summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/generic/pst-slpe/pst-slpe.dtx
diff options
context:
space:
mode:
authorManuel Pégourié-Gonnard <mpg@elzevir.fr>2008-06-20 21:13:15 +0000
committerManuel Pégourié-Gonnard <mpg@elzevir.fr>2008-06-20 21:13:15 +0000
commit0e5381d09e3621a166363ab885a862376cf999c8 (patch)
treeee910d742190388fd61ed756fa1b02e62cb25004 /Master/texmf-dist/source/generic/pst-slpe/pst-slpe.dtx
parentd815dece6f595d991bfdb3406fc0c08bdb05f5b9 (diff)
pst-slpe v1.2 2008/06/19
git-svn-id: svn://tug.org/texlive/trunk@8889 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/source/generic/pst-slpe/pst-slpe.dtx')
-rw-r--r--Master/texmf-dist/source/generic/pst-slpe/pst-slpe.dtx909
1 files changed, 909 insertions, 0 deletions
diff --git a/Master/texmf-dist/source/generic/pst-slpe/pst-slpe.dtx b/Master/texmf-dist/source/generic/pst-slpe/pst-slpe.dtx
new file mode 100644
index 00000000000..04fe2c3cf69
--- /dev/null
+++ b/Master/texmf-dist/source/generic/pst-slpe/pst-slpe.dtx
@@ -0,0 +1,909 @@
+%\iffalse -*-mode:Latex;tex-command:"latex *;dvips pst-slpe -o"-*- \fi
+%\iffalse
+%
+% Copyright 1998-2008 Martin Giese, mgiese@risc.uni-linz.ac.at
+% Herbert Voss (using xkeyval, \psBall)
+%
+%% This program can be redistributed and/or modified under the terms
+%% of the LaTeX Project Public License Distributed from CTAN archives
+%% in directory macros/latex/base/lppl.txt.
+%%
+%\fi
+% \changes{v1.2}{2008/06/19}{ \textbackslash psBall (hv)}
+% \changes{v1.1}{2006/06/19}{%
+% using the extended pst-xkey instead of the old pst-key package;
+% creating a dtx file (hv)}
+% \changes{v1.0}{2005/03/05}{More compatible to the other PStricks
+% packages. (RN)}
+%
+%
+% \DoNotIndex{\!,\",\#,\$,\%,\&,\',\(,\+,\*,\,,\-,\.,\/,\:,\;,\<,\=,\>,\?}
+% \DoNotIndex{\@,\@B,\@K,\@cTq,\@f,\@fPl,\@ifnextchar,\@nameuse,\@oVk}
+% \DoNotIndex{\[,\\,\],\^,\_,\ }
+% \DoNotIndex{\^,\\^,\\\^,$\^$,$\\^$,$\\^$}
+% \DoNotIndex{\0,\2,\4,\5,\6,\7,\8,}
+% \DoNotIndex{\A,\a}
+% \DoNotIndex{\B,\b,\Bc,\begin,\Bq,\Bqc}
+% \DoNotIndex{\C,\c,\catcode,\cJA,\CodelineIndex,\csname}
+% \DoNotIndex{\D,\def,\define@key,\Df,\divide,\DocInput,\documentclass,\pst@addfams}
+% \DoNotIndex{\eCN,\edef,\else,\eHd,\eMcj,\EnableCrossrefs,\end,\endcsname}
+% \DoNotIndex{\endCenterExample,\endExample,\endinput,\endpsclip}
+% \DoNotIndex{\PrintIndex,\PrintChanges,\ProvidesFile}
+% \DoNotIndex{\endpspicture,\endSideBySideExample,\Example}
+% \DoNotIndex{\F,\f,\FdUrr,\fi,\filedate,\fileversion,\FV@Environment}
+% \DoNotIndex{\FV@UseKeyValues,\FV@XRightMargin,\FVB@Example,\fvset}
+% \DoNotIndex{\G,\g,\GetFileInfo,\gr,\GradientLoaded,\gsFKrbK@o,\gsj,\gsOX}
+% \DoNotIndex{\hbadness,\hfuzz,\HLEmphasize,\HLMacro,\HLMacro@i}
+% \DoNotIndex{\HLReverse,\HLReverse@i,\hqcu,\HqY}
+% \DoNotIndex{\I,\i,\ifx,\input,\Ir,\IU}
+% \DoNotIndex{\j,\jl,\JT,\JVodH}
+% \DoNotIndex{\K,\k,\kfSlL}
+% \DoNotIndex{\L,\let}
+% \DoNotIndex{\message,\mHNa,\mIU}
+% \DoNotIndex{\N,\nB,\newcmykcolor,\newdimen,\newif,\nW}
+% \DoNotIndex{\O,\oCDJDo,\ocQhVI,\OnlyDescription,\oRKJ}
+% \DoNotIndex{\P,\p,\ProvidesPackage,\psframe,\pslinewidth,\psset}
+% \DoNotIndex{\PstAtCode,\PSTricksLoaded}
+% \DoNotIndex{\q,\Qr,\qssRXq,\qu,\qXjFQp,\qYL}
+% \DoNotIndex{\R,\r,\RecordChanges,\relax,\RlaYI,\rN,\Rp,\rp,\RPDXNn,\rput}
+% \DoNotIndex{\S,\scalebox,\SgY,\SideBySide@Example,\SideBySideExample}
+% \DoNotIndex{\SgY,\sk,\Sp,\space,\sZb}
+% \DoNotIndex{\T,\the,\tw@}
+% \DoNotIndex{\u,\UiSWGEf@,\uJi,\usepackage,\uVQdMM,\UYj}
+% \DoNotIndex{\VerbatimEnvironment,\VerbatimInput,\VrC@}
+% \DoNotIndex{\WhZ,\WjKCYb,\WNs}
+% \DoNotIndex{\XkN,\XW}
+% \DoNotIndex{\Z,\ZCM,\Ze}
+% \DoNotIndex{\addtocounter,\advance,\alph,\arabic,\AtBeginDocument,\AtEndDocument}
+% \DoNotIndex{\AtEndOfPackage,\begingroup,\bfseries,\bgroup,\box,\csname}
+% \DoNotIndex{\else,\endcsname,\endgroup,\endinput,\expandafter,\fi}
+% \DoNotIndex{\TeX,\z@,\p@,\@one,\xdef,\thr@@,\string,\sixt@@n,\reset,\or,\multiply,\repeat,\RequirePackage}
