diff options
author | Karl Berry <karl@freefriends.org> | 2012-07-23 17:28:43 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2012-07-23 17:28:43 +0000 |
commit | ecfa5f36d1f895ffa3ccbd7b65ea54cffdbb518d (patch) | |
tree | 62cf630022b3ee00d312269aad45e027dd49b244 /Master/texmf-dist/source/latex/calculator | |
parent | ab7ba4c57fac580b3ce38b9a3785b71d104ed92a (diff) |
new latex package calculator (11jun12)
git-svn-id: svn://tug.org/texlive/trunk@27112 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/latex/calculator')
-rw-r--r-- | Master/texmf-dist/source/latex/calculator/calculator.dtx | 4576 |
1 files changed, 4576 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/latex/calculator/calculator.dtx b/Master/texmf-dist/source/latex/calculator/calculator.dtx new file mode 100644 index 00000000000..543ed6d3564 --- /dev/null +++ b/Master/texmf-dist/source/latex/calculator/calculator.dtx @@ -0,0 +1,4576 @@ +% \iffalse meta-comment +%<*internal> +\begingroup +\input docstrip.tex +\keepsilent +\preamble +------------------------------------------------------------------ +The calculator and calculus packages +Copyright (C) 2012 by Robert Fuster <rfuster@mat.upv.es> +All rights reserved + +This file may be distributed and/or modified under the +conditions of the LaTeX Project Public License, either version 1.3 +of this license or (at your option) any later version. +The latest version of this license is in: + + http://www.latex-project.org/lppl.txt + +and version 1.3 or later is part of all distributions of LaTeX +version 1999/12/01 or later. +------------------------------------------------------------------ +\endpreamble +\postamble +\endpostamble +\askforoverwritefalse + +\generateFile{calculator.sty}{t}{\from{calculator.dtx}{calculator}} +\generateFile{calculus.sty}{t}{\from{calculator.dtx}{calculus}} + +\def\tmpa{plain} +\ifx\tmpa\fmtname\endgroup\expandafter\bye\fi +\endgroup +%</internal> +% +% Copyright (C) 2012 by Robert Fuster <rfuster@mat.upv.es> +% +% This file may be distributed and/or modified under the +% conditions of the LaTeX Project Public License, either version 1.2 +% of this license or (at your option) any later version. +% The latest version of this license is in: +% +% http://www.latex-project.org/lppl.txt +% +% and version 1.2 or later is part of all distributions of LaTeX +% version 1999/12/01 or later. +% +% \fi +% \CheckSum{3135} +% \changes{v1.0}{2012/04/25}{First public version} +% \changes{v1.0a}{2012/06/10}{calculator.dtx modified to make it autoinstallable. +% calculus.dtx embedded in calculus.dtx} +%% \CharacterTable +%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z +%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z +%% Digits \0\1\2\3\4\5\6\7\8\9 +%% Exclamation \! Double quote \" Hash (number) \# +%% Dollar \$ Percent \% Ampersand \& +%% Acute accent \' Left paren \( Right paren \) +%% Asterisk \* Plus \+ Comma \, +%% Minus \- Point \. Solidus \/ +%% Colon \: Semicolon \; Less than \< +%% Equals \= Greater than \> Question mark \? +%% Commercial at \@ Left bracket \[ Backslash \\ +%% Right bracket \] Circumflex \^ Underscore \_ +%% Grave accent \` Left brace \{ Vertical bar \| +%% Right brace \} Tilde \~} +% +% \iffalse +%<*driver> +\documentclass{ltxdoc} +\ProvidesFile{calculator.dtx} + [2012/06/10 v.1.0a documented calculator package] +\GetFileInfo{calculator.dtx} +\usepackage{amsmath} +\usepackage[lmargin=1.75in,rmargin=1in]{geometry} +\usepackage{fancyvrb} +\def\fileversion{1.0a} +\def\filedate{2012/06/10} +\usepackage{calculus} +\title{The \textsf{calculator} and \textsf{calculus} packages% + \thanks{This document corresponds to + \textsf{calculator} and \textsf{calculus}~\fileversion, + dated \filedate.}\\ + Scientific calculations with \LaTeX} +\author{Robert Fuster\\ + Universitat Polit\`ecnica de Val\`encia \\ + \texttt{rfuster@mat.upv.es}} +\date{\filedate} +\EnableCrossrefs +\CodelineIndex +\RecordChanges + +\newcommand{\TBS}{\textbackslash} +\newcommand{\Marg}[1]{\textnormal{\marg{#1}}} + +\newcounter{exem}\stepcounter{exem} +\newenvironment{exemple}{% +\VerbatimEnvironment\begin{VerbatimOut}[gobble=2]{./calculator\theexem.tex}}{% +\end{VerbatimOut} +\par\medskip\noindent +\begin{minipage}{\linewidth} +\begin{minipage}[t]{0.45\linewidth} +\setlength{\parindent}{2ex} +\noindent\textsf{\fbox{Ex. \theexem}} +\bigskip\par +\catcode`\%=14 +\input{./calculator\theexem} +\end{minipage}\hfill +\begin{minipage}[t]{0.45\linewidth} +\small +\VerbatimInput{./calculator\theexem.tex} +\end{minipage} +\end{minipage} +\stepcounter{exem}\par\bigskip\noindent} + +\newcommand{\textttit}[1]{\texttt{\textit{#1}}} + +\begin{document} +\maketitle + \DocInput{calculator.dtx} + \PrintChanges + \PrintIndex +\end{document} +%</driver> +% +% \fi +% + +% \DoNotIndex{\newcommand,\newenvironment,\RequirePackage,\begin,\end} +% \DoNotIndex{\begingroup,\endgroup,\expandafter,\undefined,\@ifnextchar} +% \DoNotIndex{\def,\let,\edef,\xdef,\ifx,\ifdim,\ifnum,\else,\fi,\fi,\fi} +% \DoNotIndex{\@whilenum,\advance,\divide,\do,\newdimen,\number} +% \DoNotIndex{\noexpand,\ignorespaces,\p@,\z@,\strip@pt} +% \DoNotIndex{\MessageBreak} +% +% \begin{abstract} +% The \textsf{calculator} package allows us to use \LaTeX{} as a calculator, +% with which we can perform many of the common scientific calculations +% (with the limitation in accuracy imposed by the \TeX{} arithmetic). +% +% This package introduces several new instructions that allow you to do +% several calculations with integer and decimal numbers using \LaTeX. +% Apart from add, multiply or divide, we can calculate powers, square roots, +% logarithms, trigonometric and hyperbolic functions \ldots + +% In addition, the \textsf{calculator} package supports some elementary calculations with +% vectors +% in two and three dimensions and square $2\times2$ and $3\times3$ matrices. +% \smallskip + +% The +% \textsf{calculus} package adds to the \textsf{calculator} package +% several utilities to use and define various functions and their derivatives, +% including elementary functions, operations with functions, +% polar coordinates and vector-valued real functions. +% \end{abstract} +% +% \tableofcontents +% +% \section{Introduction} +% The \textsf{calculator} package defines some instructions which allow +% us to realize algebraic operations +% (and to evaluate elementary functions) in our documents. +% The operations implemented by the \textsf{calculator} package +% include routines of assignment of variables, +% arithmetical calculations with real and integer numbers, +% two and three dimensional vector and matrix arithmetics +% and the computation of square roots, +% trigonometrical, exponential, logarithmic and hyperbolic functions. +% In addition, some important numbers, such as $\sqrt2$, $\pi$ or $\mathrm e$, +% are predefined. +% +% The name of all these commands is spelled in capital letters +% (with very few exceptions: % the commands \cs{DEGtoRAD} and \cs{RADtoDEG} +% and the control sequences that define special numbers, as +% \cs{numberPI}) +% and, in general, they all need one or more mandatory arguments, +% the first one(s) of which is(are) number(s) and the last one(s) is(are) +% the name(s) of the command(s) where +% the results will be stored.\footnote{% +% Logically, the control sequences that represent special numbers +% (as \cs{numberPI}) does not need any argument.} +% The new commands defined in this way work in any \LaTeX{} mode. +% +% +% By example, this instruction +% \begin{verbatim} +% \MAX{3}{5}{\solution} +% \end{verbatim} +% stores |5| in the command \cs{solution}. In a similar way, +% \begin{verbatim} +% \FRACTIONSIMPLIFY{10}{12}{\numerator}{\denominator} +% \end{verbatim} +% defines \cs{numerator} and \cs{denominator} as |5| i |6|, respectively. +% +% The \emph{data} arguments should not be necessarily explicit numbers; +% it may also consist in commands the value of which is a number. +% This allows us to chain several calculations, since in the following +% example: +% \begin{exemple} +% % \tempA=2,5^2 +% \SQUARE{2.5}{\tempA} +% % \tempB=sqrt(12) +% \SQUAREROOT{12}{\tempB} +% % \tempC=exp(3,4) +% \EXP{3.4}{\tempC} +% % \divisio=\tempA/tempB +% \DIVIDE{\tempA}{\tempB}{\divisio} +% % \sol=\divisio+\tempC +% \ADD{\divisio}{\tempC}{\sol} +% \begin{align*} +% \frac{2.5^2}{\sqrt{12}}+\mathrm{e}^{3.4} +% &= \frac{\tempA}{\tempB}+\tempC \\ +% &= \divisio+\tempC \\ +% &=\sol +% \end{align*} +% \end{exemple} +% Observe that, in this example, we have followed exactly the same steps +% that we would do to calculate +% $\frac{2.5^2}{\sqrt{12}}+\mathrm{e}^{3.4}$ with a standard calculator: +% We would calculate the square, the root and the exponential and, +% finally, we would divide and add the results. +% +% It does not matter if the arguments \emph{results} are or not predefined. +% But these commands act as declarations, so that its scope is local +% in environments and groups. +% \begin{exemple} +% \SQUARE{5}\sol +% The \texttt{\textbackslash sol} +% command contains the square of $5$: +% \[5^2=\sol\] +% \begin{center} +% \SQUAREROOT{5}\sol +% Now, the \texttt{\textbackslash sol} +% command is the square root of $5$: +% \[\sqrt{5}=\sol\] +% \end{center} +% On having gone out of the \texttt{center} +% environment, +% the command recovers its previous value: +% \sol +% \end{exemple} +% +% The \textsf{calculus} package +% goes a step further and allows us to define and use in a user-friendly +% manner various functions and their derivatives. +% +% For exemple, using the +% \textsf{calculus} package, you can define the $f(t)=t^2e^t-\cos 2t$ function +% as follows: +% \begin{Verbatim} +% \PRODUCTfunction{\SQUAREfunction}{\EXPfunction}{\tempfunctionA} +% \SCALEVARIABLEfunction{2}{\COSfunction}{\tempfunctionB} +% \SUBTRACTfunction{\tempfunctionA}{\tempfunctionB}{\Ffunction} +% \end{Verbatim} +% +% Then you cau compute any value of the new function |\Ffunction| +% and its derivative: typing +% \begin{quote} +% |\Ffunction|\marg{num}\marg{\cs{sol}}\marg{\cs{Dsol}} +% \end{quote} +% the values of $f(\textit{num})$ and $f'(\textit{num})$ will be stored in +% \textttit{\cs{sol}} and \textttit{\cs{Dsol}}. +% +% \part{The \textsf{calculator} package} +% \section{Predefined numbers} +% The \textsf{calculator} package predefines the following numbers: +% \SpecialUsageIndex{\numberPI} +% \SpecialUsageIndex{\numberHALFPI} +% \SpecialUsageIndex{\numberTHREEHALFPI} +% \SpecialUsageIndex{\numberTHIRDPI} +% \SpecialUsageIndex{\numberQUARTERPI} +% \SpecialUsageIndex{\numberFIFTHPI} +% \SpecialUsageIndex{\numberSIXTHPI} +% \SpecialUsageIndex{\numberTWOPI} +% \SpecialUsageIndex{\numberE} +% \SpecialUsageIndex{\numberINVE} +% \SpecialUsageIndex{\numberETWO} +% \SpecialUsageIndex{\numberINVETWO} +% \SpecialUsageIndex{\numberLOGTEN} +% \SpecialUsageIndex{\numberGOLD} +% \SpecialUsageIndex{\numberINVGOLD} +% \SpecialUsageIndex{\numberSQRTTWO} +% \SpecialUsageIndex{\numberSQRTTHREE} +% \SpecialUsageIndex{\numberSQRTFIVE} +% \SpecialUsageIndex{\numberCOSXXX} +% \SpecialUsageIndex{\numberCOSXLV} +% \begin{center} +% \begin{tabular}{llll} +% \ttfamily \cs{numberPI} & $\numberPI\approx\pi$ & +% \ttfamily \cs{numberHALFPI} & $\numberHALFPI\approx\pi/2$ \\ +% \ttfamily \cs{numberTHREEHALFPI} & $\numberTHREEHALFPI\approx3\pi/2$ & +% \ttfamily \cs{numberTHIRDPI} & $\numberTHIRDPI\approx\pi/3$ \\ +% \ttfamily \cs{numberQUARTERPI} & $\numberQUARTERPI\approx\pi/4$ & +% \ttfamily \cs{numberFIFTHPI} & $\numberFIFTHPI\approx\pi/5$ \\ +% \ttfamily \cs{numberSIXTHPI} & $\numberSIXTHPI\approx\pi/6$ & +% \ttfamily \cs{numberTWOPI} & $\numberTWOPI\approx2\pi$ \\ +% \hline +% \ttfamily \cs{numberE} & $\numberE\approx\mathrm e$ & +% \ttfamily \cs{numberINVE} & $\numberINVE\approx1/\mathrm e$ \\ +% \ttfamily \cs{numberETWO} & $\numberETWO\approx\mathrm e^2$ & +% \ttfamily \cs{numberINVETWO} & $\numberINVETWO\approx1/\mathrm e^2$ \\ +% \hline +% \ttfamily \cs{numberLOGTEN} & $\numberLOGTEN\approx\log 10$ +% \\ +% \hline +% \ttfamily \cs{numberGOLD} & $\numberGOLD\approx\phi$ & +% \ttfamily \cs{numberINVGOLD} & $\numberINVGOLD\approx1/\phi$ \\ +% \hline +% \ttfamily \cs{numberSQRTTWO} & $\numberSQRTTWO\approx\sqrt2$ & +% \ttfamily \cs{numberSQRTTHREE} & $\numberSQRTTHREE\approx\sqrt3$ \\ +% \ttfamily \cs{numberSQRTFIVE} & $\numberSQRTFIVE\approx\sqrt5$ \\ +% \hline +% \ttfamily \cs{numberCOSXXX} & $\numberCOSXXX\approx\cos{\pi/6}$ & +% \ttfamily \cs{numberCOSXLV} & $\numberCOSXLV\approx\cos{\pi/4}$ +% \end{tabular} +% \end{center} +% \section{Operations with numbers} +% \subsection{Assignments and comparisons} +% The first command we describe here is used to store a number +% in a control sequence. +% The other two commands in this section determine the maximum and minimum +% of a pair of numbers. +% \begin{description} +% \item[\cs{COPY}\marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\COPY}% +% stores the number \textttit{num} to the command \textttit{\TBS cmd}. +% \begin{exemple} +% \COPY{-1.256}{\sol} +% \sol +% \end{exemple} +% \item[\cs{MAX}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\MAX}% +% stores in \textttit{\TBS cmd} the maximum of the numbers \textttit{num1} +% and \textttit{num2}. +% \begin{exemple} +% \MAX{1.256}{3.214}{\sol} +% \[\max(1.256,3.214)=\sol\] +% \end{exemple} +% \item[\cs{MIN}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\MIN}% +% stores in \textttit{\TBS cmd} the minimum of \textttit{num1} and +% \textttit{num2}. +% \begin{exemple} +% \MIN{1.256}{3.214}{\sol} +% \sol +% \end{exemple} +% \end{description} +% \subsection{Real arithmetic} +% \subsubsection{The four basic operations} +% The following commands calculate the four arithmetical basic operations. +% \begin{description} +% \item[\cs{ADD}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\ADD}% +% Sum of numbers \textttit{num1} and \textttit{num2}. +% \begin{exemple} +% \ADD{1.256}{3.214}{\sol} +% $1.256+3.214=\sol$ +% \end{exemple} +% +% \item[\cs{SUBTRACT}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\SUBTRACT}% +% Difference \textttit{num1}-\textttit{num2}. +% \begin{exemple} +% \SUBTRACT{1.256}{3.214}{\sol} +% $1.256-3.214=\sol$ +% \end{exemple} +% +% \item[\cs{MULTIPLY}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\MULTIPLY}% +% Product \textttit{num1}$\times$\textttit{num2}. +% \begin{exemple} +% \MULTIPLY{1.256}{3.214}{\sol} +% $1.256\times3.214=\sol$ +% \end{exemple} +% +% \item[\cs{DIVIDE}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\DIVIDE}% +% Quotient +% \textttit{num1}/\textttit{num2}.\footnote{This command uses a modified +% version of the division algorithm of Claudio Beccari.} +% \begin{exemple} +% \DIVIDE{1.256}{3.214}{\sol} +% $1.256/3.214=\sol$ +% \end{exemple} +% +% In addition, the \cs{LENGTHDIVIDE} command divides two lengths +% and returns a number. +% \item[\cs{LENGTHDIVIDE}\marg{length1}\marg{length2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\LENGTHDIVIDE}\mbox{} +% \begin{exemple} +% \LENGTHDIVIDE{1in}{1cm}{\sol} +% One inch equals $\sol$ centimeters. +% \end{exemple} +% \end{description} +% \subsubsection{Powers with integer exponent} +% \begin{description} +% \item[\cs{SQUARE}\marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\SQUARE}% +% Square of the number \textttit{num}. +% \begin{exemple} +% \SQUARE{-1.256}{\sol} +% $(-1.256)^2=\sol$ +% \end{exemple} +% \item[\cs{CUBE}\marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\CUBE}% +% Cube of \textttit{num}. +% \begin{exemple} +% \CUBE{-1.256}{\sol} +% $(-1.256)^3=\sol$ +% \end{exemple} +% \item[\cs{POWER}\marg{num}\marg{exp}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\POWER}% +% The \textttit{exp} power of \textttit{num}. +% +% The exponent, \textttit{exp}, must be an integer +% (if you want to calculate powers +% with non integer exponents, use the \cs{EXP} command). +% \begin{exemple} +% \POWER{-1.256}{-5}{\sola} +% \POWER{-1.256}{5}{\solb} +% \POWER{-1.256}{0}{\solc} +% \[ +% \begin{aligned} +% (-1.256)^{-5}&=\sola +% \\ +% (-1.256)^{5}&=\solb +% \\ +% (-1.256)^{0}&=\solc +% \end{aligned} +% \] +% \end{exemple} +% \end{description} +% +% \subsubsection{Absolute value, integer part and fractional part} +% \begin{description} +% \item[\cs{ABSVALUE}\marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\ABSVALUE}% +% Absolute value of \textttit{num}. +% \begin{exemple} +% \ABSVALUE{-1.256}{\sol} +% $\left\vert-1.256\right\vert=\sol$ +% \end{exemple} +% \item[\cs{INTEGERPART}\marg{num}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\INTEGERPART}% +% Integer part of \textttit{num}.\footnote{The integer part of $x$ +% is the largest integer that is less than or equal to $x$.} +% \begin{exemple} +% \INTEGERPART{1.256}{\sola} +% \INTEGERPART{-1.256}{\solb} +% The integer part of $1.256$ is $\sola$, +% but the integer part of $-1.256$ is $\solb$. +% \end{exemple} +% \item[\cs{FLOOR}]\SpecialUsageIndex{\FLOOR}% +% is an alias of \cs{INTEGERPART}. +% \begin{exemple} +% \FLOOR{1.256}{\sol} +% The integer part of $1.256$ is $\sol$. +% \end{exemple} +% \item[\cs{FRACTIONALPART}\marg{num}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\FRACTIONALPART}% +% Fractional part of \textttit{num}. +% \begin{exemple} +% \FRACTIONALPART{1.256}{\sol} +% \sol +% +% \FRACTIONALPART{-1.256}{\sol} +% \sol +% \end{exemple} +% \end{description} +% \subsubsection{Truncation and rounding} +% \begin{description} +% \item[\cs{TRUNCATE}\oarg{n}\marg{num}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\TRUNCATE}% +% truncates the number \textttit{num} to \textttit{n} decimal places. +% \item[\cs{ROUND}{[\textttit{n}]}\marg{num}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\ROUND}% +% rounds the number \textttit{num} to \textttit{n} decimal places. +% +% The optional argument \textttit{n} may be \texttt{0}, \texttt{1}, +% \texttt{2}, \texttt{3} or \texttt{4} (the default is \texttt{2}).