 158419190, 166595838, 167852941, + 124187182, 117279875, 106103946, 106481958, 157456200, 160892122, + 184163943, 173846549, 158993202, 184812364, 133466119, 170732430, + 195458590, 173361878, 162906318, 150165106, 126757685, 112163575, + 188696307, 145199922, 100107766, 176830946, 198149756, 122682434, + 179367131, 108412102, 119520899, 148191244, 140487511, 171059184, + 141399078, 189455775, 118462161, 190415309, 134543802, 180893862, + 180732375, 178615267, 179711433, 123241969, 185780563, 176301808, + 184386640, 160717536, 183213626, 129671224, 126094285, 140110963, + 121826276, 151201170, 122552929, 128965559, 146082049, 138409069, + 107606920, 103954646, 119164002, 115673360, 117909631, 187289199, + 186343410, 186903200, 157966371, 103128612, 135698881, 176403642, + 152540837, 109810814, 183519031, 121318624, 172281810, 150845123, + 169019064, 166322359, 138872454, 163073727, 128087898, 130041018, + 194859136, 173742589, 141812405, 167291912, 138003306, 134499821, + 196315803, 186381054, 124578934, 150084553, 128031351, 118843410, + 107373060, 159565443, 173624887, 171292628, 198074235, 139074061, + 178690578, 144431052, 174262641, 176783005, 182214864, 162289361, + 192966929, 192033046, 169332843, 181580535, 164864073, 118444059, + 195496893, 153773183, 167266131, 130108623, 158802128, 180432893, + 144562140, 147978945, 142337360, 158506327, 104399819, 132635916, + 168734194, 136567839, 101281912, 120281622, 195003330, 112236091, + 185875592, 101959081, 122415367, 194990954, 148881099, 175891989, + 108115811, 163538891, 163394029, 123722049, 184837522, 142362091, + 100834097, 156679171, 100841679, 157022331, 178971071, 102928884, + 189701309, 195339954, 124415335, 106062584, 139214524, 133864640, + 134324406, 157317477, 155340540, 144810061, 177612569, 108474646, + 114329765, 143900008, 138265211, 145210162, 136643111, 197987319, + 102751191, 144121361, 169620456, 193602633, 161023559, 162140467, + 102901215, 167964187, 135746835, 187317233, 110047459, 163339773, + 124770449, 118885134, 141536376, 100915375, 164267438, 145016622, + 113937193, 106748706, 128815954, 164819775, 119220771, 102367432, + 189062690, 170911791, 194127762, 112245117, 123546771, 115640433, + 135772061, 166615646, 174474627, 130562291, 133320309, 153340551, + 138417181, 194605321, 150142632, 180008795, 151813296, 175497284, + 167018836, 157425342, 150169942, 131069156, 134310662, 160434122, + 105213831, 158797111, 150754540, 163290657, 102484886, 148697402, + 187203725, 198692811, 149360627, 140384233, 128749423, 132178578, + 177507355, 171857043, 178737969, 134023369, 102911446, 196144864, + 197697194, 134527467, 144296030, 189437192, 154052665, 188907106, + 162062575, 150993037, 199766583, 167936112, 181374511, 104971506, + 115378374, 135795558, 167972129, 135876446, 130937572, 103221320, + 124605656, 161129971, 131027586, 191128460, 143251843, 143269155, + 129284585, 173495971, 150425653, 199302112, 118494723, 121323805, + 116549802, 190991967, 168151180, 122483192, 151273721, 199792134, + 133106764, 121874844, 126215985, 112167639, 167793529, 182985195, + 185453921, 106957880, 158685312, 132775454, 133229161, 198905318, + 190537253, 191582222, 192325972, 178133427, 181825606, 148823337, + 160719681, 101448145, 131983362, 137910767, 112550175, 128826351, + 183649210, 135725874, 110356573, 189469487, 154446940, 118175923, + 106093708, 128146501, 185742532, 149692127, 164624247, 183221076, + 154737505, 168198834, 156410354, 