+% \DoNotIndex{\@cclvi,\@ne,\@ehpa,\@nil,\copy,\dp,\global,\hbox,\hss,\ht,\ifodd,\ifdim,\ifcase,\kern}
+% \DoNotIndex{\chardef,\loop,\leavevmode,\ifnum,\lower}
+% \setcounter{IndexColumns}{2}
+%
+%\iffalse
+%<*!prolog>
+\def\pstslpefileversion{1.2}
+\def\pstslpefiledate{2008/06/19}
+%</!prolog>
+%\fi
+%
+% \title{\textsf{pst-slpe} package \\ version \pstslpefileversion}
+% \author{Martin Giese\footnote{email:\texttt{giese@ira.uka.de} Version 1.2 prepared
+% by Herbert Vo\ss\ \texttt{voss@pstricks.de}}}
+% \date{\pstslpefiledate}
+% \maketitle
+%
+%\section{Introduction}
+%As of the 97 release, PSTricks contains the |pst-grad|
+%package, which provides a gradient fill style for arbitrary shapes.
+%Although it often produces nice results, it has a number of
+%deficiencies:
+%\begin{enumerate}
+%\item It is not possible to go from a colour $A$ to $B$ to $C$,
+%etc. The most evident application of such a multi-colour gradient are
+%of course rainbow effects. But they can also be useful in informative
+%contexts, eg to identify modes of operation in a scale of values
+%(normal/danger/overload).
+%\item Colours are interpolated linearly in the RGB space. This is
+%often OK, but when you want to go from red $(1,0,0)$ to green
+%$(0,1,0)$, it looks much better to get there via yellow $(1,1,0)$ than
+%via brown $(0.5,0.5,0)$. The point is, that to get from one saturated
+%colour to another, the colours on the way should also be saturated to
+%produce an optically pleasing result.
+%\item |pst-grad| is limited to {\em linear} gradients, ie~there
+%is a (possibly rotated) rectilinear coordinate system, such that the
+%colour at every point depends only on the $x$ coordinate of the
+%point. In particular, there is no way to get circular patterns.
+%\end{enumerate}
+%|pst-slpe| solves {\em all} of the mentioned
+%problems in {\em one} package.
+%
+%Problems 1.~is addressed by permitting the user to specify an
+%arbitrary number of colours, along with the points at which these are
+%to be reached. A special form of each of the fill styles is provided,
+%which just needs two colours as parameters, and goes from one to the
+%other. This makes the fill styles easier to use in that simple case.
+%
+%Problem 2.~is solved by interpolating in the hue-saturation-value
+%colour space. Conversion between RGB and HSV is done behind the
+%scenes. The user specifies colours in RGB.
+%
+%Finally, |pst-slpe| provides {\em concentric} and {\em radial}
+%gradients. What these mean is best explained with a polar coordinate
+%system: In a concentric pattern, the colour of a point depends on the
+%radius coordinate, while in a radial pattern, it depends on the angle
+%coordinate.
+%
+%As a special bonus, the PostScript part of |pst-slpe| is somewhat
+%optimized for speed. In |ghostscript|, rendering is about 30\% faster
+%than with |pst-grad|.
+%\medskip
+%
+%For most of these problems, solutions have been posted in the
+%appropriate \TeX\ newsgroup over the years. |pst-slpe| has however
+%been developed independently from these proposals. It is based on
+%the original PSTricks 0.93 |gradient| code, most of which has been
+%changed or replaced. The
+%author is indebted to Denis Girou, whose encouragement triggered the
+%process of making this a shipable package instead of a private
+%experiment.
+%\medskip
+%
+%The new fill styles and the
+%graphics parameters provided to use them are described in
+%section 2 of this document. Section 3, if present, documents the
+%implementation consisting of a generic \TeX\ file and a PostScript
+%header for the |dvi|-to-PostScript converter. You can get section 3
+%by calling \LaTeX\ as follows on most relevant systems:
+%\begin{verbatim}
+%latex '\AtBeginDocument{\AlsoImplementation}\input{pst-slpe.dtx}'
+%\end{verbatim}
+%\section{Package Usage}
+% To use |pst-slpe|, you have to say
+% \begin{verbatim}
+% \usepackage{pst-slpe}
+% \end{verbatim}
+% in the document prologue for \LaTeX, and
+% \begin{verbatim}
+% \input pst-slpe.tex
+% \end{verbatim}
+% in ``plain'' \TeX.
