summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/hobby
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2013-04-13 22:56:07 +0000
committerKarl Berry <karl@freefriends.org>2013-04-13 22:56:07 +0000
commit658facdfe16a2d2b43c7312b9b15bebbf3c89d8e (patch)
tree6b219a6bd62fa7eda6d3aa87fccf509cc3fc7191 /Master/texmf-dist/source/latex/hobby
parent5ffaf0fed7a947071a4ad491d01164a10e97b7ed (diff)
hobby (13apr13)
git-svn-id: svn://tug.org/texlive/trunk@29895 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/hobby')
-rw-r--r--Master/texmf-dist/source/latex/hobby/hobby.dtx2120
1 files changed, 1619 insertions, 501 deletions
diff --git a/Master/texmf-dist/source/latex/hobby/hobby.dtx b/Master/texmf-dist/source/latex/hobby/hobby.dtx
index 9815d005536..c41e8f8d9fc 100644
--- a/Master/texmf-dist/source/latex/hobby/hobby.dtx
+++ b/Master/texmf-dist/source/latex/hobby/hobby.dtx
@@ -110,7 +110,7 @@ and the derived files hobby.code.tex
%</driver>
% \fi
%
-% \CheckSum{1767}
+% \CheckSum{3002}
%
% \CharacterTable
% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
@@ -157,6 +157,8 @@ and the derived files hobby.code.tex
%
% \begin{macrocode}
\cs_generate_variant:Nn \fp_set:Nn {Nx}
+\cs_generate_variant:Nn \tl_if_eq:nnTF {VnTF}
+\cs_generate_variant:Nn \tl_if_eq:nnTF {xnTF}
% \end{macrocode}
%
% \subsubsection{Initialisation}
@@ -179,21 +181,21 @@ and the derived files hobby.code.tex
%
% Now we define our objects for use in generating the path.
%
-% \begin{function}{\l_hobby_closed_bool}
+% \begin{macro}{\l_hobby_closed_bool}
% \Verb+\l_hobby_closed_bool+ is \Verb+true+ if the path is closed.
% \begin{macrocode}
\bool_new:N \l_hobby_closed_bool
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_disjoint_bool}
+% \begin{macro}{\l_hobby_disjoint_bool}
% \Verb+\l_hobby_disjoint_bool+ is \Verb+true+ if the path should start with a \Verb+moveto+ command.
% \begin{macrocode}
\bool_new:N \l_hobby_disjoint_bool
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_points_array}
+% \begin{macro}{\l_hobby_points_array}
% \Verb+\l_hobby_points_array+ is an array holding the specified points on the path.
% In the \LaTeX3 code, a ``point'' is a token list of the form \Verb+x = <number>, y = <number>+.
% This gives us the greatest flexibility in passing points back and forth between the \LaTeX3 code and any calling code.
@@ -202,95 +204,102 @@ and the derived files hobby.code.tex
% \begin{macrocode}
\array_new:N \l_hobby_points_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_points_x_array}
+% \begin{macro}{\l_hobby_points_x_array}
% \Verb+\l_hobby_points_x_array+ is an array holding the \(x\)--{}coordinates of the specified points.
% \begin{macrocode}
\array_new:N \l_hobby_points_x_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_points_y_array}
+% \begin{macro}{\l_hobby_points_y_array}
% \Verb+\l_hobby_points_y_array+ is an array holding the \(y\)--{}coordinates of the specified points.
% \begin{macrocode}
\array_new:N \l_hobby_points_y_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_angles_array}
+% \begin{macro}{\l_hobby_actions_array}
+% \Verb+\l_hobby_actions_array+ is an array holding the (encoded) action to be taken out on the segment of the path ending at that point.
+% \begin{macrocode}
+\array_new:N \l_hobby_actions_array
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\l_hobby_angles_array}
% \Verb+\l_hobby_angles_array+ is an array holding the angles of the lines between the points.
% Specifically, the angle indexed by \(k\) is the angle in radians of the line from \(z_k\) to \(z_{k+1}\).
% \begin{macrocode}
\array_new:N \l_hobby_angles_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_distances_array}
+% \begin{macro}{\l_hobby_distances_array}
% \Verb+\l_hobby_distances_array+ is an array holding the distances between the points.
% Specifically, the distance indexed by \(k\), which we will write as \(d_k\), is the length of the line from \(z_k\) to \(z_{k+1}\).
% \begin{macrocode}
\array_new:N \l_hobby_distances_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_tension_out_array}
+% \begin{macro}{\l_hobby_tension_out_array}
% \Verb+\l_hobby_tension_out_array+ is an array holding the tension for the path as it leaves each point.
% This is a parameter that controls how much the curve ``flexes'' as it leaves the point.
% In the following, this will be written \(\tau_k\).
% \begin{macrocode}
\array_new:N \l_hobby_tension_out_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_tension_in_array}
+% \begin{macro}{\l_hobby_tension_in_array}
% \Verb+\l_hobby_tension_in_array+ is an array holding the tension for the path as it arrives at each point.
% This is a parameter that controls how much the curve ``flexes'' as it gets to the point.
% In the following, this will be written \(\overline{\tau}_k\).
% \begin{macrocode}
\array_new:N \l_hobby_tension_in_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_matrix_a_array}
+% \begin{macro}{\l_hobby_matrix_a_array}
% \Verb+\l_hobby_matrix_a_array+ is an array holding the subdiagonal of the linear system that has to be solved to find the angles of the control points.
% In the following, this will be denoted by \(A_i\).
% The first index is \(1\).
% \begin{macrocode}
\array_new:N \l_hobby_matrix_a_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_matrix_b_array}
+% \begin{macro}{\l_hobby_matrix_b_array}
% \Verb+\l_hobby_matrix_b_array+ is an array holding the diagonal of the linear system that has to be solved to find the angles of the control points.
% In the following, this will be denoted by \(B_i\).
% The first index is \(0\).
% \begin{macrocode}
\array_new:N \l_hobby_matrix_b_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_matrix_c_array}
+% \begin{macro}{\l_hobby_matrix_c_array}
% \Verb+\l_hobby_matrix_c_array+ is an array holding the superdiagonal of the linear system that has to be solved to find the angles of the control points.
% In the following, this will be denoted by \(C_i\).
% The first index is \(0\).
% \begin{macrocode}
\array_new:N \l_hobby_matrix_c_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_matrix_d_array}
+% \begin{macro}{\l_hobby_matrix_d_array}
% \Verb+\l_hobby_matrix_d_array+ is an array holding the target vector of the linear system that has to be solved to find the angles of the control points.
% In the following, this will be denoted by \(D_i\).
% The first index is \(1\).
% \begin{macrocode}
\array_new:N \l_hobby_matrix_d_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_vector_u_array}
+% \begin{macro}{\l_hobby_vector_u_array}
% \Verb+\l_hobby_vector_u_array+ is an array holding the perturbation of the linear system for closed paths.
-% The coefficient matrix for a \emph{open} path is tridiagonal and that means that Gaussian elimination runs faster than expected (\(O(n)\) instead of \(O(n^3)\)).
+% The coefficient matrix for an \emph{open} path is tridiagonal and that means that Gaussian elimination runs faster than expected (\(O(n)\) instead of \(O(n^3)\)).
% The matrix for a closed path is not tridiagonal but is not far off.
% It can be solved by perturbing it to a tridiagonal matrix and then modifying the result.
% This array represents a utility vector in that perturbation.
@@ -299,138 +308,138 @@ and the derived files hobby.code.tex
% \begin{macrocode}
\array_new:N \l_hobby_vector_u_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_excess_angle_array}
+% \begin{macro}{\l_hobby_excess_angle_array}
% \Verb+\l_hobby_excess_angle_array+ is an array that allows the user to say that the algorithm should add a multiple of \(2 \pi\) to the angle differences.
% This is because these angles are wrapped to the interval \((-\pi,\pi]\) but the wrapping might go wrong near the end points due to computation accuracy.
% The first index is \(1\).
% \begin{macrocode}
\array_new:N \l_hobby_excess_angle_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_psi_array}
+% \begin{macro}{\l_hobby_psi_array}
% \Verb+\l_hobby_psi_array+ is an array holding the difference of the angles of the lines entering and exiting a point.
% That is, \(\psi_k\) is the angle between the lines joining \(z_k\) to \(z_{k-1}\) and \(z_{k+1}\).
% The first index is \(1\).
% \begin{macrocode}
\array_new:N \l_hobby_psi_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_theta_array}
+% \begin{macro}{\l_hobby_theta_array}
% \Verb+\l_hobby_theta_array+ is an array holding the angles of the outgoing control points for the generated path.
% These are measured relative to the line joining the point to the next point on the path.
% The first index is \(0\).
% \begin{macrocode}
\array_new:N \l_hobby_theta_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_phi_array}
+% \begin{macro}{\l_hobby_phi_array}
% \Verb+\l_hobby_phi_array+ is an array holding the angles of the incoming control points for the generated path.
% These are measured relative to the line joining the point to the previous point on the path.
% The first index is \(1\).
% \begin{macrocode}
\array_new:N \l_hobby_phi_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_sigma_array}
+% \begin{macro}{\l_hobby_sigma_array}
% \Verb+\l_hobby_sigma_array+ is an array holding the lengths of the outgoing control points for the generated path.
% The units are such that the length of the line to the next specified point is one unit.
% \begin{macrocode}
\array_new:N \l_hobby_sigma_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_rho_array}
+% \begin{macro}{\l_hobby_rho_array}
% \Verb+\l_hobby_rho_array+ is an array holding the lengths of the incoming control points for the generated path.
% The units are such that the length of the line to the previous specified point is one unit.
% \begin{macrocode}
\array_new:N \l_hobby_rho_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_controla_array}
+% \begin{macro}{\l_hobby_controla_array}
% \Verb+\l_hobby_controla_array+ is an array holding the coordinates of the first control points on the curves.
% The format is the same as for \Verb+\l_hobby_points_array+.
% \begin{macrocode}
\array_new:N \l_hobby_controla_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_controlb_array}
+% \begin{macro}{\l_hobby_controlb_array}
% \Verb+\l_hobby_controlb_array+ is an array holding the coordinates of the second control points on the curves.
% The format is the same as for \Verb+\l_hobby_points_array+.
% \begin{macrocode}
\array_new:N \l_hobby_controlb_array
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_matrix_v_fp}
+% \begin{macro}{\l_hobby_matrix_v_fp}
% \Verb+\l_hobby_matrix_v_fp+ is a number which is used when doing the perturbation of the solution of the linear system for a closed curve.
% There is actually a vector, \(v\), that this corresponds to but that vector only has one component that needs computation.
% \begin{macrocode}
\fp_new:N \l_hobby_matrix_v_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_tempa_fp}
+% \begin{macro}{\l_hobby_tempa_fp}
% \Verb+\l_hobby_tempa_fp+ is a temporary variable of type \Verb+fp+.
% \begin{macrocode}
\fp_new:N \l_hobby_tempa_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_tempb_fp}
+% \begin{macro}{\l_hobby_tempb_fp}
% \Verb+\l_hobby_tempb_fp+ is a temporary variable of type \Verb+fp+.
% \begin{macrocode}
\fp_new:N \l_hobby_tempb_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_tempc_fp}
+% \begin{macro}{\l_hobby_tempc_fp}
% \Verb+\l_hobby_tempc_fp+ is a temporary variable of type \Verb+fp+.
% \begin{macrocode}
\fp_new:N \l_hobby_tempc_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_tempd_fp}
+% \begin{macro}{\l_hobby_tempd_fp}
% \Verb+\l_hobby_tempd_fp+ is a temporary variable of type \Verb+fp+.
% \begin{macrocode}
\fp_new:N \l_hobby_tempd_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_temps_fp}
+% \begin{macro}{\l_hobby_temps_fp}
% \Verb+\l_hobby_temps_fp+ is a temporary variable of type \Verb+fp+.
% \begin{macrocode}
\fp_new:N \l_hobby_temps_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_in_curl_fp}
+% \begin{macro}{\l_hobby_in_curl_fp}
% \Verb+\l_hobby_in_curl_fp+ is the ``curl'' at the end of an open path.
% This is used if the angle at the end is not specified.
% \begin{macrocode}
\fp_new:N \l_hobby_in_curl_fp
\fp_set:Nn \l_hobby_in_curl_fp {1}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_out_curl_fp}
+% \begin{macro}{\l_hobby_out_curl_fp}
% \Verb+\l_hobby_out_curl_fp+ is the ``curl'' at the start of an open path.
% This is used if the angle at the start is not specified.
% \begin{macrocode}
\fp_new:N \l_hobby_out_curl_fp
\fp_set:Nn \l_hobby_out_curl_fp {1}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_in_angle_fp}
+% \begin{macro}{\l_hobby_in_angle_fp}
% \Verb+\l_hobby_in_angle_fp+ is the angle at the end of an open path.
% If this is not specified, it will be computed automatically.
% It is set to \Verb+\c_undefined_fp+ to allow easy detection of when it has been specified.
@@ -438,9 +447,9 @@ and the derived files hobby.code.tex
\fp_new:N \l_hobby_in_angle_fp
\fp_set_eq:NN \l_hobby_in_angle_fp \c_undefined_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_out_angle_fp}
+% \begin{macro}{\l_hobby_out_angle_fp}
% \Verb+\l_hobby_out_angle_fp+ is the angle at the start of an open path.
% If this is not specified, it will be computed automatically.
% It is set to \Verb+\c_undefined_fp+ to allow easy detection of when it has been specified.
@@ -448,16 +457,22 @@ and the derived files hobby.code.tex
\fp_new:N \l_hobby_out_angle_fp
\fp_set_eq:NN \l_hobby_out_angle_fp \c_undefined_fp
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\l_hobby_npoints_int}
+% \begin{macro}{\l_hobby_npoints_int}
% \Verb+\l_hobby_npoints_int+ is one less than the number of points on the curve.
% As our list of points starts at \(0\), this is the index of the last point.
% In the algorithm for a closed curve, some points are repeated whereupon this is incremented so that it is always the index of the last point.
% \begin{macrocode}
\int_new:N \l_hobby_npoints_int
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\l_hobby_draw_int}
+% \begin{macrocode}
+\int_new:N \l_hobby_draw_int
+% \end{macrocode}
+% \end{macro}
%
% A ``point'' is a key-value list setting the x-value, the y-value, and the tensions at that point.
% Using keys makes it easier to pass points from the algorithm code to the calling code and vice versa without either knowing too much about the other.