\footnote{% +% Note than \cs{TRUNCATE[0]} is equivalent to \cs{INTEGERPART} +% only for non-negative numbers.} +% \begin{exemple} +% \TRUNCATE[0]{1.25688}{\sol} +% \sol +% +% \TRUNCATE[2]{1.25688}{\sol} +% \sol +% +% \TRUNCATE[4]{1.25688}{\sol} +% \sol +% \end{exemple} +% \begin{exemple} +% \ROUND[0]{1.25688}{\sol} +% \sol +% +% \ROUND[2]{1.25688}{\sol} +% \sol +% +% \ROUND[4]{1.25688}{\sol} +% \sol +% \end{exemple} +% \end{description} +% +% \subsection{Integers} +% The operations described here are subject +% to the same restrictions as those referring to decimal numbers. +% In particular, although \TeX{} does not have this restriction +% in its integer arithmetic, +% the largest integer that can be used is 16383. +% \subsubsection{Integer division, quotient and remainder} +% \begin{description} +% \item +% [\cs{INTEGERDIVISION}\marg{num1}\marg{num2}\marg{\cs{cmd1}}\marg{\cs{cmd2}}] +% \SpecialUsageIndex{\INTEGERDIVISION}% +% stores in the \textttit{\TBS cmd1} and +% \textttit{\TBS cmd2} commands the quotient and the remainder of the +% integer division of the two integers +% \textttit{num1} and \textttit{num2}. +% The remainder is a non-negative number smaller than the divisor.\footnote{% +% The scientific computing systems (such as Matlab. Scilab or Mathematica) +% do not always return a non-negative residue +% ---especially when the divisor is negative---. +% However, the most reasonable definition of integer quotient is this one: +% \emph{the quotient of the division $D/d$ is the largest number $q$ +% for which $dq \leq D$}. +% With this definition, the remainder $r=D-qd$ is a non-negative number.} +% \begin{exemple} +% \INTEGERDIVISION{435}{27}{\sola}{\solb} +% $435=27\times\sola+\solb$ +% +% \INTEGERDIVISION{27}{435}{\sola}{\solb} +% $27=435\times\sola+\solb$ +% +% \INTEGERDIVISION{-435}{27}{\sola}{\solb} +% $-435=27\times(\sola)+\solb$ +% +% \INTEGERDIVISION{435}{-27}{\sola}{\solb} +% $435=-27\times(\sola)+\solb$ +% +% \INTEGERDIVISION{-435}{-27}{\sola}{\solb} +% $-435=-27\times\sola+\solb$ +% \end{exemple} +% \item[\cs{INTEGERQUOTIENT}\marg{num1}\marg{num2}\marg{\cs{cmd}}] +% \SpecialUsageIndex{\INTEGERQUOTIENT}% +% Integer part of the quotient of +% \textttit{num1} and \textttit{num2}. These two numbers are not necessarily +% integers. +% \begin{exemple} +% \INTEGERQUOTIENT{435}{27}{\sol} +% \sol +% +% \INTEGERQUOTIENT{27}{435}{\sol} +% \sol +% +% \INTEGERQUOTIENT{-43.5}{2.7}{\sol} +% \sol +% \end{exemple} +% \item[\cs{MODULO}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\MODULO}% +% Remainder of the integer division of +% \textttit{num1} and \textttit{num2}. +% \begin{exemple} +% \MODULO{435}{27}{\sol} +% \[ +% 435 \equiv \sol \pmod{27} +% \] +% \MODULO{-435}{27}{\sol} +% \[ +% -435 \equiv \sol \pmod{27} +% \] +% \end{exemple} +% \end{description} +% \subsubsection{Greatest common divisor and least common multiple} +% \begin{description} +% \item +% [\cs{GCD}\marg{num1}\marg{num2}\marg{\cs{cmd}}]\SpecialUsageIndex{\GCD}% +% Greatest common divisor of the integers +% \textttit{num1} and \textttit{num2}. +% \begin{exemple} +% \GCD{435}{27}{\sol} +% $\gcd(435,27)=\sol$ +% \end{exemple} +% \item[\cs{LCM}\marg{num1}\marg{num2}\marg{\cs{cmd}}]% +% \SpecialUsageIndex{\LCM}% +% Least common multiple of \textttit{num1} and \textttit{num2}. +% \begin{exemple} +% \newcommand{\lcm}{\operatorname{lcm}} +% \LCM{435}{27}{\sol} +% $\lcm(435,27)=\sol$ +% \end{exemple} +% \end{description} +% \subsubsection{Simplifying fractions} +% \begin{description} +% \item[\cs{FRACTIONSIMPLIFY}\marg{num1}\marg{num2}\marg{\cs{cmd1}}% +% \marg{\cs{cmd2}}]\SpecialUsageIndex{\FRACTIONSIMPLIFY}% +% stores in the \TBS\textttit{cmd1} and \textttit{\TBS cmd2} commands +% the numerator and denominator of the irreducible fraction equivalent to +% \textttit{num1}/\textttit{num2}. +% \begin{exemple} +% \FRACTIONSIMPLIFY{435}{27}{\sola}{\solb} +% $435/27=\sola/\solb$ +% \end{exemple} +% \end{description} +% \subsection{Elementary functions} +% \subsubsection{Square roots} +% \begin{description} +% \item[\cs{SQUAREROOT}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\SQUAREROOT}% +% Square root of the number \textttit{num}. +% \begin{exemple} +% \SQUAREROOT{1.44}{\sol} +% $\sqrt{1.44}=\sol$ +% \end{exemple} +% If the argument \textttit{num} is negative, the package returns +% a warning message. +% \end{description} +% Instead of \cs{SQUAREROOT}, you can use the alias \cs{SQRT}.% +% \SpecialUsageIndex{\SQRT} +% +% \subsubsection{Exponential and logarithm} +% The \cs{EXP} and \cs{LOG} commands compute, by default, +% exponentials and logarithms of the natural base $\mathrm{e}$. +% They admit, however, an optional argument to choose another base. +% \begin{description} +% \item[\cs{EXP}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\EXP}% +% Exponential of the number \textttit{num}. +% \begin{exemple} +% \EXP{0.5}{\sol} +% $\exp(0.5)=\sol$ +% \end{exemple} +% The argument \textttit{num} must be in the interval $[-9.704,9.704]$.% +% \footnote{$9.704$ is the logarithm of $16383$, +% the largest number that supports the \TeX's arithmetic.} +% +% Moreover, the \cs{EXP} command accepts an optional argument, +% to compute expressions such as $a^x$: +% \item[\cs{EXP}% +% \oarg{num1}\marg{num2}\marg{\cs{cmd}}]\SpecialUsageIndex{\EXP}% +% Exponential with base \textttit{num1} of \textttit{num2}. +% \textttit{num1} must be a positive number. +% \begin{exemple} +% \EXP[10]{1.3}{\sol} +% $10^{1.3}=\sol$ +% +% \EXP[2]{0.33333}{\sol} +% $2^{1/3}=\sol$ +% +% \end{exemple} +% \item[\cs{LOG}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\LOG}% +% logarithm of the number \textttit{num}. +% \begin{exemple} +% \LOG{0.5}{\sol} +% $\log 0.5=\sol$ +% \end{exemple} +% \item[\cs{LOG}% +% \oarg{num1}\marg{num2}\marg{\cs{cmd}}]\SpecialUsageIndex{\LOG}% +% Logarithm in base \textttit{num1} of \textttit{num2}. +% \begin{exemple} +% \LOG[10]{0.5}{\sol} +% $\log_{10} 0.5=\sol$ +% \end{exemple} +% \end{description} +% \subsubsection{Trigonometric functions} +% The arguments, in functions \cs{SIN}, \cs{COS}, \ldots, +% are measured in radians. +% If you measure angles in degrees (sexagesimal or not), use the +% \cs{DEGREESSIN}, \cs{DEGREESCOS}, \dots\ commands. +% \begin{description} +% \item[\cs{SIN}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\SIN}% +% Sine of \textttit{num}. +% +% \item[\cs{COS}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\COS}% +% Cosine of \textttit{num}. +% +% \item[\cs{TAN}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\TAN}% +% Tangent of \textttit{num}. +% +% \item[\cs{COT}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\COT}% +% Cotangent of \textttit{num}. +% \begin{exemple} +% \SIN{\numberTHIRDPI}{\sol} +% $\sin \pi/3=\sol$ +% +% \COS{\numberTHIRDPI}{\sol} +% $\cos \pi/3=\sol$ +% +% \TAN{\numberTHIRDPI}{\sol} +% $\tan \pi/3=\sol$ +% +% \COT{\numberTHIRDPI}{\sol} +% $\cot \pi/3=\sol$ +% \end{exemple} +% +% \item[\cs{DEGREESSIN}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\DEGREESSIN}% +% Sine of \textttit{num} sexagesimal degrees. +% +% \item[\cs{DEGREESCOS}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\DEGREESCOS}% +% Cosine of \textttit{num} sexagesimal degrees. +% +% \item[\cs{DEGREESTAN}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\DEGREESTAN}% +% Tangent of \textttit{num} sexagesimal degrees. +% +% \item[\cs{DEGREESCOT}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\DEGREESCOT}% +% Cotangent of \textttit{num} sexagesimal degrees. +% +% \begin{exemple} +% \DEGREESSIN{60}{\sol} +% $\sin 60^{\textrm o}=\sol$ +% +% \DEGREESCOS{60}{\sol} +% $\cos 60^{\textrm o}=\sol$ +% +% \DEGREESTAN{60}{\sol} +% $\tan 60^{\textrm o}=\sol$ +% +% \DEGREESCOT{60}{\sol} +% $\cot 60^{\textrm o}=\sol$ +% \end{exemple} +% \end{description} +% +% The latter commands support an optional argument +% that allows us to divide the circle +% in an arbitrary number of \emph{degrees} (not necessarily $360$). +% \begin{description} +% \item[\cs{DEGREESSIN}% +% \oarg{degrees}\marg{num}\marg{\cs{cmd}}] \mbox{} +% \item[\cs{DEGREESCOS}% +% \oarg{degrees}\marg{num}\marg{\cs{cmd}}] \mbox{} +% \item[\cs{DEGREESTAN}% +% \oarg{degrees}\marg{num}\marg{\cs{cmd}}] \mbox{} +% \item[\cs{DEGREESCOT}% +% \oarg{degrees}\marg{num}\marg{\cs{cmd}}] \mbox{} +% \end{description} +% +% By example, |\DEGREESCOS[400]{50}| computes the cosine of 50 gradians +% (a right angle has $100$ gradians, the whole circle has 400 gradians), +% which are equivalent to 45 (sexagesimal) degrees or +% $\pi/4$ radians. Or to 1 \emph{degree}, +% if we divide the circle into 8 parts! +% \begin{exemple} +% \DEGREESCOS[400]{50}{\sol} +% \sol +% +% \DEGREESCOS{45}{\sol} +% \sol +% +% \COS{\numberQUARTERPI}{\sol} +% \sol +% +% \DEGREESCOS[8]{1}{\sol} +% \sol +% \end{exemple} +% +% Moreover, we have a couple od commands +% to convert between radians and degrees, +% \begin{description} +% \item[\cs{DEGtoRAD}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\DEGtoRAD}% +% Equivalence in radians +% of \textttit{num} sexagesimal degrees. +% \item[\cs{RADtoDEG}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\RADtoDEG}% +% Equivalence in sexagesimal degrees +% of \textttit{num} radians. +% \begin{exemple} +% \DEGtoRAD{60}{\sol} +% \sol +% \end{exemple} +% \end{description} +% and two other commands to reduce arguments to basic intervals: +% \begin{description} +% \item[\cs{REDUCERADIANSANGLE}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\REDUCERADIANSANGLE}% +% Reduces the arc \textttit{num} to the interval $]-\pi,\pi]$. +% +% \item[\cs{REDUCEDEGREESANGLE}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\REDUCEDEGREESANGLE}% +% Reduces the angle \textttit{num} to the interval $]-180,180]$. +% \begin{exemple} +% \MULTIPLY{\numberTWOPI}{10}{\TWENTYPI} +% \ADD{\numberPI}{\TWENTYPI}{\TWENTYONEPI} +% \REDUCERADIANSANGLE{\TWENTYONEPI}{\sol} +% \sol +% +% \REDUCEDEGREESANGLE{3690}{\sol} +% \sol +% \end{exemple} +% +% +% \end{description} +% +% \subsubsection{Hyperbolic functions} +% \begin{description} +% \item[\cs{SINH}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\SINH}% +% stores in \textttit{\TBS cmd} +% the hyperbolic sine of \textttit{num}. +% +% \item[\cs{COSH}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\COSH}% +% Hyperbolic cosine of \textttit{num}. +% +% \item[\cs{TANH}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\TANH}% +% Hyperbolic tangent of \textttit{num}. +% +% \item[\cs{COTH}% +% \marg{num}\marg{\cs{cmd}}]\SpecialUsageIndex{\COTH}% +% Hyperbolic cotangent of \textttit{num}. +% +% \begin{exemple} +% \SINH{1.256}{\sol} +% \sol +% +% \COSH{1.256}{\sol} +% \sol +% +% \TANH{1.256}{\sol} +% \sol +% +% \COTH{1.256}{\sol} +% \sol +% \end{exemple} +% \end{description} +% \section{Matrix arithmetic} +% The \textsf{calculator} package defines the commands described below +% to operate on vectors and matrices. +% We only work with two or three-dimensional vectors and +% $2\times2$ and $3\times3$ matrices. +% Vectors are represented in the form +% |(a1,a2)| or |(a1,a2,a3);|\footnote{But they are \emph{column} vectors.} +% and, in the case of matrices, columns are separated \emph{\`a la matlab} +% by semicolons: |(a11,a12;a21,a22)| +% or |(a11,a12,a13;a21,a22,a23;a31,a32,a33)|. +% \subsection{Vector operations} +% \subsubsection{Assignments} +% \begin{description} +% \item[\cs{VECTORCOPY}\parg{x,y}\parg{\TBS cmd1,\TBS cmd2}]% +% \SpecialUsageIndex{\VECTORCOPY}% +% copy the entries of vector \parg{x,y} to the +% \textttit{\TBS cmd1} and \textttit{\TBS cmd2} commands. +% \item[\cs{VECTORCOPY}\parg{x,y,z}\parg{\TBS cmd1,\TBS cmd2,\TBS cmd3}] +% copy the entries of vector (\textttit{x},\textttit{y},\textttit{z}) to the +% \textttit{\TBS cmd1}, \textttit{\TBS cmd2} and +% \textttit{\TBS cmd3} commands. +% \begin{exemple} +% \VECTORCOPY(1,-1)(\sola,\solb) +% $(\sola,\solb)$ +% +% \VECTORCOPY(1,-1,2)(\sola,\solb,\solc) +% $(\sola,\solb,\solc)$ +% \end{exemple} +% \end{description} +% +% \subsubsection{Vector addition and subtraction} +% \begin{description} +% \item[\cs{VECTORADD}\parg{x1,y1}\parg{x2,y2}\parg{\TBS cmd1,\TBS cmd2}] +% \SpecialUsageIndex{\VECTORADD} +% +% \item[\cs{VECTORADD}\parg{x1,y1,z1}\parg{x2,y2,z2}% +% \parg{\TBS cmd1,\TBS cmd2,\TBS cmd3}] +% \SpecialUsageIndex{\VECTORADD} +% +% \item[\cs{VECTORSUB}\parg{x1,y1}\parg{x2,y2}\parg{\TBS cmd1,\TBS cmd2}] +% \SpecialUsageIndex{\VECTORSUB} +% +% \item[\cs{VECTORSUB}\parg{x1,y1,z1}\parg{x2,y2,z2}% +% \parg{\TBS cmd1,\TBS cmd2,\TBS cmd3}]\mbox{} +% \SpecialUsageIndex{\VECTORSUB} +% +% \begin{exemple} +% \VECTORADD(1,-1,2)(3,5,-1)(\sola,\solb,\solc) +% $(1,-1,2)+(3,5,-1)=(\sola,\solb,\solc)$ +% +% \VECTORSUB(1,-1,2)(3,5,-1)(\sola,\solb,\solc) +% $(1,-1,2)-(3,5,-1)=(\sola,\solb,\solc)$ +% \end{exemple} +% \end{description} +% \subsubsection{Scalar-vector product} +% \begin{description} +% \item[\cs{SCALARVECTORPRODUCT}\marg{num}\parg{x,y}% +% \parg{\cs{cmd1},\cs{cmd2}}]\mbox{} +% \SpecialUsageIndex{\SCALARVECTORPRODUCT} +% +% \item[\cs{SCALARVECTORPRODUCT}\marg{num}\parg{x,y,z}% +% \parg{\cs{cmd1},\cs{cmd2},\cs{cmd3}}]\mbox{} +% \SpecialUsageIndex{\SCALARVECTORPRODUCT} +% \begin{exemple} +% \SCALARVECTORPRODUCT{2}(3,5)(\sola,\solb) +% $2(3,5)=(\sola,\solb)$ +% +% \SCALARVECTORPRODUCT{2}(3,5,-1)(% +% \sola,\solb,\solc) +% $2(3,5,-1)=(\sola,\solb,\solc)$ +% \end{exemple} +% \end{description} +% \subsubsection{Scalar product and euclidean norm} +% \begin{description} +% \item[\cs{SCALARPRODUCT}\parg{x1,y1}\parg{x2,y2}\marg{\cs{cmd}}] +% \SpecialUsageIndex{\SCALARPRODUCT}% +% +% \item[\cs{SCALARPRODUCT}\parg{x1,y1,z1}\parg{x2,y2,z2}\marg{\cs{cmd}}] +% \SpecialUsageIndex{\SCALARPRODUCT}% +% +% \item[\cs{VECTORNORM}\parg{x,y}\marg{\cs{cmd}}]\mbox{} +% \SpecialUsageIndex{\VECTORNORM}% +% +% \item[\cs{VECTORNORM}\parg{x,y,z}\marg{\cs{cmd}}]\mbox{} +% \SpecialUsageIndex{\VECTORNORM}% +% \begin{exemple} +% \SCALARPRODUCT(1,-1)(3,5){\sol} +% $(1,-1)\cdot(3,5)=\sol$ +% +% \SCALARPRODUCT(1,-1,2)(3,5,-1){\sol} +% $(1,-1,2)\cdot(3,5,-1)=\sol$ +% +% \VECTORNORM(3,4)\sol +% $\left\|(3,4)\right\|=\sol$ +% +% \VECTORNORM(1,2,-2)\sol +% $\left\|(1,2,-2)\right\|=\sol$ +% \end{exemple} +% \end{description} +% \subsubsection{Unit vector parallel to a given vector (normalized vector)} +% \begin{description} +% \item[\cs{UNITVECTOR}\parg{x,y}\parg{\TBS cmd1,\TBS cmd2}] +% \SpecialUsageIndex{\UNITVECTOR}% +% +% \item[\cs{UNITVECTOR}\parg{x,y,z}\parg{\TBS cmd1,\TBS cmd2,\TBS cmd3}] +% \mbox{}\SpecialUsageIndex{\UNITVECTOR} +% \begin{exemple} +% \UNITVECTOR(3,4)(\sola,\solb) +% $(\sola,\solb)$ +% +% \UNITVECTOR(1,2,-2)(\sola,\solb,\solc) +% $(\sola,\solb,\solc)$ +% \end{exemple} +% \end{description} +% \subsubsection{Absolute value (in each entry of a given vector)} +% \begin{description} +% \item[\cs{VECTORABSVALUE}\parg{x,y}\parg{\TBS cmd1,\TBS cmd2}] +% \SpecialUsageIndex{\VECTORABSVALUE}% +% +% \item[\cs{VECTORABSVALUE}\parg{x,y,z}\parg{\TBS cmd1,\TBS cmd2,\TBS cmd3}] +% \mbox{} \SpecialUsageIndex{\VECTORABSVALUE} +% \begin{exemple} +% \VECTORABSVALUE(3,-4)(\sola,\solb) +% $(\sola,\solb)$ +% +% \VECTORABSVALUE(3,-4,-1)(\sola,\solb,\solc) +% $(\sola,\solb,\solc)$ +% \end{exemple} +% \end{description} +% \subsection{Matrix operations} +% \subsubsection{Assignments} +% \begin{description} +% \item[\cs{MATRIXCOPY}% +% \parg{a11,a12;a21,a22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}]\mbox{} +% \SpecialUsageIndex{\MATRIXCOPY}% +% +% \noindent +% Use this command to store the matrix $\begin{bmatrix} +% a11 & a12 \\ a21 & 22 +% \end{bmatrix}$ in \textttit{\TBS cmm11}, \textttit{\TBS cmm12}, +% \textttit{\TBS cmm21}, \textttit{\TBS cmm22}. +% The analogous $3\times3$ version is +% \item[\cs{MATRIXCOPY}% +% \parg{a11,a12,a13; \textup{[\dots]} ,a33}% +% \parg{\cs{cmd11},\cs{cmd12},\cs{cmd13};% +% \textup{[\dots]} ,\cs{cmd33}}]\mbox{} +% \SpecialUsageIndex{\MATRIXCOPY}% +% \begin{exemple} +% \MATRIXCOPY(1, -1, 2; +% 3, 0, 5; +% -1, 1, 4)% +% (\sola,\solb,\solc; +% \sold,\sole,\solf; +% \solg,\solh,\soli) +% $\begin{bmatrix} +% \sola & \solb & \solc \\ +% \sold & \sole & \solf \\ +% \solg & \solh & \soli +% \end{bmatrix}$ +% \end{exemple} +% \end{description} +% +% +% Henceforth, we will present only the syntax for commands +% operating with $2\times2$ matrices. +% In all cases, the syntax is similar if we work with $3\times3$ matrices. +% In the examples, we will work with either $2\times2$ or $3\times3$ matrices. +% \subsubsection{Transposed matrix} +% \begin{description} +% \item[\cs{TRANSPOSEMATRIX}% +% \parg{a11,a12;a21,a22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}]\mbox{} +% \SpecialUsageIndex{\TRANSPOSEMATRIX}% +% \begin{exemple} +% \TRANSPOSEMATRIX(1,-1;3,0)% +% (\sola,\solb;\solc,\sold) +% $\begin{bmatrix} +% 1 & -1 \\ 3 & 0 +% \end{bmatrix}^T=\begin{bmatrix} +% \sola & \solb \\ \solc & \sold +% \end{bmatrix}$ +% \end{exemple} +% \end{description} +% +% +% \subsubsection{Matrix addition and subtraction} +% \begin{description} +% \item[\cs{MATRIXADD}% +% \parg{a11,a12;a21,a22}% +% \parg{b11,b12;b21,b22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}] +% \SpecialUsageIndex{\MATRIXADD}% +% +% \item[\cs{MATRIXSUB}% +% \parg{a11,a12;a21,a22}% +% \parg{b11,b12;b21,b22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}]\mbox{} +% \SpecialUsageIndex{\MATRIXSUB}% +% +% \begin{exemple} +% \MATRIXADD(1,-1;3,0)(3,5;-3,2)% +% (\sola,\solb;\solc,\sold) +% $\begin{bmatrix} +% 1 & -1 \\ 3 & 0 +% \end{bmatrix}+ +% \begin{bmatrix} +% 3 & 5 \\ -3 & 2 +% \end{bmatrix}=\begin{bmatrix} +% \sola & \solb \\ \solc & \sold +% \end{bmatrix}$ +% +% \MATRIXSUB(1,-1;3,0)(3,5;-3,2)% +% (\sola,\solb;\solc,\sold) +% $\begin{bmatrix} +% 1 & -1 \\ 3 & 0 +% \end{bmatrix}- +% \begin{bmatrix} +% 3 & 5 \\ -3 & 2 +% \end{bmatrix}=\begin{bmatrix} +% \sola & \solb \\ \solc & \sold +% \end{bmatrix}$ +% \end{exemple} +% \end{description} +% \subsubsection{Scalar-matrix product} +% \begin{description} +% \item[\cs{SCALARMATRIXPRODUCT}\marg{num}% +% \parg{a11,a12;a21,a22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}]\mbox{} +% \SpecialUsageIndex{\SCALARMATRIXPRODUCT}% +% +% \begin{exemple} +% \SCALARMATRIXPRODUCT{3}(1,-1,2; +% 3, 0,5; +% -1, 1,4)% +% (\sola,\solb,\solc; +% \sold,\sole,\solf; +% \solg,\solh,\soli) +% $3\begin{bmatrix} +% 1 & -1 & 2 \\ 3 & 0 & 5 \\ -1 & 1 & 4 +% \end{bmatrix} +% =\begin{bmatrix} +% \sola & \solb & \solc \\ +% \sold & \sole & \solf \\ +% \solg & \solh & \soli +% \end{bmatrix}$ +% \end{exemple} +% \end{description} +% \subsubsection{Matriu-vector product} +% \begin{description} +% \item[\cs{MATRIXVECTORPRODUCT}% +% \parg{a11,a12;a21,a22}\parg{x,y}% +% \parg{\cs{cmd1},\cs{cmd2}}]\mbox{} +% \SpecialUsageIndex{\MATRIXVECTORPRODUCT}% +% \begin{exemple} +% \MATRIXVECTORPRODUCT(1,-1; +% 0, 2)(3,5)(\sola,\solb) +% $\begin{bmatrix} +% 1 & -1 \\ 0 & 2 +% \end{bmatrix} +% \begin{bmatrix} +% 3 \\ 5 +% \end{bmatrix} +% =\begin{bmatrix} +% \sola \\ \solb +% \end{bmatrix}$ +% \end{exemple} +% \end{description} +% \subsubsection{Product of two square matrices} +% \begin{description} +% \item[\cs{MATRIXPRODUCT}% +% \parg{a11,a12;a21,a22}% +% \parg{b11,b12;b21,b22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}] +% \mbox{} +% \SpecialUsageIndex{\MATRIXPRODUCT}% +% \begin{exemple} +% \MATRIXPRODUCT(1,-1,2;3,0,5;-1,1,4)% +% (3,5,-1;-3,2,-5;1,-2,3)% +% (\sola,\solb,\solc; +% \sold,\sole,\solf; +% \solg,\solh,\soli) +% \begin{multline*} +% \begin{bmatrix} +% 1 & -1 & 2 \\ 3 & 0 & 5 \\ -1 & 1 & 4 +% \end{bmatrix} +% \begin{bmatrix} +% 3 & 5 & -1 \\ -3 & 2 & -5 \\ 1 & -2 & 3 +% \end{bmatrix}\\ +% =\begin{bmatrix} +% \sola & \solb & \solc \\ +% \sold & \sole & \solf \\ +% \solg & \solh & \soli +% \end{bmatrix} +% \end{multline*} +% \end{exemple} +% \end{description} +% \subsubsection{Determinant} +% \begin{description} +% \item[\cs{DETERMINANT}% +% \parg{a11,a12;a21,a22} +% \marg{\cs{cmd}}]\mbox{} +% \begin{exemple} +% \DETERMINANT(1,-1,2;3,0,5;-1,1,4){\sol} +% \SpecialUsageIndex{\DETERMINANT}% +% $\begin{vmatrix} +% 1 & -1 & 2 \\ 3 & 0 & 5 \\ -1 & 1 & 4 +% \end{vmatrix}=\sol$ +% \end{exemple} +% \end{description} +% \subsubsection{Inverse matrix} +% \begin{description} +% \item[\cs{INVERSEMATRIX}% +% \parg{a11,a12;a21,a22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}]\mbox{} +% \SpecialUsageIndex{\INVERSEMATRIX}% +% \begin{exemple} +% \INVERSEMATRIX(1,-1;3,5)(% +% \sola,\solb;\solc,\sold) +% $\begin{bmatrix} +% 1 & -1 \\ 3 & 5 +% \end{bmatrix}^{-1}= +% \begin{bmatrix} +% \sola & \solb \\ \solc & \sold +% \end{bmatrix}$ +% \end{exemple} +% +% If the given matrix is singular, the \textsf{calculator} package returns +% a warning message +% and the \textttit{\cs{cmd11}}, \ldots, commands are marqued as undefined. +% \end{description} +% \subsubsection{Absolute value (in each entry)} +% \begin{description} +% \item[\cs{MATRIXABSVALUE}% +% \parg{a11,a12;a21,a22}% +% \parg{\cs{cmd11},\cs{cmd12};\cs{cmd21},\cs{cmd22}}]\mbox{} +% \SpecialUsageIndex{\MATRIXABSVALUE}% +% +% \begin{exemple} +% \MATRIXABSVALUE(1,-1,2;3,0,5;-1,1,4)% +% (\sola,\solb,\solc; +% \sold,\sole,\solf; +% \solg,\solh,\soli) +% $\begin{bmatrix} +% \sola & \solb & \solc \\ +% \sold & \sole & \solf \\ +% \solg & \solh & \soli +% \end{bmatrix}$ +% \end{exemple} +% \end{description} +% \subsubsection{Solving a linear system} +% \begin{description} +% \item[\cs{SOLVELINEARSYSTEM}% +% \parg{a11,a12;a21,a22}\parg{b1,b2}\parg{\cs{cmd1},\cs{cmd2}}] +% \SpecialUsageIndex{\SOLVELINEARSYSTEM}% +% solves the linear system +% $\begin{pmatrix} +% \textttit{a11}&\textttit{a12}\\ +% \textttit{a21}&\textttit{a22} +% \end{pmatrix} +% \begin{pmatrix} +% \textttit{x}\\ +% \textttit{y}\end{pmatrix} +% =\begin{pmatrix} +% \textttit{b1}\\ +% \textttit{b2} +% \end{pmatrix}$ +% and stores the solution in (\textttit{\cs{cmd1}},\textttit{\cs{cmd2}}). +% \begin{exemple} +% \SOLVELINEARSYSTEM(1,-1,2;3,0,5;-1,1,4)% +% (-4,4,-2)% +% (\sola,\solb,\solc) +% Solving the linear system +% \[ +% \begin{bmatrix} +% 1 & -1 & 2 \\ 3 & 0 & 5 \\ -1 & 1 & 4 +% \end{bmatrix}\mathsf{X}=\begin{bmatrix} +% -4\\4\\-2 +% \end{bmatrix} +% \] +% we obtain +% $\mathsf{X}=\begin{bmatrix} +% \sola \\ \solb\\ \solc +% \end{bmatrix}$ +% \end{exemple} +% If the given matrix is singular, the package \textsf{calculator} +% returns a warning message. +% When system is indeterminate, in the bi-dimensional case +% one of the solutions is computed; +% if the system is incompatible, +% then the \verb+\sola+, \dots, commands are marqued as undefined. +% For three equations systems, only determinate systems are solved.\footnote{% +% This is the only command that does not behave the same way with +% $2\times2$ and $3\times3$ matrices.} +% \end{description} +% +% \part{The \textsf{calculus} package} +% \section{What is a \emph{function}?} +% From the point of view of this package, a \emph {function} $f$ is a pair of +% formulae: the first one calculates $f(t)$; the other, $f'(t)$. +% Therefore, any function is applied using three arguments: +% the value of the variable $t$, +% and two command names where $f(t)$ and $f'(t)$ will be stored. +% For example, +% \begin{quote} +% \cs{SQUAREfunction}\Marg{num}\Marg{\TBS sol}\Marg{\TBS Dsol} +% \end{quote} +% computes $f(t)=t^2$ and $f'(t)=2t$ (where $t=$\textit{num}), +% and stores the results in the commands +% \textit{\TBS sol} and \textit{\TBS Dsol}.\footnote% +% {Do not spect any control about the existence or differentiability +% of the function; if the function or the derivative +% are not well defined, a \TeX{} error will occur.} +% +% \begin{exemple} +% \SQUAREfunction{3}{\sol}{\Dsol} +% If $f(t)=t^2$, then +% \[ +% f(3)=\sol \mbox{ and } f'(3)=\Dsol +% \] +% \end{exemple} +% \medskip +% +% \noindent +% For all functions defined here, you must use the following syntax: +% \begin{quote} +% \textttit{\TBS functionname}\Marg{num}\Marg{\TBS cmd1}\Marg{\TBS cmd2} +% \end{quote} +% being \textit{num} a number (or a command whose value is a number), +% and \verb+\+\textit{cmd1} and \verb+\+\textit{cmd2} two control sequence +% names where the values of the function and its derivative (in this number) +% will be stored. +% \medskip +% +% The key difference between this \emph{functions} and the instructions +% defined in the \textsf{calculator} package +% is the inclusion of the derivative; for example, the |\SQUARE{3}{\sol}| +% instruction computes, only, +% the square power of number $3$, while |\SQUAREfunction{3}{\sol}{\Dsol}| +% finds, also, the corresponding derivative. +% \section{Predefined functions} +% The \textsf{calculus} package +% predefines the most commonly used elementary functions, +% and includes several utilities for defining new ones. +% The predefined functions are the following: +% \SpecialUsageIndex{\ZEROfunction} +% \SpecialUsageIndex{ONEfunction} +% \SpecialUsageIndex{IDENTITYfunction} +% \SpecialUsageIndex{RECIPROCALfunction} +% \SpecialUsageIndex{SQUAREfunction} +% \SpecialUsageIndex{CUBEfunction} +% \SpecialUsageIndex{SQRTfunction} +% \SpecialUsageIndex{EXPfunction} +% \SpecialUsageIndex{LOGfunction} +% \SpecialUsageIndex{COSfunction} +% \SpecialUsageIndex{SINfunction} +% \SpecialUsageIndex{TANfunction} +% \SpecialUsageIndex{COTfunction} +% \SpecialUsageIndex{COSHfunction} +% \SpecialUsageIndex{SINHfunction} +% \SpecialUsageIndex{TANHfunction} +% \SpecialUsageIndex{COTHfunction} +% \SpecialUsageIndex{HEAVISIDEfunction} +% \begin{center} +% \begin{tabular}{llll} +% \ttfamily \cs{ZEROfunction} & $f(t)=0$ & +% \ttfamily \cs{ONEfunction} & $f(t)=1$ \\ +% \ttfamily \cs{IDENTITYfunction} & $f(t)=t$ & +% \ttfamily \cs{RECIPROCALfunction} & $f(t)=1/t$ \\ +% \ttfamily \cs{SQUAREfunction} & $f(t)=t^2$ & +% \ttfamily \cs{CUBEfunction} & $f(t)=t^3$ \\ +% \ttfamily \cs{SQRTfunction} & $f(t)=\sqrt t$ \\ +% \ttfamily \cs{EXPfunction} & $f(t)=\exp t$ & +% \ttfamily \cs{LOGfunction} & $f(t)=\log t$ \\ +% \ttfamily \cs{COSfunction} & $f(t)=\cos t$ & +% \ttfamily \cs{SINfunction} & $f(t)=\sin t$ \\ +% \ttfamily \cs{TANfunction} & $f(t)=\tan t$ & +% \ttfamily \cs{COTfunction} & $f(t)=\cot t$ \\ +% \ttfamily \cs{COSHfunction} & $f(t)=\cosh t$ & +% \ttfamily \cs{SINHfunction} & $f(t)=\sinh t$ \\ +% \ttfamily \cs{TANHfunction} & $f(t)=\tanh t$ & +% \ttfamily \cs{COTHfunction} & $f(t)=\coth t$ \\ +% \ttfamily \cs{HEAVISIDEfunction} & $f(t)=\begin{cases} +% 0 & \text{si $t<0$} \\ +% 1 & \text{si $t\geq0$} +% \end{cases}$ +% \end{tabular} +% \end{center} +% +% In the following example, we use the |\LOGfunction| function to compute +% a table of the $\log$ function and its derivative. +% \begin{exemple} +% $\begin{array}{cll} +% x & \log x & \log' x \\ +% \LOGfunction{1}{\logx}{\Dlogx} +% 1 &\logx & \Dlogx\\ +% \LOGfunction{2}{\logx}{\Dlogx} +% 2 &\logx & \Dlogx\\ +% \LOGfunction{3}{\logx}{\Dlogx} +% 3 &\logx & \Dlogx\\ +% \LOGfunction{4}{\logx}{\Dlogx} +% 4 &\logx & \Dlogx\\ +% \LOGfunction{5}{\logx}{\Dlogx} +% 5 &\logx & \Dlogx\\ +% \LOGfunction{6}{\logx}{\Dlogx} +% 6 &\logx & \Dlogx +% \end{array}$ +% \end{exemple} +% +% \section{Operations with functions} +% We can define new functions using the following \emph{operations} +% (the last argument is the name of the new function): +% \begin{description} +% \item[\cs{CONSTANTfunction}\Marg{num}\Marg{\TBS Function}]% +% \SpecialUsageIndex{\CONSTANTfunction} +% defines \textit{\TBS Function} as the constant function \textit{num}. +% +% Example. Definition of the $F(t)=5$ function: +% +% |\CONSTANTfunction{5}{\F}| +% +% \item[\cs{SUMfunction}\Marg{\TBS function1}\Marg{\TBS function2}% +% \Marg{\TBS Function}]\SpecialUsageIndex{\SUMfunction} +% defines \textit{\TBS Function} as the sum of functions +% \textit{\TBS function1} and \textit{\TBS function2}. +% +% Example. Definition of the $F(t)=t^2+t^3$ function: +% +% |\SUMfunction{\SQUAREfunction}{\CUBEfunction}{\F}| +% +% \item[\cs{SUBTRACTfunction}\Marg{\TBS function1}\Marg{\TBS function2}% +% \Marg{\TBS Function}]\SpecialUsageIndex{\SUBTRACTfunction} +% defines \textit{\TBS Function} as the difference of functions +% \textit{\TBS function1} and \textit{\TBS function2}. +% +% Example. Definition of the $F(t)=t^2-t^3$ function: +% +% |\SUBTRACTfunction{\SQUAREfunction}{\CUBEfunction}{\F}| +% +% \item[\cs{PRODUCTfunction}\Marg{\TBS function1}\Marg{\TBS function2}% +% \Marg{\TBS Function}]\SpecialUsageIndex{\PRODUCTfunction} +% defines \textit{\TBS Function} as the product of functions +% \textit{\TBS function1} and \textit{\TBS function2} +% +% Example. Definition of the $F(t)=\mathrm e^t\cos t$ function: +% +% |\PRODUCTfunction{\EXPfunction}{\COSfunction}{\F}| +% +% \item[\cs{QUOTIENTfunction}\Marg{\TBS function1}\Marg{\TBS function2}% +% \Marg{\TBS Function}]\SpecialUsageIndex{\QUOTIENTfunction} +% defines \textit{\TBS Function} as the quotient of functions +% \textit{\TBS function1} and \textit{\TBS function2}. +% +% Example. Definition of the $F(t)=\mathrm e^t/\cos t$ function: +% +% |\QUOTIENTfunction{\EXPfunction}{\COSfunction}{\F}| +% +% \item[\cs{COMPOSITIONfunction}\Marg{\TBS function1}\Marg{\TBS function2}% +% \Marg{\TBS Function}]\SpecialUsageIndex{\COMPOSITIONfunction} +% defines \textit{\TBS Function} as the composition of functions +% \textit{\TBS function1} and \textit{\TBS function2}. +% +% Example. Definition of the $F(t)=\mathrm e^{\cos t}$ function: +% +% |\COMPOSITIONfunction{\EXPfunction}{\COSfunction}{\F}| +% +% (note than |\COMPOSITIONfunction{f}{g}{\F}| means |\F|$=f\circ g$). +% +% \item[\cs{SCALEfunction}\Marg{num}\Marg{\TBS function}\Marg{\TBS Function}]% +% \SpecialUsageIndex{\SCALEfunction} +% defines \textit{\TBS Function} as the product of number \textit{num} +% and function \textit{\TBS function}. +% +% Example. Definition of the $F(t)=3{\cos t}$ function: +% +% |\SCALEfunction{3}{\COSfunction}{\F}| +% +% \item[\cs{SCALEVARIABLEfunction}\Marg{num}\Marg{\TBS function}% +% \Marg{\TBS Function}]\SpecialUsageIndex{\SCALEVARIABLEfunction} +% scales the variable by factor \textit{num} and then applies the function +% \textit{\TBS function}. +% +% Example. Definition of the $F(t)=\cos 3t$ function: +% +% |\SCALEVARIABLEfunction{3}{\COSfunction}{\F}| +% +% \item[\cs{POWERfunction}\Marg{\TBS function}\Marg{num}\Marg{\TBS Function}]% +% \SpecialUsageIndex{\POWERfunction} +% defines \textit{\TBS Function} as the power of function +% \textit{\TBS function} to the exponent \textit{num} (a positive integer). +% Example. Definition of the $F(t)=t^5$ function: +% +% |\POWERfunction{\IDENTITYfunction}{5}{\F}| +% +% \item[\cs{LINEARCOMBINATIONfunction}\Marg{num1}\Marg{\TBS function1}% +% \Marg{num2}\Marg{\TBS function2}\Marg{\TBS Function}] +% \SpecialUsageIndex{\LINEARCOMBINATIONfunction} +% defines \textit{\TBS Function} as the linear combination of functions +% \textit{\TBS function1} and \textit{\TBS function2} +% multiplied, respectively, by numbers \textit{num1} and \textit{num2}. +% +% Example. Definition of the $F(t)=2t-3\cos t$ function: +% +% |\LINEARCOMBINATIONfunction{2}{\IDENTITYfunction}{-3}{\COSfunction}{\F}| +% \end{description} +% +% By combining properly this operations and the predefined functions, +% many elementary functions can be defined. +% +% \begin{exemple} +% % exp(-t) +% \SCALEVARIABLEfunction +% {-1}{\EXPfunction} +% {\NEGEXPfunction} +% +% % exp(-t)cos(t) +% \PRODUCTfunction +% {\NEGEXPfunction} +% {\COSfunction} +% {\NEGEXPCOSfunction} +% +% % 3t^2-2exp(-t)cos(t) +% \LINEARCOMBINATIONfunction +% {3}{\SQUAREfunction} +% {-2}{\NEGEXPCOSfunction} +% {\myfunction} +% +% \myfunction{5}{\sol}{\Dsol} +% +% If +% \[ +% f(t)=3t^2-2\mathrm{e}^{-t}\cos t +% \] +% then +% \[ +% \begin{gathered} +% f(5)=\sol\\ +% f'(5)=\Dsol +% \end{gathered} +% \] +% \end{exemple} +% +% \section{Polynomial functions} +% Although polynomial functions can be defined using linear combinations +% of power functions, +% to facilitate our work, the \textsf{calculus} package includes the +% following commands to define more easily the polynomials of +% 1, 2, and 3 degrees: +% |\newlpoly| (new \emph{linear} polynomial), |\newqpoly| +% (new \emph{quadratic} polynomial), +% and |\newcpoly| (new \emph{cubic} polynomial): +% \begin{description} +% \item[\cs{newlpoly}\Marg{\TBS Function}\Marg{a}\Marg{b}]% +% \SpecialUsageIndex{\newlpoly} +% stores the +% $p(t)=\texttt{\textit{a}}+\texttt{\textit{b}}t$ +% function in the \cs{\textit{Function}} command. +% \item[\cs{newqpoly}\Marg{\TBS Function}% +% \Marg{a}\Marg{b}\Marg{c}]\SpecialUsageIndex{\newqpoly} +% stores the +% $p(t)=\texttt{\textit{a}}+\texttt{\textit{b}}t+\texttt{\textit{c}}t^2$ +% function in the \cs{\textit{Function}} command. +% \item[\cs{newcpoly}\Marg{\TBS Function}\Marg{a}\Marg{b}\Marg{c}\Marg{d}]% +% \SpecialUsageIndex{\newcpoly} +% stores the +% $p(t)=\texttt{\textit{a}}+\texttt{\textit{b}}t+ +% \texttt{\textit{c}}t^2+\texttt{\textit{d}}t^3$ +% function in the \cs{\textit{Function}} command. +% \end{description} +% \begin{exemple} +% % \mypoly=1-x^2+x^3 +% \newcpoly{\mypoly}{1}{0}{-1}{1} +% \mypoly{2}{\sol}{\Dsol} +% $p'(2)=\Dsol$ +% \end{exemple} +% These declarations behave similarly to to the declaration +% |\newcommand|: +% If the name you want to assign to the new function is that of +% an already defined command, the \textsf{calculus} package returns +% an error message and do not redefines this command. +% To obtain any alternative behavior, our package includes +% three other sets of declarations: +% +% \begin{description} +% \item[\cs{renewlpoly}, \cs{renewqpoly}, \cs{renewcpoly}]% +% \SpecialUsageIndex{\renewlpoly}% +% \SpecialUsageIndex{\renewqpoly}% +% \SpecialUsageIndex{\renewcpoly} +% redefine the already existing command \cs{\textit{Function}}. +% If this command does not exist, then +% it is not defined and an error message occurs. +% \item[\cs{ensurelpoly}, \cs{ensureqpoly}, \cs{ensurecpoly}]% +% \SpecialUsageIndex{\ensurelpoly}% +% \SpecialUsageIndex{\ensureqpoly}% +% \SpecialUsageIndex{\ensurecpoly} +% define a new function. +% If the command \cs{\textit{Function}} already exists, +% it is not redefined. +% \item[\cs{forcelpoly}, \cs{forceqpoly}, \cs{forcecpoly}]% +% \SpecialUsageIndex{\forcelpoly}% +% \SpecialUsageIndex{\forceqpoly}% +% \SpecialUsageIndex{\forcecpoly} +% define a new function. +% If the command \cs{\textit{Function}} already exists, +% it is redefined. +% \end{description} +% \section{Vector-valued functions (or parametrically defined curves)} +% The instruction +% \begin{quote}\SpecialUsageIndex{\PARAMETRICfunction} +% |\PARAMETRICfunction|\Marg{\TBS Xfunction}\Marg{\TBS Yfunction}% +% \Marg{\TBS myvectorfunction} +% \end{quote} +% defines the new vector-valued function $f(t)=(x(t),y(t))$. +% +% The first and second arguments are a pair of functions already defined and, +% the third, the name of the new function we define. +% Once we have defined them, the new vector functions requires five arguments: +% \begin{quote} +% \textttit{\TBS myvectorfunction}\Marg{num}\Marg{\TBS cmd1}% +% \Marg{\TBS cmd2}\Marg{\TBS cmd3}\Marg{\TBS cmd4} +% \end{quote} +% where +% \begin{itemize} +% \item \textit{num} is a number $t$, +% \item \textit{\TBS cmd1} and \textit{\TBS cmd2} are two command names +% where the values of the $x(t)$ function and its derivative $x'(t)$ +% will be stored, and +% \item \textit{\TBS cmd3} and \textit{\TBS cmd4} will store +% $y(t)$ and $y'(t)$. +% \end{itemize} +% In short, in this context, a vector function is a pair of scalar functions. +% +% Instead of |\PARAMETRICfunction| we can use the alias |\VECTORfunction|.