+%
+% \section{New macro and fill styles}
+% \DescribeMacro{\psBall}
+% It takes the (optional) coordinates of the ball center, the color
+% and the radius as parameter and uses |\pscircle| for painting
+% the bullet.
+%
+% \vspace{1cm}
+% \psBall{black}{2ex}
+% \psBall(1,0){blue}{3ex}
+% \psBall(2.5,0){red}{4ex}
+% \psBall(4,0){green!50!blue!60}{5ex}
+%
+% \vspace{1cm}
+% \begin{verbatim}
+% \psBall{black}{2ex}
+% \psBall(1,0){blue}{3ex}
+% \psBall(2.5,0){red}{4ex}
+% \psBall(4,0){green!50!blue!60}{5ex}
+% \end{verbatim}
+%
+% The predinied options can be overwritten in the usual way:
+%
+% \vspace{1cm}
+% \psBall{black}{2ex}
+% \psBall[sloperadius=10pt](1,0){blue}{3ex}
+% \psBall(2.5,0){red}{4ex}
+% \psBall[slopebegin=red](4,0){green!50!blue!60}{5ex}
+%
+% \vspace{1cm}
+% \begin{verbatim}
+% \psBall{black}{2ex}
+% \psBall[sloperadius=10pt](1,0){blue}{3ex}
+% \psBall(2.5,0){red}{4ex}
+% \psBall[slopebegin=red](4,0){green!50!blue!60}{5ex}
+% \end{verbatim}
+%
+% \DescribeMacro{slope}
+% \DescribeMacro{slopes}
+% \DescribeMacro{ccslope}
+% \DescribeMacro{ccslopes}
+% \DescribeMacro{radslope}
+% \DescribeMacro{radslopes}
+% |pst-slpe| provides six new fill styles called |slope|, |slopes|,
+% |ccslope|, |ccslopes|, |radslope| and |radslopes|. These obviously
+% come in pairs: The $\ldots$|slope|-styles are simplified versions of
+% the general $\ldots$|slopes|-styles.\footnote{By the way, I use slope
+% as a synonym for gradient. It sounds less pretentious and avoids
+% name clashes.} The |cc|$\ldots$ styles paint concentric patterns,
+% and the |rad|$\ldots$ styles do radial ones. Here is a little
+% overview of what they look like:
+% \newcommand{\st}{$\vcenter to30pt{}$}
+% \begin{quote}\LARGE
+% \begin{tabular}{cc}
+% \psframebox[fillstyle=slope]{\st|slope|} &\qquad
+% \psframebox[fillstyle=slopes]{\st|slopes|} \\[2ex]
+% \psframebox[fillstyle=ccslope]{\st|ccslope|} &\qquad
+% \psframebox[fillstyle=ccslopes]{\st|ccslopes|} \\[2ex]
+% \psframebox[fillstyle=radslope]{\st|radslope|} &\qquad
+% \psframebox[fillstyle=radslopes]{\st|radslopes|} \\[2ex]
+% \end{tabular}
+% \end{quote}
+% These examples were produced by saying simply
+% \begin{verbatim}
+% \psframebox[fillstyle=slope]{...}
+% \end{verbatim}
+% etc.~without setting any further graphics parameters. The package
+% provides a number of parameters that can be used to control
+% the way these patterns
+% are painted.
+% \medskip
+%
+% \DescribeMacro{slopebegin}
+% \DescribeMacro{slopeend}
+% The graphics parameters |slopebegin| and |slopeend| set the colours
+% between which the three $\ldots$|slope| styles should interpolate.
+% Eg,
+% \begin{verbatim}
+% \psframebox[fillstyle=slope,slopebegin=red,slopeend=green]{...}
+% \end{verbatim}
+% produces:
+% \begin{quote}\Large
+% \psframebox[fillstyle=slope,slopebegin=red,slopeend=green]{\st slopes!}
+% \end{quote}
+% The same settings of |slopebegin| and |slopeend| for the |ccslope|
+% and |radslope| fillstyles produce
+% \begin{quote}\Large
+% \psframebox[fillstyle=ccslope,slopebegin=red,slopeend=green]{\st slopes!}
+% \quad{\normalsize resp.}\quad
+% \psframebox[fillstyle=radslope,slopebegin=red,slopeend=green]{\st slopes!}
+% \end{quote}
+% The default settings go from a greenish yellow to pure blue.
+% \medskip
+%
+% \DescribeMacro{slopecolors}
+% If you want to interpolate between more than two colours, you have
+% to use the $\ldots$|slopes| styles, which are controlled by the
+% |slopecolors| parameter instead of |slopebegin| and |slopeend|. The
+% idea is to specify the colour to use at certain points `on the
+% way'. To fill a shape with |slopes|, imagine a linear scale
+% from its left edge to its right edge. The left edge must lie at
+% coordinate 0. Pick an arbitrary value for the right edge, say 23.