158027261, 125228550, 131543250, + 139591848, 191898263, 104987591, 115406321, 103542638, 190012837, + 142615518, 178773183, 175862355, 117537850, 169565995, 170028011, + 158412588, 170150030, 117025916, 174630208, 142412449, 112839238, + 105257725, 114737141, 123102301, 172563968, 130555358, 132628403, + 183638157, 168682846, 143304568, 105994018, 170010719, 152092970, + 117799058, 132164175, 179868116, 158654714, 177489647, 116547948, + 183121404, 131836079, 184431405, 157311793, 149677763, 173989893, + 102277656, 107058530, 140837477, 152640947, 143507039, 152145247, + 101683884, 107090870, 161471944, 137225650, 128231458, 172995869, + 173831689, 171268519, 139042297, 111072135, 107569780, 137262545, + 181410950, 138270388, 198736451, 162848201, 180468288, 120582913, + 153390138, 135649144, 130040157, 106509887, 192671541, 174507066, + 186888783, 143805558, 135011967, 145862340, 180595327, 124727843, + 182925939, 157715840, 136885940, 198993925, 152416883, 178793572, + 179679516, 154076673, 192703125, 164187609, 162190243, 104699348, + 159891990, 160012977, 174692145, 132970421, 167781726, 115178506, + 153008552, 155999794, 102099694, 155431545, 127458567, 104403686, + 168042864, 184045128, 181182309, 179349696, 127218364, 192935516, + 120298724, 169583299, 148193297, 183358034, 159023227, 105261254, + 121144370, 184359584, 194433836, 138388317, 175184116, 108817112, + 151279233, 137457721, 193398208, 119005406, 132929377, 175306906, + 160741530, 149976826, 147124407, 176881724, 186734216, 185881509, + 191334220, 175930947, 117385515, 193408089, 157124410, 163472089, + 131949128, 180783576, 131158294, 100549708, 191802336, 165960770, + 170927599, 101052702, 181508688, 197828549, 143403726, 142729262, + 110348701, 139928688, 153550062, 106151434, 130786653, 196085995, + 100587149, 139141652, 106530207, 100852656, 124074703, 166073660, + 153338052, 163766757, 120188394, 197277047, 122215363, 138511354, + 183463624, 161985542, 159938719, 133367482, 104220974, 149956672, + 170250544, 164232439, 157506869, 159133019, 137469191, 142980999, + 134242305, 150172665, 121209241, 145596259, 160554427, 159095199, + 168243130, 184279693, 171132070, 121049823, 123819574, 171759855, + 119501864, 163094029, 175943631, 194450091, 191506160, 149228764, + 132319212, 197034460, 193584259, 126727638, 168143633, 109856853, + 127860243, 132141052, 133076065, 188414958, 158718197, 107124299, + 159592267, 181172796, 144388537, 196763139, 127431422, 179531145, + 100064922, 112650013, 132686230, 121550837, } % \end{macrocode} % \end{variable} @@ -691,45 +744,79 @@ % \begin{macro}[rEXP] % { % \@@_trig_large:ww, -% \@@_trig_large_auxi:wwwwww, -% \@@_trig_large_auxii:ww, -% \@@_trig_large_auxiii:wNNNNNNNN, -% \@@_trig_large_auxiv:wN +% \@@_trig_large_auxi:w, +% \@@_trig_large_auxii:w, +% \@@_trig_large_auxiii:w, % } % The exponent~|#1| is between $1$ and~$\ExplSyntaxOn \int_use:N -% \c__fp_max_exponent_int$. We discard the integer part of -% $10^{\text{\texttt{\#1}}-16}/(2\pi)$, that is, the first |#1|~digits -% of $10^{-16}/(2\pi)$, because it yields an integer contribution to -% $x/(2\pi)$. The \texttt{auxii} auxiliary discards~$64$ digits at a -% time thanks to spaces inserted in the result of -% \cs{@@_trig_inverse_two_pi:}, while \texttt{auxiii} discards~$8$ -% digits at a time, and \texttt{auxiv} discards digits one at a time. -% Then $64$~digits are packed into groups of~$4$ and the \texttt{auxv} -% auxiliary is