summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/generic/xint
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2013-05-02 21:47:33 +0000
committerKarl Berry <karl@freefriends.org>2013-05-02 21:47:33 +0000
commit3a564ce7121a94acea4334b6f89c6e6fe09442a5 (patch)
treec3bfa323a82aa384ea013b7c1c9a4383c0db9e0a /Master/texmf-dist/source/generic/xint
parentec14d89f021dfd980cdfa7d093dff1030c8abc1f (diff)
xint (2may13)
git-svn-id: svn://tug.org/texlive/trunk@30207 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/generic/xint')
-rw-r--r--Master/texmf-dist/source/generic/xint/xint.dtx192
-rw-r--r--Master/texmf-dist/source/generic/xint/xint.ins2
2 files changed, 106 insertions, 88 deletions
diff --git a/Master/texmf-dist/source/generic/xint/xint.dtx b/Master/texmf-dist/source/generic/xint/xint.dtx
index c440f854bee..dd00e51353d 100644
--- a/Master/texmf-dist/source/generic/xint/xint.dtx
+++ b/Master/texmf-dist/source/generic/xint/xint.dtx
@@ -1,8 +1,8 @@
% -*- coding: iso-latin-1; -*-
-% This file: xint.dtx (1.05, 2013/05/01)
+% This file: xint.dtx (1.05a, 2013/05/02)
%%
%%----------------------------------------------------------------
-%% The xint bundle (version 1.05 of May 1st, 2013)
+%% The xint bundle (version 1.05a of May 2nd, 2013)
%<xint>%% xint: Expandable operations on long numbers
%<xintgcd>%% xintgcd: Euclidean algorithm with xint package
%<xintfrac>%% xintfrac: Expandable operations on fractions
@@ -75,9 +75,9 @@
% \input xintcfrac.sty\relax % (loads xintfrac)
%
%<*none>
-\def\lasttimestamp{Time-stamp: <01-05-2013 19:27:41 CEST jfb>}
-\def\pkgversion{1.05}
-\def\pkgdate{2013/05/01}
+\def\lasttimestamp{Time-stamp: <02-05-2013 17:37:34 CEST BURNOL>}
+\def\pkgversion{1.05a}
+\def\pkgdate{2013/05/02}
\def\striptimestamp #1 <#2 #3 #4 #5>{#2 at #3 #4}
\def\getdocdate #1 <#2-#3-#4 #5>{#4/#3/#2}
\edef\docdate{\expandafter\getdocdate\lasttimestamp}
@@ -409,7 +409,7 @@ The main goal is to allow computations with integers and fractions of arbitrary
sizes.\footnote{Here and elsewhere, ``arbitrarily big'' means roughly with
numerators and denominators having strictly less than
2\string^\string{31\string}=2147483648 digits. Memory constraints from the
- |etex| of |pdftex| executables presumably limit even more the possible
+ |etex| or |pdftex| executables presumably limit even more the possible
computations, not to mention the time taken by them.}
Here are some examples:
@@ -484,7 +484,7 @@ complete expandability.\footnote{I could, naturally,
Currently \xintname does not provide `floating-point' operations. The
\LaTeX3 project has implemented expandably floating-point computations
with 16 significant digits
-(\href{http://www.ctan.org/pkg/l3fp}{\color{niceone}l3fp}), including
+(\href{http://www.ctan.org/tex-archive/macros/latex/contrib/l3kernel}{\color{niceone}l3fp}), including
special functions such as exp, log, sine and cosine.
The most blatantly lacking thing in \xintname so far is a decent input parser,
@@ -833,16 +833,23 @@ versions. They have less parsing overhead.
The macro \csb{xintRaw} prints the fraction in |A/B| form, with the trailing
|[n]| converted into explicit zeros either at the numerator or the denominator.
-The |B| is printed even if it has value |1|. Conversely, the macro \csb{xintREZ}
-(REZ stands for remove zeros) puts all powers of ten into the |[n]|. It does not
-print the |B| if it is then |1|.
+The |B| is printed even if it has value |1|.