+% Now you want to get light yellow at the left edge, a pastel green at $17/23$
+% of the way and dark cyan at the right edge, like this:
+% \begin{quote}\psset{unit=0.45cm}
+% \begin{pspicture}(-1,0)(24,6)
+% \pscustom[fillstyle=slopes,
+% slopecolors=0 1 1 .9 17 .5 1 .5 23 0 0.5 0.5 3]{
+% \psccurve(0,2.5)(12,3.5)(20,4)(23,2)(17,2.5)}
+% \psaxes(0,5)(-0.01,5)(23.01,5)
+% \psline(0,5)(0,1)
+% \psline(17,5)(17,1)
+% \psline(23,5)(23,1)
+% \end{pspicture}
+% \end{quote}
+% The RGB values for the three colours are $(1,1,0.9)$, $(0.5,1,0.5)$
+% and $(0,0.5,0.5)$. The value for the |slopecolors| parameter is a list
+% of `colour infos' followed by the number of `colour infos'.
+% Each `colour info' consists
+% of the coordinate value where a colour is to be specified, followed by
+% the RGB values of that colour. All these values are separated by
+% white space. The correct setting for the example is thus:
+% \begin{verbatim}
+% slopecolors=0 1 1 .9 17 .5 1 .5 23 0 .5 .5 3
+% \end{verbatim}
+% For |ccslopes|, specify the colours from the center outward.
+% For |radslopes| (with no rotation specified), 0 represents the ray
+% going `eastward'. Specify the colours anti-clockwise. If you want a
+% smooth gradient at the beginning and starting ray of |radslopes|, you
+% should pick the first and last colours identical.
+%
+% Please note, that the |slopecolors| parameter is not subject to any
+% parsing on the \TeX\ side. If you forget a number or specify the wrong
+% number of segments, the PostScript interpreter will probably crash.
+%
+% The default value for |slopecolors| specifies a rainbow.
+%
+% \medskip
+%
+% \DescribeMacro{slopesteps}
+% The parameter |slopesteps| controls the number of distinct colour steps
+% rendered. Higher values for this parameter result in better quality
+% but proportionally slower rendering. Eg, setting
+% |slopesteps| to 5 with the |slope| fill style results in
+% \begin{quote}\Large
+% \psframebox[fillstyle=slope,slopesteps=5]{\st slopes!}
+% \end{quote}
+%
+% The default value is 100, which
+% suffices for most purposes. Remember that the number of distinct colours
+% reproducible by a given device is limited. Pushing |slopesteps| to
+% high will result only in loss of performance at no gain in quality.
+% \medskip
+%
+% \DescribeMacro{slopeangle}
+% The |slope(s)| and |radslope(s)| patterns may be rotated. As usual,
+% the angles are given anti-clockwise. Eg, an angle of 30 degrees
+% gives
+% \begin{quote}\Large\psset{slopeangle=30}
+% \psframebox[fillstyle=slope]{\st slopes!}
+% \quad{\normalsize and}\quad
+% \psframebox[fillstyle=radslope]{\st slopes!}
+% \end{quote}
+% with the |slope| and |radslope| fillstyles.
+% \medskip
+%
+% \DescribeMacro{slopecenter}
+% For the |cc|$\ldots$ and |rad|$\ldots$ styles, it is possible to
+% set the center of the pattern. The |slopecenter| parameter is set to
+% the coordinates of that center relative to the bounding box of the
+% current path. The following effect:
+% \begin{quote}\psset{unit=0.45cm}
+% \begin{pspicture}(-1,-1)(24,5)
+% \pscustom[fillstyle=radslope,slopecenter=0.2 0.4]{
+% \pspolygon(0,2.5)(12,2.5)(20,4)(23,2)(17,2.5)(3,0)}
+% \psaxes[axesstyle=frame,Dx=0.1,dx=2.2999,Dy=0.2,dy=0.7999](0,0)(23,4)
+% \psline(4.6,0)(4.6,4)
+% \psline(0,1.6)(23,1.6)
+% \end{pspicture}
+% \end{quote}
+% was achieved with
+% \begin{verbatim}
+% fillstyle=radslope,slopecenter=0.2 0.4
+% \end{verbatim}
+% The default value for |slopecenter| is |0.5 0.5|, which is the
+% center for symmetrical shapes. Note that this parameter is not
+% parsed by \TeX, so setting it to anything else than two numbers
+% between 0 and 1 might crash the PostScript interpreter.
+% \medskip
+%
+% \DescribeMacro{sloperadius}
+% Normally, the |cc|$\ldots$ and |rad|$\ldots$ styles distribute the
+% given colours so that the center is painted in the first colour given,
+% and the points of the shape furthest from the center are painted in
+% the last colour. In other words the maximum radius to which the
+% |slopecolors| parameter refers is the maximum distance from the
+% center (defined by |slopecenter|) to any point on the periphery
+% of the shape. This radius can be explicitly set with |sloperadius|.
+% Eg, setting |sloperadius=0.5cm| gives
+% \begin{quote}\Large\psset{sloperadius=0.5cm}
+% \psframebox[fillstyle=ccslope]{\st slopes!}
+% \end{quote}
+% Any point further from the center than the given |sloperadius| is
+% painted with the last colour in |slopeclours|, resp.~|slopeend|.
+%
+% The default value for |sloperadius| is 0, which invokes the default
+% behaviour of automatically calculating the radius.
+%
+% \StopEventually{}
+%
+%\section{The Code}
+% \subsection{Producing the documentation}
+%
+% A short driver is provided that can be extracted if necessary by
+% the \textsc{docstrip} program provided with \LaTeXe.