@@ -468,34 +483,78 @@ and the derived files hobby.code.tex
tension~out .fp_set:N = \l_hobby_tempc_fp,
tension~in .fp_set:N = \l_hobby_tempd_fp,
excess~angle .fp_set:N = \l_hobby_temps_fp,
+ break .tl_set:N = \l_tmpb_tl,
+ blank .tl_set:N = \l_tmpa_tl,
tension .meta:n = { tension~out=#1, tension~in=#1 },
+ break .default:n = false,
+ blank .default:n = false,
+ invert~soft~blanks .choice:,
+ invert~soft~blanks / true .code:n = {
+ \int_gset:Nn \l_hobby_draw_int {0}
+ },
+ invert~soft~blanks / false .code:n = {
+ \int_gset:Nn \l_hobby_draw_int {1}
+ },
+ invert~soft~blanks .default:n = true,
tension~out .default:n = 1,
tension~in .default:n = 1,
excess~angle .default:n = 0,
- in~angle .fp_set:N = \l_hobby_in_angle_fp,
- out~angle .fp_set:N = \l_hobby_out_angle_fp,
- in~curl .fp_set:N = \l_hobby_in_curl_fp,
- out~curl .fp_set:N = \l_hobby_out_curl_fp,
- closed .bool_set:N = \l_hobby_closed_bool,
+ in~angle .fp_gset:N = \l_hobby_in_angle_fp,
+ out~angle .fp_gset:N = \l_hobby_out_angle_fp,
+ in~curl .fp_gset:N = \l_hobby_in_curl_fp,
+ out~curl .fp_gset:N = \l_hobby_out_curl_fp,
+ closed .bool_gset:N = \l_hobby_closed_bool,
closed .default:n = true,
- disjoint .bool_set:N = \l_hobby_disjoint_bool,
+ disjoint .bool_gset:N = \l_hobby_disjoint_bool,
disjoint .default:n = true,
+ break~default .code:n = {
+ \keys_define:nn { hobby / read in all }
+ {
+ break .default:n = #1
+ }
+ },
+ blank~default .code:n = {
+ \keys_define:nn { hobby / read in all }
+ {
+ blank .default:n = #1
+ }
+ },
}
% \end{macrocode}
-% There are certain other parameters than can be set for a give curve.
+% There are certain other parameters that can be set for a given curve.
% \begin{macrocode}
\keys_define:nn { hobby / read in params} {
- in~angle .fp_set:N = \l_hobby_in_angle_fp,
- out~angle .fp_set:N = \l_hobby_out_angle_fp,
- in~curl .fp_set:N = \l_hobby_in_curl_fp,
- out~curl .fp_set:N = \l_hobby_out_curl_fp,
- closed .bool_set:N = \l_hobby_closed_bool,
+ in~angle .fp_gset:N = \l_hobby_in_angle_fp,
+ out~angle .fp_gset:N = \l_hobby_out_angle_fp,
+ in~curl .fp_gset:N = \l_hobby_in_curl_fp,
+ out~curl .fp_gset:N = \l_hobby_out_curl_fp,
+ closed .bool_gset:N = \l_hobby_closed_bool,
closed .default:n = true,
- disjoint .bool_set:N = \l_hobby_disjoint_bool,
+ disjoint .bool_gset:N = \l_hobby_disjoint_bool,
disjoint .default:n = true,
+ break~default .code:n = {
+ \keys_define:nn { hobby / read in all }
+ {
+ break .default:n = #1
+ }
+ },
+ blank~default .code:n = {
+ \keys_define:nn { hobby / read in all }
+ {
+ blank .default:n = #1
+ }
+ },
+ invert~soft~blanks .choice:,
+ invert~soft~blanks / true .code:n = {
+ \int_gset:Nn \l_hobby_draw_int {0}
+ },
+ invert~soft~blanks / false .code:n = {
+ \int_gset:Nn \l_hobby_draw_int {1}
+ },
+ invert~soft~blanks .default:n = true,
}
% \end{macrocode}
-% \begin{function}{\hobby_distangle:n}
+% \begin{macro}{\hobby_distangle:n}
% Computes the distance and angle between successive points.
% The argument given is the index of the current point.
% Assumptions: the points are in \Verb+\l_hobby_points_x_array+ and \Verb+\l_hobby_points_y_array+ and the index of the last point is \Verb+\l_hobby_npoints_int+.
@@ -516,10 +575,10 @@ and the derived files hobby.code.tex
\array_push:Nx \l_hobby_distances_array {\fp_to_tl:N \l_hobby_tempd_fp}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
%
-% \begin{function}{\fp_atantwo:NNN}
+% \begin{macro}{\fp_atantwo:NNN}
% Computes the angle of the point specified by the latter two arguments, storing the answer in the first.
% The inverse tangent function is not yet implemented in \LaTeX3 so for now we use the \Verb+pgfmath+ function.
% When this is implemented in \LaTeX3 this should be replaced.
@@ -529,9 +588,9 @@ and the derived files hobby.code.tex
\exp_args:NNo \fp_set:Nn #1 {\pgfmathresult}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\fp_veclen:NVV}
+% \begin{macro}{\fp_veclen:NVV}
% Computes the length of the vector specified by the latter two arguments, storing the answer in the first.
% \begin{macrocode}
\cs_new:Nn \fp_veclen:Nnn {
@@ -539,9 +598,9 @@ and the derived files hobby.code.tex
}
\cs_generate_variant:Nn \fp_veclen:Nnn {NVV}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby_ctrllen:Nnn}
+% \begin{macro}{\hobby_ctrllen:Nnn}
% Computes the length of the control point vector from the two angles, storing the answer in the first argument given.
% \begin{macrocode}
\cs_new:Nn \hobby_ctrllen:Nnn {
@@ -553,9 +612,9 @@ and the derived files hobby.code.tex
}
\cs_generate_variant:Nn \hobby_ctrllen:Nnn {NVV}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby_append_point_copy:n}
+% \begin{macro}{\hobby_append_point_copy:n}
% This function adds a copy of the point (numbered by its argument) to the end of the list of points, copying all the relevant data (coordinates, tension, etc.).
%
% Originally from Bruno Le Foch on TeX-SX.
@@ -568,13 +627,14 @@ and the derived files hobby.code.tex
\hobby_append_point_copy_aux:Nn \l_hobby_tension_in_array {#1}
\hobby_append_point_copy_aux:Nn \l_hobby_tension_out_array {#1}
\hobby_append_point_copy_aux:Nn \l_hobby_excess_angle_array {#1}
+ \hobby_append_point_copy_aux:Nn \l_hobby_actions_array {#1}
}
\cs_new_protected:Npn \hobby_append_point_copy_aux:Nn #1#2
- { \array_push:Nx #1 { \array_get:Nn #1 {#2} } }
+ { \array_gpush:Nx #1 { \array_get:Nn #1 {#2} } }
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby_genpath:}
+% \begin{macro}{\hobby_gen_path:}
% This is the curve generation function.
% We assume at the start that we have an array containing all the points that the curve must go through, and the various curve parameters have been initialised.
% So these must be set up by a wrapper function which then calls this one.
@@ -590,10 +650,11 @@ and the derived files hobby.code.tex
% \item \Verb+\l_hobby_in_angle_fp+
% \item \Verb+\l_hobby_out_angle_fp+
% \item \Verb+\l_hobby_closed_bool+
+% \item \Verb+\l_hobby_actions_array+
% \end{enumerate}
%
% \begin{macrocode}
-\cs_new:Nn \hobby_genpath:
+\cs_new:Nn \hobby_gen_path:
{
% \end{macrocode}
% For much of the time, we can pretend that a closed path is the same as an open path.
@@ -639,20 +700,109 @@ and the derived files hobby.code.tex
%
% Set \Verb+\l_hobby_npoints_int+ to the number of points (minus one).
% \begin{macrocode}
-\int_set:Nn \l_hobby_npoints_int {\array_length:N \l_hobby_points_y_array}
+\int_gset:Nn \l_hobby_npoints_int {\array_length:N \l_hobby_points_y_array}
+% \end{macrocode}
+% At this point, we need to decide what to do.
+% This will depend on whether we have any intermediate points.
+% \begin{macrocode}
+\int_compare:nNnTF {\l_hobby_npoints_int} = {0} {
+% \end{macrocode}
+% Only one point, do nothing
+% \begin{macrocode}
+}
+{
+ \int_compare:nNnTF {\l_hobby_npoints_int} = {1} {
+% \end{macrocode}
+% Only two points, skip processing.
+% Just need to set the incoming and outgoing angles
+% \begin{macrocode}
+\hobby_distangle:n {0}
+\fp_if_undefined:NF \l_hobby_out_angle_fp
+{
+ \fp_set:Nn \l_hobby_tempa_fp { \l_hobby_out_angle_fp
+ - \array_get:Nn \l_hobby_angles_array {0} }
+% \end{macrocode}
+% We want to ensure that these angles lie in the range \((-\pi,\pi]\).
+% So if the angle is bigger than \(\pi\), we subtract \(2 \pi\).
+% (It shouldn't be that we can get bigger than \(3 \pi\) - check this)
+% \begin{macrocode}
+ \fp_compare:nT {\l_hobby_tempa_fp > \c_pi_fp }
+ {
+ \fp_sub:Nn \l_hobby_tempa_fp {2 * \c_pi_fp}
+ }
+% \end{macrocode}
+% Similarly, we check to see if the angle is less than \(-\pi\).
+% \begin{macrocode}
+ \fp_compare:nT {\l_hobby_tempa_fp < -\c_pi_fp }
+ {
+ \fp_add:Nn \l_hobby_tempa_fp {2 * \c_pi_fp}
+ }
+ \array_put:Nnx \l_hobby_theta_array {0} {\fp_to_tl:N \l_hobby_tempa_fp}
+ \fp_if_undefined:NT \l_hobby_in_angle_fp
+ {
+%^^A \fp_mul:Nn \l_hobby_tempa_fp {-1}
+ \array_put:Nnx \l_hobby_phi_array {1}{ \fp_to_tl:N \l_hobby_tempa_fp}
+ }
+ }
+\fp_if_undefined:NTF \l_hobby_in_angle_fp
+{
+ \fp_if_undefined:NT \l_hobby_out_angle_fp
+ {
+ \array_put:Nnx \l_hobby_phi_array {1} {0}
+ \array_put:Nnx \l_hobby_theta_array {0} {0}
+ }
+}
+{
+ \fp_set:Nn \l_hobby_tempa_fp { - \l_hobby_in_angle_fp + \c_pi_fp
++ (\array_get:Nn \l_hobby_angles_array {0})}
+ \fp_compare:nT {\l_hobby_tempa_fp > \c_pi_fp }
+ {
+ \fp_sub:Nn \l_hobby_tempa_fp {2 * \c_pi_fp}
+ }
+ \fp_compare:nT {\l_hobby_tempa_fp < -\c_pi_fp }
+ {
+ \fp_add:Nn \l_hobby_tempa_fp {2 * \c_pi_fp}
+ }
+
+ \array_put:Nnx \l_hobby_phi_array {1}
+ {\fp_to_tl:N \l_hobby_tempa_fp}
+ \fp_if_undefined:NT \l_hobby_out_angle_fp
+ {
+%^^A \fp_mul:Nn \l_hobby_tempa_fp {-1}
+ \array_put:Nnx \l_hobby_theta_array {0}{ \fp_to_tl:N \l_hobby_tempa_fp}
+ }
+}
+
+ }
+ {
+% \end{macrocode}
+% Got enough points, go on with processing
+% \begin{macrocode}
+ \hobby_compute_path:
+ }
+ \hobby_build_path:
+}
+}
% \end{macrocode}
+% \end{macro}
%
+%
+% \begin{macro}{\hobby_compute_path:}
+% This is the path builder where we have enough points to run the algorithm.
+% \begin{macrocode}
+\cs_new:Nn \hobby_compute_path:
+{
+% \end{macrocode}
% Our first step is to go through the list of points and compute the distances and angles between successive points.
% Thus \(d_i\) is the distance from \(z_i\) to \(z_{i+1}\) and the angle is the angle of the line from \(z_i\) to \(z_{i+1}\).
-
% \begin{macrocode}
-\prg_stepwise_function:nnnN {0} {1} {\l_hobby_npoints_int - 1} \hobby_distangle:n
+\int_step_function:nnnN {0} {1} {\l_hobby_npoints_int - 1} \hobby_distangle:n
% \end{macrocode}
%
% For the majority of the code, we're only really interested in the differences of the angles.
% So for each internal point we compute the differences in the angles.
% \begin{macrocode}
- \prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
+ \int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
\fp_set:Nx \l_hobby_tempa_fp {
\array_get:Nn \l_hobby_angles_array {##1}
- \array_get:Nn \l_hobby_angles_array {##1 - 1}}
@@ -699,7 +849,7 @@ and the derived files hobby.code.tex
% We start with the subdiagonal.
% This is indexed from \(1\) to \(n-1\).
% \begin{macrocode}
- \prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
+ \int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
\array_put:Nnx \l_hobby_matrix_a_array {##1} {\fp_to_tl:n {
\array_get:Nn \l_hobby_tension_in_array {##1}^2
* \array_get:Nn \l_hobby_distances_array {##1}
@@ -711,7 +861,7 @@ and the derived files hobby.code.tex
% Next, we attack main diagonal.
% We might need to adjust the first and last terms, but we'll do that in a minute.
% \begin{macrocode}
- \prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
+ \int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
\array_put:Nnx \l_hobby_matrix_b_array {##1} {\fp_to_tl:n
{(3 * (\array_get:Nn \l_hobby_tension_in_array {##1 + 1}) - 1) *
@@ -729,7 +879,7 @@ and the derived files hobby.code.tex
%
% Next, the superdiagonal.
% \begin{macrocode}
- \prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 2} {
+ \int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 2} {
\array_put:Nnx \l_hobby_matrix_c_array {##1} {\fp_to_tl:n
{(\array_get:Nn \l_hobby_tension_in_array {##1})^2
@@ -742,7 +892,7 @@ and the derived files hobby.code.tex
%
% Lastly (before the adjustments), the target vector.
% \begin{macrocode}
- \prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 2} {
+ \int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 2} {
\array_put:Nnx \l_hobby_matrix_d_array {##1} {\fp_to_tl:n
{
@@ -798,7 +948,7 @@ and the derived files hobby.code.tex
% \begin{macrocode}
\array_put:Nnn \l_hobby_vector_u_array {0} {1}
\array_put:Nnn \l_hobby_vector_u_array {\l_hobby_npoints_int - 1} {1}
- \prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 2} {
+ \int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 2} {
\array_put:Nnn \l_hobby_vector_u_array {##1} {0}
}
% \end{macrocode}
@@ -937,7 +1087,7 @@ and the derived files hobby.code.tex
% Now we have the tridiagonal matrix in place, we implement the solution.
% We start with the forward eliminations.
% \begin{macrocode}
-\prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
+\int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
\array_put:Nnx \l_hobby_matrix_b_array {##1} {\fp_to_tl:n {
(\array_get:Nn \l_hobby_matrix_b_array {##1 - 1})
@@ -997,7 +1147,7 @@ and the derived files hobby.code.tex
% \end{macrocode}
% Now we iterate over the vectors, doing the remaining back substitutions.
% \begin{macrocode}
-\prg_stepwise_inline:nnnn {\l_hobby_npoints_int - 2} {-1} {0} {
+\int_step_inline:nnnn {\l_hobby_npoints_int - 2} {-1} {0} {
\array_put:Nnx \l_hobby_theta_array {##1} {\fp_to_tl:n {
( (\array_get:Nn \l_hobby_matrix_d_array {##1})
@@ -1010,7 +1160,7 @@ and the derived files hobby.code.tex
% \end{macrocode}
% On a closed path, we also need to work out \(M^{-1} u\).