% +% \SpecialUsageIndex{\VECTORfunction} +% +% \begin{exemple} +% For the $f(t)=(t^2,t^3)$ function we have +% \VECTORfunction +% {\SQUAREfunction}{\CUBEfunction}{\F} +% +% \F{4}{\solx}{\Dsolx}{\soly}{\Dsoly} +% +% \[ +% f(4)=(\solx,\soly), f'(4)=(\Dsolx,\Dsoly) +% \] +% \end{exemple} +% +% \section{Vector-valued functions in polar coordinates} +% The following instruction: +% \begin{quote}\SpecialUsageIndex{\POLARfunction} +% |\POLARfunction|\Marg{\TBS rfunction}\Marg{\TBS Polarfunction} +% \end{quote} +% declares the vector function $f(\phi)=(r(\phi)\cos \phi,r(\phi)\sin \phi)$. +% The first argument is the +% $r=r(\phi)$ function, (an already defined function). +% For example, we can define the \emph{Archimedean spiral} $r(\phi)=0{,}5\phi$, +% as follows: +% \begin{Verbatim}[gobble=2] +% \SCALEfunction{0.5}{\IDENTITYfunction}{\rfunction} +% \POLARfunction{\rfunction}{\archimedes} +% \end{Verbatim} +% \section{Low-level instructions} +% Probably, many users of the package will not be interested +% in the implementation of the commands this package includes. +% If this is your case, you can ignore this section. +% \subsection{The \cs{newfunction} declaration and its variants} +% All the functions predefined by this package use the |\newfunction| +% declaration. +% This control sequence works as follows: +% \begin{description} +% \item[\cs{newfunction}\Marg{\TBS Function}\Marg{Instructions to compute +% \cs{y} and \cs{Dy} from \cs{t}}] +% \end{description} +% where the second argument is the list of the instructions you need to run +% to calculate the value of the function |\y| +% and the derivative |\Dy| in the |\t| point. +% +% For example, if you want to define the $f(t)=t^2+\mathrm e^t\cos t$ function, +% whose derivative is +% $f'(t)=2t+\mathrm e^t(\cos t-\sin t)$, +% using the high-level instructions we defined earlier, +% you can write the following instructions: +% \begin{Verbatim}[gobble=2] +% \PRODUCTfunction{\EXPfunction}{\COSfunction}{\ffunction} +% \SUMfunction{\SQUAREfunction}{\ffunction}{\Ffunction} +% \end{Verbatim} +% +% But you can also define this function using the \cs{newfunction} +% command as follows: +% \begin{Verbatim}[gobble=2] +% \newfunction{\Ffunction}{% +% \SQUARE{\t}{\tempA} % A=t^2 +% \EXP{\t}{\tempB} % B=e^t +% \COS{\t}{\tempC} % C=cos(t) +% \SIN{\t}{\tempD} % D=sin(t) +% \MULTIPLY{2}{\t}{\tempE} % E=2t +% \MULTIPLY{\tempB}{\tempC}{\tempC} % C=e^t cos(t) +% \MULTIPLY{\tempB}{\tempD}{\tempD} % D=e^t sin(t) +% \ADD{\tempA}{\tempC}{\y} % y=t^2 + e^t cos(t) +% \ADD{\tempE}{\tempC}{\tempC} % C=t^2 + e^t cos(t) +% \SUBTRACT{\tempC}{\tempD}{\Dy} % y'=t^2 + e^t cos(t) - e^t sin(t) +% } +% \end{Verbatim} +% +% It must be said, however, that the |\newfunction| declaration +% behaves similarly to |\newcommand| or |\newlpoly|: +% If the name you want to assign to the new function is that of an already +% defined command, % the \textsf{calculus} package returns an error message +% and does not redefines this command. +% To obtain any alternative behavior, our package includes three other +% versions of the |\newfunction| declarations: the +% |\renewfunction|, |\ensurefunction| and |\forcefunction| declarations. +% Each of these declarations behaves differently: +% \begin{description} +% \item[\cs{newfunction}]\SpecialUsageIndex{\newfunction} +% defines a new function. If the command \cs{\textit{Function}} already exists, +% it is not redefined and an error message occurs. +% \item[\cs{renewfunction}]\SpecialUsageIndex{\renewfunction} +% redefines the already existing command +% \cs{\textit{Function}}. +% If this command does not exists, then it is not defined +% and an error message occurs. +% \item[\cs{ensurefunction}]\SpecialUsageIndex{\ensurefunction} +% defines a new function. +% If the command \cs{\textit{Function}} already exists, +% it is not redefined. +% \item[\cs{forcefunction}]\SpecialUsageIndex{\forcefunction} +% defines a new function. +% If the command \cs{\textit{Function}} already exists, +% it is redefined. +% \end{description} +% \subsection{Vector functions and polar coordinates} +% You can (re)define a vector function $f(t)=(x(t),y(t))$ using the +% |\newvectorfunction|% +% \SpecialUsageIndex{\newvectorfunction}% +% \SpecialUsageIndex{\renewvectorfunction}% +% \SpecialUsageIndex{\ensurevectorfunction}% +% \SpecialUsageIndex{\forcevectorfunction} +% declaration or any +% of its variants |\renewvectorfunction|, |\ensurevectorfunction| +% and |\forcevectorfunction|: +% \begin{description} +% \item[\cs{newvectorfunction}\Marg{\TBS Function}\Marg{Instructions to compute +% \cs{x}, \cs{Dx}, \cs{y} and \cs{Dy} from \cs{t}}] +% \end{description} +% +% For example, you can define the function $f(t)=(t^2,t^3)$ +% in the following way: +% \begin{Verbatim}[gobble=2] +% \newvectorfunction{\F}{% +% \SQUARE{\t}{\x} % x=t^2 +% \MULTIPLY{2}{\t}{\Dx} % x'=2t +% \CUBE{\t}{\y} % y=t^3 +% \MULTIPLY{3}{\x}{\Dy} % y'=3t^2 +% } +% \end{Verbatim} + +% \SpecialUsageIndex{\newpolarfunction}% +% \SpecialUsageIndex{\renewpolarfunction}% +% \SpecialUsageIndex{\ensurepolarfunction}% +% \SpecialUsageIndex{\forcepolarfunction}% +% Finally, to define the $r=r(\phi)$ function, in polar coordinates, +% we have the declarations +% |\newpolarfunction|, +% |\renewpolarfunction|, |\ensurepolarfunction| and |\forcepolarfunction|. +% \begin{description} +% \item[\cs{newpolarfunction}\Marg{\TBS Function}\Marg{Instructions to compute +% \cs{r} and \cs{Dr} from \cs{t}}] +% \end{description} +% +% For example, you can define the \emph{cardioide} curve $r(\phi)=1+\cos \phi$, +% using high level instructions, +% \begin{Verbatim}[gobble=2] +% \SUMfunction{\ONEfunction}{\COSfunction}{\ffunction} % y=1 + cos t +% \POLARfunction{\ffunction}{\cardioide} +% \end{Verbatim} +% or, with the |\newpolarfunction| declaration, +% \begin{Verbatim}[gobble=2] +% \newpolarfunction{\cardioide}{% +% \COS{\t}{\r} +% \ADD{1}{\r}{\r} % r=1+cos t +% \SIN{\t}{\Dr} +% \MULTIPLY{-1}{\Dr}{\Dr} % r'=-sin t +% } +% \end{Verbatim} +% +% \StopEventually{} +% +% \section{Implementation (\textsf{calculator})} +% \begin{macrocode} +%<*calculator> +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{calculator}[2012/06/10 v.1.0a] +% \end{macrocode} +% \subsection{Internal lengths and special nmbers} +% \cs{cctr@lengtha} and \cs{cctr@lengthb} +% will be used in internal calculations and comparisons. +% \begin{macrocode} +\newdimen\cctr@lengtha +\newdimen\cctr@lengthb +% \end{macrocode} +% \begin{macro}{\cctr@epsilon} +% \cs{cctr@epsilon} will store the closest to zero length +% in the \TeX{} arithmetic: one scaled point +% ($1\,\mathsf{sp}=1/65536\,\mathsf{pt}$). +% This means the smallest positive number will be +% $0.00002\approx1/65536=1/2^{16}$. +% \begin{macrocode} +\newdimen\cctr@epsilon +\cctr@epsilon=1sp +% \end{macrocode} +% \end{macro} +% \begin{macro}{\cctr@logmaxnum} +% The largest \TeX{} number is $16383.99998\approx2^{14}$; +% \cs{cctr@logmaxnum} is the logarithm of this number, +% $9.704\approx\log16384$. +% \begin{macrocode} +\def\cctr@logmaxnum{9.704} +% \end{macrocode} +% \end{macro} +% \subsection{Warning messages} +% \begin{macrocode} +\def\cctr@Warndivzero#1#2{% + \PackageWarning{calculator}% + {Division by 0.\MessageBreak + I can't define #1/#2}} + +\def\cctr@Warnnogcd{% + \PackageWarning{calculator}% + {gcd(0,0) is not well defined}} + +\def\cctr@Warnnoposrad#1{% + \PackageWarning{calculator}% + {The argument in square root\MessageBreak + must be non negative\MessageBreak + I can't define sqrt(#1)}} + +\def\cctr@Warnnointexp#1#2{% + \PackageWarning{calculator}% + {The exponent in power function\MessageBreak + must be an integer\MessageBreak + I can't define #1^#2}} + +\def\cctr@Warnsingmatrix#1#2#3#4{% + \PackageWarning{calculator}% + {Matrix (#1 #2 ; #3 #4) is singular\MessageBreak + Its inverse is not defined}} + +\def\cctr@WarnsingTDmatrix#1#2#3#4#5#6#7#8#9{% + \PackageWarning{calculator}% + {Matrix (#1 #2 #3; #4 #5 #6; #7 #8 #9) is singular\MessageBreak + Its inverse is not defined}} + +\def\cctr@WarnIncLinSys{\PackageWarning{xpicture}{% + Incompatible linear system}} + +\def\cctr@WarnIncTDLinSys{\PackageWarning{xpicture}{% + Incompatible or indeterminate linear system\MessageBreak + For 3x3 systems I can solve only determinate systems}} + +\def\cctr@WarnIndLinSys{\PackageWarning{xpicture}{% + Indeterminate linear system.\MessageBreak + I will choose one of the infinite solutions}} + +\def\cctr@WarnZeroLinSys{\PackageWarning{xpicture}{% + 0x=0 linear system. Every vector is a solution!\MessageBreak + I will choose the (0,0) solution}} + +\def\cctr@Warninftan#1{% + \PackageWarning{calculator}{% + Undefined tangent.\MessageBreak + The cosine of #1 is zero and, then,\MessageBreak + the tangent of #1 is not defined}} + +\def\cctr@Warninfcotan#1{% + \PackageWarning{calculator}{% + Undefined cotangent.\MessageBreak + The sine of #1 is zero and, then,\MessageBreak + the cotangent of #1 is not defined}} + +\def\cctr@Warninfexp#1{% + \PackageWarning{calculator}{% + The absolute value of the variable\MessageBreak + in the exponential function must be less than + \cctr@logmaxnum\MessageBreak + (the logarithm of the max number I know)\MessageBreak + I can't define exp(#1)}} + +\def\cctr@Warninfexpb#1#2{% + \PackageWarning{calculator}{% + The base\MessageBreak + in the exponential function must be positive. + \MessageBreak + I can't define #1^(#2)}} + +\def\cctr@Warninflog#1{% + \PackageWarning{calculator}{% + The value of the variable\MessageBreak + in the logarithm function must be positive\MessageBreak + I can't define log(#1)}} +% \end{macrocode} +% \subsection{Operations with numbers} +% \subsubsection*{Assignements and comparisons} +% \begin{macro}{\COPY} +% \cs{COPY}\marg{\#1}\marg{\#2} +% defines the \textit{\#2} command as the number \textit{\#1}. +% \begin{macrocode} +\def\COPY#1#2{\edef#2{#1}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\GLOBALCOPY} +% Global version of \cs{COPY}. +% The new defined command \textit{\#2} is not changed outside groups. +% \begin{macrocode} +\def\GLOBALCOPY#1#2{\xdef#2{#1}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@OUTPUTSOL} +% \cs{@OUTPUTSOL}\marg{\#1}: an internal macro to save solutions +% when a group is closed. +% +% The global c.s. \cs{cctr@outa} preserves solutions. +% Whenever we use any temporary parameters in the definition +% of an instruction, +% we use a group to ensure the local character of those parameters. +% The instruction \cs{@OUTPUTSOL} is a bypass to export the solution. +% \begin{macrocode} +\def\@OUTPUTSOL#1{\GLOBALCOPY{#1}{\cctr@outa}\endgroup\COPY{\cctr@outa}{#1}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@OUTPUTSOLS} +% Analogous to \cs{@OUTPUTSOL}, preserving a pair of solutions. +% \begin{macrocode} +\def\@OUTPUTSOLS#1#2{\GLOBALCOPY{#1}{\cctr@outa} + \GLOBALCOPY{#2}{\cctr@outb}\endgroup + \COPY{\cctr@outa}{#1}\COPY{\cctr@outb}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MAX} +% \cs{MAX}\marg{\#1}\marg{\#2}\marg{\#3} +% defines the \textit{\#3} command as the maximum of numbers +% \textit{\#1} and \textit{\#2}. +% \begin{macrocode} +\def\MAX#1#2#3{% + \ifdim #1\p@ < #2\p@ + \COPY{#2}{#3}\else\COPY{#1}{#3}\fi\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MIN} +% \cs{MIN}\marg{\#1}\marg{\#2}\marg{\#3} +% defines the \textit{\#3} command as the minimum of numbers +% \textit{\#1} and \textit{\#2}. +% \begin{macrocode} +\def\MIN#1#2#3{% + \ifdim #1\p@ > #2\p@ + \COPY{#2}{#3}\else\COPY{#1}{#3}\fi\ignorespaces} +% \end{macrocode} +% \end{macro} +% \subsubsection*{Real arithmetic} +% \begin{macro}{\ABSVALUE} +% \cs{ABSVALUE}\marg{\#1}\marg{\#2} +% defines the \textit{\#2} command as the +% absolute value of number \textit{\#1}. +% \begin{macrocode} +\def\ABSVALUE#1#2{% + \ifdim #1\p@<\z@ + \MULTIPLY{-1}{#1}{#2}\else\COPY{#1}{#2}\fi} +% \end{macrocode} +% \end{macro} +% \paragraph*{Product, sum and difference} +% \begin{macro}{\MULTIPLY} +% \cs{MULTIPLY}\marg{\#1}\marg{\#2}\marg{\#3} +% defines the \textit{\#3} command as the +% product of numbers \textit{\#1} and \textit{\#2}. +% \begin{macrocode} +\def\MULTIPLY#1#2#3{\cctr@lengtha=#1\p@ + \cctr@lengtha=#2\cctr@lengtha + \edef#3{\expandafter\strip@pt\cctr@lengtha}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ADD} +% \cs{ADD}\marg{\#1}\marg{\#2}\marg{\#3} +% defines the \textit{\#3} command as the +% sum of numbers \textit{\#1} and \textit{\#2}. +% \begin{macrocode} +\def\ADD#1#2#3{\cctr@lengtha=#1\p@ + \cctr@lengthb=#2\p@ + \advance\cctr@lengtha by \cctr@lengthb + \edef#3{\expandafter\strip@pt\cctr@lengtha}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SUBTRACT} +% \cs{SUBTRACT}\marg{\#1}\marg{\#2}\marg{\#3} +% defines the \textit{\#3} command as the +% difference of numbers \textit{\#1} and \textit{\#2}. +% \begin{macrocode} +\def\SUBTRACT#1#2#3{\ADD{#1}{-#2}{#3}} +% \end{macrocode} +% \end{macro} +% \paragraph*{Divisions} +% We define several kinds of \emph{divisions}: the quotient of +% two real numbers, the integer quotient, and the quotient of +% two lengths. +% The basic algorithm is a lightly modified version of the Beccari's division. +% \begin{macro}{\DIVIDE} +% \cs{DIVIDE}\marg{\#1}\marg{\#2}\marg{\#3} +% defines the \textit{\#3} command as the +% quotient of numbers \textit{\#1} and \textit{\#2}. +% \begin{macrocode} +\def\DIVIDE#1#2#3{% + \begingroup +% \end{macrocode} +% Absolute values of dividend and divisor +% \begin{macrocode} + \ABSVALUE{#1}{\cctr@tempD} + \ABSVALUE{#2}{\cctr@tempd} +% \end{macrocode} +% The sign of quotient +% \begin{macrocode} + \ifdim#1\p@<\z@\ifdim#2\p@>\z@\COPY{-1}{\cctr@sign} + \else\COPY{1}{\cctr@sign}\fi + \else\ifdim#2\p@>\z@\COPY{1}{\cctr@sign} + \else\COPY{-1}{\cctr@sign}\fi + \fi +% \end{macrocode} +% Integer part of quotient +% \begin{macrocode} + \@DIVIDE{\cctr@tempD}{\cctr@tempd}{\cctr@tempq}{\cctr@tempr} + \COPY{\cctr@tempq.}{\cctr@Q} +% \end{macrocode} +% Fractional part up to five decimal places. +% \cs{cctr@ndec} is the number of decimal places already computed. +% \begin{macrocode} + \COPY{0}{\cctr@ndec} + \@whilenum \cctr@ndec<5 \do{% +% \end{macrocode} +% Each decimal place is calculated by multiplying by 10 the last remainder +% and dividing it by the divisor. +% But when the remainder is greater than 1638.3, an overflow occurs, because +% 16383.99998 is the greatest number. +% So, instead, we multiply the divisor by 0.1. +% \begin{macrocode} + \ifdim\cctr@tempr\p@<1638\p@ + \MULTIPLY{\cctr@tempr}{10}{\cctr@tempD} + \else + \COPY{\cctr@tempr}{\cctr@tempD} + \MULTIPLY{\cctr@tempd}{0.1}{\cctr@tempd} + \fi + \@DIVIDE{\cctr@tempD}{\cctr@tempd}{\cctr@tempq}{\cctr@tempr} + \COPY{\cctr@Q\cctr@tempq}{\cctr@Q} + \ADD{1}{\cctr@ndec}{\cctr@ndec}}% +% \end{macrocode} +% Adjust the sign and return the solution. +% \begin{macrocode} + \MULTIPLY{\cctr@sign}{\cctr@Q}{#3} + \@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@DIVIDE} +% The \cs{@DIVIDE}\parg{\#1} \parg{\#2}\parg{\#3}\parg{\#4} +% command computes $\textit{\#1}/\textit{\#2}$ and +% returns an integer quotient (\textit{\#3}) and a real remainder +% (\textit{\#4}). +% \begin{macrocode} + \def\@DIVIDE#1#2#3#4{% + \@INTEGERDIVIDE{#1}{#2}{#3} + \MULTIPLY{#2}{#3}{#4} + \SUBTRACT{#1}{#4}{#4}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@INTEGERDIVIDE} +% \cs{@INTEGERDIVIDE} divides two numbers (not necessarily integer) +% and returns an integer +% (this is the integer quotient only for nonnegative integers). +% \begin{macrocode} +\def\@INTEGERDIVIDE#1#2#3{% + \cctr@lengtha=#1\p@ + \cctr@lengthb=#2\p@ + \ifdim\cctr@lengthb=\z@ + \let#3\undefined + \cctr@Warndivzero#1#2% + \else + \divide\cctr@lengtha\cctr@lengthb + \COPY{\number\cctr@lengtha}{#3} + \fi\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\LENGTHDIVIDE} +% The quotient of two lengths must be a number (not a length). +% For example, one inch over one centimeter equals $2.54$. +% \cs{LENGTHDIVIDE}\marg{\#1}\marg{\#2}\marg{\#3} +% stores in \textit{\#3} the quotient of the lenghts +% \textit{\#1} and \textit{\#2}. +% \begin{macrocode} +\def\LENGTHDIVIDE#1#2#3{% + \begingroup + \cctr@lengtha=#1 + \cctr@lengthb=#2 + \edef\cctr@tempa{\expandafter\strip@pt\cctr@lengtha}% + \edef\cctr@tempb{\expandafter\strip@pt\cctr@lengthb}% + \DIVIDE{\cctr@tempa}{\cctr@tempb}{#3} + \@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \paragraph*{Powers} +% \begin{macro}{\SQUARE} +% \cs{SQUARE}\marg{\#1}\marg{\#2} +% stores \textit{\#1} squared in \textit{\#2}. +% \begin{macrocode} +\def\SQUARE#1#2{\MULTIPLY{#1}{#1}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\CUBE} +% \cs{CUBE}\marg{\#1}\marg{\#2} +% stores \textit{\#1} cubed in \textit{\#2}. +% \begin{macrocode} +\def\CUBE#1#2{\MULTIPLY{#1}{#1}{#2}\MULTIPLY{#2}{#1}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\POWER} +% \cs{POWER}\marg{\#1}\marg{\#2}\marg{\#3} +% stores in \textit{\#3} the power $\textit{\#1}^{\textit{\#2}}$ +% \begin{macrocode} +\def\POWER#1#2#3{% + \begingroup + \INTEGERPART{#2}{\cctr@tempexp} + \ifdim \cctr@tempexp\p@<#2\p@ + \cctr@Warnnointexp{#1}{#2} + \let#3\undefined + \else +% \end{macrocode} +% This ensures that power will be defined only if the exponent is an integer. +% \begin{macrocode} + \@POWER{#1}{#2}{#3}\fi\@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macrocode} +\def\@POWER#1#2#3{% + \begingroup + \ifdim #2\p@<\z@ +% \end{macrocode} +% For negative exponents, $a^n=(1/a)^{-n}$. +% \begin{macrocode} + \DIVIDE{1}{#1}{\cctr@tempb} + \MULTIPLY{-1}{#2}{\cctr@tempc} + \@POWER{\cctr@tempb}{\cctr@tempc}{#3} + \else + \COPY{0}{\cctr@tempa} + \COPY{1}{#3} + \@whilenum \cctr@tempa<#2 \do {% + \MULTIPLY{#1}{#3}{#3} + \ADD{1}{\cctr@tempa}{\cctr@tempa}}% + \fi\@OUTPUTSOL{#3}} +% \end{macrocode} + +% \subsubsection*{Integer arithmetic and related things} +% \begin{macro}{\INTEGERDIVISION} +% \cs{INTEGERDIVISION}\marg{\#1}\marg{\#2}\marg{\#3}\marg{\#4} +% computes the division $\textit{\#1}/\textit{\#2}$ and returns +% an integer quotient and a positive remainder. +% \begin{macrocode} +\def\INTEGERDIVISION#1#2#3#4{% + \begingroup + \ABSVALUE{#2}{\cctr@tempd} + \@DIVIDE{#1}{#2}{#3}{#4} + \ifdim #4\p@<\z@ + \ifdim #1\p@<\z@ + \ifdim #2\p@<\z@ + \ADD{#3}{1}{#3} + \else + \SUBTRACT{#3}{1}{#3} + \fi + \ADD{#4}{\cctr@tempd}{#4} + \fi\fi\@OUTPUTSOLS{#3}{#4}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MODULO} +% \cs{MODULO}\marg{\#1}\marg{\#2}\marg{\#3} +% returns the remainder of division $\textit{\#1}/\textit{\#2}$. +% \begin{macrocode} +\def\MODULO#1#2#3{% + \begingroup + \INTEGERDIVISION{#1}{#2}{\cctr@temp}{#3}\@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\INTEGERQUOTIENT} +% \cs{INTEGERQUOTIENT}\marg{\#1}\marg{\#2}\marg{\#3} +% returns the integer quotient of division +% $\textit{\#1}/\textit{\#2}$. +% \begin{macrocode} +\def\INTEGERQUOTIENT#1#2#3{% + \begingroup + \INTEGERDIVISION{#1}{#2}{#3}{\cctr@temp}\@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\INTEGERPART} +% \cs{INTEGERPART}\marg{\#1}\marg{\#2} +% returns the integer part of \textit{\#2}. +% \begin{macrocode} +\def\@@INTEGERPART#1.