+% \begin{macrocode}
+%<*driver>
+\NeedsTeXFormat{LaTeX2e}
+\documentclass{ltxdoc}
+\usepackage{pst-slpe}
+\usepackage{pst-plot}
+\DisableCrossrefs
+\MakeShortVerb{\|}
+\newcommand\Lopt[1]{\textsf{#1}}
+\newcommand\file[1]{\texttt{#1}}
+\AtEndDocument{
+\PrintChanges
+\PrintIndex
+}
+%\OnlyDescription
+\begin{document}
+\DocInput{pst-slpe.dtx}
+\end{document}
+%</driver>
+% \end{macrocode}
+%
+% \subsection{The \file{pst-slpe.sty} file}
+% The \file{pst-slpe.sty} file is very simple. It just loads
+% the generic \file{pst-slpe.tex} file.
+% \begin{macrocode}
+%<*stylefile>
+\RequirePackage{pstricks}
+\ProvidesPackage{pst-slpe}[2005/03/05 package wrapper for `pst-slpe.tex']
+\input{pst-slpe.tex}
+\ProvidesFile{pst-slpe.tex}
+ [\pstslpefiledate\space v\pstslpefileversion\space `pst-slpe' (Martin Giese)]
+%</stylefile>
+% \end{macrocode}
+%
+% \subsection{The \file{pst-slpe.tex} file}
+% \file{pst-slpe.tex} contains the \TeX-side of things. We begin
+% by identifying ourselves and setting things up, the same as in
+% other PSTricks packages.
+% \begin{macrocode}
+%<*texfile>
+\message{ v\pstslpefileversion, \pstslpefiledate}
+\csname PstSlopeLoaded\endcsname
+\let\PstSlopeLoaded\endinput
+\ifx\PSTricksLoaded\endinput\else
+ \def\next{\input pstricks.tex }\expandafter\next
+\fi
+\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % --> hv
+\edef\TheAtCode{\the\catcode`\@}
+\catcode`\@=11
+\pst@addfams{pst-slpe} % --> hv
+\pstheader{pst-slpe.pro}
+% \end{macrocode}
+% \begin{macro}{slopebegin}
+% \begin{macro}{slopeend}
+% \begin{macro}{slopesteps}
+% \begin{macro}{slopeangle}
+%
+% \subsubsection{New graphics parameters}
+% We now define the various new parameters needed by the |slope|
+% fill styles and install default values. First come the colours,
+% ie~graphics parameters |slopebegin| and |slopeend|, followed
+% by the number of steps, |slopesteps|, and the rotation angle,
+% |slopeangle|.
+% \begin{macrocode}
+\newrgbcolor{slopebegin}{0.9 1 0}
+\define@key[psset]{pst-slpe}{slopebegin}{\pst@getcolor{#1}\psslopebegin}% --> hv
+\psset[pst-slpe]{slopebegin=slopebegin} % --> hv
+
+\newrgbcolor{slopeend}{0 0 1}
+\define@key[psset]{pst-slpe}{slopeend}{\pst@getcolor{#1}\psslopeend}% --> hv
+\psset[pst-slpe]{slopeend=slopeend}% --> hv
+
+\define@key[psset]{pst-slpe}{slopesteps}{\pst@getint{#1}\psslopesteps}% --> hv
+\psset[pst-slpe]{slopesteps=100}% --> hv
+
+\define@key[psset]{pst-slpe}{slopeangle}{\pst@getangle{#1}\psx@slopeangle}% --> hv
+\psset[pst-slpe]{slopeangle=0}% --> hv
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{slopecolors}
+% The value for |slopecolors| is not parsed. It is directly copied
+% to the PostScript output. This is certainly not the way it
+% should be, but it's simple. The default value is a rainbow from
+% red to magenta.
+% \begin{macrocode}
+\define@key[psset]{pst-slpe}{slopecolors}{\def\psx@slopecolors{#1}}% --> hv
+\psset[pst-slpe]{slopecolors={% --> hv
+0.0 1 0 0
+0.4 0 1 0
+0.8 0 0 1
+1.0 1 0 1
+4}}
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{slopecenter}
+% The argument to |slopecenter| isn't parsed either. But there's
+% probably not much that can go wrong with two decimal numbers.
+% \begin{macrocode}
+\define@key[psset]{pst-slpe}{slopecenter}{\def\psx@slopecenter{#1}}% --> hv
+\psset[pst-slpe]{slopecenter={0.5 0.5}}% --> hv
+% \end{macrocode}
+% \end{macro}
+% \begin{macro}{sloperadius}
+% The default value for |sloperadius| is 0, which makes the
+% PostScript procedure |PatchRadius| determine a value for the radius.
+% \begin{macrocode}
+\define@key[psset]{pst-slpe}{sloperadius}{\pst@getlength{#1}\psx@sloperadius}% --> hv
+\psset[pst-slpe]{sloperadius=0}% --> hv
+% \end{macrocode}
+% \end{macro}
+%
+% \subsubsection{Fill style macros}
+%
+% Now come the fill style definitions that use these parameters.
+% There is one macro for each fill style named |\psfs@|$style$.
+% PSTricks calls this macro whenever the current path needs to
+% be filled in that style. The current path should not be
+% clobbered by the PostScript code output by the macro.
+%
+% \begin{macro}{slopes}
+% For the slopes fill style we produce PostScript code that
+% first puts the |slopecolors| parameter onto the stack. Note that
+% the number of colours listed, which comes last in |slopecolors| is
+% now on the top of the stack. Next come the |slopesteps| and
+% |slopeangle| parameters. We switch to the dictionary established
+% by the \file{pst-slop.pro} Prolog and call |SlopesFill|, which
+% does the artwork and takes care to leave the path alone.