-The macro \csb{xintIrr} reduces the fraction to its irreducible form |C/D|
-(thus, without a trailing |[0]|), and it prints only the |C| if |D=1|. When one
-knows that necessarily the result of a computation is an integer and one wants
-to get rid of the trailing |[n]| one can use \csb{xintNum} which on fractions is
-like \csa{xintIrr} but additionnally raises an error when the fraction doesn't
-simplify to an integer.
+Conversely (sort of), the macro \csb{xintREZ}
+ puts all powers of ten into the |[n]| (REZ stands for remove zeros).
+Here also, the |B| is printed even if it has value |1|.
+
+The macro \csb{xintIrr} reduces the fraction to its irreducible form
+|C/D| (thus, without a trailing |[0]|), and it prints only the |C| if
+|D=1|. The macro \csb{xintNum} from \xintname is extended to act like
+\csb{xintIrr} but additionally raises an error when the fraction
+doesn't simplify to an integer. When one knows that necessarily the
+result of a computation is an integer, and one wants to get rid of the
+denominator and trailing |[n]|, one can thus use \csb{xintIrr} or
+\csb{xintNum} (if the fraction has internally a denominator equal to 1,
+this is quickly identified, there is little overhead; else, the
+denominator will be discovered in the next step to be a divisor of the
+numerator).
The macro \csb{xintTrunc}|{N}{f}| prints\footnote{`prints' does not at all mean
@@ -900,10 +907,12 @@ fraction an exact computation would have produced.
To get the integer part of the decimal expansion of |f|, use
|\xintiTrunc{0}{f}|: \centeredline{|\xintiTrunc {0}{\xintPow
{1.01}{100}}=|\texttt{\xintiTrunc {0}\z}}%
-\centeredline{|\xintTrunc {30}{\xintPow
- {1.01}{100}}=|\texttt{\xintTrunc {30}\z}}
+% \centeredline{|(\xintTrunc {30}{\xintPow
+% {1.01}{100}}=|\texttt{\xintTrunc {30}\z)}}
+\centeredline{|\xintiTrunc {0}{\xintPow{0.123}{-10}}=|\texttt{\xintiTrunc
+ {0}{\xintPow{0.123}{-10}}}}
-\section{\csh{ifcase} constructs}
+\section{\csh{ifcase}, \csh{ifnum}, ... constructs}
When using things such as |\ifcase \xintSgn{\A}| one has to leave
a space after the closing brace for \TeX{} to
@@ -1262,24 +1271,31 @@ within braces expanding in at most two steps to such a number, of for material
within braces which expands to such a number after two expansions of the first
token.
-Some of these macros are extended by \xintfracname to accept fractions on input,
-and, generally, to output a fraction. This will be mentioned and the original
-macro \csa{xintAbc} remains then available under the name \csa{xintiAbc}. There
-are also macros such as \csa{xint\-Quo} or \csa{xintNum} which are made to
-accept fractions on input, under the condition that this fraction turns out to
-be an integer. The output format is then still a bare number with no trailing
-|[n]|. Again the original is still available with an additional `i' in the name.
-See the \xintfracname \hyperref[sec:comfrac]{\color{niceone}documentation}.
-
-The integer-only macros are more efficient on integers, even for simple
-things such as determining the sign of a number, as there is always some
-overhead due\vadjust{\vskip-\dp\strutbox
+Some of these macros are extended by \xintfracname to accept fractions
+on input, and, generally, to output a fraction. This will be mentioned
+and the original macro \csa{xintAbc} remains then available under the
+name \csa{xintiAbc}. There are also macros such as \csa{xint\-Quo} or
+\csa{xintNum} which are made to accept fractions on input, under the
+condition that this fraction turns out to be an integer, but still do
+produce pure integers without any forward slash mark nor trailing |[n]|.
+Again the original is still available with an additional `i' in the
+name, in case it is important to skip the parsing, but here the output
+format is the same. See the \xintfracname
+\hyperref[sec:comfrac]{\color{niceone}documentation} for more
+information.