#2.#3)#4{\ifnum #11=1 \COPY{0}{#4} + \else \COPY{#1}{#4}\fi} +\def\@INTEGERPART#1#2{\expandafter\@@INTEGERPART#1..){#2}} +\def\INTEGERPART#1#2{\begingroup + \ifdim #1\p@<\z@ + \MULTIPLY{-1}{#1}{\cctr@temp} + \INTEGERPART{\cctr@temp}{#2} + \ifdim #2\p@<\cctr@temp\p@ + \SUBTRACT{-#2}{1}{#2} + \else \COPY{-#2}{#2} + \fi + \else + \@INTEGERPART{#1}{#2} + \fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\FLOOR} +% \cs{FLOOR} is an alias for \cs{INTEGERPART}. +% \begin{macrocode} +\let\FLOOR\INTEGERPART +% \end{macrocode} +% \end{macro} +% \begin{macro}{\FRACTIONALPART} +% \cs{FRACTIONALPART}\marg{\#1}\marg{\#2} +% returns the fractional part of +% \textit{\#2}. +% \begin{macrocode} +\def\@@FRACTIONALPART#1.#2.#3)#4{\ifnum #2=11 \COPY{0}{#4} + \else \COPY{0.#2}{#4}\fi} +\def\@FRACTIONALPART#1#2{\expandafter\@@FRACTIONALPART#1..){#2}} +\def\FRACTIONALPART#1#2{\begingroup + \ifdim #1\p@<\z@ + \INTEGERPART{#1}{\cctr@tempA} + \SUBTRACT{#1}{\cctr@tempA}{#2} + \else + \@FRACTIONALPART{#1}{#2} + \fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\TRUNCATE} +% \cs{TRUNCATE}\oarg{\#1}\marg{\#2}\marg{\#3} +% truncates \textit{\#2} to \textit{\#1} (0, 1, 2 (default), 3 or 4) digits. +% \begin{macrocode} +\def\TRUNCATE{\@ifnextchar[\@@TRUNCATE\@TRUNCATE} +\def\@TRUNCATE#1#2{\@@TRUNCATE[2]{#1}{#2}} +\def\@@TRUNCATE[#1]#2#3{% + \begingroup + \INTEGERPART{#2}{\cctr@tempa} + \ifdim \cctr@tempa\p@ = #2\p@ + \expandafter\@@@TRUNCATE#2.00000)[#1]{#3} + \else + \expandafter\@@@TRUNCATE#200000.)[#1]{#3} + \fi + \@OUTPUTSOL{#3}} +\def\@@@TRUNCATE#1.#2#3#4#5#6.#7)[#8]#9{% + \ifcase #8 + \COPY{#1}{#9} + \or\COPY{#1.#2}{#9} + \or\COPY{#1.#2#3}{#9} + \or\COPY{#1.#2#3#4}{#9} + \or\COPY{#1.#2#3#4#5}{#9} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ROUND} +% \cs{ROUND}\oarg{\#1}\marg{\#2}\marg{\#3} +% rounds \textit{\#2} to \textit{\#1} (0, 1, 2 (default), 3 or 4) digits. +% \begin{macrocode} +\def\ROUND{\@ifnextchar[\@@ROUND\@ROUND} +\def\@ROUND#1#2{\@@ROUND[2]{#1}{#2}} +\def\@@ROUND[#1]#2#3{% + \begingroup + \ifdim#2\p@<\z@ + \MULTIPLY{-1}{#2}{\cctr@temp} + \@@ROUND[#1]{\cctr@temp}{#3}\COPY{-#3}{#3} + \else + \@@TRUNCATE[#1]{#2}{\cctr@tempe} + \SUBTRACT{#2}{\cctr@tempe}{\cctr@tempc} + \POWER{10}{#1}{\cctr@tempb} + \MULTIPLY{\cctr@tempb}{\cctr@tempc}{\cctr@tempc} + \ifdim\cctr@tempc\p@<0.5\p@ + \else + \DIVIDE{1}{\cctr@tempb}{\cctr@tempb} + \ADD{\cctr@tempe}{\cctr@tempb}{\cctr@tempe} + \fi + \@@TRUNCATE[#1]{\cctr@tempe}{#3} + \fi + \@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\GCD} +% \cs{GCD}\marg{\#1}\marg{\#2}\marg{\#3} +% Greatest common divisor, using the Euclidean algorithm +% \begin{macrocode} +\def\GCD#1#2#3{% + \begingroup + \ABSVALUE{#1}{\cctr@tempa} + \ABSVALUE{#2}{\cctr@tempb} + \MAX{\cctr@tempa}{\cctr@tempb}{\cctr@tempc} + \MIN{\cctr@tempa}{\cctr@tempb}{\cctr@tempa} + \COPY{\cctr@tempc}{\cctr@tempb} + \ifnum \cctr@tempa = 0 + \ifnum \cctr@tempb = 0 + \cctr@Warnnogcd + \let#3\undefined + \else + \COPY{\cctr@tempb}{#3} + \fi + \else +% \end{macrocode} +% Euclidean algorithm: if $c\equiv b \pmod{a}$ then $\gcd(b,a)=\gcd(a,c)$. +% Iterating this property, we obtain $\gcd(b,a)$ as the last nonzero residual. +% \begin{macrocode} + \@whilenum \cctr@tempa > \z@ \do {% + \COPY{\cctr@tempa}{#3}% + \MODULO{\cctr@tempb}{\cctr@tempa}{\cctr@tempc}% + \COPY\cctr@tempa\cctr@tempb% + \COPY\cctr@tempc\cctr@tempa} + \fi\ignorespaces\@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\LCM} +% \cs{LCM}\marg{\#1}\marg{\#2}\marg{\#3} +% Least common multiple. +% \begin{macrocode} +\def\LCM#1#2#3{% + \GCD{#1}{#2}{#3}% + \ifx #3\undefined \COPY{0}{#3} + \else + \DIVIDE{#1}{#3}{#3} + \MULTIPLY{#2}{#3}{#3} + \ABSVALUE{#3}{#3} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\FRACTIONSIMPLIFY} +% \cs{FRACTIONSIMPLIFY}\marg{\#1}\marg{\#2}\marg{\#3}\marg{\#4} +% Fraction simplification: $\textit{\#3}/\textit{\#4}$ is the irreducible +% fraction equivalent to $\textit{\#1}/\textit{\#2}$. +% \begin{macrocode} +\def\FRACTIONSIMPLIFY#1#2#3#4{% + \ifnum #1=\z@ + \COPY{0}{#3}\COPY{1}{#4} + \else + \GCD{#1}{#2}{#3}% + \DIVIDE{#2}{#3}{#4} + \DIVIDE{#1}{#3}{#3} + \ifnum #4<0 \MULTIPLY{-1}{#4}{#4}\MULTIPLY{-1}{#3}{#3}\fi + \fi\ignorespaces} +% \end{macrocode} +% \end{macro} +% \subsubsection*{Elementary functions} +% \paragraph*{Square roots} +% \begin{macro}{\SQUAREROOT} +% \cs{SQUAREROOT}\marg{\#1}\marg{\#2} +% defines \textit{\#2} as the square root of \textit{\#1}, +% using the Newton's method: $x_{n+1}=x_n-(x_n^2-\textit{\#1})/(2x_n)$. +% \begin{macrocode} +\def\SQUAREROOT#1#2{% + \begingroup + \ifdim #1\p@ = \z@ + \COPY{0}{#2} + \else + \ifdim #1\p@ < \z@ + \let#2\undefined + \cctr@Warnnoposrad{#1}% + \else +% \end{macrocode} +% We take \textit{\#1} as the initial approximation. +% \begin{macrocode} + \COPY{#1}{#2} +% \end{macrocode} +% \cs{cctr@lengthb} will be the difference of two successive iterations. +% +% We start with |\cctr@lengthb=5\p@| to ensure almost one iteration. +% \begin{macrocode} + \cctr@lengthb=5\p@ +% \end{macrocode} +% Successive iterations +% \begin{macrocode} + \@whilenum \cctr@lengthb>\cctr@epsilon \do {% +% \end{macrocode} +% Copy the actual approximation to \cs{cctr@tempw} +% \begin{macrocode} + \COPY{#2}{\cctr@tempw} + \DIVIDE{#1}{\cctr@tempw}{\cctr@tempz} + \ADD{\cctr@tempw}{\cctr@tempz}{\cctr@tempz} + \DIVIDE{\cctr@tempz}{2}{\cctr@tempz} +% \end{macrocode} +% Now, \cs{cctr@tempz} is the new approximation. +% \begin{macrocode} + \COPY{\cctr@tempz}{#2} +% \end{macrocode} +% Finally, we store in \cs{cctr@lengthb} the difference +% of the two last approximations, finishing the loop. +% \begin{macrocode} + \SUBTRACT{#2}{\cctr@tempw}{\cctr@tempw} + \cctr@lengthb=\cctr@tempw\p@% + \ifnum + \cctr@lengthb<\z@ \cctr@lengthb=-\cctr@lengthb + \fi} + \fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SQRT} +% \cs{SQRT} is an alias for \cs{SQUAREROOT}. +% \begin{macrocode} +\let\SQRT\SQUAREROOT +% \end{macrocode} +% \end{macro} +% \paragraph{Trigonometric functions} +% For a variable close enough to zero, the sine and tangent functions +% are computed using some continued fractions. +% Then, all trigonometric functions are derived from well-known formulas. +% \begin{macro}{\SIN} +% \cs{SIN}\marg{\#1}\marg{\#2}. Sine of \textit{\#1}. +% \begin{macrocode} +\def\SIN#1#2{% + \begingroup +% \end{macrocode} +% Exact sine for $t\in\{\pi/2,-\pi/2,3\pi/2\}$ +% \begin{macrocode} + \ifdim #1\p@=-\numberHALFPI\p@ \COPY{-1}{#2} + \else + \ifdim #1\p@=\numberHALFPI\p@ \COPY{1}{#2} + \else + \ifdim #1\p@=\numberTHREEHALFPI\p@ \COPY{-1}{#2} + \else +% \end{macrocode} +% If $\left\vert t \right\vert>\pi/2$, change $t$ to a smaller value. +% \begin{macrocode} + \ifdim#1\p@<-\numberHALFPI\p@ + \ADD{#1}{\numberTWOPI}{\cctr@tempb} + \SIN{\cctr@tempb}{#2} + \else + \ifdim #1\p@<\numberHALFPI\p@ +% \end{macrocode} +% Compute the sine. +% \begin{macrocode} + \@BASICSINE{#1}{#2} + \else + \ifdim #1\p@<\numberTHREEHALFPI\p@ + \SUBTRACT{\numberPI}{#1}{\cctr@tempb} + \SIN{\cctr@tempb}{#2} + \else + \SUBTRACT{#1}{\numberTWOPI}{\cctr@tempb} + \SIN{\cctr@tempb}{#2} + \fi\fi\fi\fi\fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@BASICSINE} +% \cs{@BASICSINE}\marg{\#1}\marg{\#2} applies this approximation: +% \[ +% \sin x = \frac{x}{ +% 1+\displaystyle\frac{x^2}{ +% 2\cdot3-x^2+\displaystyle\frac{2\cdot3x^2}{ +% 4\cdot5-x^2+\displaystyle\frac{4\cdot5x^2}{ +% 6\cdot7-x^2+\cdots +% } +% } +% } +% } +% \] +% \begin{macrocode} +\def\@BASICSINE#1#2{% + \begingroup + \ABSVALUE{#1}{\cctr@tempa} +% \end{macrocode} +% Exact sine of zero +% \begin{macrocode} + \ifdim\cctr@tempa\p@=\z@ \COPY{0}{#2} + \else +% \end{macrocode} +% For $t$ very close to zero, $\sin t\approx t$. +% \begin{macrocode} + \ifdim \cctr@tempa\p@<0.009\p@\COPY{#1}{#2} + \else +% \end{macrocode} +% Compute the continued fraction. +% \begin{macrocode} + \SQUARE{#1}{\cctr@tempa} + \DIVIDE{\cctr@tempa}{42}{#2} + \SUBTRACT{1}{#2}{#2} + \MULTIPLY{#2}{\cctr@tempa}{#2} + \DIVIDE{#2}{20}{#2} + \SUBTRACT{1}{#2}{#2} + \MULTIPLY{#2}{\cctr@tempa}{#2} + \DIVIDE{#2}{6}{#2} + \SUBTRACT{1}{#2}{#2} + \MULTIPLY{#2}{#1}{#2} + \fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COS} +% \cs{COS}\marg{\#1}\marg{\#2}. Cosine of \textit{\#1}: $\cos t=\sin(t+\pi/2)$. +% \begin{macrocode} +\def\COS#1#2{% + \begingroup + \ADD{\numberHALFPI}{#1}{\cctr@tempc} + \SIN{\cctr@tempc}{#2}\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\TAN} +% \cs{TAN}\marg{\#1}\marg{\#2}. Tangent of \textit{\#1}. +% \begin{macrocode} +\def\TAN#1#2{% + \begingroup +% \end{macrocode} +% Tangent is infinite for $t=\pm\pi/2$ +% \begin{macrocode} + \ifdim #1\p@=-\numberHALFPI\p@ + \cctr@Warninftan{#1} + \let#2\undefined + \else + \ifdim #1\p@=\numberHALFPI\p@ + \cctr@Warninftan{#1} + \let#2\undefined + \else +% \end{macrocode} +% If $\left\vert t \right\vert>\pi/2$, change $t$ to a smaller value. +% \begin{macrocode} + \ifdim #1\p@<-\numberHALFPI\p@ + \ADD{#1}{\numberPI}{\cctr@tempb} + \TAN{\cctr@tempb}{#2} + \else + \ifdim #1\p@<\numberHALFPI\p@ +% \end{macrocode} +% Compute the tangent. +% \begin{macrocode} + \@BASICTAN{#1}{#2} + \else + \SUBTRACT{#1}{\numberPI}{\cctr@tempb} + \TAN{\cctr@tempb}{#2} + \fi\fi\fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@BASICTAN} +% \cs{@BASICTAN}\marg{\#1}\marg{\#2} applies this approximation: +% \[ +% \tan x = \frac{1}{ +% \displaystyle\frac{1}{x}-\displaystyle\frac{1}{ +% \displaystyle\frac{3}{x}-\displaystyle\frac{1}{ +% \displaystyle\frac{5}{x}-\displaystyle\frac{1}{ +% \displaystyle\frac{7}{x}-\displaystyle\frac{1}{ +% \displaystyle\frac{9}{x}-\displaystyle\frac{1}{ +% \displaystyle\frac{11}{x}- +% \cdots +% } +% } +% } +% } +% } +% } +% \] +% \begin{macrocode} +\def\@BASICTAN#1#2{% + \begingroup + \ABSVALUE{#1}{\cctr@tempa} +% \end{macrocode} +% Exact tangent of zero. +% \begin{macrocode} + \ifdim\cctr@tempa\p@=\z@ \COPY{0}{#2} + \else +% \end{macrocode} +% For $t$ very close to zero, $\tan t\approx t$. +% \begin{macrocode} + \ifdim\cctr@tempa\p@<0.04\p@ + \COPY{#1}{#2} + \else +% \end{macrocode} +% Compute the continued fraction. +% \begin{macrocode} + \DIVIDE{#1}{11}{#2} + \DIVIDE{9}{#1}{\cctr@tempa} + \SUBTRACT{\cctr@tempa}{#2}{#2} + \DIVIDE{1}{#2}{#2} + \DIVIDE{7}{#1}{\cctr@tempa} + \SUBTRACT{\cctr@tempa}{#2}{#2} + \DIVIDE{1}{#2}{#2} + \DIVIDE{5}{#1}{\cctr@tempa} + \SUBTRACT{\cctr@tempa}{#2}{#2} + \DIVIDE{1}{#2}{#2} + \DIVIDE{3}{#1}{\cctr@tempa} + \SUBTRACT{\cctr@tempa}{#2}{#2} + \DIVIDE{1}{#2}{#2} + \DIVIDE{1}{#1}{\cctr@tempa} + \SUBTRACT{\cctr@tempa}{#2}{#2} + \DIVIDE{1}{#2}{#2} + \fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COT} +% \cs{COT}\marg{\#1}\marg{\#2}. Cotangent of \textit{\#1}: +% If $\cos t=0$ then $\cot t=0$; if $\tan t=0$ then $\cot t=\infty$. +% Otherwise, $\cot t=1/\tan t$. +% \begin{macrocode} +\def\COT#1#2{% + \begingroup + \COS{#1}{#2} + \ifdim #2\p@ = \z@ + \COPY{0}{#2} + \else + \TAN{#1}{#2} + \ifdim #2\p@ = \z@ + \cctr@Warninfcotan{#1} + \let#2\undefined + \else + \DIVIDE{1}{#2}{#2} + \fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\DEGtoRAD} +% \cs{DEGtoRAD}\marg{\#1}\marg{\#2}. Convert degrees to radians. +% \begin{macrocode} +\def\DEGtoRAD#1#2{\DIVIDE{#1}{57.29578}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\RADtoDEG} +% \cs{RADtoDEG}\marg{\#1}\marg{\#2}. Convert radians to degrees. +% \begin{macrocode} +\def\RADtoDEG#1#2{\MULTIPLY{#1}{57.29578}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\REDUCERADIANSANGLE} +% Reduces to the trigonometrically equivalent arc in $]{-}\pi,\pi]$. +% \begin{macrocode} +\def\REDUCERADIANSANGLE#1#2{% + \COPY{#1}{#2} + \ifdim #1\p@ < -\numberPI\p@ + \ADD{#1}{\numberTWOPI}{#2} + \REDUCERADIANSANGLE{#2}{#2} + \fi + \ifdim #1\p@ > \numberPI\p@ + \SUBTRACT{#1}{\numberTWOPI}{#2} + \REDUCERADIANSANGLE{#2}{#2} + \fi + \ifdim #1\p@ = -180\p@ \COPY{\numberPI}{#2} \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\REDUCEDEGREESANGLE} +% Reduces to the trigonometrically equivalent angle in $]{-}180,180]$. +% \begin{macrocode} +\def\REDUCEDEGREESANGLE#1#2{% + \COPY{#1}{#2} + \ifdim #1\p@ < -180\p@ + \ADD{#1}{360}{#2} + \REDUCEDEGREESANGLE{#2}{#2} + \fi + \ifdim #1\p@ > 180\p@ + \SUBTRACT{#1}{360}{#2} + \REDUCEDEGREESANGLE{#2}{#2} + \fi + \ifdim #1\p@ = -180\p@ \COPY{180}{#2} \fi} +% \end{macrocode} +% \end{macro} +% \subparagraph*{Trigonometric functions in degrees} +% Four next commands compute trigonometric functions +% in \emph{degrees}. By default, a circle has $360$ +% degrees, but we can use an arbitrary number of divisions +% using the optional argument of these commands. +% \begin{macro}{\DEGREESSIN} +% \cs{DEGREESSIN}\oarg{\#1}\marg{\#2}\marg{\#3}. +% Sine of \textit{\#2} \emph{degrees}. +% \begin{macrocode} +\def\DEGREESSIN{\@ifnextchar[\@@DEGREESSIN\@DEGREESSIN} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\DEGREESCOS} +% \cs{DEGREESCOS}\oarg{\#1}\marg{\#2}\marg{\#3}. +% Cosine of \textit{\#2} \emph{degrees}. +% \begin{macrocode} +\def\DEGREESCOS{\@ifnextchar[\@@DEGREESCOS\@DEGREESCOS} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\DEGREESTAN} +% \cs{DEGREESTAN}\oarg{\#1}\marg{\#2}\marg{\#3}. +% Tangent of \textit{\#2} \emph{degrees}. +% \begin{macrocode} +\def\DEGREESTAN{\@ifnextchar[\@@DEGREESTAN\@DEGREESTAN} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\DEGREESCOT} +% \cs{DEGREESCOT}\oarg{\#1}\marg{\#2}\marg{\#3}. +% Cotangent of \textit{\#2} \emph{degrees}. +% \begin{macrocode} +\def\DEGREESCOT{\@ifnextchar[\@@DEGREESCOT\@DEGREESCOT} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@DEGREESSIN} +% \cs{@DEGREESSIN} computes the sine in sexagesimal \emph{degrees}. +% \begin{macrocode} +\def\@DEGREESSIN#1#2{% + \begingroup + \ifdim #1\p@=-90\p@ \COPY{-1}{#2} + \else + \ifdim #1\p@=90\p@ \COPY{1}{#2} + \else + \ifdim #1\p@=270\p@ \COPY{-1}{#2} + \else + \ifdim#1\p@<-90\p@ + \ADD{#1}{360}{\cctr@tempb} + \DEGREESSIN{\cctr@tempb}{#2} + \else + \ifdim #1\p@<90\p@ + \DEGtoRAD{#1}{\cctr@tempb} + \@BASICSINE{\cctr@tempb}{#2} + \else + \ifdim #1\p@<270\p@ + \SUBTRACT{180}{#1}{\cctr@tempb} + \DEGREESSIN{\cctr@tempb}{#2} + \else + \SUBTRACT{#1}{360}{\cctr@tempb} + \DEGREESSIN{\cctr@tempb}{#2} + \fi\fi\fi\fi\fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@DEGREESCOS} +% \cs{@DEGREESCOS} computes the cosine in sexagesimal \emph{degrees}. +% \begin{macrocode} +\def\@DEGREESCOS#1#2{% + \begingroup + \ADD{90}{#1}{\cctr@tempc} + \DEGREESSIN{\cctr@tempc}{#2}\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@DEGREESTAN} +% \cs{@DEGREESTAN} computes the tangent in sexagesimal \emph{degrees}. +% \begin{macrocode} +\def\@DEGREESTAN#1#2{% + \begingroup + \ifdim #1\p@=-90\p@ + \cctr@Warninftan{#1} + \let#2\undefined + \else + \ifdim #1\p@=90\p@ + \cctr@Warninftan{#1} + \let#2\undefined + \else + \ifdim #1\p@<-90\p@ + \ADD{#1}{180}{\cctr@tempb} \DEGREESTAN{\cctr@tempb}{#2} + \else + \ifdim #1\p@<90\p@ + \DEGtoRAD{#1}{\cctr@tempb} + \@BASICTAN{\cctr@tempb}{#2} + \else + \SUBTRACT{#1}{180}{\cctr@tempb} + \DEGREESTAN{\cctr@tempb}{#2} + \fi\fi\fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@DEGREESCOT} +% \cs{@DEGREESCOT} computes the cotangent in sexagesimal \emph{degrees}. +% \begin{macrocode} +\def\@DEGREESCOT#1#2{% + \begingroup + \DEGREESCOS{#1}{#2} + \ifdim #2\p@ = \z@ + \COPY{0}{#2} + \else + \DEGREESTAN{#1}{#2} + \ifdim #2\p@ = \z@ + \cctr@Warninfcotan{#1} + \let#2\undefined + \else + \DIVIDE{1}{#2}{#2} + \fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% For an arbitrary number of \emph{degrees}, we normalise +% to $360$ degrees and, then, call the former functions. +% \begin{macro}{\@@DEGREESSIN} +% \cs{@@DEGREESSIN} computes the sine. +% A circle has \textit{\#1} \emph{degrees}. +% \begin{macrocode} +\def\@@DEGREESSIN[#1]#2#3{\@CONVERTDEG{#1}{#2} + \@DEGREESSIN{\@DEGREES}{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@@DEGREESCOS} +% \cs{@@DEGREESCOS} computes the sine. +% A circle has \textit{\#1} \emph{degrees}. +% \begin{macrocode} +\def\@@DEGREESCOS[#1]#2#3{\@CONVERTDEG{#1}{#2} + \DEGREESCOS{\@DEGREES}{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@@DEGREESTAN} +% \cs{@@DEGREESTAN} computes the sine. +% A circle has \textit{\#1} \emph{degrees}. +% \begin{macrocode} +\def\@@DEGREESTAN[#1]#2#3{\@CONVERTDEG{#1}{#2} + \DEGREESTAN{\@DEGREES}{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@@DEGREESCOT} +% \cs{@@DEGREESCOT} computes