% \begin{macrocode}
-\prg_stepwise_inline:nnnn {\l_hobby_npoints_int - 2} {-1} {0} {
+\int_step_inline:nnnn {\l_hobby_npoints_int - 2} {-1} {0} {
\array_put:Nnx \l_hobby_vector_u_array {##1} {\fp_to_tl:n
{
((\array_get:Nn \l_hobby_vector_u_array {##1})
@@ -1035,7 +1185,7 @@ and the derived files hobby.code.tex
+ 1
)}
-\prg_stepwise_inline:nnnn {0} {1} {\l_hobby_npoints_int - 1} {
+\int_step_inline:nnnn {0} {1} {\l_hobby_npoints_int - 1} {
\array_put:Nnx \l_hobby_theta_array {##1} {\fp_to_tl:n {
(\array_get:Nn \l_hobby_theta_array {##1})
@@ -1049,7 +1199,7 @@ and the derived files hobby.code.tex
% Now that we have computed the \(\theta_i\)s, we can quickly compute the \(\phi_i\)s.
%
% \begin{macrocode}
-\prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
+\int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int - 1} {
\array_put:Nnx \l_hobby_phi_array {##1} {\fp_to_tl:n {
- (\array_get:Nn \l_hobby_psi_array {##1})
@@ -1063,7 +1213,7 @@ and the derived files hobby.code.tex
% Cheaply, of course.
% \begin{macrocode}
\bool_if:NTF \l_hobby_closed_bool {
- \int_decr:N \l_hobby_npoints_int
+ \int_gdecr:N \l_hobby_npoints_int
}{
% \end{macrocode}
% If \(\phi_n\) was not given, we compute it from \(\theta_{n-1}\).
@@ -1087,11 +1237,20 @@ and the derived files hobby.code.tex
}}
}
}
+}
% \end{macrocode}
+% \end{macro}
%
+%
+% \begin{macro}{\hobby_build_path:}
+% Once we've computed the angles, we build the actual path.
+% \begin{macrocode}
+\cs_new:Nn \hobby_build_path:
+{
+% \end{macrocode}
% Next task is to compute the \(\rho_i\) and \(\sigma_i\).
% \begin{macrocode}
-\prg_stepwise_inline:nnnn {0} {1} {\l_hobby_npoints_int - 1} {
+\int_step_inline:nnnn {0} {1} {\l_hobby_npoints_int - 1} {
\fp_set:Nn \l_hobby_tempa_fp {\array_get:Nn \l_hobby_theta_array {##1}}
@@ -1109,9 +1268,8 @@ and the derived files hobby.code.tex
% \end{macrocode}
% Lastly, we generate the coordinates of the control points.
% \begin{macrocode}
-\prg_stepwise_inline:nnnn {0} {1} {\l_hobby_npoints_int - 1} {
-
-\array_put:Nnx \l_hobby_controla_array {##1 + 1} {x = \fp_eval:n {
+\int_step_inline:nnnn {0} {1} {\l_hobby_npoints_int - 1} {
+\array_gput:Nnx \l_hobby_controla_array {##1 + 1} {x = \fp_eval:n {
(\array_get:Nn \l_hobby_points_x_array {##1})
+
(\array_get:Nn \l_hobby_distances_array {##1}) *
@@ -1131,9 +1289,8 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
}
}
-
-\prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int} {
- \array_put:Nnx \l_hobby_controlb_array {##1} {
+\int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int} {
+ \array_gput:Nnx \l_hobby_controlb_array {##1} {
x = \fp_eval:n {\array_get:Nn \l_hobby_points_x_array {##1}
- (\array_get:Nn \l_hobby_distances_array {##1 - 1})
* (\array_get:Nn \l_hobby_sigma_array {##1})
@@ -1149,46 +1306,19 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobbyinit}
+% \begin{macro}{\hobbyinit}
% Initialise the settings for Hobby's algorithm
% \begin{macrocode}
\NewDocumentCommand \hobbyinit {m m m} {
-\hobby_set_cmds:nnn#1#2#3
-\array_clear:N \l_hobby_points_array
-\array_clear:N \l_hobby_points_x_array
-\array_clear:N \l_hobby_points_y_array
-\array_clear:N \l_hobby_angles_array
-\array_clear:N \l_hobby_distances_array
-\array_clear:N \l_hobby_tension_out_array
-\array_clear:N \l_hobby_tension_in_array
-\array_clear:N \l_hobby_excess_angle_array
-\array_clear:N \l_hobby_matrix_a_array
-\array_clear:N \l_hobby_matrix_b_array
-\array_clear:N \l_hobby_matrix_c_array
-\array_clear:N \l_hobby_matrix_d_array
-\array_clear:N \l_hobby_vector_u_array
-\array_clear:N \l_hobby_psi_array
-\array_clear:N \l_hobby_theta_array
-\array_clear:N \l_hobby_phi_array
-\array_clear:N \l_hobby_sigma_array
-\array_clear:N \l_hobby_rho_array
-\array_clear:N \l_hobby_controla_array
-\array_clear:N \l_hobby_controlb_array
-\bool_set_false:N \l_hobby_closed_bool
-\bool_set_false:N \l_hobby_disjoint_bool
-
- \int_set:Nn \l_hobby_npoints_int {-1}
- \fp_set_eq:NN \l_hobby_in_angle_fp \c_undefined_fp
- \fp_set_eq:NN \l_hobby_out_angle_fp \c_undefined_fp
- \fp_set_eq:NN \l_hobby_in_curl_fp \c_one_fp
- \fp_set_eq:NN \l_hobby_out_curl_fp \c_one_fp
+ \hobby_set_cmds:nnn#1#2#3
+ \hobby_clear_path:
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobbyaddpoint}
+% \begin{macro}{\hobbyaddpoint}
% This adds a point, possibly with tensions, to the current stack.
% \begin{macrocode}
\NewDocumentCommand \hobbyaddpoint { m } {
@@ -1197,21 +1327,34 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
tension~out,
tension~in,
excess~angle,
+ blank,
+ break,
#1
}
- \array_push:Nx \l_hobby_tension_out_array {\fp_to_tl:N \l_hobby_tempc_fp}
- \array_push:Nx \l_hobby_tension_in_array {\fp_to_tl:N \l_hobby_tempd_fp}
- \array_push:Nx \l_hobby_excess_angle_array {\fp_to_tl:N \l_hobby_temps_fp}
- \array_push:Nx \l_hobby_points_array {
+ \tl_if_eq:VnTF {\l_tmpa_tl} {true}
+ {\tl_set:Nn \l_tmpa_tl {2}}
+ {
+ \tl_if_eq:VnTF {\l_tmpa_tl} {soft}
+ {\tl_set:Nn \l_tmpa_tl {0}}
+ {\tl_set:Nn \l_tmpa_tl {1}}
+ }
+ \tl_if_eq:VnTF {\l_tmpb_tl} {true}
+ {\tl_put_right:Nn \l_tmpa_tl {1}}
+ {\tl_put_right:Nn \l_tmpa_tl {0}}
+ \array_gpush:Nx \l_hobby_actions_array {\l_tmpa_tl}
+ \array_gpush:Nx \l_hobby_tension_out_array {\fp_to_tl:N \l_hobby_tempc_fp}
+ \array_gpush:Nx \l_hobby_tension_in_array {\fp_to_tl:N \l_hobby_tempd_fp}
+ \array_gpush:Nx \l_hobby_excess_angle_array {\fp_to_tl:N \l_hobby_temps_fp}
+ \array_gpush:Nx \l_hobby_points_array {
x = \fp_use:N \l_hobby_tempa_fp,
y = \fp_use:N \l_hobby_tempb_fp }
- \array_push:Nx \l_hobby_points_x_array {\fp_to_tl:N \l_hobby_tempa_fp}
- \array_push:Nx \l_hobby_points_y_array {\fp_to_tl:N \l_hobby_tempb_fp}
+ \array_gpush:Nx \l_hobby_points_x_array {\fp_to_tl:N \l_hobby_tempa_fp}
+ \array_gpush:Nx \l_hobby_points_y_array {\fp_to_tl:N \l_hobby_tempb_fp}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobbysetparams}
+% \begin{macro}{\hobbysetparams}
% This sets the parameters for the curve.
% \begin{macrocode}
\NewDocumentCommand \hobbysetparams { m } {
@@ -1221,42 +1364,286 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby_set_cmds:nnn}
+% \begin{macro}{\hobby_set_cmds:nnn}
% The path-generation code doesn't know what to actually do with the path so the initialisation code will set some macros to do that.
% This is an auxiliary command that sets these macros.
% \begin{macrocode}
\cs_new:Nn \hobby_set_cmds:nnn {
- \cs_set_eq:NN \hobby_moveto:n #1
- \cs_set_eq:NN \hobby_curveto:nnn #2
- \cs_set_eq:NN \hobby_close:n #3
+ \cs_gset_eq:NN \hobby_moveto:n #1
+ \cs_gset_eq:NN \hobby_curveto:nnn #2
+ \cs_gset_eq:NN \hobby_close:n #3
}
% \end{macrocode}
-% \end{function}
-% \begin{function}{\hobbygenpath}
-% This is the user (well, sort of) command that generates and uses the curve.
+% \end{macro}
+%
+% \begin{macro}{\hobbygenpath}
+% This is the user (well, sort of) command that generates the curve.
% \begin{macrocode}
-\tl_new:N \l_tmpc_tl
\NewDocumentCommand \hobbygenpath { } {
- \hobby_genpath:
+ \array_if_empty:NF \l_hobby_points_array {
+ \hobby_gen_path:
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbygenifnecpath}
+% If the named path doesn't exist, it is generated and named.
+% If it does exist, we restore it.
+% Either way, we save it to the aux file.
+% \begin{macrocode}
+\NewDocumentCommand \hobbygenifnecpath { m } {
+ \tl_if_exist:cTF {g_hobby_#1_path}
+ {
+ \tl_use:c {g_hobby_#1_path}
+ }
+ {
+ \hobby_gen_path:
+ }
+ \hobby_save_path:n {#1}
+ \hobby_save_path_to_aux:x {#1}
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbygenifnecusepath}
+% If the named path doesn't exist, it is generated and named.
+% If it does exist, we restore it.
+% Either way, we save it to the aux file.
+% \begin{macrocode}
+\NewDocumentCommand \hobbygenuseifnecpath { m } {
+ \tl_if_exist:cTF {g_hobby_#1_path}
+ {
+ \tl_use:c {g_hobby_#1_path}
+ }
+ {
+ \hobby_gen_path:
+ }
+ \hobby_save_path:n {#1}
+ \hobby_save_path_to_aux:x {#1}
+ \hobby_use_path:
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbyusepath}
+% This is the user (well, sort of) command that uses the last generated curve.
+% \begin{macrocode}
+\NewDocumentCommand \hobbyusepath { m } {
+ \hobbysetparams{#1}
+ \hobby_use_path:
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbysavepath}
+% This is the user (well, sort of) command that uses the last generated curve.
+% \begin{macrocode}
+\NewDocumentCommand \hobbysavepath { m } {
+ \hobby_save_path:n {#1}
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbyrestorepath}
+% This is the user (well, sort of) command that uses the last generated curve.
+% \begin{macrocode}
+\NewDocumentCommand \hobbyrestorepath { m } {
+ \tl_if_exist:cT {g_hobby_#1_path} {
+ \tl_use:c {g_hobby_#1_path}
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbyshowpath}
+% This is the user (well, sort of) command that uses the last generated curve.
+% \begin{macrocode}
+\NewDocumentCommand \hobbyshowpath { m } {
+ \tl_if_exist:cT {g_hobby_#1_path} {
+ \tl_show:c {g_hobby_#1_path}
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbygenusepath}
+% This is the user (well, sort of) command that generates a curve and uses it.
+% \begin{macrocode}
+\NewDocumentCommand \hobbygenusepath { } {
+ \array_if_empty:NF \l_hobby_points_array {
+ \hobby_gen_path:
+ \hobby_use_path:
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobbyclearpath}
+% This is the user (well, sort of) command that generates a curve and uses it.
+% \begin{macrocode}
+\NewDocumentCommand \hobbyclearpath { } {
+ \hobby_clear_path:
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby_use_path:}
+% This is the command that uses the curve.
+% As the curve data is stored globally, the same data can be reused by calling this function more than once without calling the generating function.
+% \begin{macrocode}
+\tl_new:N \l_tmpc_tl
+\cs_new:Nn \hobby_use_path: {
\bool_if:NT \l_hobby_disjoint_bool {
\array_get:NnN \l_hobby_points_array {0} \l_tmpa_tl
\exp_args:No \hobby_moveto:n {\l_tmpa_tl}
}
- \prg_stepwise_inline:nnnn {1} {1} {\l_hobby_npoints_int} {
+ \int_step_inline:nnnn {1} {1} {\l_hobby_npoints_int} {
\array_get:NnN \l_hobby_controla_array {##1} \l_tmpa_tl
\array_get:NnN \l_hobby_controlb_array {##1} \l_tmpb_tl
\array_get:NnN \l_hobby_points_array {##1} \l_tmpc_tl
- \exp_args:Nooo \hobby_curveto:nnn {\l_tmpa_tl} {\l_tmpb_tl} {\l_tmpc_tl}
-}
+ \array_get:NnN \l_hobby_actions_array {##1} \l_tmpd_tl
+ \int_compare:nNnTF {\tl_item:Nn \l_tmpd_tl {1}} = {\l_hobby_draw_int} {
+ \exp_args:Nooo \hobby_curveto:nnn {\l_tmpa_tl} {\l_tmpb_tl} {\l_tmpc_tl}
+ }{
+ \bool_gset_false:N \l_hobby_closed_bool
+ \exp_args:No \hobby_moveto:n {\l_tmpc_tl}
+ }
+ \tl_if_eq:xnTF {\tl_item:Nn \l_tmpd_tl {2}} {1} {
+ \bool_gset_false:N \l_hobby_closed_bool
+ \exp_args:No \hobby_moveto:n {\l_tmpc_tl}
+ }{}
+ }
\bool_if:NT \l_hobby_closed_bool {
\array_get:NnN \l_hobby_points_array {0} \l_tmpa_tl
\exp_args:No \hobby_close:n {\l_tmpa_tl}
}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\hobby_save_path:n}
+% This command saves all the data needed to reinvoke the curve in a global token list that can be used to restore it afterwards.