+
+The integer-only macros are more efficient, even for simple things such
+as determining the sign of a number, as there is always some overhead
+due to parsing the fraction format on input; however except if one does
+really a lot of computations, there is no need in general to employ the
+integer-only variants. The exception is when the context requires that
+the macro returns a (possibly long) integer, with no forward slash nor
+trailing |[n]|. This may be because they are used in \xintname macros
+which remain strictly integer-only on input, such as \csb{xintDecSplit},
+or\vadjust{\vskip-\dp\strutbox
\hbox{\smash{\color{niceone}\llap{\strut\small IMPORTANT!\ $\Bigg\{$\
- }}}\vskip\dp\strutbox } to \strut{} parsing the fraction format on input; however except if
-one does really a lot of computations, there is no need in general to
-employ the integer-only variants, apart from one mandatory
-context: when they are used\strut{} as arguments to macros
-which are strictly integer-only on input, such as \csb{xintDecSplit}.
+ }}}\vskip\dp\strutbox } in\strut{} places where a (short) number is
+expected by \TeX{} such as after an |\ifnum| or inside a |\numexpr|.
@@ -1301,10 +1317,7 @@ tokens in the `list'.\footnote{the argument is not a token list variable, just a
`list' of tokens.} Brace pairs encountered are removed once and the enclosed
material does not get reverted. Spaces are gobbled.
\centeredline{|\xintReverseOrder{\xintDigitsOf\xintiPow {2}{100}\to\Stuff}|}
-\centeredline{gives: \ttfamily
-\expandafter\expandafter\expandafter\detokenize
-\expandafter\expandafter\expandafter{%
-\xintReverseOrder{\xintDigitsOf\xintiPow {2}{100}\to\Stuff}}}
+\centeredline{gives: \ttfamily{\string\Stuff\string\to1002\string\xintiPow\string\xintDigitsOf}}
\subsection{\csbh{xintNum}}\label{xintiNum}
@@ -1313,7 +1326,7 @@ material does not get reverted. Spaces are gobbled.
{=\xintNum{+---++----+--000000000367941789479}}} Extended by \xintfracname to
accept also a fraction on input, as long as it reduces to an integer after
division of the numerator by the denominator.
-\centeredline{|\xintNum{+---123.48/0.03}|\texttt{=\xintNum{123.48/-0.03}}}
+\centeredline{|\xintNum{123.48/-0.03}|\texttt{=\xintNum{123.48/-0.03}}}
\subsection{\csbh{xintLen}}\label{xintiLen}
@@ -1330,7 +1343,7 @@ less than circa &2^{31}&.
\subsection{\csbh{xintLength}}\label{xintLength}
-\csa{xintLength}\marg{token\_list} does not do any expansion of
+\csa{xintLength}\marg{list} does not do any expansion of
its argument and just counts how many tokens there are. Things
enclosed in braces count as one.
\centeredline{|\xintLength {\xintiPow {2}{100}}=|\texttt{\xintLength
@@ -1584,7 +1597,7 @@ Extended by \xintfracname to fractions.
\subsection{\csbh{xintFac}}\label{xintFac}
\csa{xintFac\n} returns the factorial. It is an error if the
-argument is negative or at least &10^9&. It is not recommended to
+argument is negative or at least &10^6&. It is not recommended to
launch the computation of things such as &100000!&, if you need
your computer for other tasks.
@@ -1617,18 +1630,23 @@ remainder is always non-negative and the formula |N = QM + R|
always holds independently of the signs of |N| or |M|. Division by
zero is of course an error (even if |N| vanishes) and returns |{0}{0}|.
-This macro is integer only and not to be confused with the \xintfracname macro
-\csb{xintDiv} which divides one fraction by another.
+This macro is integer only (with \xintfracname loaded it accepts
+fractions on input, but they must be integers in disguise) and not to be
+confused with the \xintfracname macro \csb{xintDiv} which divides one
+fraction by another.
\subsection{\csbh{xintQuo}}\label{xintQuo}
-\csa{xintQuo\n\m} returns the quotient from the euclidean division. When both
-|N| and |M| are positive one has \csa{xintQuo\n\m}|=\xintiTrunc {0}{N/M}| (using
-package \xintfracname).
+\csa{xintQuo\n\m} returns the quotient from the euclidean division. When
+both |N| and |M| are positive one has \csa{xintQuo\n\m}|=\xintiTrunc
+{0}{N/M}| (using package \xintfracname). With \xintfracname loaded it
+accepts fractions on input, but they must be integers in disguise.
\subsection{\csbh{xintRem}}\label{xintRem}
\csa{xintRem\n\m} returns the remainder from the euclidean division.