the sine. +% A circle has \textit{\#1} \emph{degrees}. +% \begin{macrocode} +\def\@@DEGREESCOT[#1]#2#3{\@CONVERTDEG{#1}{#2} + \DEGREESCOT{\@DEGREES}{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@CONVERTDEG} +% \cs{@CONVERTDEG} normalises to sexagesimal degrees. +% \begin{macrocode} +\def\@CONVERTDEG#1#2{\DIVIDE{#2}{#1}{\@DEGREES} + \MULTIPLY{\@DEGREES}{360}{\@DEGREES}} +% \end{macrocode} +% \end{macro} +% \paragraph*{Exponential functions} +% \begin{macro}{\EXP} +% \cs{EXP}\oarg{\#1}\marg{\#2}\marg{\#3} computes +% the exponential $\textit{\#3}=\textit{\#1}^{\textit{\#2}}$. +% Default for \textit{\#1} is number $\mathrm e$. +% \begin{macrocode} +\def\EXP{\@ifnextchar[\@@EXP\@EXP} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@@EXP} \cs{@@EXP}\oarg{\textit{\#1}}\marg{\#2}\marg{\#3} +% computes $\textit{\#3}=\textit{\#1}^{\textit{\#2}}$ +% \begin{macrocode} +\def\@@EXP[#1]#2#3{% + \begingroup +% \end{macrocode} +% \#1 must be a positive number. +% \begin{macrocode} + \ifdim #1\p@<\cctr@epsilon + \cctr@Warninfexpb{#1}{#2} + \let#3\undefined + \else +% \end{macrocode} +% $a^b=\exp(b\log a)$. +% \begin{macrocode} + \LOG{#1}{\cctr@log} + \MULTIPLY{#2}{\cctr@log}{\cctr@log} + \@EXP{\cctr@log}{#3} + \fi\@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@EXP} \cs{@EXP}\marg{\#1}\marg{\#2} +% computes $\textit{\#3}=\mathrm{e}^{\textit{\#2}}$ +% \begin{macrocode} +\def\@EXP#1#2{% + \begingroup + \ABSVALUE{#1}{\cctr@absval} +% \end{macrocode} +% If $\left\vert t\right\vert$ is greater than \cs{cctr@logmaxnum} +% then $\exp t$ is too large. +% \begin{macrocode} + \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@ + \cctr@Warninfexp{#1} + \let#2\undefined + \else + \ifdim #1\p@ < \z@ +% \end{macrocode} +% We call \cs{@BASICEXP} when $t\in [{-}6,3]$. +% Otherwise we use the equality $\exp t=\left(\exp t/2\right)^2$. +% \begin{macrocode} + \ifdim #1\p@ > -6.00002\p@ + \@BASICEXP{#1}{#2} + \else + \DIVIDE{#1}{2}{\cctr@expt} + \@EXP{\cctr@expt}{\cctr@expy} + \SQUARE{\cctr@expy}{#2} + \fi + \else + \ifdim #1\p@ < 3.00002\p@ + \@BASICEXP{#1}{#2} + \else + \DIVIDE{#1}{2}{\cctr@expt} + \@EXP{\cctr@expt}{\cctr@expy} + \SQUARE{\cctr@expy}{#2} + \fi +\fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@BASICEXP} +% \cs{@BASICEXP}\marg{\#1}\marg{\#2} applies this approximation: +% \[ +% \exp x \approx 1+\frac{2x}{ +% 2-x+\displaystyle\frac{x^2/6}{ +% 1+\displaystyle\frac{x^2/60}{ +% 1+\displaystyle\frac{x^2/140}{ +% 1+\displaystyle\frac{x^2/256}{ +% 1+\displaystyle\frac{x^2}{396 +% } +% } +% } +% } +% } +% } +% \] +% \begin{macrocode} +\def\@BASICEXP#1#2{% + \begingroup + \SQUARE{#1}\cctr@tempa + \DIVIDE{\cctr@tempa}{396}{#2} + \ADD{1}{#2}{#2} + \DIVIDE\cctr@tempa{#2}{#2} + \DIVIDE{#2}{256}{#2} + \ADD{1}{#2}{#2} + \DIVIDE\cctr@tempa{#2}{#2} + \DIVIDE{#2}{140}{#2} + \ADD{1}{#2}{#2} + \DIVIDE\cctr@tempa{#2}{#2} + \DIVIDE{#2}{60}{#2} + \ADD{1}{#2}{#2} + \DIVIDE\cctr@tempa{#2}{#2} + \DIVIDE{#2}{6}{#2} + \ADD{2}{#2}{#2} + \SUBTRACT{#2}{#1}{#2} + \DIVIDE{#1}{#2}{#2} + \MULTIPLY{2}{#2}{#2} + \ADD{1}{#2}{#2}\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \paragraph*{Hyperbolic functions} +% \begin{macro}{\COSH} +% \cs{COSH}. Hyperbolic cosine: $\cosh t=(\exp t+\exp(-t))/2$. +% \begin{macrocode} +\def\COSH#1#2{% + \begingroup + \ABSVALUE{#1}{\cctr@absval} + \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@ + \cctr@Warninfexp{#1} + \let#2\undefined + \else + \EXP{#1}{\cctr@expx} + \MULTIPLY{-1}{#1}{\cctr@minust} + \EXP{\cctr@minust}{\cctr@expminusx} + \ADD{\cctr@expx}{\cctr@expminusx}{#2} + \DIVIDE{#2}{2}{#2} + \fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SINH} +% \cs{SINH}. Hyperbolic sine: $\sinh t=(\exp t-\exp(-t))/2$. +% \begin{macrocode} +\def\SINH#1#2{% + \begingroup + \ABSVALUE{#1}{\cctr@absval} + \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@ + \cctr@Warninfexp{#1} + \let#2\undefined + \else + \EXP{#1}{\cctr@expx} + \MULTIPLY{-1}{#1}{\cctr@minust} + \EXP{\cctr@minust}{\cctr@expminusx} + \SUBTRACT{\cctr@expx}{\cctr@expminusx}{#2} + \DIVIDE{#2}{2}{#2} + \fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\TANH} +% \cs{TANH}. Hyperbolic tangent: $\tanh t=\sinh t/{\cosh t}$. +% \begin{macrocode} +\def\TANH#1#2{% + \begingroup + \ABSVALUE{#1}{\cctr@absval} + \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@ + \cctr@Warninfexp{#1} + \let#2\undefined + \else + \SINH{#1}{\cctr@tanhnum} + \COSH{#1}{\cctr@tanhden} + \DIVIDE{\cctr@tanhnum}{\cctr@tanhden}{#2} + \fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COTH} +% \cs{COTH}. Hyperbolic cotangent $\coth t=\cosh t/{\sinh t}$. +% \begin{macrocode} +\def\COTH#1#2{% + \begingroup + \ABSVALUE{#1}{\cctr@absval} + \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@ + \cctr@Warninfexp{#1} + \let#2\undefined + \else + \SINH{#1}{\cctr@tanhden} + \COSH{#1}{\cctr@tanhnum} + \DIVIDE\cctr@tanhnum\cctr@tanhden{#2} + \fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \paragraph*{Logarithm} +% \begin{macro}{\LOG} +% \cs{LOG}\oarg{\#1}\marg{\#2}\marg{\#3} computes +% the logarithm $\textit{\#3}=\log_{\textit{\#1}}{\textit{\#2}}$. +% Default for \textit{\#1} is number $\mathrm e$. +% \begin{macrocode} +\def\LOG{\@ifnextchar[\@@LOG\@LOG} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@LOG} \cs{@LOG}\marg{\textit{\#1}}\marg{\#2} +% computes $\textit{\#2}=\log\textit{\#1}$ +% \begin{macrocode} +\def\@LOG#1#2{% + \begingroup +% \end{macrocode} +% The argument $t$ must be positive. +% \begin{macrocode} + \ifdim #1\p@<\cctr@epsilon + \cctr@Warninflog{#1} + \let#2\undefined + \else + \ifdim #1\p@ > \numberETWO\p@ +% \end{macrocode} +% If $t>\mathrm{e}^2$, $\log t=\log\mathrm{e}+\log(t/{\mathrm{e}})=1+\log(t/{\mathrm{e}})$ +% \begin{macrocode} + \DIVIDE{#1}{\numberE}{\cctr@ae} + \@LOG{\cctr@ae}{#2} + \ADD{1}{#2}{#2} + \else + \ifdim #1\p@ < 1\p@ +% \end{macrocode} +% If $t<1$, $\log t=\log(1/\mathrm{e})+\log(t\mathrm{e})=-1+\log(t\mathrm{e})$ +% \begin{macrocode} + \MULTIPLY{\numberE}{#1}{\cctr@ae} + \LOG{\cctr@ae}{#2} + \SUBTRACT{#2}{1}{#2} + \else +% \end{macrocode} +% For $t\in[1,\mathrm{e}^2]$ we call \cs{@@BASICLOG}. +% \begin{macrocode} + \@BASICLOG{#1}{#2} +\fi\fi\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@@LOG} \cs{@@LOG}\oarg{\textit{\#1}}\marg{\#2}\marg{\#3} +% computes $\textit{\#3}=\log_\textit{\#1}\textit{\#2} +% =\log(\textit{\#2})/\log(\textit{\#1})$ +% \begin{macrocode} +\def\@@LOG[#1]#2#3{\begingroup + \@LOG{#1}{\cctr@loga} + \@LOG{#2}{\cctr@logx} + \DIVIDE{\cctr@logx}{\cctr@loga}{#3}\@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@BASICLOG} \cs{@BASICLOG}\marg{\textit{\#1}}\marg{\#2} +% applies the Newton's method to calculate $x=\log t$: +% \[x_{n+1}=x_n+\frac{t}{\mathrm{e}^{x_n}}-1\] +% \begin{macrocode} +\def\@BASICLOG#1#2{\begingroup +% We take $\textit{\#1}-1$ as the initial approximation. +% \begin{macrocode} + \SUBTRACT{#1}{1}{\cctr@tempw} +% \end{macrocode} +% +% We start with |\cctr@lengthb=5\p@| to ensure almost one iteration. +% \begin{macrocode} + \cctr@lengthb=5\p@% + \cctr@lengtha=\cctr@epsilon% +% \end{macrocode} +% Successive iterations +% \begin{macrocode} + \@whilenum \cctr@lengthb>\cctr@lengtha \do {% + \COPY{\cctr@tempw}{\cctr@tempoldw} + \EXP{\cctr@tempw}{\cctr@tempxw} + \DIVIDE{#1}{\cctr@tempxw}{\cctr@tempxw} + \ADD{\cctr@tempw}{\cctr@tempxw}{\cctr@tempw} + \SUBTRACT{\cctr@tempw}{1}{\cctr@tempw} + \SUBTRACT{\cctr@tempw}{\cctr@tempoldw}{\cctr@tempdif} + \cctr@lengthb=\cctr@tempdif\p@% + \ifnum + \cctr@lengthb<\z@ \cctr@lengthb=-\cctr@lengthb + \fi}% + \COPY{\cctr@tempw}{#2}\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \subsection{Matrix arithmetics} +% \subsubsection*{Vector operations} +% \begin{macro}{\VECTORSIZE} +% The \emph{size} of a vector is $2$ or $3$. +% \cs{VECTORSIZE}\parg{\#1}\marg{\#2} stores in \textit{\#2} the +% size of \parg{\#1}. +% +% Almost all vector commands needs to know the vector size. +% \begin{macrocode} +\def\VECTORSIZE(#1)#2{\expandafter\@VECTORSIZE(#1,,){#2}} +\def\@VECTORSIZE(#1,#2,#3,#4)#5{\ifx$#3$\COPY{2}{#5} + \else\COPY{3}{#5}\fi\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\VECTORCOPY} +% \cs{VECTORCOPY}\parg{\#1,\#2}\parg{\#3,\#4} +% stores \textit{\#1} and \textit{\#2} +% in \textit{\#3} and \textit{\#4}. +% +% \noindent\cs{VECTORCOPY}\parg{\#1,\#2,\#3}\parg{\#4,\#5\#6} +% stores \textit{\#1}, \textit{\#2} and \textit{\#3} +% in \textit{\#4} and \textit{\#5} and \textit{\#6}. +% \begin{macrocode} +\def\@@VECTORCOPY(#1,#2)(#3,#4){% + \COPY{#1}{#3}\COPY{#2}{#4}} + +\def\@@@VECTORCOPY(#1,#2,#3)(#4,#5,#6){% + \COPY{#1}{#4}\COPY{#2}{#5}\COPY{#3}{#6}} + +\def\VECTORCOPY(#1)(#2){% + \VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@VECTORCOPY(#1)(#2) + \else \@@@VECTORCOPY(#1)(#2)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\VECTORGLOBALCOPY} +% \cs{VECTORGLOBALCOPY} is the global version of \cs{VECTORCOPY} +% \begin{macrocode} +\def\@@VECTORGLOBALCOPY(#1,#2)(#3,#4){% + \GLOBALCOPY{#1}{#3}\GLOBALCOPY{#2}{#4}} + +\def\@@@VECTORGLOBALCOPY(#1,#2,#3)(#4,#5,#6){% + \GLOBALCOPY{#1}{#4}\GLOBALCOPY{#2}{#5}\GLOBALCOPY{#3}{#6}} + +\def\VECTORGLOBALCOPY(#1)(#2){% + \VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@VECTORGLOBALCOPY(#1)(#2) + \else \@@@VECTORGLOBALCOPY(#1)(#2)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@OUTPUTVECTOR} +% \begin{macrocode} +\def\@@OUTPUTVECTOR(#1,#2){% + \VECTORGLOBALCOPY(#1,#2)(\cctr@outa,\cctr@outb) + \endgroup\VECTORCOPY(\cctr@outa,\cctr@outb)(#1,#2)} + +\def\@@@OUTPUTVECTOR(#1,#2,#3){% + \VECTORGLOBALCOPY(#1,#2,#3)(\cctr@outa,\cctr@outb,\cctr@outc) + \endgroup\VECTORCOPY(\cctr@outa,\cctr@outb,\cctr@outc)(#1,#2,#3)} + +\def\@OUTPUTVECTOR(#1){\VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@OUTPUTVECTOR(#1) + \else \@@@OUTPUTVECTOR(#1)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SCALARPRODUCT} +% Scalar product of two vectors. +% \begin{macrocode} +\def\@@SCALARPRODUCT(#1,#2)(#3,#4)#5{% + \MULTIPLY{#1}{#3}{#5} + \MULTIPLY{#2}{#4}\cctr@tempa + \ADD{#5}{\cctr@tempa}{#5}} + +\def\@@@SCALARPRODUCT(#1,#2,#3)(#4,#5,#6)#7{% + \MULTIPLY{#1}{#4}{#7} + \MULTIPLY{#2}{#5}\cctr@tempa + \ADD{#7}{\cctr@tempa}{#7} + \MULTIPLY{#3}{#6}\cctr@tempa + \ADD{#7}{\cctr@tempa}{#7}} + +\def\SCALARPRODUCT(#1)(#2)#3{% + \begingroup + \VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@SCALARPRODUCT(#1)(#2){#3} + \else \@@@SCALARPRODUCT(#1)(#2){#3}\fi\@OUTPUTSOL{#3}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\VECTORADD} +% Sum of two vectors. +% \begin{macrocode} +\def\@@VECTORADD(#1,#2)(#3,#4)(#5,#6){% + \ADD{#1}{#3}{#5} + \ADD{#2}{#4}{#6}} + +\def\@@@VECTORADD(#1,#2,#3)(#4,#5,#6)(#7,#8,#9){% + \ADD{#1}{#4}{#7} + \ADD{#2}{#5}{#8} + \ADD{#3}{#6}{#9}} + +\def\VECTORADD(#1)(#2)(#3){% + \VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@VECTORADD(#1)(#2)(#3) + \else \@@@VECTORADD(#1)(#2)(#3)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\VECTORSUB} +% Difference of two vectors. +% \begin{macrocode} +\def\@@VECTORSUB(#1,#2)(#3,#4)(#5,#6){% + \VECTORADD(#1,#2)(-#3,-#4)(#5,#6)} + +\def\@@@VECTORSUB(#1,#2,#3)(#4,#5,#6)(#7,#8,#9){% + \VECTORADD(#1,#2,#3)(-#4,-#5,-#6)(#7,#8,#9)} + +\def\VECTORSUB(#1)(#2)(#3){% + \VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@VECTORSUB(#1)(#2)(#3) + \else \@@@VECTORSUB(#1)(#2)(#3)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\VECTORABSVALUE} +% Absolute value of a each entry of a vector. +% \begin{macrocode} +\def\@@VECTORABSVALUE(#1,#2)(#3,#4){% + \ABSVALUE{#1}{#3}\ABSVALUE{#2}{#4}} + +\def\@@@VECTORABSVALUE(#1,#2,#3)(#4,#5,#6){% + \ABSVALUE{#1}{#4}\ABSVALUE{#2}{#5}\ABSVALUE{#3}{#6}} + +\def\VECTORABSVALUE(#1)(#2){% + \VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@VECTORABSVALUE(#1)(#2) + \else \@@@VECTORABSVALUE(#1)(#2)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SCALARVECTORPRODUCT} +% Scalar-vector product. +% \begin{macrocode} +\def\@@SCALARVECTORPRODUCT#1(#2,#3)(#4,#5){% + \MULTIPLY{#1}{#2}{#4} + \MULTIPLY{#1}{#3}{#5}} + +\def\@@@SCALARVECTORPRODUCT#1(#2,#3,#4)(#5,#6,#7){% + \MULTIPLY{#1}{#2}{#5} + \MULTIPLY{#1}{#3}{#6} + \MULTIPLY{#1}{#4}{#7}} + +\def\SCALARVECTORPRODUCT#1(#2)(#3){% + \VECTORSIZE(#2){\cctr@size} + \ifnum\cctr@size=2 + \@@SCALARVECTORPRODUCT{#1}(#2)(#3) + \else \@@@SCALARVECTORPRODUCT{#1}(#2)(#3)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\VECTORNORM} +% Euclidean norm of a vector. +% \begin{macrocode} +\def\VECTORNORM(#1)#2{% + \begingroup + \SCALARPRODUCT(#1)(#1){\cctr@temp} + \SQUAREROOT{\cctr@temp}{#2}\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\UNITVECTOR} +% Unitary vector parallel to a given vector. +% \begin{macrocode} +\def\UNITVECTOR(#1)(#2){% + \begingroup + \VECTORNORM(#1){\cctr@tempa} + \DIVIDE{1}{\cctr@tempa}{\cctr@tempa} + \SCALARVECTORPRODUCT{\cctr@tempa}(#1)(#2)\@OUTPUTVECTOR(#2)} +% \end{macrocode} +% \end{macro} +% \subsubsection*{Matrix operations} +% Here, we need to define some internal macros +% to simulate commands with more than nine arguments. +% \begin{macro}{\@TDMATRIXCOPY} +% This command copies a $3\times3$ matrix to the commands +% \cs{cctr@solAA}, \cs{cctr@solAB}, \dots, \cs{cctr@solCC}. +% \begin{macrocode} +\def\@TDMATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \COPY{#1}{\cctr@solAA} + \COPY{#2}{\cctr@solAB} + \COPY{#3}{\cctr@solAC} + \COPY{#4}{\cctr@solBA} + \COPY{#5}{\cctr@solBB} + \COPY{#6}{\cctr@solBC} + \COPY{#7}{\cctr@solCA} + \COPY{#8}{\cctr@solCB} + \COPY{#9}{\cctr@solCC}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@TDMATRIXSOL} +% This command copies the commands +% \cs{cctr@solAA}, \cs{cctr@solAB}, \dots, \cs{cctr@solCC} +% to a $3\times3$ matrix. +% This macro is used to store the results of a matrix operation. +% \begin{macrocode} +\def\@TDMATRIXSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \COPY{\cctr@solAA}{#1} + \COPY{\cctr@solAB}{#2} + \COPY{\cctr@solAC}{#3} + \COPY{\cctr@solBA}{#4} + \COPY{\cctr@solBB}{#5} + \COPY{\cctr@solBC}{#6} + \COPY{\cctr@solCA}{#7} + \COPY{\cctr@solCB}{#8} + \COPY{\cctr@solCC}{#9}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@TDMATRIXGLOBALSOL} +% +% \begin{macrocode} +\def\@TDMATRIXGLOBALSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \GLOBALCOPY{\cctr@solAA}{#1} + \GLOBALCOPY{\cctr@solAB}{#2} + \GLOBALCOPY{\cctr@solAC}{#3} + \GLOBALCOPY{\cctr@solBA}{#4} + \GLOBALCOPY{\cctr@solBB}{#5} + \GLOBALCOPY{\cctr@solBC}{#6} + \GLOBALCOPY{\cctr@solCA}{#7} + \GLOBALCOPY{\cctr@solCB}{#8} + \GLOBALCOPY{\cctr@solCC}{#9}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@TDMATRIXNOSOL} +% This command undefines a $3\times3$ matrix +% when a matrix problem has no solution. +% \begin{macrocode} +\def\@TDMATRIXNOSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \let#1\undefined + \let#2\undefined + \let#3\undefined + \let#4\undefined + \let#5\undefined + \let#6\undefined + \let#7\undefined + \let#8\undefined + \let#9\undefined + } +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@@TDMATRIXSOL} +% This command stores or undefines the solution. +% \begin{macrocode} +\def\@@TDMATRIXSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \ifx\cctr@solAA\undefined + \@TDMATRIXNOSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9)% + \else + \@TDMATRIXSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@NUMBERSOL} +% This command stores the scalar solution of a matrix operation. +% \begin{macrocode} +\def\@NUMBERSOL#1{\COPY{\cctr@sol}{#1}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MATRIXSIZE} +% Size ($2$ or $3$) of a matrix. +% \begin{macrocode} +\def\MATRIXSIZE(#1)#2{\expandafter\@MATRIXSIZE(#1;;){#2}} +\def\@MATRIXSIZE(#1;#2;#3;#4)#5{\ifx$#3$\COPY{2}{#5} + \else\COPY{3}{#5}\fi\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MATRIXCOPY} +% Store a matrix in 4 or 9 commands. +% \begin{macrocode} +\def\@@MATRIXCOPY(#1,#2;#3,#4)(#5,#6;#7,#8){% + \COPY{#1}{#5}\COPY{#2}{#6}\COPY{#3}{#7}\COPY{#4}{#8}} + +\def\@@@MATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \@TDMATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9) + \@TDMATRIXSOL} + +\def\MATRIXCOPY(#1)(#2){% + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@MATRIXCOPY(#1)(#2) + \else \@@@MATRIXCOPY(#1)(#2)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MATRIXGLOBALCOPY} +% Global version of \cs{MATRIXCOPY}. +% \begin{macrocode} +\def\@@MATRIXGLOBALCOPY(#1,#2;#3,#4)(#5,#6;#7,#8){% + \GLOBALCOPY{#1}{#5}\GLOBALCOPY{#2}{#6}\GLOBALCOPY{#3}{#7}\GLOBALCOPY{#4}{#8}} + +\def\@@@MATRIXGLOBALCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \@TDMATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9) + \@TDMATRIXGLOBALSOL} + +\def\MATRIXGLOBALCOPY(#1)(#2){% + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@MATRIXGLOBALCOPY(#1)(#2) + \else \@@@MATRIXGLOBALCOPY(#1)(#2)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\@OUTPUTMATRIX} +% \begin{macrocode} +\def\@@OUTPUTMATRIX(#1,#2;#3,#4){% + \MATRIXGLOBALCOPY(#1,#2;#3,#4)(\cctr@outa,\cctr@outb;\cctr@outc,\cctr@outd) + \endgroup\MATRIXCOPY(\cctr@outa,\cctr@outb;\cctr@outc,\cctr@outd)(#1,#2;#3,#4)} + +\def\@@@OUTPUTMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \MATRIXGLOBALCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9)(% + \cctr@outa,\cctr@outb,\cctr@outc; + \cctr@outd,\cctr@oute,\cctr@outf; + \cctr@outg,\cctr@outh,\cctr@outi) + \endgroup\MATRIXCOPY(% + \cctr@outa,\cctr@outb,\cctr@outc; + \cctr@outd,\cctr@oute,\cctr@outf; + \cctr@outg,\cctr@outh,\cctr@outi)(#1,#2,#3;#4,#5,#6;#7,#8,#9)} + +\def\@OUTPUTMATRIX(#1){\MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@OUTPUTMATRIX(#1) + \else \@@@OUTPUTMATRIX(#1)\fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\TRANSPOSEMATRIX} +% Matrix