called. +% \c__fp_max_exponent_int$. We wish to look up decimals +% $10^{\text{\texttt{\#1}}-16}/(2\pi)$ starting from the digit +% $|#1|+1$. Since they are stored in batches of~$8$, compute +% $\lfloor|#1|/8\rfloor$ and fetch blocks of $8$ digits starting +% there. The numbering of items in \cs{c_@@_trig_intarray} starts +% at~$1$, so the block $\lfloor|#1|/8\rfloor+1$ contains the digit we +% want, at one of the eight positions. Each call to \cs{int_value:w} +% \cs{__kernel_intarray_item:Nn} expands the next, until being stopped +% by \cs{@@_trig_large_auxiii:w} using \cs{exp_stop_f:}. Once all +% these blocks are unpacked, the \cs{exp_stop_f:} and $0$ to $7$ +% digits are removed by \cs[no-index]{use_none:n\ldots{}n}. +% Finally, \cs{@@_trig_large_auxii:w} packs $64$ digits (there are +% between $65$ and $72$ at this point) into groups of~$4$ and the +% \texttt{auxv} auxiliary is called. % \begin{macrocode} \cs_new:Npn \@@_trig_large:ww #1, #2#3#4#5#6; { - \exp_after:wN \@@_trig_large_auxi:wwwwww - \int_value:w \@@_int_eval:w (#1 - 32) / 64 \exp_after:wN , + \exp_after:wN \@@_trig_large_auxi:w \int_value:w \@@_int_eval:w (#1 - 4) / 8 \exp_after:wN , - \int_value:w #1 \@@_trig_inverse_two_pi: ; + \int_value:w #1 , ; {#2}{#3}{#4}{#5} ; } -\cs_new:Npn \@@_trig_large_auxi:wwwwww #1, #2, #3, #4! +\cs_new:Npn \@@_trig_large_auxi:w #1, #2, + { + \exp_after:wN \exp_after:wN + \exp_after:wN \@@_trig_large_auxii:w + \cs:w + use_none:n \prg_replicate:nn { #2 - #1 * 8 } { n } + \exp_after:wN + \cs_end: + \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 1 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 2 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 3 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 4 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 5 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 6 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 7 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 8 \scan_stop: } + \exp_after:wN \@@_trig_large_auxiii:w \int_value:w + \__kernel_intarray_item:Nn \c_@@_trig_intarray + { \@@_int_eval:w #1 + 9 \scan_stop: } + \exp_stop_f: + } +\cs_new:Npn \@@_trig_large_auxii:w { - \prg_replicate:nn {#1} { \@@_trig_large_auxii:ww } - \prg_replicate:nn { #2 - #1 * 8 } - { \@@_trig_large_auxiii:wNNNNNNNN } - \prg_replicate:nn { #3 - #2 * 8 } - { \@@_trig_large_auxiv:wN } - \prg_replicate:nn { 8 } { \@@_pack_twice_four:wNNNNNNNN } - \@@_trig_large_auxv:www - ; + \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN + \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN + \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN + \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN + \@@_trig_large_auxv:www ; } -\cs_new:Npn \@@_trig_large_auxii:ww #1; #2 ~ { #1; } -\cs_new:Npn \@@_trig_large_auxiii:wNNNNNNNN - #1; #2#3#4#5#6#7#8#9 { #1; } -\cs_new:Npn \@@_trig_large_auxiv:wN #1; #2 { #1; } +\cs_new:Npn \@@_trig_large_auxiii:w 1 { \exp_stop_f: } % \end{macrocode} % \end{macro} % @@ -741,7 +828,7 @@ % } % First come the first $64$~digits of the fractional part of % $10^{\text{\texttt{\#1}}-16}/(2\pi)$, arranged in $16$~blocks -% of~$4$, and ending with a semicolon. Then some more digits of the +% of~$4$, and ending with a semicolon. Then a few more digits of the % same fractional part, ending with a semicolon, then $4$~blocks of % $4$~digits holding the significand of the original argument. % Multiply the $16$-digit significand with the $64$-digit fractional |