+% \begin{macrocode}
+\def\psfs@slopes{%
+ \addto@pscode{
+ \psx@slopecolors\space
+ \psslopesteps
+ \psx@slopeangle
+ tx@PstSlopeDict begin SlopesFill end}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{slope}
+% The |slope| style uses parameters |slopebegin| and |slopeend|
+% instead of |slopecolors|. So the produced PostScript uses these
+% parameters to build a stack in |slopecolors| format. The
+% |\pst@usecolor| generates PostScript to set the current colour.
+% We can query the RGB values with |currentrgbcolor|.
+% A |gsave|/|grestore| pair is used to avoid changing the
+% PostScript graphics state. Once the stack is set up,
+% |SlopesFill| is called as before.
+% \begin{macrocode}
+\def\psfs@slope{%
+ \addto@pscode{%
+ gsave
+ 0 \pst@usecolor\psslopebegin currentrgbcolor
+ 1 \pst@usecolor\psslopeend currentrgbcolor
+ 2
+ grestore
+ \psslopesteps \psx@slopeangle tx@PstSlopeDict begin SlopesFill end}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{ccslopes}
+% \begin{macro}{ccslope}
+% \begin{macro}{radslopes}
+% The code for the other fill styles is about the same, except for a few
+% parameters more or less and different PostScript procedures called
+% to do the work.
+% \begin{macrocode}
+\def\psfs@ccslopes{%
+ \addto@pscode{%
+ \psx@slopecolors\space
+ \psslopesteps \psx@slopecenter\space \psx@sloperadius\space
+ tx@PstSlopeDict begin CcSlopesFill end}}
+\def\psfs@ccslope{%
+ \addto@pscode{%
+ gsave 0 \pst@usecolor\psslopebegin currentrgbcolor
+ 1 \pst@usecolor\psslopeend currentrgbcolor
+ 2 grestore
+ \psslopesteps \psx@slopecenter\space \psx@sloperadius\space
+ tx@PstSlopeDict begin CcSlopesFill end}}
+\def\psfs@radslopes{%
+ \addto@pscode{%
+ \psx@slopecolors\space
+ \psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle
+ tx@PstSlopeDict begin RadSlopesFill end}}
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+% \end{macro}
+% \begin{macro}{radslope}
+% |radslope| is slightly different: Just going from one colour to
+% another in 360 degrees is usually not what is wanted. |radslope| just
+% does something pretty with the colours provided.
+% \begin{macrocode}
+\def\psfs@radslope{%
+ \addto@pscode{%
+ gsave 0 \pst@usecolor\psslopebegin currentrgbcolor
+ 1 \pst@usecolor\psslopeend currentrgbcolor
+ 2 \pst@usecolor\psslopebegin currentrgbcolor
+ 3 \pst@usecolor\psslopeend currentrgbcolor
+ 4 \pst@usecolor\psslopebegin currentrgbcolor
+ 5 grestore
+ \psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle
+ tx@PstSlopeDict begin RadSlopesFill end}}
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\psBall}
+% \begin{macrocode}
+\def\psBall{\pst@object{psBall}}
+\def\psBall@i{\@ifnextchar(\psBall@ii{\psBall@ii(0,0)}}
+\def\psBall@ii(#1,#2)#3#4{%
+ \pst@killglue
+ \pst@dima=#4%
+ \pst@dimb=#4%
+ \advance\pst@dima by 0.075\pst@dimb%
+ \begingroup%
+ \addbefore@par{sloperadius=\the\pst@dima,fillstyle=ccslope,
+ slopebegin=white,slopeend=#3,slopecenter=0.4 0.6,linestyle=none}%
+ \use@par%
+ \pscircle(#1,#2){#4}%
+ \endgroup\ignorespaces%
+}
+% \end{macrocode}
+% \end{macro}
+%
+%
+% \begin{macrocode}
+\catcode`\@=\TheAtCode\relax
+%</texfile>
+% \end{macrocode}
+%
+% \subsection{The \file{pst-slpe.pro} file}
+% The file \file{pst-slpe.pro} contains PostScript definitions
+% to be included in the PostScript output by the
+% |dvi|-to-PostScript converter, eg |dvips|.
+% First thing is to define a
+% dictionary to keep definitions local.
+% \begin{macrocode}
+%<*prolog>
+/tx@PstSlopeDict 60 dict def tx@PstSlopeDict begin
+% \end{macrocode}
+%
+% \begin{macro}{max}
+% $x1 \quad x2 \quad \mathtt{max}\quad max$\\
+% |max| is a utility function that calculates the maximum
+% of two numbers.
+% \begin{macrocode}
+/max {2 copy lt {exch} if pop} bind def
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{Iterate}
+% $p_1\quad r_1\quad g_1\quad b_1\quad\ldots\quad
+% p_n\quad r_n\quad g_n\quad b_n\quad n\quad \mathtt{Iterate}\quad -$\\
+% This is the actual iteration, which goes through the colour
+% information and plots the segments.
+% It uses the value of |NumSteps| which is set by the wrapper
+% procedures. |DrawStep| is called all of |NumSteps| times, so
+% it had better be fast.
+%
+% First, the number of colour infos is read from the
+% top of the stack and decremented, to get the number of segments.