+With \xintfracname loaded it accepts fractions on input, but they must
+be integers in disguise.
\subsection{\csbh{xintFDg}}\label{xintFDg}
@@ -2178,13 +2196,15 @@ or |A[n]|.
\subsection{\csbh{xintCmp}}\label{xintCmp}
-The macro is extended to fractions.
+The macro is extended to fractions. Of course its output is still either
+|-1|, |0|, or |1| with no forward slash nor trailing |[n]|.
The original, which skips the overhead of
the fraction format parsing, is available as \csb{xintiCmp}.
\subsection{\csbh{xintMax}}\label{xintMax}
-The macro is extended to fractions. The original is available as
+The macro is extended to fractions. But now |\xintMax {2}{3}| returns
+\texttt{\xintMax {2}{3}}. The original is available as
\csb{xintiMax}.
\subsection{\csbh{xintMin}}\label{xintMin}
@@ -2195,12 +2215,15 @@ The macro is extended to fractions. The original is available as
\subsection{\csbh{xintAbs}}\label{xintAbs}
The macro is extended to fractions. The original is available as
-\csb{xintiAbs}.
+\csb{xintiAbs}. Note that |\xintAbs {-2}=|\texttt{\xintAbs {-2}} whereas
+|\xintiAbs {-2}=|\texttt{\xintiAbs {-2}}.
\subsection{\csbh{xintSgn}}\label{xintSgn}
-The macro is extended to fractions. The original, which skips the overhead of
-the fraction format parsing, is available as \csb{xintiSgn}.
+The macro is extended to fractions. Of course its output is still either
+|-1|, |0|, or |1| with no forward slash nor trailing |[n]|. The
+original, which skips the overhead of the fraction format parsing, is
+available as \csb{xintiSgn}.
\subsection{\csbh{xintOpp}}\label{xintOpp}
@@ -2209,10 +2232,12 @@ The macro is extended to fractions. The original is available as
\subsection{\csbh{xintGeq},~\csbh{xintDivision},~\csbh{xint\-Quo},~\csbh{xint\-Rem},~\csbh{xintFDg},~\csbh{xintLDg},~\csbh{xintMON},~\csbh{xintMMON}}
-These macros remain integer-only, but they accept a fraction on input if this
-fraction in fact reduces to an integer. As usual, the `{\color{blue}i}' variants
-all exist, they accept on input only integers in the strict format and have less
-overhead.
+These macros are extended to accept a fraction on input if this fraction
+in fact reduces to an integer (if not an |\xintError:NotAnInteger| will
+be raised). As usual, the `{\color{blue}i}' variants all exist, they
+accept on input only integers in the strict format and have less
+overhead. There is no difference in the output, the difference is only
+in the accepted format for the inputs.
\subsection{\csbh{xintNum}}\label{xintNum}
@@ -2811,7 +2836,7 @@ was plaguing the |1.03| version. \footnote{with powers |x\string^k|,
This is the same as \csb{xintPowerSeries} apart from the fact that the last
parameter (aka |x|), is first twice expanded. If the |x| parameter is to be an
-explicit big fraction |f| with many (i.e. hundreds) digits, rather than using
+explicit big fraction |f| with many (dozens) digits, rather than using
|f| directly it is slightly better to have some macro |\x| |\def'|ined to expand
to the explicit |f| and use \csb{xintPowerSeries}; but if |f| has not yet been
evaluated and will be the output of a complicated expansion of some |\x|, and
@@ -2819,7 +2844,7 @@ if, due to an expanding only context, an |\edef\z{\x}| is no option, then
\csa{xintPowerSeriesX} should be used with |\x| as last parameter. This |\x|
will be expanded (as usual, twice) and then its (explicit) output will be used.
The reason why \csa{xintPowerSeries} doesn't do the same is that explicit
-fractions with many (i.e. hundreds) digits slow down a bit the processing as
+fractions with many (dozens) digits slow down a bit the processing as
there is some shuffling of tokens going on. With \csa{xintPowerSeriesX} the
slowing down in token shuffling due to a very big fraction will not be avoided,
but the far worse cost of re-doing each time the computations leading to
@@ -4094,7 +4119,7 @@ first place.