+% \begin{macrocode}
+\cs_new:Nn \hobby_save_path:n {
+ \tl_clear:N \l_tmpa_tl
+ \tl_put_right:Nn \l_tmpa_tl {\int_gset:Nn \l_hobby_npoints_int}
+ \tl_put_right:Nx \l_tmpa_tl {{\int_use:N \l_hobby_npoints_int}}
+ \bool_if:NTF \l_hobby_disjoint_bool {
+ \tl_put_right:Nn \l_tmpa_tl {\bool_gset_true:N}
+ }{
+ \tl_put_right:Nn \l_tmpa_tl {\bool_gset_false:N}
+ }
+ \tl_put_right:Nn \l_tmpa_tl {\l_hobby_disjoint_bool}
+ \bool_if:NTF \l_hobby_closed_bool {
+ \tl_put_right:Nn \l_tmpa_tl {\bool_gset_true:N}
+ }{
+ \tl_put_right:Nn \l_tmpa_tl {\bool_gset_false:N}
+ }
+ \tl_put_right:Nn \l_tmpa_tl {\l_hobby_closed_bool}
+ \tl_put_right:Nn \l_tmpa_tl {\array_gclear:N \l_hobby_points_array}
+ \array_map_inline:Nn \l_hobby_points_array {
+ \tl_put_right:Nn \l_tmpa_tl {
+ \array_gput:Nnn \l_hobby_points_array {##1} {##2}
+ }
+ }
+ \tl_put_right:Nn \l_tmpa_tl {\array_gclear:N \l_hobby_actions_array}
+ \array_map_inline:Nn \l_hobby_actions_array {
+ \tl_put_right:Nn \l_tmpa_tl {
+ \array_gput:Nnn \l_hobby_actions_array {##1} {##2}
+ }
+ }
+ \tl_put_right:Nn \l_tmpa_tl {\array_gclear:N \l_hobby_controla_array}
+ \array_map_inline:Nn \l_hobby_controla_array {
+ \tl_put_right:Nn \l_tmpa_tl {
+ \array_gput:Nnn \l_hobby_controla_array {##1} {##2}
+ }
+ }
+ \tl_put_right:Nn \l_tmpa_tl {\array_gclear:N \l_hobby_controlb_array}
+ \array_map_inline:Nn \l_hobby_controlb_array {
+ \tl_put_right:Nn \l_tmpa_tl {
+ \array_gput:Nnn \l_hobby_controlb_array {##1} {##2}
+ }
+ }
+ \tl_gclear_new:c {g_hobby_#1_path}
+ \tl_gset_eq:cN {g_hobby_#1_path} \l_tmpa_tl
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby_save_path_to_aux:n}
+% \begin{macrocode}
+\int_set:Nn \l_tmpa_int {\char_value_catcode:n {`@}}
+\char_set_catcode_letter:N @
+\cs_new:Npn \hobby_save_path_to_aux:n #1 {
+ \bool_if:nT {
+ \tl_if_exist_p:c {g_hobby_#1_path}
+ &&
+ ! \tl_if_exist_p:c {g_hobby_#1_path_saved}
+ }
+ {
+ \tl_clear:N \l_tmpa_tl
+ \tl_put_right:Nn \l_tmpa_tl {
+ \ExplSyntaxOn
+ \tl_gclear_new:c {g_hobby_#1_path}
+ \tl_gput_right:cn {g_hobby_#1_path}
+ }
+ \tl_put_right:Nx \l_tmpa_tl {
+ {\tl_to_str:c {g_hobby_#1_path}}
+ }
+ \tl_put_right:Nn \l_tmpa_tl {
+ \ExplSyntaxOff
+ }
+ \protected@write\@auxout{}{
+ \tl_to_str:N \l_tmpa_tl
+ }
+ \tl_new:c {g_hobby_#1_path_saved}
+ }
+}
+\char_set_catcode:nn {`@} {\l_tmpa_int}
+\cs_generate_variant:Nn \hobby_save_path_to_aux:n {x}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby_clear_path:}
+% \begin{macrocode}
+\cs_new:Nn \hobby_clear_path:
+{
+\array_gclear:N \l_hobby_points_array
+\array_gclear:N \l_hobby_points_x_array
+\array_gclear:N \l_hobby_points_y_array
+\array_gclear:N \l_hobby_angles_array
+\array_gclear:N \l_hobby_actions_array
+\array_gclear:N \l_hobby_distances_array
+\array_gclear:N \l_hobby_tension_out_array
+\array_gclear:N \l_hobby_tension_in_array
+\array_gclear:N \l_hobby_excess_angle_array
+\array_gclear:N \l_hobby_matrix_a_array
+\array_gclear:N \l_hobby_matrix_b_array
+\array_gclear:N \l_hobby_matrix_c_array
+\array_gclear:N \l_hobby_matrix_d_array
+\array_gclear:N \l_hobby_vector_u_array
+\array_gclear:N \l_hobby_psi_array
+\array_gclear:N \l_hobby_theta_array
+\array_gclear:N \l_hobby_phi_array
+\array_gclear:N \l_hobby_sigma_array
+\array_gclear:N \l_hobby_rho_array
+\array_gclear:N \l_hobby_controla_array
+\array_gclear:N \l_hobby_controlb_array
+\bool_gset_false:N \l_hobby_closed_bool
+\bool_gset_false:N \l_hobby_disjoint_bool
+
+ \int_gset:Nn \l_hobby_npoints_int {-1}
+ \int_gset:Nn \l_hobby_draw_int {1}
+ \fp_gset_eq:NN \l_hobby_in_angle_fp \c_undefined_fp
+ \fp_gset_eq:NN \l_hobby_out_angle_fp \c_undefined_fp
+ \fp_gset_eq:NN \l_hobby_in_curl_fp \c_one_fp
+ \fp_gset_eq:NN \l_hobby_out_curl_fp \c_one_fp
+}
+% \end{macrocode}
+% \end{macro}
% \begin{macrocode}
\ExplSyntaxOff
% \end{macrocode}
@@ -1282,44 +1669,359 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
/pgf/hobby/.is family,
/pgf/hobby/.cd,
x/.code={\pgf@x=#1cm},
- y/.code={\pgf@y=#1cm},
+ y/.code={\pgf@y=#1cm}
}
% \end{macrocode}
-% \begin{function}{\hobby@curveto}
+%
+% \begin{macro}{\hobby@curveto}
% This is passed to the path-generation code to translate the path into a PGF path.
% \begin{macrocode}
\def\hobby@curveto#1#2#3{%
\pgfpathcurveto{\hobby@topgf{#1}}{\hobby@topgf{#2}}{\hobby@topgf{#3}}%
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@moveto}
+% \begin{macro}{\hobby@moveto}
% This is passed to the path-generation code to translate the path into a PGF path.
% \begin{macrocode}
\def\hobby@moveto#1{%
\pgfpathmoveto{\hobby@topgf{#1}}%
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@topgf}
+% \begin{macro}{\hobby@topgf}
% Translates a \LaTeX3 point to a PGF point.
% \begin{macrocode}
\def\hobby@topgf#1{%
\pgfqkeys{/pgf/hobby}{#1}%
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@close}
+% \begin{macro}{\hobby@close}
% Closes a path.
% \begin{macrocode}
\def\hobby@close#1{%
\pgfpathclose
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% Plot handlers
+%
+% \begin{macro}{\pgfplothanderhobby}
+% Basic plot handler; uses full algorithm but therefore expensive
+% \begin{macrocode}
+\def\pgfplothandlerhobby{%
+ \def\pgf@plotstreamstart{%
+ \hobbyinit\hobby@moveto\hobby@curveto\hobby@close
+ \global\let\pgf@plotstreampoint=\pgf@plot@hobby@firstpt
+ \global\let\pgf@plotstreamspecial=\pgfutil@gobble
+ \gdef\pgf@plotstreamend{%
+ \ifhobby@externalise
+ \ifx\hobby@path@name\pgfutil@empty
+ \hobbygenusepath
+ \else
+ \hobbygenuseifnecpath{\hobby@path@name}%
+ \fi
+ \else
+ \hobbygenusepath
+ \fi
+ \ifx\hobby@path@name\pgfutil@empty
+ \else
+ \hobbysavepath{\hobby@path@name}%
+ \fi
+ \global\let\hobby@path@name=\pgfutil@empty
+ }%
+ \let\tikz@scan@point@options=\pgfutil@empty
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgfplothandlerclosedhobby}
+% Same as above but produces a closed curve
+% \begin{macrocode}
+\def\pgfplothandlerclosedhobby{%
+ \def\pgf@plotstreamstart{%
+ \hobbyinit\hobby@moveto\hobby@curveto\hobby@close
+ \hobbysetparams{closed=true,disjoint=true}%
+ \global\let\pgf@plotstreampoint=\pgf@plot@hobby@firstpt
+ \global\let\pgf@plotstreamspecial=\pgfutil@gobble
+ \gdef\pgf@plotstreamend{%
+ \ifhobby@externalise
+ \ifx\hobby@path@name\pgfutil@empty
+ \hobbygenusepath
+ \else
+ \hobbygenuseifnecpath{\hobby@path@name}%
+ \fi
+ \else
+ \hobbygenusepath
+ \fi
+ \ifx\hobby@path@name\pgfutil@empty
+ \else
+ \hobbysavepath{\hobby@path@name}%
+ \fi
+ \global\let\hobby@path@name=\pgfutil@empty
+ }%
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgf@plot@hobby@firstpt}
+% First point, move or line as appropriate and then start the algorithm.
+% \begin{macrocode}
+\def\pgf@plot@hobby@firstpt#1{%
+ \pgf@plot@first@action{#1}%
+ \pgf@plot@hobby@handler{#1}%
+ \global\let\pgf@plotstreampoint=\pgf@plot@hobby@handler
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgf@plot@hobby@handler}
+% Add points to the array for the algorithm to work on.
+% \begin{macrocode}
+\def\pgf@plot@hobby@handler#1{%
+ #1%
+ \pgfmathsetmacro\hobby@x{\the\pgf@x/1cm}%
+ \pgfmathsetmacro\hobby@y{\the\pgf@y/1cm}%
+ \hobbyaddpoint{x = \hobby@x, y = \hobby@y}%
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgfplothandlerquickhobby}
+% Uses the ``quick'' algorithm.
+% \begin{macrocode}
+\def\pgfplothandlerquickhobby{%
+ \def\pgf@plotstreamstart{%
+ \global\let\hobby@quick@curveto=\pgfpathcurveto
+ \global\let\pgf@plotstreampoint=\pgf@plot@qhobby@firstpt
+ \global\let\pgf@plotstreamspecial=\pgfutil@gobble
+ \global\let\pgf@plotstreamend=\pgf@plot@qhobby@end
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgf@plot@qhobby@firstpt}
+% Carry out first action (move or line) and save point.
+% \begin{macrocode}
+\def\pgf@plot@qhobby@firstpt#1{%
+ #1%
+ \edef\hobby@temp{\noexpand\pgf@plot@first@action{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}\hobby@temp%
+ \xdef\hobby@qpoints{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ \gdef\hobby@qpointa{}%
+ \gdef\hobby@angle{}%
+ \global\let\pgf@plotstreampoint=\pgf@plot@qhobby@secondpt
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgf@plot@qhobby@secondpt}
+% Also need to save second point.
+% \begin{macrocode}
+\def\pgf@plot@qhobby@secondpt#1{%
+ #1%
+ \xdef\hobby@qpointa{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ \global\let\pgf@plotstreampoint=\pgf@plot@qhobby@handler
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgf@plot@qhobby@handler}
+% Wrapper around the computation macro that saves the variables globally.
+% \begin{macrocode}
+\def\pgf@plot@qhobby@handler#1{%
+ #1
+ \edef\hobby@temp{\noexpand\hobby@quick@compute{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}\hobby@temp
+ \global\let\hobby@qpointa=\hobby@qpointa
+ \global\let\hobby@qpoints=\hobby@qpoints
+ \global\let\hobby@angle=\hobby@angle
+% \end{macrocode}
+% Also need to save some data for the last point
+% \begin{macrocode}
+ \global\let\hobby@thetaone=\hobby@thetaone
+ \global\let\hobby@phitwo=\hobby@phitwo
+ \global\let\hobby@done=\hobby@done
+ \global\let\hobby@omegaone=\hobby@omegaone
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\pgf@plot@qhobby@end}
+% Wrapper around the finalisation step.
+% \begin{macrocode}
+\def\pgf@plot@qhobby@end{%
+ \hobby@quick@computeend
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby@sf}
+% Working with points leads to computations out of range so we scale to get them into the computable arena.
+% \begin{macrocode}
+\pgfmathsetmacro\hobby@sf{10cm}
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \begin{macro}{\hobby@quick@compute}
+% This is the macro that does all the work of computing the control points.
+% The argument is the current point, \Verb+\hobby@qpointa+ is the middle point, and \Verb+\hobby@qpoints+ is the first point.
+% \begin{macrocode}
+\def\hobby@quick@compute#1{%
+% \end{macrocode}
+% Save the current (second - counting from zero) point in \Verb+\pgf@xb+ and \Verb+\pgf@yb+.
+% \begin{macrocode}
+ #1%
+ \pgf@xb=\pgf@x
+ \pgf@yb=\pgf@y
+% \end{macrocode}
+% Save the previous (first) point in \Verb+\pgf@xa+ and \Verb+\pgf@ya+.
+% \begin{macrocode}
+ \hobby@qpointa
+ \pgf@xa=\pgf@x
+ \pgf@ya=\pgf@y
+% \end{macrocode}
+% Adjust so that \Verb+(\pgf@xb,\pgf@yb)+ is the vector from second to third.
+% Then compute and store the distance and angle of this vector.
+% We view this as the vector \emph{from} the midpoint and everything to do with that point has the suffix \Verb+one+.
+% Note that we divide by the scale factor here.
+% \begin{macrocode}
+ \advance\pgf@xb by -\pgf@xa
+ \advance\pgf@yb by -\pgf@ya
+ \pgfmathsetmacro\hobby@done{sqrt((\pgf@xb/\hobby@sf)^2 + (\pgf@yb/\hobby@sf)^2)}%
+ \pgfmathsetmacro\hobby@omegaone{rad(atan2(\pgf@xb,\pgf@yb))}%
+% \end{macrocode}
+% Now we do the same with the vector from the zeroth to the first point.
+% \begin{macrocode}
+ \hobby@qpoints
+ \advance\pgf@xa by -\pgf@x
+ \advance\pgf@ya by -\pgf@y
+ \pgfmathsetmacro\hobby@dzero{sqrt((\pgf@xa/\hobby@sf)^2 + (\pgf@ya/\hobby@sf)^2)}%
+ \pgfmathsetmacro\hobby@omegazero{rad(atan2(\pgf@xa,\pgf@ya))}%
+% \end{macrocode}
+% \Verb+\hobby@psi+ is the angle subtended at the midpoint.
+% We adjust to ensure that it is in the right range.
+% \begin{macrocode}
+ \pgfmathsetmacro\hobby@psi{\hobby@omegaone - \hobby@omegazero}%
+ \pgfmathsetmacro\hobby@psi{\hobby@psi > pi ? \hobby@psi - 2*pi : \hobby@psi}%
+ \pgfmathsetmacro\hobby@psi{\hobby@psi < -pi ? \hobby@psi + 2*pi : \hobby@psi}%
+% \end{macrocode}
+% Now we test to see if we're on the first run or not.
+% If the first, we have no incoming angle.
+% \begin{macrocode}
+ \ifx\hobby@angle\pgfutil@empty
+% \end{macrocode}
+% First.
+% \begin{macrocode}
+ \pgfmathsetmacro\hobby@thetaone{-\hobby@psi * \hobby@done%
+/(\hobby@done + \hobby@dzero)}%
+ \pgfmathsetmacro\hobby@thetazero{-\hobby@psi - \hobby@thetaone}%
+ \let\hobby@phione=\hobby@thetazero
+ \let\hobby@phitwo=\hobby@thetaone
+ \else
+% \end{macrocode}
+% Second or later.
+% \begin{macrocode}
+ \let\hobby@thetazero=\hobby@angle
+ \pgfmathsetmacro\hobby@thetaone{%
+ -(2 * \hobby@psi + \hobby@thetazero) * \hobby@done%
+ / (2 * \hobby@done + \hobby@dzero)}%
+ \pgfmathsetmacro\hobby@phione{-\hobby@psi - \hobby@thetaone}%
+ \let\hobby@phitwo=\hobby@thetaone
+ \fi
+% \end{macrocode}
+% Save the outgoing angle.
+% \begin{macrocode}
+ \let\hobby@angle=\hobby@thetaone
+% \end{macrocode}
+% Compute the control points from the angles.