+% \begin{macrocode}
+/Iterate {
+ 1 sub /NumSegs ED
+% \end{macrocode}
+% Now we get the first colour. This is really the {\em last}
+% colour given in the |slopecolors| argument. We have to work
+% {\em down} the stack, so we shall be careful to plot the segments
+% in reverse order. The |dup mul| stuff squares the RGB
+% components. This does a kind-of-gamma correction, without
+% which primary colours tend to take up too much space in the
+% slope. This is nothing deep, it just looks better in my opinion.
+% The following lines convert RGB to HSB and store the resulting
+% components, as well as the |Pt| coordinate in four variables.
+% \begin{macrocode}
+ dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll
+ setrgbcolor currenthsbcolor
+ /ThisB ED
+ /ThisS ED
+ /ThisH ED
+ /ThisPt ED
+% \end{macrocode}
+% To avoid gaps, we fill the whole path in that first colour.
+% \begin{macrocode}
+ gsave fill grestore
+% \end{macrocode}
+% The body of the following outer loop is executed
+% once for each segment.
+% It expects a current colour and |Pt| coordinate in the |This*|
+% variables and pops the next colour and point from the stack. It
+% then draws the single steps of that segment.
+% \begin{macrocode}
+ NumSegs {
+ dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll
+ setrgbcolor currenthsbcolor
+ /NextB ED
+ /NextS ED
+ /NextH ED
+ /NextPt ED
+% \end{macrocode}
+% |NumSteps| always contains the remaining number of steps available.
+% These are evenly distributed between |Pt| coordinates |ThisPt|
+% to 0, so for the current segment we may use
+% $|NumSteps|*(|ThisPt|-|NextPt|)/|ThisPt|$ steps.
+% \begin{macrocode}
+ ThisPt NextPt sub ThisPt div NumSteps mul cvi /SegSteps exch def
+ /NumSteps NumSteps SegSteps sub def
+% \end{macrocode}
+% |SegSteps| may be zero. In that case there is nothing to do for
+% this segment.
+% \begin{macrocode}
+ SegSteps 0 eq not {
+% \end{macrocode}
+% If one of the colours is gray, ie~0 saturation, its hue is
+% useless. In this case, instead of starting of with a random hue,
+% we take the hue of the other endpoint. (If both have saturation
+% 0, we have a pure gray scale and no harm is done)
+% \begin{macrocode}
+ ThisS 0 eq {/ThisH NextH def} if
+ NextS 0 eq {/NextH ThisH def} if
+% \end{macrocode}
+% To interpolate between two colours of different hue, we want to
+% go the shorter way around the colour circle. The following code
+% assures that this happens if we go linearly from |This*| to
+% |Next*| by conditionally adding 1.0 to one of the hue values.
+% The new hue values can lie between 0.0 and 2.0, so we will later
+% have to subtract 1.0 from values greater than one.
+% \begin{macrocode}
+ ThisH NextH sub 0.5 gt
+ {/NextH NextH 1.0 add def}
+ { NextH ThisH sub 0.5 ge {/ThisH ThisH 1.0 add def} if }
+ ifelse
+% \end{macrocode}
+% We define three variables to hold the current colour coordinates
+% and calculate the corresponding increments per step.
+% \begin{macrocode}
+ /B ThisB def
+ /S ThisS def
+ /H ThisH def
+ /BInc NextB ThisB sub SegSteps div def
+ /SInc NextS ThisS sub SegSteps div def
+ /HInc NextH ThisH sub SegSteps div def
+% \end{macrocode}
+% The body of the following inner loop sets the current colour,
+% according to |H|, |S| and |B| and
+% undoes the kind-of-gamma correction by converting to RGB colour.
+% It then calls |DrawStep|, which draws one step and maybe updates
+% the current point or user space, or variables of its own. Finally,
+% it increments the three colour variables.
+% \begin{macrocode}
+ SegSteps {
+ H dup 1. gt {1. sub} if S B sethsbcolor
+ currentrgbcolor
+ sqrt 3 1 roll sqrt 3 1 roll sqrt 3 1 roll
+ setrgbcolor
+ DrawStep
+ /H H HInc add def
+ /S S SInc add def
+ /B B BInc add def
+ } bind repeat
+% \end{macrocode}
+% The outer loop ends by moving on to the |Next| colour and point.
+%
+% \begin{macrocode}
+ /ThisH NextH def
+ /ThisS NextS def
+ /ThisB NextB def
+ /ThisPt NextPt def
+ } if
+ } bind repeat
+} def
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{PatchRadius}
+% $-\quad\mathtt{PatchRadius}\quad-$\\
+% This macro inspects the value of the variable |Radius|. If it is
+% 0, it is set to the maximum distance of any point in the
+% current path from the origin of user space. This has the effect
+% that the current path will be totally filled. To find the maximum
+% distance, we flatten the path and call |UpdRR| for each endpoint
+% of the generated polygon. The current maximum square distance is
+% gathered in |RR|.
+% \begin{macrocode}
+/PatchRadius {
+ Radius 0 eq {
+ /UpdRR { dup mul exch dup mul add RR max /RR ED } bind def
+ gsave
+ flattenpath
+ /RR 0 def
+ {UpdRR} {UpdRR} {} {} pathforall
+ grestore
+ /Radius RR sqrt def
+ } if
+} def
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{SlopesFill}
+% $p_1\quad r_1\quad g_1\quad b_1\quad\ldots\quad
+% p_n\quad r_n\quad g_n\quad b_n\quad n\quad s\quad\alpha\quad
+% \mathtt{SlopesFill}\quad -$\\
+% Fill the current path with a slope described by $p_1,\ldots,b_n,n$.