transposition. +% \begin{macrocode} +\def\@@TRANSPOSEMATRIX(#1,#2;#3,#4)(#5,#6;#7,#8){% + \COPY{#1}{#5}\COPY{#3}{#6}\COPY{#2}{#7}\COPY{#4}{#8}} + +\def\@@@TRANSPOSEMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \@TDMATRIXCOPY(#1,#4,#7;#2,#5,#8;#3,#6,#9) + \@TDMATRIXSOL} + +\def\TRANSPOSEMATRIX(#1)(#2){% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@TRANSPOSEMATRIX(#1)(#2) + \else \@@@TRANSPOSEMATRIX(#1)(#2)\fi\@OUTPUTMATRIX(#2)} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MATRIXADD} +% Sum of two matrices. +% \begin{macrocode} +\def\@@MATRIXADD(#1;#2)(#3;#4)(#5,#6;#7,#8){% + \VECTORADD(#1)(#3)(#5,#6) + \VECTORADD(#2)(#4)(#7,#8)} + +\def\@@@MATRIXADD(#1;#2;#3)(#4;#5;#6){% + \VECTORADD(#1)(#4)(\cctr@solAA,\cctr@solAB,\cctr@solAC) + \VECTORADD(#2)(#5)(\cctr@solBA,\cctr@solBB,\cctr@solBC) + \VECTORADD(#3)(#6)(\cctr@solCA,\cctr@solCB,\cctr@solCC) + \@TDMATRIXSOL} + +\def\MATRIXADD(#1)(#2)(#3){% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@MATRIXADD(#1)(#2)(#3) + \else \@@@MATRIXADD(#1)(#2)(#3)\fi\@OUTPUTMATRIX(#3)} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MATRIXSUB} +% Difference of two matrices. +% \begin{macrocode} +\def\@@MATRIXSUB(#1;#2)(#3;#4)(#5,#6;#7,#8){% + \VECTORSUB(#1)(#3)(#5,#6) + \VECTORSUB(#2)(#4)(#7,#8)} + +\def\@@@MATRIXSUB(#1;#2;#3)(#4;#5;#6){% + \VECTORSUB(#1)(#4)(\cctr@solAA,\cctr@solAB,\cctr@solAC) + \VECTORSUB(#2)(#5)(\cctr@solBA,\cctr@solBB,\cctr@solBC) + \VECTORSUB(#3)(#6)(\cctr@solCA,\cctr@solCB,\cctr@solCC) + \@TDMATRIXSOL} + +\def\MATRIXSUB(#1)(#2)(#3){% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@MATRIXSUB(#1)(#2)(#3) + \else \@@@MATRIXSUB(#1)(#2)(#3)\fi\@OUTPUTMATRIX(#3)} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MATRIXABSVALUE} +% Absolute value (of each entry) of a matrix. +% \begin{macrocode} +\def\@@MATRIXABSVALUE(#1;#2)(#3;#4){% + \VECTORABSVALUE(#1)(#3)\VECTORABSVALUE(#2)(#4)} + +\def\@@@MATRIXABSVALUE(#1;#2;#3)(#4;#5;#6){% + \VECTORABSVALUE(#1)(#4)\VECTORABSVALUE(#2)(#5)\VECTORABSVALUE(#3)(#6)} + +\def\MATRIXABSVALUE(#1)(#2){% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@MATRIXABSVALUE(#1)(#2) + \else \@@@MATRIXABSVALUE(#1)(#2)\fi\@OUTPUTMATRIX(#2)} +% \end{macrocode} +% \end{macro} + +% \begin{macro}{\MATRIXVECTORPRODUCT} +% Matrix-vector product. +% \begin{macrocode} +\def\@@MATRIXVECTORPRODUCT(#1;#2)(#3)(#4,#5){% + \SCALARPRODUCT(#1)(#3){#4} + \SCALARPRODUCT(#2)(#3){#5}} + +\def\@@@MATRIXVECTORPRODUCT(#1;#2;#3)(#4)(#5,#6,#7){% + \SCALARPRODUCT(#1)(#4){#5} + \SCALARPRODUCT(#2)(#4){#6} + \SCALARPRODUCT(#3)(#4){#7}} + +\def\MATRIXVECTORPRODUCT(#1)(#2)(#3){% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@MATRIXVECTORPRODUCT(#1)(#2)(#3) + \else \@@@MATRIXVECTORPRODUCT(#1)(#2)(#3)\fi\@OUTPUTVECTOR(#3)} +% \end{macrocode} +% \end{macro} + + +% \begin{macro}{\VECTORMATRIXPRODUCT} +% Vector-matrix product. +% \begin{macrocode} +\def\@@VECTORMATRIXPRODUCT(#1)(#2,#3;#4,#5)(#6,#7){% + \SCALARPRODUCT(#1)(#2,#4){#6} + \SCALARPRODUCT(#1)(#3,#5){#7}} + +\def\@@@VECTORMATRIXPRODUCT(#1,#2,#3)(#4;#5;#6)(#7){% + \SCALARVECTORPRODUCT{#1}(#4)(#7) + \SCALARVECTORPRODUCT{#2}(#5)(\cctr@tempa,\cctr@tempb,\cctr@tempc) + \VECTORADD(#7)(\cctr@tempa,\cctr@tempb,\cctr@tempc)(#7) + \SCALARVECTORPRODUCT{#3}(#6)(\cctr@tempa,\cctr@tempb,\cctr@tempc) + \VECTORADD(#7)(\cctr@tempa,\cctr@tempb,\cctr@tempc)(#7)} + +\def\VECTORMATRIXPRODUCT(#1)(#2)(#3){% + \begingroup + \VECTORSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@VECTORMATRIXPRODUCT(#1)(#2)(#3) + \else \@@@VECTORMATRIXPRODUCT(#1)(#2)(#3)\fi\@OUTPUTVECTOR(#3)} +% \end{macrocode} +% \end{macro} + + +% \begin{macro}{\SCALARMATRIXPRODUCT} +% Scalar-matrix product. +% \begin{macrocode} +\def\@@SCALARMATRIXPRODUCT#1(#2;#3)(#4,#5;#6,#7){% + \SCALARVECTORPRODUCT{#1}(#2)(#4,#5) + \SCALARVECTORPRODUCT{#1}(#3)(#6,#7)} + +\def\@@@SCALARMATRIXPRODUCT#1(#2;#3;#4){% + \SCALARVECTORPRODUCT{#1}(#2)(\cctr@solAA,\cctr@solAB,\cctr@solAC) + \SCALARVECTORPRODUCT{#1}(#3)(\cctr@solBA,\cctr@solBB,\cctr@solBC) + \SCALARVECTORPRODUCT{#1}(#4)(\cctr@solCA,\cctr@solCB,\cctr@solCC) + \@TDMATRIXSOL} + +\def\SCALARMATRIXPRODUCT#1(#2)(#3){% + \begingroup + \MATRIXSIZE(#2){\cctr@size} + \ifnum\cctr@size=2 + \@@SCALARMATRIXPRODUCT{#1}(#2)(#3) + \else \@@@SCALARMATRIXPRODUCT{#1}(#2)(#3)\fi\@OUTPUTMATRIX(#3)} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\MATRIXPRODUCT} +% Product of two matrices. +% \begin{macrocode} +\def\@@MATRIXPRODUCT(#1)(#2,#3;#4,#5)(#6,#7;#8,#9){% + \MATRIXVECTORPRODUCT(#1)(#2,#4)(#6,#8) + \MATRIXVECTORPRODUCT(#1)(#3,#5)(#7,#9)} + +\def\@@@MATRIXPRODUCT(#1;#2;#3)(#4){% + \VECTORMATRIXPRODUCT(#1)(#4)(\cctr@solAA,\cctr@solAB,\cctr@solAC) + \VECTORMATRIXPRODUCT(#2)(#4)(\cctr@solBA,\cctr@solBB,\cctr@solBC) + \VECTORMATRIXPRODUCT(#3)(#4)(\cctr@solCA,\cctr@solCB,\cctr@solCC) + \@TDMATRIXSOL} + +\def\MATRIXPRODUCT(#1)(#2)(#3){% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@MATRIXPRODUCT(#1)(#2)(#3) + \else \@@@MATRIXPRODUCT(#1)(#2)(#3)\fi\@OUTPUTMATRIX(#3)} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\DETERMINANT} +% Determinant of a matrix. +% \begin{macrocode} +\def\@@DETERMINANT(#1,#2;#3,#4)#5{% + \MULTIPLY{#1}{#4}{#5} + \MULTIPLY{#2}{#3}{\cctr@tempa} + \SUBTRACT{#5}{\cctr@tempa}{#5}} + +\def\@@@DETERMINANT(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \DETERMINANT(#5,#6;#8,#9){\cctr@det}\MULTIPLY{#1}{\cctr@det}{\cctr@sol} + \DETERMINANT(#6,#4;#9,#7){\cctr@det}\MULTIPLY{#2}{\cctr@det}{\cctr@det} + \ADD{\cctr@sol}{\cctr@det}{\cctr@sol} + \DETERMINANT(#4,#5;#7,#8){\cctr@det}\MULTIPLY{#3}{\cctr@det}{\cctr@det} + \ADD{\cctr@sol}{\cctr@det}{\cctr@sol} + \@NUMBERSOL} + +\def\DETERMINANT(#1)#2{% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@DETERMINANT(#1){#2} + \else \@@@DETERMINANT(#1){#2}\fi\@OUTPUTSOL{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\INVERSEMATRIX} +% Inverse of a matrix. +% \begin{macrocode} +\def\@@INVERSEMATRIX(#1,#2;#3,#4)(#5,#6;#7,#8){% + \ifdim \cctr@@det\p@ <\cctr@epsilon % Matrix is singular + \let#5\undefined + \let#6\undefined + \let#7\undefined + \let#8\undefined + \cctr@Warnsingmatrix{#1}{#2}{#3}{#4}% + \else \COPY{#1}{#8} + \COPY{#4}{#5} + \MULTIPLY{-1}{#3}{#7} + \MULTIPLY{-1}{#2}{#6} + \DIVIDE{1}{\cctr@det}{\cctr@det} + \SCALARMATRIXPRODUCT{\cctr@det}(#5,#6;#7,#8)(#5,#6;#7,#8) + \fi} + +\def\@@@INVERSEMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \ifdim \cctr@@det\p@ <\cctr@epsilon % Matrix is singular + \@TDMATRIXNOSOL(\cctr@solAA,\cctr@solAB,\cctr@solAC; + \cctr@solBA,\cctr@solBB,\cctr@solBC; + \cctr@solCA,\cctr@solCB,\cctr@solCC) + \cctr@WarnsingTDmatrix{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}% + \else + \@ADJMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9) + \@SCLRDIVVECT{\cctr@det}(\cctr@solAA,\cctr@solAB,\cctr@solAC)(% + \cctr@solAA,\cctr@solAB,\cctr@solAC) + \@SCLRDIVVECT{\cctr@det}(\cctr@solBA,\cctr@solBB,\cctr@solBC)(% + \cctr@solBA,\cctr@solBB,\cctr@solBC) + \@SCLRDIVVECT{\cctr@det}(\cctr@solCA,\cctr@solCB,\cctr@solCC)(% + \cctr@solCA,\cctr@solCB,\cctr@solCC) + \fi + \@@TDMATRIXSOL} + +\def\@SCLRDIVVECT#1(#2,#3,#4)(#5,#6,#7){% + \DIVIDE{#2}{#1}{#5}\DIVIDE{#3}{#1}{#6}\DIVIDE{#4}{#1}{#7}} + +\def\@ADJMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){% + \DETERMINANT(#5,#6;#8,#9){\cctr@solAA} + \DETERMINANT(#6,#4;#9,#7){\cctr@solBA} + \DETERMINANT(#4,#5;#7,#8){\cctr@solCA} + \DETERMINANT(#8,#9;#2,#3){\cctr@solAB} + \DETERMINANT(#1,#3;#7,#9){\cctr@solBB} + \DETERMINANT(#2,#1;#8,#7){\cctr@solCB} + \DETERMINANT(#2,#3;#5,#6){\cctr@solAC} + \DETERMINANT(#3,#1;#6,#4){\cctr@solBC} + \DETERMINANT(#1,#2;#4,#5){\cctr@solCC}} + +\def\INVERSEMATRIX(#1)(#2){% + \begingroup + \DETERMINANT(#1){\cctr@det} + \ABSVALUE{\cctr@det}{\cctr@@det} + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@INVERSEMATRIX(#1)(#2) + \else + \@@@INVERSEMATRIX(#1)(#2)\fi\@OUTPUTMATRIX(#2)} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SOLVELINEARSYSTEM} +% Solving a linear system (two equations and two unknowns +% or three equations and three unknowns). +% \begin{macrocode} +\def\@INCSYS#1#2{\cctr@WarnIncLinSys + \let#1\undefined\let#2\undefined} + +\def\@SOLPART#1#2#3#4{\cctr@WarnIndLinSys + \DIVIDE{#1}{#2}{#3} + \COPY{0}{#4}} + +\def\@TDINCSYS(#1,#2,#3){\cctr@WarnIncTDLinSys + \let#1\undefined + \let#2\undefined + \let#3\undefined} + +\def\@@SOLVELINEARSYSTEM(#1,#2;#3,#4)(#5,#6)(#7,#8){% + \DETERMINANT(#1,#2;#3,#4)\cctr@deta + \DETERMINANT(#5,#2;#6,#4)\cctr@detb + \DETERMINANT(#1,#5;#3,#6)\cctr@detc + \ABSVALUE{\cctr@deta}{\cctr@@deta} + \ABSVALUE{\cctr@detb}{\cctr@@detb} + \ABSVALUE{\cctr@detc}{\cctr@@detc} + \ifdim \cctr@@deta\p@>\cctr@epsilon% Regular matrix. Determinate system + \DIVIDE{\cctr@detb}{\cctr@deta}{#7} + \DIVIDE{\cctr@detc}{\cctr@deta}{#8} + \else % Singular matrix \cctr@deta=0 + \ifdim \cctr@@detb\p@>\cctr@epsilon% Incompatible system + \@INCSYS#7#8 + \else + \ifdim \cctr@@detc\p@>\cctr@epsilon% Incompatible system + \@INCSYS#7#8 + \else + \MATRIXABSVALUE(#1,#2;#3,#4)(\cctr@tempa,\cctr@tempb; + \cctr@tempc,\cctr@tempd) + \ifdim \cctr@tempa\p@ > \cctr@epsilon + % Indeterminate system + \@SOLPART{#5}{#1}{#7}{#8} + \else + \ifdim \cctr@tempb\p@ > \cctr@epsilon + % Indeterminate system + \@SOLPART{#5}{#2}{#8}{#7} + \else + \ifdim \cctr@tempc\p@ > \cctr@epsilon + % Indeterminate system + \@SOLPART{#6}{#3}{#7}{#8} + \else + \ifdim \cctr@tempd\p@ > \cctr@epsilon + % Indeterminate system + \@SOLPART{#6}{#4}{#8}{#7} + \else + \VECTORNORM(#5,#6){\cctr@tempa} + \ifdim \cctr@tempa\p@ > \cctr@epsilon + % Incompatible system + \@INCSYS#7#8 + \else + \cctr@WarnZeroLinSys + \COPY{0}{#7}\COPY{0}{#8} + % 0x=0 Indeterminate system + \fi\fi\fi\fi\fi\fi\fi\fi} + +\def\@@@SOLVELINEARSYSTEM(#1)(#2)(#3){% + \DETERMINANT(#1){\cctr@det} + \ABSVALUE{\cctr@det}{\cctr@@det} + \ifdim\cctr@@det\p@<\cctr@epsilon + \@TDINCSYS(#3) + \else + \@ADJMATRIX(#1) + \MATRIXVECTORPRODUCT(\cctr@solAA,\cctr@solAB,\cctr@solAC; + \cctr@solBA,\cctr@solBB,\cctr@solBC; + \cctr@solCA,\cctr@solCB,\cctr@solCC)(#2)(#3) + \@SCLRDIVVECT{\cctr@det}(#3)(#3) + \fi} + +\def\SOLVELINEARSYSTEM(#1)(#2)(#3){% + \begingroup + \MATRIXSIZE(#1){\cctr@size} + \ifnum\cctr@size=2 + \@@SOLVELINEARSYSTEM(#1)(#2)(#3) + \else + \@@@SOLVELINEARSYSTEM(#1)(#2)(#3) + \fi\@OUTPUTVECTOR(#3)} +% \end{macrocode} +% \end{macro} +% \subsection*{Predefined numbers} +% \begin{macro}{\numberPI} +% The number $\pi$ +% \begin{macrocode} +\def\numberPI{3.14159} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberTWOPI} +% $2\pi$ +% \begin{macrocode} +\MULTIPLY{\numberPI}{2}{\numberTWOPI} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberHALFPI} +% $\pi/2$ +% \begin{macrocode} +\DIVIDE{\numberPI}{2}{\numberHALFPI} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberTHREEHALFPI} +% $3\pi/2$ +% \begin{macrocode} +\MULTIPLY{\numberPI}{1.5}{\numberTHREEHALFPI} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberTHIRDPI} +% $\pi/3$ +% \begin{macrocode} +\DIVIDE{\numberPI}{3}{\numberTHIRDPI} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberQUARTERPI} +% $\pi/4$ +% \begin{macrocode} +\DIVIDE{\numberPI}{4}{\numberQUARTERPI} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberFIFTHPI} +% $\pi/5$ +% \begin{macrocode} +\DIVIDE{\numberPI}{5}{\numberFIFTHPI} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberSIXTHPI} +% $\pi/6$ +% \begin{macrocode} +\DIVIDE{\numberPI}{6}{\numberSIXTHPI} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberE} +% The number $\mathrm e$ +% \begin{macrocode} +\def\numberE{2.71828} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberINVE} +% $1/{\mathrm e}$ +% \begin{macrocode} +\DIVIDE{1}{\numberE}{\numberINVE} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberETWO} +% $\mathrm e^2$ +% \begin{macrocode} +\SQUARE{\numberE}{\numberETWO} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberINVETWO} +% $1/{\mathrm e^2}$ +% \begin{macrocode} +\SQUARE{\numberINVE}{\numberINVETWO} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberLOGTEN} +% $\log 10$ +% \begin{macrocode} +\def\numberLOGTEN{2.30258} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberGOLD} +% The golden ratio $\phi$ +% \begin{macrocode} +\def\numberGOLD{1.61803} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberINVGOLD} +% $1/\phi$ +% \begin{macrocode} +\def\numberINVGOLD{0.61803} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberSQRTTWO} +% $\sqrt 2$ +% \begin{macrocode} +\def\numberSQRTTWO{1.41421} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberSQRTTHREE} +% $\sqrt 3$ +% \begin{macrocode} +\def\numberSQRTTHREE{1.73205} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberSQRTFIVE} +% $\sqrt 5$ +% \begin{macrocode} +\def\numberSQRTFIVE{2.23607} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberCOSXLV} +% $\cos 45^{\mathrm o}$ (or $\cos \pi/4$) +% \begin{macrocode} +\def\numberCOSXLV{0.70711} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\numberCOSXXX} +% $\cos 30^{\mathrm o}$ (or $\cos \pi/6$) +% \begin{macrocode} +\def\numberCOSXXX{0.86603} +% \end{macrocode} +% \end{macro} +% \begin{macrocode} +%</calculator> +% \end{macrocode} +% +% \section{Implementation (\textsf{calculator})} +% \begin{macrocode} +%<*calculus> +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{calculus} + [2012/06/10 v.1.0a] +% \end{macrocode} +% This package requires the calculator package. +% \begin{macrocode} +\RequirePackage{calculator} +% \end{macrocode} +% \subsection{Error and info messages} +% \subsubsection*{For scalar functions} +% +% Error message to be issued when you attempt to define, with \cs{newfunction}, +% an already defined command: +% \begin{macrocode} +\def\ccls@ErrorFuncDef#1{% + \PackageError{calculus}% + {\noexpand#1 command already defined} + {The \noexpand#1 control sequence is already defined\MessageBreak + If you want to redefine the \noexpand#1 command as a + function\MessageBreak + please, use the \noexpand\renewfunction command}} +% \end{macrocode} +% Error message to be issued when you attempt to redefine, +% with \cs{renewfunction}, an undefined command: +% \begin{macrocode} +\def\ccls@ErrorFuncUnDef#1{% + \PackageError{calculus}% + {\noexpand#1 command undefined} + {The \noexpand#1 control sequence is not currently defined\MessageBreak + If you want to define the \noexpand#1 command as a function\MessageBreak + please, use the \noexpand\newfunction command}} +% \end{macrocode} +% Info message to be issued when \cs{ensurefunction} does not changes +% an already defined command: +% \begin{macrocode} +\def\ccls@InfoFuncEns#1{% + \PackageInfo{calculus}% + {\noexpand#1 command already defined\MessageBreak + the \noexpand\ensurefunction command will not redefine it}} +% \end{macrocode} +% \subsubsection*{For polar functions} +% \begin{macrocode} +\def\ccls@ErrorPFuncDef#1{% + \PackageError{calculus}% + {\noexpand#1 command already defined} + {The \noexpand#1 control sequence is already defined\MessageBreak + If you want to redefine the \noexpand#1 + command as a polar function\MessageBreak + please, use the \noexpand\renewpolarfunction command}} + +\def\ccls@ErrorPFuncUnDef#1{% + \PackageError{calculus}% + {\noexpand#1 command undefined} + {The \noexpand#1 control sequence + is not currently defined.\MessageBreak + If you want to define the \noexpand#1 command as a polar + function\MessageBreak + please, use the \noexpand\newpolarfunction command}} + +\def\ccls@InfoPFuncEns#1{% + \PackageInfo{calculus}% + {\noexpand#1 command already defined\MessageBreak + the \noexpand\ensurepolarfunction command does not redefine it}} +% \end{macrocode} +% \subsubsection*{For vector functions} +% \begin{macrocode} +\def\ccls@ErrorVFuncDef#1{% + \PackageError{calculus}% + {\noexpand#1 command already defined} + {The \noexpand#1 control sequence is already defined\MessageBreak + If you want to redefine the \noexpand#1 command as a vector + function\MessageBreak + please, use the \noexpand\renewvectorfunction command}} + +\def\ccls@ErrorVFuncUnDef#1{% + \PackageError{calculus}% + {\noexpand#1 command undefined} + {The \noexpand#1 control sequence is not currently + defined.