\fi
\expandafter\x\csname ver@xint.sty\endcsname
\ProvidesPackage{xint}%
- [2013/05/01 v1.05 Expandable operations on long numbers (jfB)]%
+ [2013/05/02 v1.05a Expandable operations on long numbers (jfB)]%
% \end{macrocode}
% \subsection{Token management macros}
% \begin{macrocode}
@@ -4421,6 +4446,8 @@ first place.
% \escapechar at the time of using \xintAssignArray or \xintRelaxArray
% These macros are an exception in the xint bundle, they do not care at
% all about compatibility with expansion-only contexts.
+% In version 1.05a I suddenly discover incongruous \expandafter's in
+% \XINT@assignarray@@@@end, which I remove.
% \end{verbatim}
% \vspace*{-1.5\baselineskip}
% \begin{macrocode}
@@ -4518,13 +4545,11 @@ first place.
\def #1##1%
{%
\ifnum ##1< 0
- \xint@afterfi {\xintError:ArrayIndexIsNegative
- \expandafter\space 0}%
+ \xint@afterfi {\xintError:ArrayIndexIsNegative\space 0}%
\else
\xint@afterfi {%
\ifnum ##1> #2
- \xint@afterfi {\xintError:ArrayIndexBeyondLimit
- \expandafter\space 0}%
+ \xint@afterfi {\xintError:ArrayIndexBeyondLimit\space 0}%
\else
\xint@afterfi
{\expandafter\expandafter\expandafter
@@ -6551,7 +6576,7 @@ first place.
\or
\expandafter\XINT@fac@checklength
\else
- \xint@afterfi{\xintError:FactorialOfNegativeNumber
+ \xint@afterfi{\expandafter\xintError:FactorialOfNegativeNumber
\expandafter\space\expandafter 1\xint@gobble }%
\fi
{#1}%
@@ -6559,7 +6584,7 @@ first place.
\def\XINT@fac@checklength #1%
{%
\ifnum\numexpr #1\relax>999999
- \xint@afterfi{\xintError:FactorialOfTooBigNumber
+ \xint@afterfi{\expandafter\xintError:FactorialOfTooBigNumber
\expandafter\space\expandafter 1\xint@gobble }%
\else
\xint@afterfi{\ifnum #1>9999
@@ -6755,8 +6780,8 @@ first place.
\xint@undef\xint@undef\xint@undef\xint@undef
\xint@UNDEF
}%
-\def\XINT@pow@BtooBig #1\xint@UNDEF #2\xint@UNDEF
- {\xintError:ExponentTooBig\space 0}%
+\def\XINT@pow@BtooBig #1\xint@UNDEF #2\xint@UNDEF
+ {\xintError:ExponentTooBig\space 0}%
\def\XINT@pow@loop #1#2%
{%
\ifnum #1 = 1
@@ -7901,8 +7926,7 @@ first place.
\def\XINT@dsx@xisNeg@checkx #1%
{%
\ifnum #1> 9
- \xint@afterfi {\xintError:TooBigDecimalShift
- \XINT@dsx@toobigx }%
+ \xint@afterfi {\xintError:TooBigDecimalShift\XINT@dsx@toobigx }%
\else
\expandafter \XINT@dsx@zeroloop
\fi
@@ -8042,8 +8066,7 @@ first place.
\def\XINT@split@checksizex #1%
{%
\ifnum\XINT@Len {#1} > 9
- \xint@afterfi {\xintError:TooBigDecimalSplit
- \XINT@split@bigx }%
+ \xint@afterfi {\xintError:TooBigDecimalSplit\XINT@split@bigx }%
\else
\expandafter\XINT@split@xfork
\fi
@@ -8393,7 +8416,7 @@ first place.
\fi
\expandafter\x\csname ver@xintgcd.sty\endcsname
\ProvidesPackage{xintgcd}%
- [2013/05/01 v1.05 Euclide algorithm with xint package (jfB)]%
+ [2013/05/02 v1.05a Euclide algorithm with xint package (jfB)]%
% \end{macrocode}
% \subsection{\csh{xintGCD}}
% \begin{macrocode}
@@ -9225,7 +9248,7 @@ first place.