+% \begin{macrocode}
+ \hobby@quick@ctrlpts{\hobby@thetazero}{\hobby@phione}{\hobby@qpoints}{\hobby@qpointa}{\hobby@dzero}{\hobby@omegazero}%
+% \end{macrocode}
+% Now call the call-back function
+% \begin{macrocode}
+ \edef\hobby@temp{\noexpand\hobby@quick@curveto{\noexpand\pgfqpoint{\the\pgf@xa}{\the\pgf@ya}}{\noexpand\pgfqpoint{\the\pgf@xb}{\the\pgf@yb}}{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}%
+\hobby@temp
+% \end{macrocode}
+% Cycle the points round for the next iteration.
+% \begin{macrocode}
+ \global\let\hobby@qpoints=\hobby@qpointa
+ #1
+ \xdef\hobby@qpointa{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+% \end{macrocode}
+% Save needed values in global macros
+% \begin{macrocode}
+ \global\let\hobby@angle=\hobby@angle
+ \global\let\hobby@phitwo=\hobby@phitwo
+ \global\let\hobby@thetaone=\hobby@thetaone
+\global\let\hobby@done=\hobby@done
+\global\let\hobby@omegaone=\hobby@omegaone
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby@wuick@computeend}
+% This is the additional code for the final run.
+% \begin{macrocode}
+\def\hobby@quick@computeend{%
+% \end{macrocode}
+% Compute the control points for the second part of the curve and add that to the path.
+% \begin{macrocode}
+ \hobby@quick@ctrlpts{\hobby@thetaone}{\hobby@phitwo}{\hobby@qpoints}{\hobby@qpointa}{\hobby@done}{\hobby@omegaone}%
+% \end{macrocode}
+% Now call the call-back function
+% \begin{macrocode}
+ \edef\hobby@temp{\noexpand\hobby@quick@curveto{\noexpand\pgfqpoint{\the\pgf@xa}{\the\pgf@ya}}{\noexpand\pgfqpoint{\the\pgf@xb}{\the\pgf@yb}}{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}%
+\hobby@temp
+}%
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby@quick@ctrlpts}
+% Compute the control points from the angles and points given.
+% \begin{macrocode}
+\def\hobby@quick@ctrlpts#1#2#3#4#5#6{%
+ \pgfmathsetmacro\hobby@alpha{%
+ sqrt(2) * (sin(#1 r) - 1/16 * sin(#2 r))%
+* (sin(#2 r) - 1/16 * sin(#1 r))%
+ * (cos(#1 r) - cos(#2 r))}%
+ \pgfmathsetmacro\hobby@rho{%
+ (2 + \hobby@alpha)/(1 + (1 - (3 - sqrt(5))/2)%
+ * cos(#1 r) + (3 - sqrt(5))/2 * cos(#2 r))}%
+ \pgfmathsetmacro\hobby@sigma{%
+ (2 - \hobby@alpha)/(1 + (1 - (3 - sqrt(5))/2)%
+ * cos(#2 r) + (3 - sqrt(5))/2 * cos(#1 r))}%
+ #3%
+ \pgf@xa=\pgf@x
+ \pgf@ya=\pgf@y
+ \pgfmathsetlength\pgf@xa{%
+ \pgf@xa + #5 * \hobby@rho%
+ * cos((#1 + #6) r)/3*\hobby@sf}%
+ \pgfmathsetlength\pgf@ya{%
+ \pgf@ya + #5 * \hobby@rho%
+ * sin((#1 + #6) r)/3*\hobby@sf}%
+ #4%
+ \pgf@xb=\pgf@x
+ \pgf@yb=\pgf@y
+ \pgfmathsetlength\pgf@xb{%
+ \pgf@xb - #5 * \hobby@sigma%
+ * cos((-#2 + #6) r)/3*\hobby@sf}%
+ \pgfmathsetlength\pgf@yb{%
+ \pgf@yb - #5 * \hobby@sigma%
+ * sin((-#2 + #6) r)/3*\hobby@sf}%
+ #4%
+}
+% \end{macrocode}
+% \end{macro}
+%
+%
% \iffalse
%</pgflibrary>
% \fi
@@ -1332,136 +2034,236 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
%
% \begin{macrocode}
\usepgflibrary{hobby}
-\let\hobby@opts=\pgfutil@empty
+\let\hobby@this@opts=\pgfutil@empty
+\let\hobby@next@opts=\pgfutil@empty
+\let\hobby@action=\pgfutil@empty
+\let\hobby@path@name=\pgfutil@empty
+\newif\ifhobby@externalise
% \end{macrocode}
%
% We set various TikZ keys.
% These include the \Verb+to path+ constructor and all the various parameters that will eventually get passed to the path-generation code.
% \begin{macrocode}
+\def\hobby@point@options{}%
\tikzset{
curve through/.style={
to path={
\pgfextra{
- \expandafter\curvethrough\expandafter[\hobby@opts]{%
+ \expandafter\curvethrough\expandafter[\hobby@next@opts]{%
(\tikztostart) .. #1 .. (\tikztotarget)%
}
}
}
},
- tension in/.code = {},
- tension out/.code = {},
- tension/.code = {},
- excess angle/.code = {},
- closed/.code = {%
- \expandafter\def\expandafter\hobby@opts\expandafter{\hobby@opts%
- closed=#1,disjoint=#1}%
+ tension in/.code = {%
+ \expandafter\gdef\expandafter\hobby@point@options\expandafter%
+ {\hobby@point@options,tension in=#1}%
+ },
+ tension out/.code = {%
+ \expandafter\gdef\expandafter\hobby@point@options\expandafter%
+ {\hobby@point@options,tension out=#1}%
+ },
+ tension/.code = {%
+ \expandafter\gdef\expandafter\hobby@point@options\expandafter%
+ {\hobby@point@options,tension=#1}%
+ },
+ excess angle/.code = {%
+ \expandafter\gdef\expandafter\hobby@point@options\expandafter%
+ {\hobby@point@options,excess angle=#1}%
+ },
+ break/.code = {%
+ \expandafter\gdef\expandafter\hobby@point@options\expandafter%
+ {\hobby@point@options,break=#1}%
+ },
+ blank/.code = {%
+ \expandafter\gdef\expandafter\hobby@point@options\expandafter%
+ {\hobby@point@options,blank=#1}%
+ },
+ designated Hobby path/.initial={next},
+ clear next Hobby path options/.code={%
+ \gdef\hobby@next@opts{}%
+ },
+ clear this Hobby path options/.code={%
+ \gdef\hobby@this@opts{}%
+ },
+ clear Hobby path options/.style={%
+ clear \pgfkeysvalueof{/tikz/designated Hobby path} Hobby path options
+ },
+ add option to this Hobby path/.code={%
+ \expandafter\gdef\expandafter\hobby@this@opts\expandafter{\hobby@this@opts#1,}%
+ },
+ add option to next Hobby path/.code={%
+ \expandafter\gdef\expandafter\hobby@next@opts\expandafter{\hobby@next@opts#1,}%
+ },
+ add option to Hobby path/.style={%
+ add option to \pgfkeysvalueof{/tikz/designated Hobby path} Hobby path={#1}%
+ },
+ closed/.style = {%
+ add option to Hobby path={closed=#1,disjoint=#1}%
+ },
+ invert blank/.style = {%
+ add option to Hobby path={invert blank=#1}%
},
closed/.default = true,
+ blank/.default = true,
+ break/.default = true,
+ invert blank/.default = true,
in angle/.code = {%
\pgfmathparse{#1*pi/180}%
- \edef\@temp{ in angle=\pgfmathresult,}%
- \expandafter\expandafter\expandafter%
- \def%
- \expandafter\expandafter\expandafter%
- \hobby@opts%
- \expandafter\expandafter\expandafter%
- {\expandafter\hobby@opts\@temp}%
+ \edef\@temp{in angle=\pgfmathresult,}%
+ \pgfkeysalso{add option to Hobby path/.expand once=\@temp}%
},
out angle/.code = {%
\pgfmathparse{#1*pi/180}%
- \edef\@temp{ out angle=\pgfmathresult,}%
- \expandafter\expandafter\expandafter%
- \def%
- \expandafter\expandafter\expandafter%
- \hobby@opts%
- \expandafter\expandafter\expandafter%
- {\expandafter\hobby@opts\@temp}%
+ \edef\@temp{out angle=\pgfmathresult,}%
+ \pgfkeysalso{add option to Hobby path/.expand once=\@temp}%
},
- in curl/.code = {%
- \expandafter\def\expandafter\hobby@opts\expandafter{\hobby@opts in curl=#1,}%
+ in curl/.style = {%
+ add option to Hobby path={in curl=#1}%
},
out curl/.code = {%
- \expandafter\def\expandafter\hobby@opts\expandafter{\hobby@opts out curl=#1,}%
+ add option to Hobby path={out curl=#1}%
},
use Hobby shortcut/.code={%
- \let\tikz@curveto@auto=\hobby@curveto@auto
- }
+ \let\tikz@curveto@auto=\hobby@curveto@override
+ \global\let\hobby@curveto@delegate=\hobby@curveto@auto
+ },
+ use quick Hobby shortcut/.code={%
+ \let\tikz@curveto@auto=\hobby@curveto@override
+ \global\let\hobby@curveto@delegate=\hobby@qcurveto@auto
+ },
+ use previous Hobby path/.code={%
+ \pgfextra{\hobbyusepath{#1}}
+ },
+ use previous Hobby path/.default={},%
+ save Hobby path/.code={%
+ \xdef\hobby@path@name{#1}%
+ },
+ restore Hobby path/.code={%
+ \pgfextra{%
+ \hobbyinit\hobby@moveto\hobby@curveto\hobby@close
+ \hobbyrestorepath{#1}}
+ },
+ restore and use Hobby path/.code 2 args={%
+ \pgfextra{%
+ \hobbyinit\hobby@moveto\hobby@curveto\hobby@close
+ \hobbyrestorepath{#1}%
+ \hobbyusepath{#2}%
+ }
+ },
+ show Hobby path/.code={%
+ \pgfextra{\hobbyshowpath{#1}}
+ },
+ Hobby action/.code={%
+ \expandafter\gdef\expandafter\hobby@action\expandafter{\hobby@action#1}%
+ },
+ Hobby finish/.style={%
+ Hobby action=\hobby@finish%
+ },
+ Hobby externalise/.is if=hobby@externalise,
+ Hobby externalize/.is if=hobby@externalise
}
% \end{macrocode}
-% \begin{function}{\curvethrough}
+% \begin{macro}{\curvethrough}
% This is the parent command.
% We initialise the path-generation code, set any parameters, and then hand over control to the point processing macro.
% \begin{macrocode}
\newcommand\curvethrough[2][]{%
\hobbyinit\hobby@moveto\hobby@curveto\hobby@close
\hobbysetparams{#1}%
- \hobby@processpts{#2}%
+ \tikzset{designated Hobby path=this}%
+ \global\let\hobby@this@opts=\pgfutil@empty
+ \global\let\hobby@next@opts=\pgfutil@empty
+ \let\tikz@scan@point@options=\pgfutil@empty
+ \def\hobby@point@options{}%
+ \tikz@scan@one@point\hobby@processpt #2 \relax%
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@processpts}
-% This processes a list of points in the format \Verb+(0,0) .. (1,1)+.
+% \begin{macro}{\hobby@processpt}
+% This processes a list of points in the format \Verb+(0,0) [..] (1,1)+.
% Each point is scanned by TikZ and then added to the stack to be built into the path.
% If there are any remaining points, we call ourself again with them.
% Otherwise, we hand over control to the path-generation code.
% \begin{macrocode}
-\newcommand\hobby@processpts[1]{%
- \pgfutil@in@{..}{#1}%
- \ifpgfutil@in@%
- \hobby@getonepoint #1 \relax
- \let\hobby@next=\hobby@processpts
- \else
- \def\hobby@pt{#1}%
- \def\hobby@rest{}%
- \let\hobby@next=\hobbygenpath
- \fi
- \let\tikz@scan@point@options=\pgfutil@empty
- \expandafter\tikz@scan@one@point\expandafter\pgfutil@firstofone\hobby@pt\relax
+\newcommand\hobby@processpt[1]{%
+ #1%
\pgfmathsetmacro\hobby@x{\the\pgf@x/1cm}%
\pgfmathsetmacro\hobby@y{\the\pgf@y/1cm}%
- \expandafter\hobbyaddpoint\expandafter{\tikz@scan@point@options,%
+ \expandafter\hobbyaddpoint\expandafter{\hobby@point@options,%
x = \hobby@x, y = \hobby@y}%
- \expandafter\hobby@next\expandafter{\hobby@rest}%
-}
+ \def\hobby@point@options{}%
+ \let\tikz@scan@point@options=\pgfutil@empty
+ \pgfutil@ifnextchar\relax{%
+ \expandafter\hobbysetparams\expandafter{\hobby@this@opts}%
+ \ifhobby@externalise
+ \ifx\hobby@path@name\pgfutil@empty
+ \hobbygenusepath
+ \else
+ \hobbygenuseifnecpath{\hobby@path@name}%
+ \fi
+ \else
+ \hobbygenusepath
+ \fi
+ \ifx\hobby@path@name\pgfutil@empty
+ \else
+ \hobbysavepath{\hobby@path@name}%
+ \fi
+ \global\let\hobby@path@name=\pgfutil@empty
+ }{%
+ \pgfutil@ifnextchar.{%
+ \hobby@swallowdots}{%
+ \tikz@scan@one@point\hobby@processpt}}}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@onepoint}
-% This strips off the next point.
+% \begin{macro}{\hobby@swallowdots}
+% Remove dots from the input stream.
% \begin{macrocode}
-\def\hobby@getonepoint#1..#2\relax{%
- \def\hobby@pt{#1}%
- \def\hobby@rest{#2}%
-}
+\def\hobby@swallowdots.{%
+ \pgfutil@ifnextchar.{%
+ \hobby@swallowdots}{%
+ \tikz@scan@one@point\hobby@processpt}}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
% There is a ``spare hook'' in the TikZ path processing code.
% If TikZ encounters a path of the form \Verb+(0,0) .. (1,1)+ then it calls a macro \Verb+\tikz@curveto@auto+.
% However, that macro is not defined in the TikZ code.
% The following code provides a suitable definition.
% To play nice, we don't install it by default but define a key (defined above) that installs it.
-% \begin{function}{\hobby@curveto@auto}
+%
+% \begin{macro}{\hobby@curveto@override}
+% \begin{macrocode}
+\def\hobby@curveto@override{%
+ \hobby@curveto@delegate}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby@curveto@auto}
% When we're called by TikZ, we initialise the path generation code and start adding points.
-% We want to be sure that we're only called once so we don't had control back to TikZ but use our own parser to process the rest of the curve until we reach a syntax that we don't understand.
+% To ensure that the generation code is called, we add a lot of hooks to lots of TikZ commands.