\MessageBreak + If you want to define the \noexpand#1 command as a vector + function\MessageBreak + please, use the \noexpand\newvectorfunction command}} + +\def\ccls@InfoVFuncEns#1{% + \PackageInfo{calculus}% + {\noexpand#1 command already defined\MessageBreak + the \noexpand\ensurevectorfunction command does not redefine it}} +% \end{macrocode} +% \subsection{New functions} +% \subsubsection*{New scalar functions} +% +% \begin{macro}{\newfunction} +% The \cs{newfunction\{\#1\}\{\#2\}} instruction defines +% a new function called \#1. +% \#2 is the list of instructions to calculate the function +% \cs{y} and his derivative \cs{Dy} from the \cs{t} variable. +% \begin{macrocode} +\def\newfunction#1#2{% + \ifx #1\undefined + \ccls@deffunction{#1}{#2} + \else + \ccls@ErrorFuncDef{#1} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\renewfunction} +% \cs{renewfunction} redefines \#1, as a new function, +% if this command is already defined. +% \begin{macrocode} +\def\renewfunction#1#2{% + \ifx #1\undefined + \ccls@ErrorFuncUnDef{#1} + \else + \ccls@deffunction{#1}{#2} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ensurefunction} +% \cs{ensurefunction} defines the new function \#1 +% (only if this macro is undefined). +% \begin{macrocode} +\def\ensurefunction#1#2{% + \ifx #1\undefined\ccls@deffunction{#1}{#2} + \else + \ccls@InfoFuncEns{#1} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\forcefunction} +% \cs{forcefunction} defines (if undefined) or redefines (if defined) +% the new function \#1. +% \begin{macrocode} +\def\forcefunction#1#2{% + \ccls@deffunction{#1}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ccls@deffunction} +% The private \cs{ccls@deffunction} command makes the real work. +% The new functions will have three arguments: +% \#\#1, a number, \#\#2, the value of the new function in that number, +% and \#\#3, the derivative. +% \begin{macrocode} +\def\ccls@deffunction#1#2{% + \def#1##1##2##3{% + \begingroup + \def\t{##1}% + #2 + \xdef##2{\y}% + \xdef##3{\Dy}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \subsubsection*{New polar functions} +% +% \begin{macro}{\newpolarfunction} +% The \cs{newpolarfunction\{\#1\}\{\#2\}} instruction defines +% a new polar function called \#1. +% \#2 is the list of instructions to calculate the radius \cs{r} +% and his derivative \cs{Dr} from the \cs{t} arc variable. +% \begin{macrocode} +\def\newpolarfunction#1#2{% + \ifx #1\undefined + \ccls@defpolarfunction{#1}{#2} + \else + \ccls@ErrorPFuncDef{#1} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\renewpolarfunction} +% \cs{renewpolarfunction} redefines \#1 if already defined. +% \begin{macrocode} +\def\renewpolarfunction#1#2{% + \ifx #1\undefined + \ccls@ErrorPFuncUnDef{#1} + \else + \ccls@defpolarfunction{#1}{#2} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ensurepolarfunction} +% \cs{ensurepolarfunction} defines (only if undefined) \#1. +% \begin{macrocode} +\def\ensurepolarfunction#1#2{% + \ifx #1\undefined\ccls@defpolarfunction{#1}{#2} + \else + \ccls@InfoPFuncEns{#1} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\forcepolarfunction} +% \cs{forcepolarfunction} defines (if undefined) or redefines (if defined) \#1. +% \begin{macrocode} +\def\forcepolarfunction#1#2{% + \ccls@defpolarfunction{#1}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ccls@defpolarfunction} +% The private \cs{ccls@defpolarfunction} command makes the real work. +% The new functions will have three arguments: +% \#\#1, a number (the polar radius), +% \#\#2, \#\#3, \#\#4, and \#\#5, the x and y component functions and +% its derivatives at \#\#1. +% \begin{macrocode} +\def\ccls@defpolarfunction#1#2{% + \def#1##1##2##3##4##5{% + \begingroup + \def\t{##1} + #2 + \COS{\t}\ccls@cost + \MULTIPLY\r\ccls@cost{\x} + \SIN{\t}\ccls@sint + \MULTIPLY\r\ccls@sint{\y} + \MULTIPLY\ccls@cost\Dr\Dx + \SUBTRACT{\Dx}{\y}{\Dx} + \MULTIPLY\ccls@sint\Dr\Dy + \ADD{\Dy}{\x}{\Dy} + \xdef##2{\x} + \xdef##3{\Dx} + \xdef##4{\y} + \xdef##5{\Dy} + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \subsubsection*{New vector functions} +% +% \begin{macro}{\newvectorfunction} +% The \cs{newvectorfunction\{\#1\}\{\#2\}} instruction defines +% a new vector (parametric) function called \#1. +% \#2 is the list of instructions to calculate +% \cs{x}, \cs{y}, \cs{Dx} and \cs{Dy} from the \cs{t} arc variable. +% \begin{macrocode} +\def\newvectorfunction#1#2{% + \ifx #1\undefined + \ccls@defvectorfunction{#1}{#2} + \else + \ccls@ErrorVFuncDef{#1} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\renewvectorfunction} +% \cs{renewvectorfunction} redefines \#1 if already defined. +% \begin{macrocode} +\def\renewvectorfunction#1#2{% + \ifx #1\undefined + \ccls@ErrorVFuncUnDef{#1} + \else + \ccls@defvectorfunction{#1}{#2} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ensurevectorfunction} +% \cs{ensurevectorfunction} defines (only if undefined) \#1. +% \begin{macrocode} +\def\ensurevectorfunction#1#2{% + \ifx #1\undefined\ccls@defvectorfunction{#1}{#2} + \else + \ccls@InfoVFuncEns{#1} + \fi} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\forcevectorfunction} +% \cs{forcevectorfunction} defines (if undefined) +% or redefines (if defined) \#1. +% \begin{macrocode} +\def\forcevectorfunction#1#2{% + \ccls@defvectorfunction{#1}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ccls@defvectorfunction} +% The private \cs{ccls@defvectorfunction} command makes the real work. +% The new functions will have three arguments: +% \#\#1, a number, +% \#\#2, \#\#3, \#\#4, and \#\#5, the x and y component functions +% and its derivatives at \#\#1. +% \begin{macrocode} +\def\ccls@defvectorfunction#1#2{% + \def#1##1##2##3##4##5{% + \begingroup + \def\t{##1} + #2 + \xdef##2{\x} + \xdef##3{\Dx} + \xdef##4{\y} + \xdef##5{\Dy} + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \subsection{Polynomials} +% \subsubsection*{Linear (first degreee) polynomials} +% +% \begin{macro}{\newlpoly} +% The \cs{newlpoly\{\#1\}\{\#2\}\{\#3\}} instruction defines +% the linear polynomial +% +% $\#1=\#2+\#3t$. +% \begin{macrocode} +\def\newlpoly#1#2#3{% + \newfunction{#1}{% + \ccls@lpoly{#2}{#3}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\renewlpoly} +% We define also the \cs{renewlpoly}, \cs{ensurelpoly} +% and \cs{forcelpoly} variants. +% \begin{macrocode} +\def\renewlpoly#1#2#3{% + \renewfunction{#1}{% + \ccls@lpoly{#2}{#3}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ensurelpoly} +% \begin{macrocode} +\def\ensurelpoly#1#2#3{% + \ensurefunction{#1}{% + \ccls@lpoly{#2}{#3}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\forcelpoly} +% \begin{macrocode} +\def\forcelpoly#1#2#3{% + \forcefunction{#1}{% + \ccls@lpoly{#2}{#3}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ccls@lpoly} +% The \cs{ccls@lpoly\{\#1\}\{\#2\}} macro defines the new polynomial function. +% \begin{macrocode} +\def\ccls@lpoly#1#2{% + \MULTIPLY{#2}{\t}{\y} + \ADD{\y}{#1}{\y} + \COPY{#2}{\Dy}} +% \end{macrocode} +% \end{macro} +% \subsubsection*{Quadratic polynomials} +% +% \begin{macro}{\newqpoly} +% The \cs{newqpoly\{\#1\}\{\#2\}\{\#3\}\{\#4\}} +% instruction defines the quadratic polynomial +% +% $\#1=\#2+\#3t+\#4t^2$. +% \begin{macrocode} +\def\newqpoly#1#2#3#4{% + \newfunction{#1}{% + \ccls@qpoly{#2}{#3}{#4}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\renewqpoly} +% \begin{macrocode} +\def\renewqpoly#1#2#3#4{% + \renewfunction{#1}{% + \ccls@qpoly{#2}{#3}{#4}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ensureqpoly} +% \begin{macrocode} +\def\ensureqpoly#1#2#3#4{% + \ensurefunction{#1}{% + \ccls@qpoly{#2}{#3}{#4}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\forceqpoly} +% \begin{macrocode} +\def\forceqpoly#1#2#3#4{% + \forcefunction{#1}{% + \ccls@qpoly{#2}{#3}{#4}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ccls@qpoly} +% The \cs{ccls@qpoly\{\#1\}\{\#2\}} macro defines the new polynomial function. +% \begin{macrocode} +\def\ccls@qpoly#1#2#3{% + \MULTIPLY{\t}{#3}{\y} + \MULTIPLY{2}{\y}{\Dy} + \ADD{#2}{\Dy}{\Dy} + \ADD{#2}{\y}{\y} + \MULTIPLY{\t}{\y}{\y} + \ADD{#1}{\y}{\y}} +% \end{macrocode} +% \end{macro} +% \subsubsection*{Cubic polynomials} +% +% \begin{macro}{\newcpoly} +% The \cs{newcpoly\{\#1\}\{\#2\}\{\#3\}\{\#4\}\{\#5\}} +% instruction defines the cubic polynomial +% +% $\#1=\#2+\#3t+\#4t^2+\#5t^3$. +% \begin{macrocode} +\def\newcpoly#1#2#3#4#5{% + \newfunction{#1}{% + \ccls@cpoly{#2}{#3}{#4}{#5}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\renewcpoly} +% \begin{macrocode} +\def\renewcpoly#1#2#3#4#5{% + \renewfunction{#1}{% + \ccls@cpoly{#2}{#3}{#4}{#5}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ensurecpoly} +% \begin{macrocode} +\def\ensurecpoly#1#2#3#4#5{% + \ensurefunction{#1}{% + \ccls@cpoly{#2}{#3}{#4}{#5}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\forcecpoly} +% \begin{macrocode} +\def\forcecpoly#1#2#3#4#5{% + \forcefunction{#1}{% + \ccls@cpoly{#2}{#3}{#4}{#5}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ccls@cpoly} +% The \cs{ccls@cpoly\{\#1\}\{\#2\}} macro defines the new polynomial function. +% \begin{macrocode} +\def\ccls@cpoly#1#2#3#4{% + \MULTIPLY{\t}{#4}{\y} + \MULTIPLY{3}{\y}{\Dy} + \ADD{#3}{\y}{\y} + \MULTIPLY{2}{#3}{\ccls@temp} + \ADD{\ccls@temp}{\Dy}{\Dy} + \MULTIPLY{\t}{\y}{\y} + \MULTIPLY{\t}{\Dy}{\Dy} + \ADD{#2}{\y}{\y} + \ADD{#2}{\Dy}{\Dy} + \MULTIPLY{\t}{\y}{\y} + \ADD{#1}{\y}{\y} + } +% \end{macrocode} +% \end{macro} +% \subsection{Elementary functions} +% \begin{macro}{\ONEfunction} +% The \cs{ONEfunction}: $y(t)=1$, $y'(t)=0$ +% \begin{macrocode} +\newfunction{\ONEfunction}{% + \COPY{1}{\y} + \COPY{0}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\ZEROfunction} +% The \cs{ZEROfunction}: $y(t)=0$, $y'(t)=0$ +% \begin{macrocode} +\newfunction{\ZEROfunction}{% + \COPY{0}{\y} + \COPY{0}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\IDENTITYfunction} +% The \cs{IDENTITYfunction}: $y(t)=t$, $y'(t)=1$ +% \begin{macrocode} +\newfunction{\IDENTITYfunction}{% + \COPY{\t}{\y} + \COPY{1}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\RECIPROCALfunction} +% The \cs{RECIPROCALfunction}: $y(t)=1/t$, $y'(t)=-1/t^2$ +% \begin{macrocode} +\newfunction{\RECIPROCALfunction}{% + \DIVIDE{1}{\t}{\y} + \SQUARE{\y}{\Dy} + \MULTIPLY{-1}{\Dy}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SQUAREfunction} +% The \cs{SQUAREfunction}: $y(t)=t^2$, $y'(t)=2t$ +% \begin{macrocode} +\newfunction{\SQUAREfunction}{% + \SQUARE{\t}{\y} + \MULTIPLY{2}{\t}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\CUBEfunction} +% The \cs{CUBEfunction}: $y(t)=t^3$, $y'(t)=3t^2$ +% \begin{macrocode} +\newfunction{\CUBEfunction}{% + \SQUARE{\t}{\Dy} + \MULTIPLY{\t}{\Dy}{\y} + \MULTIPLY{3}{\Dy}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SQRTfunction} +% The \cs{SQRTfunction}: $y(t)=\sqrt t$, $y'(t)=1/(2\sqrt t)$ +% \begin{macrocode} +\newfunction{\SQRTfunction}{% + \SQRT{\t}{\y} + \DIVIDE{0.5}{\y}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\EXPfunction} +% The \cs{EXPfunction}: $y(t)=\exp t$, $y'(t)=\exp t$ +% \begin{macrocode} +\newfunction{\EXPfunction}{% + \EXP{\t}{\y} + \COPY{\y}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COSfunction} +% The \cs{COSfunction}: $y(t)=\cos t$, $y'(t)=-\sin t$ +% \begin{macrocode} +\newfunction{\COSfunction}{% + \COS{\t}{\y} + \SIN{\t}{\Dy} + \MULTIPLY{-1}{\Dy}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SINfunction} +% The \cs{SINfunction}: $y(t)=\sin t$, $y'(t)=\cos t$ +% \begin{macrocode} +\newfunction{\SINfunction}{% + \SIN{\t}{\y} + \COS{\t}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\TANfunction} +% The \cs{TANfunction}: $y(t)=\tan t$, $y'(t)=1/(\cos t)^2$ +% \begin{macrocode} +\newfunction{\TANfunction}{% + \TAN{\t}{\y} + \COS{\t}{\Dy} + \SQUARE{\Dy}{\Dy} + \DIVIDE{1}{\Dy}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COTfunction} +% The \cs{COTfunction}: $y(t)=\cot t$, $y'(t)=-1/(\sin t)^2$ +% \begin{macrocode} +\newfunction{\COTfunction}{% + \COTAN{\t}{\y} + \SIN{\t}{\Dy} + \SQUARE{\Dy}{\Dy} + \DIVIDE{-1}{\Dy}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COSHfunction} +% The \cs{COSHfunction}: $y(t)=\cosh t$, $y'(t)=\sinh t$ +% \begin{macrocode} +\newfunction{\COSHfunction}{% + \COSH{\t}{\y} + \SINH{\t}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SINHfunction} +% The \cs{SINHfunction}: $y(t)=\sinh t$, $y'(t)=\cosh t$ +% \begin{macrocode} +\newfunction{\SINHfunction}{% + \SINH{\t}{\y} + \COSH{\t}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\TANHfunction} +% The \cs{TANHfunction}: $y(t)=\tanh t$, $y'(t)=1/(\cosh t)^2$ +% \begin{macrocode} +\newfunction{\TANHfunction}{% + \TANH{\t}{\y} + \COSH{\t}{\Dy} + \SQUARE{\Dy}{\Dy} + \DIVIDE{1}{\Dy}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COTHfunction} +% The \cs{COTHfunction}: $y(t)=\coth t$, $y'(t)=-1/(\sinh t)^2$ +% \begin{macrocode} +\newfunction{\COTHfunction}{% + \COTANH{\t}{\y} + \SINH{\t}{\Dy} + \SQUARE{\Dy}{\Dy} + \DIVIDE{-1}{\Dy}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\LOGfunction} +% The \cs{LOGfunction}: $y(t)=\log t$, $y'(t)=1/t$ +% \begin{macrocode} +\newfunction{\LOGfunction}{% + \LOG{\t}{\y} + \DIVIDE{1}{\t}{\Dy}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\HEAVISIDEfunction} +% The \cs{HEAVISIDEfunction}: +% $y(t)=\begin{cases} +% 0 & \text{if } t<0 \\ +% 1 & \text{if } t\geq 0 +% \end{cases}$, +% $y'(t)=0$ +% \begin{macrocode} +\newfunction{\HEAVISIDEfunction}{% + \ifdim \t\p@<\z@ \COPY{0}{\y}\else\COPY{1}{\y}\fi + \COPY{0}{\Dy}} +% \end{macrocode} +% \end{macro} +% \subsection{Operations with functions} +% \begin{macro}{\CONSTANTfunction} +% \cs{CONSTANTfunction} defines \#2 as the constant function $f(t)=\#1$. +% \begin{macrocode} +\def\CONSTANTfunction#1#2{% + \def#2##1##2##3{% + \xdef##2{#1}% + \xdef##3{0}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SUMfunction} +% \cs{SUMfunction} defines \#3 as the sum of functions \#1 and \#2. +% \begin{macrocode} +\def\SUMfunction#1#2#3{% + \def#3##1##2##3{% + \begingroup + #1{##1}{\ccls@SUMf}{\ccls@SUMDf}% + #2{##1}{\ccls@SUMg}{\ccls@SUMDg}% + \ADD{\ccls@SUMf}{\ccls@SUMg}{\ccls@SUMfg} + \ADD{\ccls@SUMDf}{\ccls@SUMDg}{\ccls@SUMDfg} + \xdef##2{\ccls@SUMfg}% + \xdef##3{\ccls@SUMDfg}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SUBTRACTfunction} +% \cs{SUBTRACTfunction} defines \#3 as the difference of functions \#1 and \#2. +% \begin{macrocode} +\def\SUBTRACTfunction#1#2#3{% + \def#3##1##2##3{% + \begingroup + #1{##1}{\ccls@SUBf}{\ccls@SUBDf}% + #2{##1}{\ccls@SUBg}{\ccls@SUBDg}% + \SUBTRACT{\ccls@SUBf}{\ccls@SUBg}{\ccls@SUBfg} + \SUBTRACT{\ccls@SUBDf}{\ccls@SUBDg}{\ccls@SUBDfg} + \xdef##2{\ccls@SUBfg}% + \xdef##3{\ccls@SUBDfg}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\PRODUCTfunction} +% \cs{PRODUCTfunction} defines \#3 as the product of functions \#1 and \#2. +% \begin{macrocode} +\def\PRODUCTfunction#1#2#3{% + \def#3##1##2##3{% + \begingroup + #1{##1}{\ccls@PROf}{\ccls@PRODf}% + #2{##1}{\ccls@PROg}{\ccls@PRODg}% + \MULTIPLY{\ccls@PROf}{\ccls@PROg}{\ccls@PROfg} + \MULTIPLY{\ccls@PROf}{\ccls@PRODg}{\ccls@PROfDg} + \MULTIPLY{\ccls@PRODf}{\ccls@PROg}{\ccls@PRODfg} + \ADD{\ccls@PROfDg}{\ccls@PRODfg}{\ccls@PRODfg} + \xdef##2{\ccls@PROfg}% + \xdef##3{\ccls@PRODfg}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\QUOTIENTfunction} +% \cs{QUOTIENTfunction} defines \#3 as the quotient of functions \#1 and \#2. +% \begin{macrocode} +\def\QUOTIENTfunction#1#2#3{% + \def#3##1##2##3{% + \begingroup + #1{##1}{\ccls@QUOf}{\ccls@QUODf}% + #2{##1}{\ccls@QUOg}{\ccls@QUODg}% + \DIVIDE{\ccls@QUOf}{\ccls@QUOg}{\ccls@QUOfg} + \MULTIPLY{\ccls@QUOf}{\ccls@QUODg}{\ccls@QUOfDg} + \MULTIPLY{\ccls@QUODf}{\ccls@QUOg}{\ccls@QUODfg} + \SUBTRACT{\ccls@QUODfg}{\ccls@QUOfDg}{\ccls@QUOnum} + \SQUARE{\ccls@QUOg}{\ccls@qsquaretempg} + \DIVIDE{\ccls@QUOnum}{\ccls@qsquaretempg}{\ccls@QUODfg} + \xdef##2{\ccls@QUOfg}% + \xdef##3{\ccls@QUODfg}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\COMPOSITIONfunction} +% \cs{COMPOSITIONfunction} defines \#3 as the composition +% of functions \#1 and \#2. +% \begin{macrocode} +\def\COMPOSITIONfunction#1#2#3{% #3=#1(#2) + \def#3##1##2##3{% + \begingroup + #2{##1}{\ccls@COMg}{\ccls@COMDg}% + #1{\ccls@COMg}{\ccls@COMf}{\ccls@COMDf}% + \MULTIPLY{\ccls@COMDg}{\ccls@COMDf}{\ccls@COMDf} + \xdef##2{\ccls@COMf}% + \xdef##3{\ccls@COMDf}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SCALEfunction} +% \cs{SCALEfunction} defines \#3 as the product of number \#1 and function \#2. +% \begin{macrocode} +\def\SCALEfunction#1#2#3{% + \def#3##1##2##3{% + \begingroup + #2{##1}{\ccls@SCFf}{\ccls@SCFDf}% + \MULTIPLY{#1}{\ccls@SCFf}{\ccls@SCFaf} + \MULTIPLY{#1}{\ccls@SCFDf}{\ccls@SCFDaf} + \xdef##2{\ccls@SCFaf}% + \xdef##3{\ccls@SCFDaf}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\SCALEVARIABLEfunction} +% \cs{SCALEVARIABLEfunction} scales the variable by number \#1 +% and aplies function \#2. +% \begin{macrocode} +\def\SCALEVARIABLEfunction#1#2#3{% + \def#3##1##2##3{% + \begingroup% + \MULTIPLY{#1}{##1}{\ccls@SCVat} + #2{\ccls@SCVat}{\ccls@SCVf}{\ccls@SCVDf}% + \MULTIPLY{#1}{\ccls@SCVDf}{\ccls@SCVDf} + \xdef##2{\ccls@SCVf}% + \xdef##3{\ccls@SCVDf}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\POWERfunction} +% \cs{POWERfunction} defines \#3 as the power of function \#1 to exponent \#2. +% \begin{macrocode} +\def\POWERfunction#1#2#3{% + \def#3##1##2##3{% + \begingroup + #1{##1}{\ccls@POWf}{\ccls@POWDf}% + \POWER{\ccls@POWf}{#2}{\ccls@POWfn} + \SUBTRACT{#2}{1}{\ccls@nminusone} + \POWER{\ccls@POWf}{\ccls@nminusone}{\ccls@POWDfn} + \MULTIPLY{#2}{\ccls@POWDfn}{\ccls@POWDfn} + \MULTIPLY{\ccls@POWDfn}{\ccls@POWDf}{\ccls@POWDfn} + \xdef##2{\ccls@POWfn}% + \xdef##3{\ccls@POWDfn}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\LINEARCOMBINATIONfunction} +% \cs{LINEARCOMBINATIONfunction} defines the new function \#5 +% as the linear combination \#1\#2+\#3\#4. +% \#1 and \#3 are two numbers. \#1 and \#3 are two functions. + +% \begin{macrocode} +\def\LINEARCOMBINATIONfunction#1#2#3#4#5{% + \def#5##1##2##3{% + \begingroup + #2{##1}{\ccls@LINf}{\ccls@LINDf}% + #4{##1}{\ccls@LINg}{\ccls@LINDg}% + \MULTIPLY{#1}{\ccls@LINf}{\ccls@LINf} + \MULTIPLY{#3}{\ccls@LINg}{\ccls@LINg} + \MULTIPLY{#1}{\ccls@LINDf}{\ccls@LINDf} + \MULTIPLY{#3}{\ccls@LINDg}{\ccls@LINDg} + \ADD{\ccls@LINf}{\ccls@LINg}{\ccls@LINafbg} + \ADD{\ccls@LINDf}{\ccls@LINDg}{\ccls@LINDafbg} + \xdef##2{\ccls@LINafbg}% + \xdef##3{\ccls@LINDafbg}% + \endgroup}\ignorespaces} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\POLARfunction} +% \cs{POLARfunction} defines the polar curve \#2. +% \#1 is a previously defined function. +% \begin{macrocode} +\def\POLARfunction#1#2{% + \PRODUCTfunction{#1}{\COSfunction}{\ccls@polarx} + \PRODUCTfunction{#1}{\SINfunction}{\ccls@polary} + \PARAMETRICfunction{\ccls@polarx}{\ccls@polary}{#2}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\PARAMETRICfunction} +% \cs{PARAMETRICfunction} defines the parametric curve \#3. +% \#1 and \#2 are the components functions (two previuosly defined functions). +% \begin{macrocode} +\def\PARAMETRICfunction#1#2#3{% + \def#3##1##2##3##4##5{% + #1{##1}{##2}{##3} + #2{##1}{##4}{##5}}} +% \end{macrocode} +% \end{macro} +% \begin{macro}{\VECTORfunction} +% \cs{VECTORfunction}: an alias of \cs{PARAMETRICfunction}. +% \begin{macrocode} +\let\VECTORfunction\PARAMETRICfunction +% \end{macrocode} +% \end{macro} +% +% +% \begin{macrocode} +% </calculus> +% \end{macrocode} +% \Finale +%
\ No newline at end of file |