diff options
author | Norbert Preining <preining@logic.at> | 2007-12-19 08:00:14 +0000 |
---|---|---|
committer | Norbert Preining <preining@logic.at> | 2007-12-19 08:00:14 +0000 |
commit | 47c0bc3c76d0a83396adaea8a055b18175dd1132 (patch) | |
tree | e383f584010762c80411af613afa95c0e1bb5e2b /Master/texmf-dist/metapost | |
parent | 1bdd959dcf616ef869e5b8996272131d3e98c0b9 (diff) |
bpolynomial update 07-12-19
git-svn-id: svn://tug.org/texlive/trunk@5806 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/metapost')
-rw-r--r-- | Master/texmf-dist/metapost/bpolynomial/bpolynomial.mp | 307 |
1 files changed, 262 insertions, 45 deletions
diff --git a/Master/texmf-dist/metapost/bpolynomial/bpolynomial.mp b/Master/texmf-dist/metapost/bpolynomial/bpolynomial.mp index f1c0129bb94..e4f27a434a1 100644 --- a/Master/texmf-dist/metapost/bpolynomial/bpolynomial.mp +++ b/Master/texmf-dist/metapost/bpolynomial/bpolynomial.mp @@ -7,73 +7,152 @@ % license is in http://www.latex-project.org/lppl.txt % +%%% Identify yourself. if known bpolynomial_fileversion: endinput fi; string bpolynomial_fileversion; -bpolynomial_fileversion := "v0.4 (2007/11/28)"; +bpolynomial_fileversion := "v0.5 (2007/12/12)"; message "Loading bpolynomial " & bpolynomial_fileversion; +%%% Main user macro for defining polynomials. +%%% Arguments are a suffix and the coefficients +%%% of the function a*x^3 + b*x^2 + c*x + d. vardef newBPolynomial@#(expr a, b, c, d)= - defineBPolynomial.@#(a, b, c, d); - defineBPolynomial.@#'(0, 3a, 2b, c); - defineBPolynomial.@#''(0, 0, 6a, 2b); - defineBPolynomial.@#'''(0, 0, 0, 6a); + bpolynomial__defineBPolynomial.@#(a, b, c, d); + bpolynomial__defineBPolynomial.@#'(0, 3a, 2b, c); + bpolynomial__defineBPolynomial.@#''(0, 0, 6a, 2b); + bpolynomial__defineBPolynomial.@#'''(0, 0, 0, 6a); enddef; -%%% This macro defines two macros @#.eval and @#.getPath. -%%% Parameters are the coefficients of the polynomial a*x^3 + b*x^2 + c*x + d. -vardef defineBPolynomial@#(expr ca,cb,cc,cd)= + +%%% This macro returns the path of a Bezier curve that matches +%%% a function a*x^3 + b*x^2 + c*x + d between two points A and D. +%%% This macro is the heart of this package and is used by +%%% several other macros. +%%% Arguments are the coefficients of the polynomial and the +%%% start and end point of the graph/path. +vardef bpolynomial__getBezierFromPolynomial(expr a, b, c, d, A, D)= +save xA,xB,xC,xD,yA,yB,yC,yD; +save xl,yl,xr,yr,dx; +numeric xA,xB,xC,xD,yA,yB,yC,yD; +numeric xl,yl,xr,yr,dx; + xl := xpart A; + yl := ypart A; + xr := xpart D; + yr := ypart D; + dx := xpart D - xpart A; + %%% Original equation system for x values. +% xA = xl; +% 3(xB - xA) = dx; +% 3(xC - 2xB + xA) = 0; +% xD - 3xC + 3xB - xA = 0; + %%% Modified equation system. + xA := xl; + xB := xl + dx/3; + xC := xr - dx/3; + xD := xr; + %%% Original equation system for y values. +% yA = ((a*xl + b)*xl + c)*xl + d; +% 3(yB - yA) = dx*((3a*xl + 2b)*xl + c); +% 3(yC - 2yB + yA) = dx*dx*(3a*xl + b); +% yD - 3yC + 3yB - yA = a*dx*dx*dx; + %%% Modified equation system. + yA := yl; + 3(yB - yA) = dx*((3a*xl + 2b)*xl + c); + 3(yC - 2yB + yA) = dx*dx*(3a*xl + b); + yD := yr; + %%% Return path A..controls B and C..D. + (xA,yA)..controls (xB,yB) and (xC,yC)..