% \begin{macrocode}
\def\hobby@curveto@auto{%
- \hobbyinit\pgfutil@gobble\hobby@curveto\hobby@close
+ \hobbyinit\hobby@moveto\hobby@curveto\hobby@close
\pgfmathsetmacro\hobby@x{\the\tikz@lastx/1cm}%
\pgfmathsetmacro\hobby@y{\the\tikz@lasty/1cm}%
- \pgfutil@ifundefined{tikz@scan@point@options}{%
- \hobbyaddpoint{x = \hobby@x, y = \hobby@y}%
- }{%
- \expandafter\hobbyaddpoint\expandafter{\tikz@scan@point@options,%
+ \expandafter\hobbysetparams\expandafter{\hobby@next@opts}%
+ \expandafter\hobbyaddpoint\expandafter{\hobby@point@options,%
x = \hobby@x, y = \hobby@y}%
- }%
+ \hobby@init@tikz@commands
+ \tikzset{designated Hobby path=this}%
\let\tikz@scan@point@options=\pgfutil@empty
+ \global\let\hobby@action=\pgfutil@empty
+ \global\let\hobby@this@opts=\pgfutil@empty
+ \global\let\hobby@next@opts=\pgfutil@empty
+ \global\let\hobby@point@options=\pgfutil@empty
\tikz@scan@one@point\hobby@addfromtikz}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@addfromtikz}
+% \begin{macro}{\hobby@addfromtikz}
% This adds our current point to the stack.
% \begin{macrocode}
\def\hobby@addfromtikz#1{%
@@ -1469,77 +2271,116 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\tikz@make@last@position{#1}%
\pgfmathsetmacro\hobby@x{\the\pgf@x/1cm}%
\pgfmathsetmacro\hobby@y{\the\pgf@y/1cm}%
- \expandafter\hobbyaddpoint\expandafter{\tikz@scan@point@options,%
+ \expandafter\hobbysetparams\expandafter{\hobby@this@opts}%
+ \expandafter\hobbyaddpoint\expandafter{\hobby@point@options,%
x = \hobby@x, y = \hobby@y}%
- \hobby@donext}
+ \hobby@action
+ \global\let\hobby@this@opts=\pgfutil@empty
+ \global\let\hobby@action=\pgfutil@empty
+ \global\let\hobby@point@options=\pgfutil@empty
+ \tikz@scan@next@command%
+}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@donext}
-% Now we look to see if the next character is a dot.
-% If not, we're done so generate the path.
+% \begin{macro}{\hobby@init@tikz@commands}
% \begin{macrocode}
-\def\hobby@donext{%
- \pgfutil@ifnextchar.%
- {\hobby@curveto@check}%
- {\hobby@finish@auto}}%
+\def\hobby@init@tikz@commands{%
+ \hobby@init@tikz@modcmd\tikz@movetoabs
+ \hobby@init@tikz@modcmd\tikz@movetorel
+ \hobby@init@tikz@modcmd\tikz@lineto
+ \hobby@init@tikz@modcmd\tikz@rect
+ \hobby@init@tikz@modcmd\tikz@cchar
+ \hobby@init@tikz@modcmd\tikz@finish
+ \hobby@init@tikz@modcmd\tikz@arcA
+ \hobby@init@tikz@modcmd\tikz@e@char
+ \hobby@init@tikz@modcmd\tikz@g@char
+ \hobby@init@tikz@modcmd\tikz@schar
+ \hobby@init@tikz@modcmd\tikz@vh@lineto
+ \hobby@init@tikz@modcmd\tikz@pchar
+ \hobby@init@tikz@modcmd\tikz@to
+ \hobby@init@tikz@modcmd\pgf@stop
+ \hobby@init@tikz@modcmd\tikz@decoration
+ \global\let\hobby@curveto@delegate=\hobby@midcurveto@auto
+}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@curveto@check}
-% It was a dot, so look at what comes after.
-% It might be \Verb+.. c+ in which case we might be done.
-% If not, we assume we're still adding points.
+% \begin{macro}{\hobby@restore@tikz@commands}
% \begin{macrocode}
-\def\hobby@curveto@check..{%
- \pgfutil@ifnextchar c%
- {\hobby@maybefinish@auto}%
- {\hobby@curveto@continue}}%
+\def\hobby@restore@tikz@commands{%
+ \hobby@restore@tikz@modcmd\tikz@movetoabs
+ \hobby@restore@tikz@modcmd\tikz@movetorel
+ \hobby@restore@tikz@modcmd\tikz@lineto
+ \hobby@restore@tikz@modcmd\tikz@rect
+ \hobby@restore@tikz@modcmd\tikz@cchar
+ \hobby@restore@tikz@modcmd\tikz@finish
+ \hobby@restore@tikz@modcmd\tikz@arcA
+ \hobby@restore@tikz@modcmd\tikz@e@char
+ \hobby@restore@tikz@modcmd\tikz@g@char
+ \hobby@restore@tikz@modcmd\tikz@schar
+ \hobby@restore@tikz@modcmd\tikz@vh@lineto
+ \hobby@restore@tikz@modcmd\tikz@pchar
+ \hobby@restore@tikz@modcmd\tikz@to
+ \hobby@restore@tikz@modcmd\pgf@stop
+ \hobby@restore@tikz@modcmd\tikz@decoration
+ \global\let\hobby@curveto@delegate=\hobby@curveto@auto
+}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@maybefinish@auto}
-% We got \Verb+.. c+.
-% It might be \Verb+.. controls+ in which case we're done.
-% It might be \Verb+.. cycle+ in which case we have a closed path, after which we're done.
+% \begin{macro}{\hobby@init@tikz@modcmd}
% \begin{macrocode}
-\def\hobby@maybefinish@auto c{%
- \pgfutil@ifnextchar o%
- {\hobby@finish@auto .. c}%
- {\hobby@closeandfinish@auto}}
+\def\hobby@init@tikz@modcmd#1{%
+ \expandafter\global\expandafter\let\csname hobby@orig@\string#1\endcsname=#1%
+ \gdef#1{\hobby@finish#1}%
+}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@closeandfinish@auto}
-% We got \Verb+.. cycle+ so eat it, flag the path as closed, and generate it.
+% \begin{macro}{\hobby@restore@tikz@modcmd}
% \begin{macrocode}
-\def\hobby@closeandfinish@auto ycle{%
- \hobbysetparams{closed=true,disjoint=true}%
- \hobby@finish@auto%
+\def\hobby@restore@tikz@modcmd#1{%
+ \expandafter\global\expandafter\let\expandafter#1\csname hobby@orig@\string#1\endcsname%
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@curveto@continue}
-% Scan next coordinate and repeat the cycle.
+% \begin{macro}{\hobby@midcurveto@auto}
% \begin{macrocode}
-\def\hobby@curveto@continue{%
+\def\hobby@midcurveto@auto{%
\let\tikz@scan@point@options=\pgfutil@empty
- \tikz@scan@one@point\hobby@addfromtikz}
+ \global\let\hobby@action=\pgfutil@empty
+ \global\let\hobby@this@opts=\pgfutil@empty
+ \global\let\hobby@point@options=\pgfutil@empty
+ \tikz@scan@one@point\hobby@addfromtikz%
+}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@finish@auto}
-% Generate the path and then hand control back to TikZ.
+% \begin{macro}{\hobby@finish}
% \begin{macrocode}
-\def\hobby@finish@auto{%
- \hobbygenpath
- \tikz@scan@next@command%
+\def\hobby@finish{%
+ \ifhobby@externalise
+ \ifx\hobby@path@name\pgfutil@empty
+ \hobbygenusepath
+ \else
+ \hobbygenuseifnecpath{\hobby@path@name}%
+ \fi
+ \else
+ \hobbygenusepath
+ \fi
+ \ifx\hobby@path@name\pgfutil@empty
+ \else
+ \hobbysavepath{\hobby@path@name}%
+ \fi
+ \global\let\hobby@path@name=\pgfutil@empty
+ \hobby@restore@tikz@commands
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{quick curve through}
+% \begin{macro}{quick curve through}
% The \Verb+quick curve through+ is a \Verb+to path+ which does the ``quick'' version of Hobby's algorithm.
% The syntax is as with the \Verb+curve through+: to pass the midpoints as the argument to the style.
% We need to pass three points to the auxiliary macro.
@@ -1555,7 +2396,10 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
% \end{macrocode}
% Scan the starting point and store the coordinates in \Verb+\hobby@qpointa+
% \begin{macrocode}
+ \let\hobby@next@qbreak=\relax
+ \let\hobby@next@qblank=\relax
\tikz@scan@one@point\pgfutil@firstofone(\tikztostart)%
+ \tikz@make@last@position{\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
\edef\hobby@qpoints{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
% \end{macrocode}
% Blank the path and auxiliary macros.
@@ -1563,6 +2407,7 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\def\hobby@qpointa{}%
\def\hobby@quick@path{}%
\def\hobby@angle{}%
+ \let\hobby@quick@curveto=\hobby@quick@makepath
% \end{macrocode}
% Now start parsing the rest of the coordinates.
% \begin{macrocode}
@@ -1573,24 +2418,73 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
% \begin{macrocode}
\hobby@quick@path
}
- }
+ },
+ quick hobby/blank curve/.is choice,
+ quick hobby/blank curve/true/.code={%
+ \gdef\hobby@next@qblank{%
+ \qhobby@blanktrue
+ \global\let\hobby@next@qblank=\relax
+ }%
+ },
+ quick hobby/blank curve/false/.code={%
+ \gdef\hobby@next@qblank{%
+ \qhobby@blankfalse
+ \global\let\hobby@next@qblank=\relax
+ }%
+ },
+ quick hobby/blank curve/once/.code={%
+ \gdef\hobby@next@qblank{%
+ \qhobby@blanktrue
+ \gdef\hobby@next@qblank{%
+ \qhobby@blankfalse
+ \global\let\hobby@next@qblank=\relax
+ }%
+ }%
+ },
+ quick hobby/blank curve/.default=true,
+ quick hobby/break curve/.is choice,
+ quick hobby/break curve/true/.code={%
+ \gdef\hobby@next@qbreak{%
+ \qhobby@breaktrue
+ \global\let\hobby@next@qbreak=\relax
+ }%
+ },
+ quick hobby/break curve/false/.code={%
+ \gdef\hobby@next@qbreak{%
+ \qhobby@breakfalse
+ \global\let\hobby@next@qbreak=\relax
+ }%
+ },
+ quick hobby/break curve/once/.code={%
+ \gdef\hobby@next@qbreak{%
+ \qhobby@breaktrue
+ \gdef\hobby@next@qbreak{%
+ \qhobby@breakfalse
+ \global\let\hobby@next@qbreak=\relax
+ }%
+ }%
+ },
+ quick hobby/break curve/.default=true,
}
+\newif\ifqhobby@break
+\newif\ifqhobby@blank
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@sf}
-% Working with points leads to computations out of range so we scale to get them into the computable arena.
+% Add plot handlers
% \begin{macrocode}
-\pgfmathsetmacro\hobby@sf{10cm}
+\tikzoption{hobby}[]{\let\tikz@plot@handler=\pgfplothandlerhobby}
+\tikzoption{quick hobby}[]{\let\tikz@plot@handler=\pgfplothandlerquickhobby}
+\tikzoption{closed hobby}[]{\let\tikz@plot@handler=\pgfplothandlerclosedhobby}
% \end{macrocode}
-% \end{function}
%
-% \begin{function}{\hobby@quickfirst}
+% \begin{macro}{\hobby@quickfirst}
% The first time around we just set the next point.
% \begin{macrocode}
\def\hobby@quickfirst#1{%
#1%
- \edef\hobby@qpointa{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ \xdef\hobby@qpointa{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ \tikz@make@last@position{\hobby@qpointa}%
% \end{macrocode}
% Now a check to ensure that we have more points.
% \begin{macrocode}
@@ -1600,180 +2494,230 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
% That's not good.
% Bail-out.
% \begin{macrocode}
- \edef\hobby@quick@path{ -- (\the\pgf@x,\the\pgf@y)}%
+ \xdef\hobby@quick@path{ -- (\the\pgf@x,\the\pgf@y)}%
}{%
% \end{macrocode}
% Okay, have more points.
% Phew.
% Call the next round.
+% If we have dots, swallow them.
+% \begin{macrocode}
+ \pgfutil@ifnextchar.{%
+ \hobby@qswallowdots}{%
+ \tikz@scan@one@point\hobby@quick}}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\hobby@qswallowdots}
+% Remove dots from the input stream.
% \begin{macrocode}
+\def\hobby@qswallowdots.{%
+ \pgfutil@ifnextchar.{%
+ \hobby@qswallowdots}{%
\tikz@scan@one@point\hobby@quick}}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\hobby@quick}
-% This is the macro that does all the work of computing the control points.
+% \begin{macro}{\hobby@quick}
+% This is our wrapper function that handles the loop.
% \begin{macrocode}
\def\hobby@quick#1{%
+ \hobby@quick@compute{#1}%
+ \tikz@make@last@position{\hobby@qpointa}%
+ \pgfutil@ifnextchar\relax{%
% \end{macrocode}
-% Save the current (second - counting from zero) point in \Verb+\pgf@xb+ and \Verb+\pgf@yb+.
+% End of loop
% \begin{macrocode}
- #1%
- \pgf@xb=\pgf@x
- \pgf@yb=\pgf@y
+ \hobby@quick@computeend%
+ }{%
% \end{macrocode}
-% Save the previous (first) point in \Verb+\pgf@xa+ and \Verb+\pgf@ya+.
+% More to go, scan in the next coordinate and off we go again.
% \begin{macrocode}
- \hobby@qpointa
- \pgf@xa=\pgf@x
- \pgf@ya=\pgf@y
+ \pgfutil@ifnextchar.{%
+ \hobby@qswallowdots}{%
+ \tikz@scan@one@point\hobby@quick}}}
% \end{macrocode}
-% Adjust so that \Verb+(\pgf@xb,\pgf@yb)+ is the vector from second to third.
-% Then compute and store the distance and angle of this vector.
-% We view this as the vector \emph{from} the midpoint and everything to do with that point has the suffix \Verb+one+.
-% Note that we divide by the scale factor here.
+% \end{macro}
+%
+% \begin{macro}{\hobby@quick@makepath}
+% Path constructor for \Verb+to path+ use.
% \begin{macrocode}
- \advance\pgf@xb by -\pgf@xa
- \advance\pgf@yb by -\pgf@ya
- \pgfmathsetmacro\hobby@done{sqrt((\pgf@xb/\hobby@sf)^2 + (\pgf@yb/\hobby@sf)^2)}%
- \pgfmathsetmacro\hobby@omegaone{rad(atan2(\pgf@xb,\pgf@yb))}%
+\def\hobby@quick@makepath#1#2#3{%
+ #1%
+ \pgf@xa=\pgf@x\relax
+ \pgf@ya=\pgf@y\relax
+ #2%
+ \pgf@xb=\pgf@x\relax
+ \pgf@yb=\pgf@y\relax
+ #3%
+ \ifqhobby@blank
+ \xdef\hobby@quick@path{\hobby@quick@path (\the\pgf@x,\the\pgf@y)}%
+ \else
+ \xdef\hobby@quick@path{\hobby@quick@path .. controls%
+ (\the\pgf@xa,\the\pgf@ya) and (\the\pgf@xb,\the\pgf@yb) .. (\the\pgf@x,\the\pgf@y) }%
+ \fi
+ \ifqhobby@break
+ \xdef\hobby@quick@path{\hobby@quick@path +(0,0)}%
+ \fi
+ \hobby@next@qbreak
+ \hobby@next@qblank
+}
% \end{macrocode}
-% Now we do the same with the vector from the zeroth to the first point.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qcurveto@auto}
+% Uses the ``quick'' method for the shortcut syntax.