\fi
\expandafter\x\csname ver@xintfrac.sty\endcsname
\ProvidesPackage{xintfrac}%
- [2013/05/01 v1.05 Expandable operations on fractions (jfB)]%
+ [2013/05/02 v1.05a Expandable operations on fractions (jfB)]%
% \end{macrocode}
% \subsection{\csh{xintLen}}
% \begin{macrocode}
@@ -9368,8 +9391,7 @@ first place.
}%
\def\XINT@frac@Gdivisionbyzero #1\Z #2#3%
{%
- \xintError:DivisionByZero
- \expandafter\space {0}{#2}{0}%
+ \xintError:DivisionByZero\space {0}{#2}{0}%
}%
\def\XINT@frac@Gneg #1\Z #2#3%
{%
@@ -9728,10 +9750,8 @@ first place.
\xint@UDkrof
{#3#4}{#1#2}{#3#4}{#1#2}%
}%
-\def\XINT@irr@indeterminate #1#2#3#4#5%
- {\expandafter\xintError:NaN\space 0/0}%
-\def\XINT@irr@divisionbyzero #1#2#3#4#5%
- {\expandafter\xintError:DivisionByZero #5#2/0}%
+\def\XINT@irr@indeterminate #1#2#3#4#5{\xintError:NaN\space 0/0}%
+\def\XINT@irr@divisionbyzero #1#2#3#4#5{\xintError:DivisionByZero #5#2/0}%
\def\XINT@irr@zero #1#2#3#4#5{ 0}%
\def\XINT@irr@loop@a #1#2%
{%
@@ -9822,10 +9842,8 @@ first place.
\xint@UDkrof
{#3#4}{#1#2}1001%
}%
-\def\XINT@jrr@indeterminate #1#2#3#4#5#6#7%
- {\expandafter\xintError:NaN\space 0/0}%
-\def\XINT@jrr@divisionbyzero #1#2#3#4#5#6#7%
- {\expandafter\xintError:DivisionByZero #7#2/0}%
+\def\XINT@jrr@indeterminate #1#2#3#4#5#6#7{\xintError:NaN\space 0/0}%
+\def\XINT@jrr@divisionbyzero #1#2#3#4#5#6#7{\xintError:DivisionByZero #7#2/0}%
\def\XINT@jrr@zero #1#2#3#4#5#6#7{ 0}%
\def\XINT@jrr@loop@a #1#2%
{%
@@ -10613,7 +10631,7 @@ first place.
\fi
\expandafter\x\csname ver@xintseries.sty\endcsname
\ProvidesPackage{xintseries}%
- [2013/05/01 v1.05 Expandable partial sums with xint package (jfB)]%
+ [2013/05/02 v1.05a Expandable partial sums with xint package (jfB)]%
% \end{macrocode}
% \subsection{\csh{xintSeries}}
% \begin{macrocode}
@@ -11155,7 +11173,7 @@ first place.
\fi
\expandafter\x\csname ver@xintcfrac.sty\endcsname
\ProvidesPackage{xintcfrac}%
- [2013/05/01 v1.05 Expandable continued fractions with xint package (jfB)]%
+ [2013/05/02 v1.05a Expandable continued fractions with xint package (jfB)]%
% \end{macrocode}
% \subsection{\csh{xintCFrac}}
% \begin{macrocode}
@@ -12158,7 +12176,7 @@ first place.
Grave accent \` Left brace \{ Vertical bar \|
Right brace \} Tilde \~}
-\CheckSum{11717}
+\CheckSum{11712}
\makeatletter\check@checksum\makeatother
\Finale
%%
diff --git a/Master/texmf-dist/source/generic/xint/xint.ins b/Master/texmf-dist/source/generic/xint/xint.ins
index d476ec1ee0a..a16c71d70ab 100644
--- a/Master/texmf-dist/source/generic/xint/xint.ins
+++ b/Master/texmf-dist/source/generic/xint/xint.ins
@@ -1,6 +1,6 @@
%%
%%----------------------------------------------------------------
-%% The xint bundle (version 1.05 of May 1st, 2013)
+%% The xint bundle (version 1.05a of May 2nd, 2013)
%% Copyright (C) 2013 by Jean-Francois Burnol
%%----------------------------------------------------------------
%%