(xD,yD) +enddef; + + +%%% This macro returns the path of a Bezier curve that matches +%%% a function a*x^3 + b*x^2 + c*x + d in the range [xl, xr]. +%%% Arguments are the coefficients of the polynomial and the +%%% range boundaries of the graph/path. +vardef getBezierFromPolynomial(expr a, b, c, d, xl, xr)= + bpolynomial__getBezierFromPolynomial(a, b, c, d, + (xl, ((a*xl+b)*xl+c)*xl+d), + (xr, ((a*xr+b)*xr+c)*xr+d)) +enddef; + + +%%% This macro returns the path of a Bezier curve that matches +%%% a function a*x^3 + b*x^2 + c*x + d in the range [xl, xr]. +%%% Arguments are the coefficients of the polynomial and the +%%% range boundaries of the graph/path. +vardef getBezierFromSqrRoot(expr u, v, w, xl, xr)= +save yl, yr; +numeric yl,yr; + if (xl >= -v): + yl := xl; + else: + message "Package bpolynomial warning: Replacing lower range boundary " & decimal xl & " by " & decimal -v & "!"; + yl := -v; + fi + if (xr >= -v): + yr := xr; + else: + message "Package bpolynomial warning: Replacing upper range boundary " & decimal xr & " by " & decimal -v & "!"; + yr := -v; + fi + bpolynomial__getBezierFromPolynomial(0, 1/u/u, -2*w/u/u, (w/u)*(w/u)-v, + (u*sqrt(yl+v)+w, yl), + (u*sqrt(yr+v)+w, yr)) reflectedabout ((0,0),(1,1)) +enddef; + + +%%% This macro returns the path of a Bezier curve that matches +%%% a function a*x^3 + b*x^2 + c*x + d in the range [xl, xr]. +%%% Arguments are the coefficients of the polynomial and the +%%% range boundaries of the graph/path. +vardef getBezierFromCubRoot(expr u, v, w, xl, xl)= +save yl, yr; +numeric yl,yr; + if (xl >= -v): + yl := xl; + else: + message "Package bpolynomial warning: Replacing lower range boundary " & decimal xl & " by " & decimal -v & "!"; + yl := -v; + fi + if (xr >= -v): + yr := xr; + else: + message "Package bpolynomial warning: Replacing upper range boundary " & decimal xr & " by " & decimal -v & "!"; + yr := -v & "!"; + fi + bpolynomial__getBezierFromPolynomial(1/u/u/u, -3w/u/u/u, 3(w/u)*(w/u)/u, (w/u)*(w/u)*(w/u)-v, + (u*((yl+v)**(1/3))+w, yl), + (u*((yr+v)**(1/3))+w, yr)) reflectedabout ((0,0),(1,1)) +enddef; + + +%%% This internal macro defines a new polynomial. +%%% Arguments are a suffix macro and the coefficients +%%% of the polynomial a*x^3 + b*x^2 + c*x + d. +vardef bpolynomial__defineBPolynomial@#(expr ca,cb,cc,cd)= numeric @#.a, @#.b, @#.c, @#.d; %%% Save coefficients for later access. - %%% For instance, variable @#.a refers to coefficient a of polynomial @#. + %%% Variable @#.a refers to coefficient a of polynomial @#. @#.a := ca; @#.b := cb; @#.c := cc; @#.d := cd; - - %%% Define macro that returns values of polynomial @#. - %%% Parameter is an x value. + %%% This macro returns values of polynomial @#. + %%% Argument is an x value. vardef @#.eval(expr x)= (((@#.a*x + @#.b)*x + @#.c)*x + @#.d) enddef; - - %%% Define a macro that returns a path of the polynomial - %%% on a given intervall [xl, xr]. + %%% This macro returns the path corresponding to polynomial @# + %%% on the intervall [xl, xr]. vardef @#.getPath(expr xl,xr)= - save xA,xB,xC,xD,yA,yB,yC,yD; - save dx; - numeric xA,xB,xC,xD,yA,yB,yC,yD; - numeric dx; - dx := xr - xl; - %%% Original equation system for x values. -% xA = xl; -% 3(xB - xA) = dx; -% 3(xC - 2xB + xA) = 0; -% xD - 3xC + 3xB - xA = 0; - %%% Modified equation system. - xA := xl; - xB := xl + dx/3; - xC := xr - dx/3; - xD := xr; - %%% Original equation system for y values. -% yA = ((@#.a*xl + @#.b)*xl + @#.c)*xl + @#.d; -% 3(yB - yA) = dx*((3@#.a*xl + 2@#.b)*xl + @#.c); -% 3(yC - 2yB + yA) = dx*dx*(3@#.a*xl + @#.b); -% yD - 3yC + 3yB - yA = @#.a*dx*dx*dx; - %%% Modified equation system. - yA := @#.eval(xl); - 3(yB - yA) = dx*((3@#.a*xl + 2@#.b)*xl + @#.c); - 3(yC - 2yB + yA) = dx*dx*(3@#.a*xl + @#.b); - yD := @#.eval(xr); - %%% Return path A..controls B and C..D. - (xA,yA)..controls (xB,yB) and (xC,yC)..