% \begin{macrocode}
- \hobby@qpoints
- \advance\pgf@xa by -\pgf@x
- \advance\pgf@ya by -\pgf@y
- \pgfmathsetmacro\hobby@dzero{sqrt((\pgf@xa/\hobby@sf)^2 + (\pgf@ya/\hobby@sf)^2)}%
- \pgfmathsetmacro\hobby@omegazero{rad(atan2(\pgf@xa,\pgf@ya))}%
+\def\hobby@qcurveto@auto{%
+ \global\let\hobby@next@qbreak=\relax
+ \global\let\hobby@next@qblank=\relax
+ \xdef\hobby@qpoints{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
+ \gdef\hobby@qpointa{}%
+ \gdef\hobby@quick@path{}%
+ \gdef\hobby@angle{}%
+ \global\let\hobby@quick@curveto=\hobby@quick@makepathauto
+ \hobby@qinit@tikz@commands
+ \let\tikz@scan@point@options=\pgfutil@empty
+ \global\let\hobby@action=\pgfutil@empty
+ \global\let\hobby@point@options=\pgfutil@empty
+ \tikz@scan@one@point\hobby@qfirst@auto}
% \end{macrocode}
-% \Verb+\hobby@psi+ is the angle subtended at the midpoint.
-% We adjust to ensure that it is in the right range.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qmidcurveto@auto}
% \begin{macrocode}
- \pgfmathsetmacro\hobby@psi{\hobby@omegaone - \hobby@omegazero}%
- \pgfmathsetmacro\hobby@psi{\hobby@psi > pi ? \hobby@psi - 2*pi : \hobby@psi}%
- \pgfmathsetmacro\hobby@psi{\hobby@psi < -pi ? \hobby@psi + 2*pi : \hobby@psi}%
+\def\hobby@qmidcurveto@auto{%
+ \let\tikz@scan@point@options=\pgfutil@empty
+ \global\let\hobby@action=\pgfutil@empty
+ \global\let\hobby@point@options=\pgfutil@empty
+ \tikz@scan@one@point\hobby@qaddfromtikz}
% \end{macrocode}
-% Now we test to see if we're on the first run or not.
-% If the first, we have no incoming angle.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qfirst@auto}
% \begin{macrocode}
- \ifx\hobby@angle\pgfutil@empty
+\def\hobby@qfirst@auto#1{%
+ #1%
+ \xdef\hobby@qpointa{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ \tikz@make@last@position{\hobby@qpointa}%
+ \tikz@scan@next@command%
+}
% \end{macrocode}
-% First.
+% \end{macro}
+%
+% \begin{macro}{\hobby@quick@makepathauto}
+% Path constructor for shortcut method to use.
% \begin{macrocode}
- \pgfmathsetmacro\hobby@thetaone{-\hobby@psi * \hobby@done%
-/(\hobby@done + \hobby@dzero)}%
- \pgfmathsetmacro\hobby@thetazero{-\hobby@psi - \hobby@thetaone}%
- \let\hobby@phione=\hobby@thetazero
- \let\hobby@phitwo=\hobby@thetaone
+\def\hobby@quick@makepathauto#1#2#3{%
+ #1%
+ \pgf@xa=\pgf@x\relax
+ \pgf@ya=\pgf@y\relax
+ #2%
+ \pgf@xb=\pgf@x\relax
+ \pgf@yb=\pgf@y\relax
+ #3%
+ \ifqhobby@blank
+ \edef\hobby@temp{%
+ \noexpand\pgfpathmoveto{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ }%
+ \hobby@temp
\else
-% \end{macrocode}
-% Second or later.
-% \begin{macrocode}
- \let\hobby@thetazero=\hobby@angle
- \pgfmathsetmacro\hobby@thetaone{%
- -(2 * \hobby@psi + \hobby@thetazero) * \hobby@done%
- / (2 * \hobby@done + \hobby@dzero)}%
- \pgfmathsetmacro\hobby@phione{-\hobby@psi - \hobby@thetaone}%
- \let\hobby@phitwo=\hobby@thetaone
+ \edef\hobby@temp{%
+ \noexpand\pgfpathcurveto{\noexpand\pgfqpoint{\the\pgf@xa}{\the\pgf@ya}}%
+ {\noexpand\pgfqpoint{\the\pgf@xb}{\the\pgf@yb}}%
+ {\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ }%
+ \hobby@temp
\fi
+ \ifqhobby@break
+ #3%
+ \edef\hobby@temp{%
+ \noexpand\pgfpathmoveto{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+ }%
+ \hobby@temp
+ \fi
+ \hobby@next@qbreak
+ \hobby@next@qblank
+}
% \end{macrocode}
-% Save the outgoing angle.
-% \begin{macrocode}
- \let\hobby@angle=\hobby@thetaone
-% \end{macrocode}
-% Compute the control lengths.
-% \begin{macrocode}
- \pgfmathsetmacro\hobby@alpha{%
- sqrt(2) * (sin(\hobby@thetazero r) - 1/16 * sin(\hobby@phione r))%
-* (sin(\hobby@phione r) - 1/16 * sin(\hobby@thetazero r))%
- * (cos(\hobby@thetazero r) - cos(\hobby@phione r))}%
- \pgfmathsetmacro\hobby@rho{%
- (2 + \hobby@alpha)/(1 + (1 - (3 - sqrt(5))/2)%
- * cos(\hobby@thetazero r) + (3 - sqrt(5))/2 * cos(\hobby@phione r))}%
- \pgfmathsetmacro\hobby@sigma{%
- (2 - \hobby@alpha)/(1 + (1 - (3 - sqrt(5))/2)%
- * cos(\hobby@phione r) + (3 - sqrt(5))/2 * cos(\hobby@thetazero r))}%
-% \end{macrocode}
-% Now compute the control points.
-% \begin{macrocode}
- \hobby@qpoints
- \pgf@xa=\pgf@x
- \pgf@ya=\pgf@y
- \pgfmathsetlength\pgf@xa{%
- \pgf@xa + \hobby@dzero * \hobby@rho%
- * cos((\hobby@thetazero + \hobby@omegazero) r)/3*\hobby@sf}%
- \pgfmathsetlength\pgf@ya{%
- \pgf@ya + \hobby@dzero * \hobby@rho%
- * sin((\hobby@thetazero + \hobby@omegazero) r)/3*\hobby@sf}%
- \hobby@qpointa
- \pgf@xb=\pgf@x
- \pgf@yb=\pgf@y
- \pgfmathsetlength\pgf@xb{%
- \pgf@xb - \hobby@dzero * \hobby@sigma%
- * cos((-\hobby@phione + \hobby@omegazero) r)/3*\hobby@sf}%
- \pgfmathsetlength\pgf@yb{%
- \pgf@yb - \hobby@dzero * \hobby@sigma%
- * sin((-\hobby@phione + \hobby@omegazero) r)/3*\hobby@sf}%
-% \end{macrocode}
-% Now add the relevant part to the path.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qaddfromtikz}
+% This adds our current point to the stack.
% \begin{macrocode}
- \hobby@qpointa
- \edef\hobby@quick@path{\hobby@quick@path .. controls%
- (\the\pgf@xa,\the\pgf@ya) and (\the\pgf@xb,\the\pgf@yb) .. (\the\pgf@x,\the\pgf@y) }%
+\def\hobby@qaddfromtikz#1{%
+ \hobby@quick@compute{#1}%
+ \tikz@make@last@position{\hobby@qpointa}%
+ \tikz@scan@next@command%
+}
% \end{macrocode}
-% Cycle the points round for the next iteration.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qinit@tikz@commands}
% \begin{macrocode}
- \let\hobby@qpoints=\hobby@qpointa
- #1
- \edef\hobby@qpointa{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
+\def\hobby@qinit@tikz@commands{%
+ \hobby@qinit@tikz@modcmd\tikz@movetoabs
+ \hobby@qinit@tikz@modcmd\tikz@movetorel
+ \hobby@qinit@tikz@modcmd\tikz@lineto
+ \hobby@qinit@tikz@modcmd\tikz@rect
+ \hobby@qinit@tikz@modcmd\tikz@cchar
+ \hobby@qinit@tikz@modcmd\tikz@finish
+ \hobby@qinit@tikz@modcmd\tikz@arcA
+ \hobby@qinit@tikz@modcmd\tikz@e@char
+ \hobby@qinit@tikz@modcmd\tikz@g@char
+ \hobby@qinit@tikz@modcmd\tikz@schar
+ \hobby@qinit@tikz@modcmd\tikz@vh@lineto
+ \hobby@qinit@tikz@modcmd\tikz@pchar
+ \hobby@qinit@tikz@modcmd\tikz@to
+ \hobby@qinit@tikz@modcmd\pgf@stop
+ \hobby@qinit@tikz@modcmd\tikz@decoration
+ \global\let\hobby@curveto@delegate=\hobby@qmidcurveto@auto
+}
% \end{macrocode}
-% Test to see if we have more points.
-% If not, the next thing we see will be that \Verb+\relax+.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qrestore@tikz@commands}
% \begin{macrocode}
- \pgfutil@ifnextchar\relax{%
+\def\hobby@qrestore@tikz@commands{%
+ \hobby@restore@tikz@modcmd\tikz@movetoabs
+ \hobby@restore@tikz@modcmd\tikz@movetorel
+ \hobby@restore@tikz@modcmd\tikz@lineto
+ \hobby@restore@tikz@modcmd\tikz@rect
+ \hobby@restore@tikz@modcmd\tikz@cchar
+ \hobby@restore@tikz@modcmd\tikz@finish
+ \hobby@restore@tikz@modcmd\tikz@arcA
+ \hobby@restore@tikz@modcmd\tikz@e@char
+ \hobby@restore@tikz@modcmd\tikz@g@char
+ \hobby@restore@tikz@modcmd\tikz@schar
+ \hobby@restore@tikz@modcmd\tikz@vh@lineto
+ \hobby@restore@tikz@modcmd\tikz@pchar
+ \hobby@restore@tikz@modcmd\tikz@to
+ \hobby@restore@tikz@modcmd\pgf@stop
+ \hobby@restore@tikz@modcmd\tikz@decoration
+ \hobby@restore@tikz@modcmd\tikz@@close
+ \global\let\hobby@curveto@delegate=\hobby@qcurveto@auto
+}
% \end{macrocode}
-% No more points.
-% Compute the control points for the second part of the curve and add that to the path.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qinit@tikz@modcmd}
% \begin{macrocode}
- \pgfmathsetmacro\hobby@alpha{%
- sqrt(2) * (sin(\hobby@thetaone r) - 1/16 * sin(\hobby@phitwo r))%
- * (sin(\hobby@phitwo r) - 1/16 * sin(\hobby@thetaone r))%
- * (cos(\hobby@thetaone r) - cos(\hobby@phitwo r))}%
- \pgfmathsetmacro\hobby@rho{%
- (2 + \hobby@alpha)/(1 + (1 - (3 - sqrt(5))/2)%
- * cos(\hobby@thetaone r) + (3 - sqrt(5))/2 * cos(\hobby@phitwo r))}%
- \pgfmathsetmacro\hobby@sigma{%
- (2 - \hobby@alpha)/(1 + (1 - (3 - sqrt(5))/2)%
- * cos(\hobby@phitwo r) + (3 - sqrt(5))/2 * cos(\hobby@thetaone r))}%
- \hobby@qpoints
- \pgf@xa=\pgf@x
- \pgf@ya=\pgf@y
- \pgfmathsetlength\pgf@xa{%
- \pgf@xa + \hobby@done * \hobby@rho%
- * cos((\hobby@thetaone + \hobby@omegaone) r)/3*\hobby@sf}%
- \pgfmathsetlength\pgf@ya{%
- \pgf@ya + \hobby@done * \hobby@rho%
- * sin((\hobby@thetaone + \hobby@omegaone) r)/3*\hobby@sf}%
- \hobby@qpointa
- \pgf@xb=\pgf@x
- \pgf@yb=\pgf@y
- \pgfmathsetlength\pgf@xb{%
- \pgf@xb - \hobby@done * \hobby@sigma%
- * cos((-\hobby@phitwo + \hobby@omegaone) r)/3*\hobby@sf}%
- \pgfmathsetlength\pgf@yb{%
- \pgf@yb - \hobby@done * \hobby@sigma%
- * sin((-\hobby@phitwo + \hobby@omegaone) r)/3*\hobby@sf}%
- \hobby@qpointa
- \edef\hobby@quick@path{\hobby@quick@path .. controls%
- (\the\pgf@xa,\the\pgf@ya) and (\the\pgf@xb,\the\pgf@yb) .. (\the\pgf@x,\the\pgf@y) }%
-}{%
+\def\hobby@qinit@tikz@modcmd#1{%
+ \expandafter\global\expandafter\let\csname hobby@orig@\string#1\endcsname=#1%
+ \gdef#1{\hobby@qfinish#1}%
+}
% \end{macrocode}
-% More to go, scan in the next coordinate and off we go again.
+% \end{macro}
+%
+% \begin{macro}{\hobby@qfinish}
% \begin{macrocode}
-\tikz@scan@one@point\hobby@quick}}
+\def\hobby@qfinish{%
+ \hobby@quick@computeend
+ \hobby@qrestore@tikz@commands
+}
% \end{macrocode}
-% \end{function}
-%
+% \end{macro}
+
% \iffalse
%</tikzlibrary>
% \fi
@@ -1806,7 +2750,7 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\int_new:N \g_array_base_int
\int_set:Nn \g_array_base_int {0}
% \end{macrocode}
-% \begin{function}{\array_adjust_ends:Nn}
+% \begin{macro}{\array_adjust_ends:Nn}
% This ensures that the ``base'' and ``top'' are big enough to include the given index.
% \begin{macrocode}
\cs_new:Npn \array_adjust_ends:Nn #1#2 {
@@ -1834,9 +2778,40 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_put:Nnn}
+% \begin{macro}{\array_gadjust_ends:Nn}
+% This ensures that the ``base'' and ``top'' are big enough to include the given index.
+% (Global version)
+% \begin{macrocode}
+\cs_new:Npn \array_gadjust_ends:Nn #1#2 {
+ \prop_get:NnNTF #1 {base} \l_tmpa_tl
+ {
+ \int_compare:nNnTF {\l_tmpa_tl} > {#2}
+ {
+ \prop_gput:Nnx #1 {base} {\int_eval:n {#2}}
+ }
+ {}
+ }
+ {
+ \prop_gput:Nnx #1 {base} {\int_eval:n {#2}}
+ }
+ \prop_get:NnNTF #1 {top} \l_tmpa_tl
+ {
+ \int_compare:nNnTF {\l_tmpa_tl} < {#2}
+ {
+ \prop_gput:Nnx #1 {top} {\int_eval:n {#2}}
+ }
+ {}
+ }
+ {
+ \prop_gput:Nnx #1 {top} {\int_eval:n {#2}}
+ }
+}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\array_put:Nnn}
% When adding a value to an array we have to adjust the ends.
% \begin{macrocode}
\cs_new:Npn \array_put:Nnn #1#2#3 {
@@ -1845,51 +2820,76 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
\cs_generate_variant:Nn \array_put:Nnn {Nnx}
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\array_gput:Nnn}
+% When adding a value to an array we have to adjust the ends.