+% Use a total of $s$ single steps. Rotate the slope by $\alpha$
+% degrees, 0 meaning $r_1,g_1,b_1$ left to $r_n,g_n,b_n$ right.
+%
+% After saving the current path, we do the rotation and get the
+% number of steps, which is later needed by |Iterate|. Remember,
+% that iterate calls |DrawStep| in the reverse order, ie~from
+% right to left. We work around this by adding 180 degrees to
+% the rotation. Filling
+% works by clipping to the path and painting an appropriate sequence
+% of rectangles. |DrawStep| is set up for |Iterate| to draw a
+% rectangle of width |XInc| high enough to cover the whole
+% clippath (we use the Level 2 operator |rectfill| for speed) and
+% translate the user system by |XInc|.
+% \begin{macrocode}
+/SlopesFill {
+ gsave
+ 180 add rotate
+ /NumSteps ED
+ clip
+ pathbbox
+ /h ED /w ED
+ 2 copy translate
+ h sub neg /h ED
+ w sub neg /w ED
+ /XInc w NumSteps div def
+ /DrawStep {
+ 0 0 XInc h rectfill
+ XInc 0 translate
+ } bind def
+ Iterate
+ grestore
+} def
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{CcSlopesFill} $p_1\quad r_1\quad g_1\quad
+% b_1\quad\ldots\quad p_n\quad r_n\quad g_n\quad b_n\quad n\quad
+% c_x\quad c_y \quad r\quad \mathtt{CcSlopesFill}\quad -$\\ Fills
+% the current path with a concentric pattern,
+% ie~in a polar coordinate system, the colour depends on the
+% radius and not on the angle.
+% Centered around a point with coordinates $(c_x,c_y)$ relative to
+% the bounding box of the path, ie~for a rectangle, $(0,0)$ will
+% center the pattern around the lower left corner of the rectangle,
+% $(0.5,0.5)$ around its center. The largest circle has a radius of
+% $r$. If $r=0$, $r$ is taken to be the maximum distance of any
+% point on the current path from the center defined by $(c_x,c_y)$.
+% The colours are given from the center outwards,
+% ie~$(r_1,g_1,b_1)$ describe the colour at the center.
+%
+% The code is similar to that of |SlopesFill|. The main differences
+% are the call to |PatchRadius|, which catches the case that $r=0$
+% and the different definition for |DrawStep|, Which now fills a
+% circle of radius |Rad| and decreases that Variable. Of course,
+% drawing starts on the outside, so we work down the stack and circles
+% drawn later partially cover those drawn first. Painting
+% non-overlapping, `donut-shapes' would be slower.
+% \begin{macrocode}
+/CcSlopesFill {
+ gsave
+ /Radius ED
+ /CenterY ED
+ /CenterX ED
+ /NumSteps ED
+ clip
+ pathbbox
+ /h ED /w ED
+ 2 copy translate
+ h sub neg /h ED
+ w sub neg /w ED
+ w CenterX mul h CenterY mul translate
+ PatchRadius
+ /RadPerStep Radius NumSteps div neg def
+ /Rad Radius def
+ /DrawStep {
+ 0 0 Rad 0 360 arc
+ closepath fill
+ /Rad Rad RadPerStep add def
+ } bind def
+ Iterate
+ grestore
+} def
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{RadSlopesFill}
+% $p_1\quad r_1\quad g_1\quad b_1\quad\ldots
+% \quad p_n\quad r_n\quad g_n\quad b_n\quad n\quad
+% c_x\quad c_y \quad r\quad\alpha\quad \mathtt{CcSlopesFill}\quad -$\\
+% This fills the current path with a radial pattern, ie~in a
+% polar coordinate system the colour depends on the angle and not on
+% the radius. All this is very similar to |CcSlopesFill|. There
+% is an extra parameter $\alpha$, which rotates the pattern.
+%
+% The only new thing in the code is the |DrawStep| procedure.
+% This does {\em not} draw a circular arc, but a triangle, which is
+% considerably faster. One of the short sides of the triangle is
+% determined by |Radius|, the other one by |dY|, which is calculated
+% as $|dY|:=|Radius|\times\tan(|AngleIncrement|)$.
+% \begin{macrocode}
+/RadSlopesFill {
+ gsave
+ rotate
+ /Radius ED
+ /CenterY ED
+ /CenterX ED
+ /NumSteps ED
+ clip
+ pathbbox
+ /h ED /w ED
+ 2 copy translate
+ h sub neg /h ED
+ w sub neg /w ED
+ w CenterX mul h CenterY mul translate
+ PatchRadius
+ /AngleIncrement 360 NumSteps div neg def
+ /dY AngleIncrement sin AngleIncrement cos div Radius mul def
+ /DrawStep {
+ 0 0 moveto
+ Radius 0 rlineto
+ 0 dY rlineto
+ closepath fill
+ AngleIncrement rotate
+ } bind def
+ Iterate
+ grestore
+} def
+% \end{macrocode}
+% \end{macro}
+%
+% Last, but not least, we have to close the private dictionary.
+% \begin{macrocode}
+end
+%</prolog>
+% \end{macrocode}
+% \Finale
+%