+% (Global version)
+% \begin{macrocode}
+\cs_new:Npn \array_gput:Nnn #1#2#3 {
+ \exp_args:NNx \prop_gput:Nnn #1 {\int_eval:n {#2}} {#3}
+ \array_gadjust_ends:Nn #1{#2}
+}
+\cs_generate_variant:Nn \array_gput:Nnn {Nnx}
+% \end{macrocode}
+% \end{macro}
%
-% \begin{function}{\array_get:NnN}
+% \begin{macro}{\array_get:NnN}
% \begin{macrocode}
\cs_new:Npn \array_get:NnN #1#2#3 {
\exp_args:NNx \prop_get:NnN #1 {\int_eval:n {#2}} #3
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}[EXP]{\array_get:Nn}
+% \begin{macro}[EXP]{\array_get:Nn}
% \begin{macrocode}
\cs_new:Npn \array_get:Nn #1#2 {
\exp_args:NNf \prop_get:Nn #1 { \int_eval:n {#2} }
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_get:NnNTF}
+% \begin{macro}{\array_get:NnNTF}
% \begin{macrocode}
\cs_new:Npn \array_get:NnNTF #1#2#3#4#5 {
\exp_args:NNx \prop_get:NnNTF #1 {\int_eval:n {#2}} #3 {#4}{#5}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_if_empty:NTF}
+% \begin{macro}{\array_if_empty:NTF}
% \begin{macrocode}
-\cs_new_eq:NN \array_if_empty:NTF \prop_if_empty:NTF
+\prg_new_conditional:Npnn \array_if_empty:N #1 { p, T, F, TF }
+{
+ \if_meaning:w #1 \c_empty_prop
+ \prg_return_true:
+ \else:
+ \prg_return_false:
+ \fi:
+}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_new:N}
+% \begin{macro}{\array_new:N}
% \begin{macrocode}
\cs_new_eq:NN \array_new:N \prop_new:N
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_clear:N}
+% \begin{macro}{\array_clear:N}
% \begin{macrocode}
\cs_new_eq:NN \array_clear:N \prop_clear:N
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\array_gclear:N}
+% \begin{macrocode}
+\cs_new_eq:NN \array_gclear:N \prop_gclear:N
+% \end{macrocode}
+% \end{macro}
%
-% \begin{function}{\array_map_function}
+% \begin{macro}{\array_map_function}
% When stepping through an array, we want to iterate in order so a simple wrapper to \Verb+\prop_map_function+ is not enough.
% This maps through every value from the base to the top so the function should be prepared to deal with a \Verb+\q_no_value+.
% \begin{macrocode}
@@ -1906,18 +2906,18 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}{
\int_set:Nn \l_array_top_int {0}
}
- \prg_stepwise_inline:nnnn {\l_array_base_int} {1} {\l_array_top_int} {
+ \int_step_inline:nnnn {\l_array_base_int} {1} {\l_array_top_int} {
\array_get:NnN #1 {##1} \l_array_tmp_tl
- \exp_args:Nno #2 {##1} \l_array_tmp_tl
+ \exp_args:NnV #2 {##1} \l_array_tmp_tl
}
} {}
}
\cs_generate_variant:Nn \array_map_function:NN { Nc }
\cs_generate_variant:Nn \array_map_function:NN { c , cc }
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_reverse_map_function}
+% \begin{macro}{\array_reverse_map_function}
% This steps through the array in reverse order.
% \begin{macrocode}
\cs_new:Npn \array_reverse_map_function:NN #1#2
@@ -1933,7 +2933,7 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}{
\int_set:Nn \l_array_top_int {0}
}
- \prg_stepwise_inline:nnnn {\l_array_top_int} {-1} {\l_array_base_int} {
+ \int_step_inline:nnnn {\l_array_top_int} {-1} {\l_array_base_int} {
\array_get:NnN #1 {##1} \l_array_tmp_tl
\exp_args:Nno #2 {##1} \l_array_tmp_tl
}
@@ -1942,43 +2942,52 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\cs_generate_variant:Nn \array_reverse_map_function:NN { Nc }
\cs_generate_variant:Nn \array_reverse_map_function:NN { c , cc }
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_map_inline:Nn}
+% \begin{macro}{\array_map_inline:Nn}
% Inline version of the above.
% \begin{macrocode}
\cs_new_protected:Npn \array_map_inline:Nn #1#2
{
- \int_gincr:N \g_prg_map_int
- \cs_gset:cpn { array_map_inline_ \int_use:N \g_prg_map_int :nn }
+ \int_gincr:N \g__prg_map_int
+ \cs_gset:cpn { array_map_inline_ \int_use:N \g__prg_map_int :nn }
##1##2 {#2}
\exp_args:NNc \array_map_function:NN #1
- { array_map_inline_ \int_use:N \g_prg_map_int :nn }
- \prg_break_point:n { \int_gdecr:N \g_prg_map_int }
+ { array_map_inline_ \int_use:N \g__prg_map_int :nn }
+ \__prg_break_point:Nn \array_map_break: { \int_gdecr:N \g__prg_map_int }
}
\cs_generate_variant:Nn \array_map_inline:Nn { c }
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_reverse_map_inline:Nn}
+% \begin{macro}{\array_reverse_map_inline:Nn}
% Inline version of the above.
% \begin{macrocode}
\cs_new_protected:Npn \array_reverse_map_inline:Nn #1#2
{
- \int_gincr:N \g_prg_map_int
- \cs_gset:cpn { array_map_inline_ \int_use:N \g_prg_map_int :nn }
+ \int_gincr:N \g__prg_map_int
+ \cs_gset:cpn { array_map_inline_ \int_use:N \g__prg_map_int :nn }
##1##2 {#2}
\exp_args:NNc \array_reverse_map_function:NN #1
- { array_map_inline_ \int_use:N \g_prg_map_int :nn }
- \prg_break_point:n { \int_gdecr:N \g_prg_map_int }
+ { array_map_inline_ \int_use:N \g__prg_map_int :nn }
+ \__prg_break_point:Nn \array_map_break: { \int_gdecr:N \g__prg_map_int }
}
\cs_generate_variant:Nn \array_reverse_map_inline:Nn { c }
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\array_map_break:}
+% \begin{macrocode}
+\cs_new_nopar:Npn \array_map_break:
+ { \__prg_map_break:Nn \array_map_break: { } }
+\cs_new_nopar:Npn \array_map_break:n
+ { \__prg_map_break:Nn \array_map_break: }
+% \end{macrocode}
+% \end{macro}
%
% For displaying arrays, we need some messages.
% \begin{macrocode}
-\msg_new:nnn { array } { show }
+\__msg_kernel_new:nnn { kernel } { show-array }
{
The~array~\token_to_str:N #1~
\array_if_empty:NTF #1
@@ -1987,31 +2996,32 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
% \end{macrocode}
%
-% \begin{function}{\array_show:N}
+% \begin{macro}{\array_show:N}
% Mapping through an array isn't expandable so we have to set a token list to its contents first before passing it to the message handler.
% \begin{macrocode}
\cs_new_protected:Npn \array_show:N #1
{
\tl_clear:N \l_array_show_tl
\array_map_function:NN #1 \array_show_aux:nn
- \__msg_show_variable:Nnx
+ \__msg_show_variable:Nno
#1
{ array }
- { \l_array_show_tl }
+ { \l_array_show_tl }
}
+\cs_generate_variant:Nn \__msg_show_variable:Nnn { Nno }
\cs_new_protected:Npn \array_show_aux:nn #1#2
{
- \tl_if_eq:NNTF {#2} {\q_no_value} {}
+ \tl_if_eq:nnTF {#2} {\q_no_value} {}
{
\tl_put_right:No \l_array_show_tl {\__msg_show_item:nn {#1}{#2}}
}
}
\cs_generate_variant:Nn \array_show:N { c }
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_push:Nn}
+% \begin{macro}{\array_push:Nn}
% \begin{macrocode}
\cs_new_protected:Npn \array_push:Nn #1#2
{
@@ -2027,9 +3037,27 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
\cs_generate_variant:Nn \array_push:Nn {Nx}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_unshift:Nn}
+% \begin{macro}{\array_gpush:Nn}b
+% \begin{macrocode}
+\cs_new_protected:Npn \array_gpush:Nn #1#2
+{
+ \prop_get:NnNTF #1 {top} \l_array_tmp_tl
+ {
+ \int_set:Nn \l_array_tmp_int {\l_array_tmp_tl}
+ \int_incr:N \l_array_tmp_int
+ \array_gput:Nnn #1 {\l_array_tmp_int} {#2}
+ }
+ {
+ \array_gput:Nnn #1 {\g_array_base_int} {#2}
+ }
+}
+\cs_generate_variant:Nn \array_gpush:Nn {Nx}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\array_unshift:Nn}
% \begin{macrocode}
\cs_new_protected:Npn \array_unshift:Nn #1#2
{
@@ -2045,9 +3073,27 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}
\cs_generate_variant:Nn \array_unshift:Nn {Nx}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_pop:NN}
+% \begin{macro}{\array_gunshift:Nn}
+% \begin{macrocode}
+\cs_new_protected:Npn \array_gunshift:Nn #1#2
+{
+ \prop_get:NnNTF #1 {base} \l_array_tmp_tl
+ {
+ \int_set:Nn \l_array_tmp_int {\l_array_tmp_tl}
+ \int_decr:N \l_array_tmp_int
+ \array_gput:Nnn #1 {\l_array_tmp_int} {#2}
+ }
+ {
+ \array_gput:Nnn #1 {\g_array_base_int} {#2}
+ }
+}
+\cs_generate_variant:Nn \array_gunshift:Nn {Nx}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\array_pop:NN}
% \begin{macrocode}
\cs_new_protected:Npn \array_pop:NN #1#2
{
@@ -2056,9 +3102,20 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\array_del:Nn #1 {\l_array_tmp_tl}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\array_gpop:NN}
+% \begin{macrocode}
+\cs_new_protected:Npn \array_gpop:NN #1#2
+{
+ \prop_get:NnN #1 {top} \l_array_tmp_tl
+ \array_get:NnN #1 {\l_array_tmp_tl} #2
+ \array_gdel:Nn #1 {\l_array_tmp_tl}
+}
+% \end{macrocode}
+% \end{macro}
%
-% \begin{function}{\array_shift:NN}
+% \begin{macro}{\array_shift:NN}
% \begin{macrocode}
\cs_new_protected:Npn \array_shift:NN #1#2
{
@@ -2067,9 +3124,20 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\array_del:Nn #1 {\l_array_tmp_tl}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\array_gshift:NN}
+% \begin{macrocode}
+\cs_new_protected:Npn \array_gshift:NN #1#2
+{
+ \prop_get:NnN #1 {base} \l_array_tmp_tl
+ \array_get:NnN #1 {\l_array_tmp_tl} #2
+ \array_gdel:Nn #1 {\l_array_tmp_tl}
+}
+% \end{macrocode}
+% \end{macro}
%
-% \begin{function}{\array_top:NN}
+% \begin{macro}{\array_top:NN}
% \begin{macrocode}
\cs_new_protected:Npn \array_top:NN #1#2
{
@@ -2077,9 +3145,9 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\array_get:NnN #1 {\l_array_tmp_tl} #2
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_base:NN}
+% \begin{macro}{\array_base:NN}
% \begin{macrocode}
\cs_new_protected:Npn \array_base:NN #1#2
{
@@ -2087,31 +3155,31 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
\array_get:NnN #1 {\l_array_tmp_tl} #2
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_top:N}
+% \begin{macro}{\array_top:N}
% \begin{macrocode}
\cs_new:Npn \array_top:N #1
{
\array_get:Nn #1 {\prop_get:Nn #1 {top}}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_base:N}
+% \begin{macro}{\array_base:N}
% \begin{macrocode}
\cs_new:Npn \array_base:N #1
{
\array_get:Nn #1 {\prop_get:Nn #1 {base}}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
%
-% \begin{function}{\array_del:Nn}
+% \begin{macro}{\array_del:Nn}
% \begin{macrocode}
\cs_new_protected:Npn \array_del:Nn #1#2
{
- \exp_args:NNx \prop_del:Nn #1 {\int_eval:n {#2}}
+ \exp_args:NNx \prop_pop:Nn #1 {\int_eval:n {#2}}
\int_set:Nn \l_array_tmp_int {0}
\array_map_inline:Nn #1 {
\tl_if_eq:NNTF {##2} {\q_no_value} {}
@@ -2140,7 +3208,7 @@ sin ( (\array_get:Nn \l_hobby_angles_array {##1})
}{}
\prop_get:NnN #1 {base} \l_array_tmp_tl
\int_compare:nNnTF {#2} = {\l_array_tmp_tl} {
-p \prop_get:NnN #1 {top} \l_array_tmp_tl
+ \prop_get:NnN #1 {top} \l_array_tmp_tl
\int_set:Nn \l_array_tmp_int {\l_array_tmp_tl}
\array_map_inline:Nn #1 {
\tl_if_eq:NNTF {##2} {\q_no_value} {}
@@ -2155,16 +3223,66 @@ p \prop_get:NnN #1 {top} \l_array_tmp_tl
}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
+%
+% \begin{macro}{\array_gdel:Nn}
+% \begin{macrocode}
+\cs_new_protected:Npn \array_gdel:Nn #1#2
+{
+ \exp_args:NNx \prop_gpop:Nn #1 {\int_eval:n {#2}}
+ \int_set:Nn \l_array_tmp_int {0}
+ \array_map_inline:Nn #1 {
+ \tl_if_eq:NNTF {##2} {\q_no_value} {}
+ {
+ \int_incr:N \l_array_tmp_int
+ }
+ }
+ \int_compare:nNnTF {\l_array_tmp_int} = {0}
+ {
+ \prop_gclear:N #1
+ }
+ {
+ \prop_get:NnN #1 {top} \l_array_tmp_tl
+ \int_compare:nNnTF {#2} = {\l_array_tmp_tl} {
+ \prop_get:NnN #1 {base} \l_array_tmp_tl
+ \int_set:Nn \l_array_tmp_int {\l_array_tmp_tl}
+ \array_map_inline:Nn #1 {
+ \tl_if_eq:NNTF {##2} {\q_no_value} {}
+ {
+ \int_compare:nNnTF {\l_array_tmp_int} < {##1} {
+ \int_set:Nn \l_array_tmp_int {##1}
+ }{}
+ }
+ }
+ \prop_gput:Nnx #1 {top} {\int_use:N \l_array_tmp_int}
+ }{}
+ \prop_get:NnN #1 {base} \l_array_tmp_tl
+ \int_compare:nNnTF {#2} = {\l_array_tmp_tl} {
+ \prop_get:NnN #1 {top} \l_array_tmp_tl
+ \int_set:Nn \l_array_tmp_int {\l_array_tmp_tl}
+ \array_map_inline:Nn #1 {
+ \tl_if_eq:NNTF {##2} {\q_no_value} {}
+ {
+ \int_compare:nNnTF {\l_array_tmp_int} > {##1} {
+ \int_set:Nn \l_array_tmp_int {##1}
+ }{}
+ }
+ }
+ \prop_gput:Nnx #1 {base} {\int_use:N \l_array_tmp_int}
+ }{}
+ }
+}
+% \end{macrocode}
+% \end{macro}
%
-% \begin{function}{\array_length:N}
+% \begin{macro}{\array_length:N}
% \begin{macrocode}
\cs_new_protected:Npn \array_length:N #1
{
\int_eval:n {\prop_get:Nn #1 {top} - \prop_get:Nn #1 {base}}
}
% \end{macrocode}
-% \end{function}
+% \end{macro}
% \begin{macrocode}
\ExplSyntaxOff
% \end{macrocode}