(xD,yD) + bpolynomial__getBezierFromPolynomial(@#.a, @#.b, @#.c, @#.d, (xl, @#.eval(xl)), (xr, @#.eval(xr))) enddef; - - %%% Define macro that returns a path tangent to @# at point (x, f(x)) - %%% covering interval (x+xm, x+xp). + %%% This macro returns a path tangent to @# at point (x, f(x)) + %%% covering the interval [x+xm, x+xp]. vardef @#.getTangent(expr x, xm, xp)= save m, y; numeric m, y; @@ -83,3 +162,141 @@ numeric @#.a, @#.b, @#.c, @#.d; enddef; enddef; + + +%%% This macro defines a new square root. +%%% Arguments are a suffix macro and the parameters +%%% of the function u*(x + v)^(1/2) + w. +vardef newBSqrRoot@#(expr cu,cv,cw)= +numeric @#.a, @#.b, @#.c, @#.d; +numeric @#.u, @#.v, @#.w; + %%% Save parameters for later access. + %%% Variable @#.v refers to parameters of square root @#. + %%% Variables @#.a to @#.d store the coefficients of the + %%% corresponding polynomial. + @#.u := cu; + @#.v := cv; + @#.w := cw; + @#.a := 0; + @#.b := 1/cu/cu; + @#.c := -2*cw/cu/cu; + @#.d := (cw/cu)*(cw/cu)-cv; + + %%% This macro returns values of polynomial @#. + %%% Argument is an x value. + vardef @#.eval(expr x)= + if (x >= -@#.v): + @#.u*sqrt(x + @#.v) + @#.w + else: + message "Package bpolynomial warning: Cannot evaluate function at x = " & decimal x & "!"; + @#.w + fi + enddef; + + %%% This macro returns the path corresponding to square root @# + %%% on the intervall [yl, yr]. The path of the corresponing + %%% polynomial is computed and then transformed. + vardef @#.getPath(expr xl,xr)= + save yl, yr; + numeric yl, yr; + if (xl >= -@#.v): + yl := xl; + else: + message "Package bpolynomial warning: Replacing lower range boundary " & decimal xl & " by " & decimal -@#.v & "!"; + yl := -@#.v; + fi + if (xr >= -@#.v): + yr := xr; + else: + message "Package bpolynomial warning: Replacing upper range boundary " & decimal xr & " by " & decimal -@#.v & "!"; + yr := -@#.v; + fi + bpolynomial__getBezierFromPolynomial(@#.a, @#.b, @#.c, @#.d, (@#.eval(yl), yl), (@#.eval(yr), yr)) + reflectedabout ((0,0),(1,1)) + enddef; + + %%% This macro returns a path tangent to square root @# + %%% at point (x, f(x)) covering the interval [x+xm, x+xp]. + vardef @#.getTangent(expr x, epsl, epsr)= + save m, y; + numeric m, y; + if (x >= -@#.v): + m := @#.u/(2sqrt(x + @#.v)); + y := @#.eval(x); + (x+epsl, y + m*epsl) -- (x+epsr, y + m*epsr) + else: + message "Package bpolynomial warning: Cannot draw tangent at x = " & decimal x & "!"; + (-@#.v, @#.w)--(-@#.v, @#.w+1) + fi + enddef; + +enddef; + + +%%% This macro defines a new cubic root. +%%% Arguments are a suffix macro and the parameters +%%% of the function u*(x + v)^(1/3) + w. +vardef newBCubRoot@#(expr cu,cv,cw)= +numeric @#.a, @#.b, @#.c, @#.d; +numeric @#.u, @#.v, @#.w; + %%% Save parameters for later access. + %%% Variable @#.v refers to parameters of cubic root @#. + %%% Variables @#.a to @#.d store the coefficients of the + %%% corresponding polynomial. + @#.u := cu; + @#.v := cv; + @#.w := cw; + @#.a := 1/cu/cu/cu; + @#.b := -3cw/cu/cu/cu; + @#.c := 3(cw/cu)*(cw/cu)/cu; + @#.d := (cw/cu)*(cw/cu)*(cw/cu)-cv; + + %%% This macro returns values of polynomial @#. + %%% Argument is an x value. + vardef @#.eval(expr x)= + if (x >= -@#.v): + @#.u*((x+@#.v)**(1/3)) + @#.w + else: + message "Package bpolynomial warning: Cannot evaluate function at x = " & decimal x & "!"; + @#.w + fi + enddef; + + %%% This macro returns the path corresponding to cubic root @# + %%% on the intervall [yl, yr]. The path of the corresponing + %%% polynomial is computed and then transformed. + vardef @#.getPath(expr xl,xr)= + save yl, yr; + numeric yl, yr; + if (xl >= -@#.v): + yl := xl; + else: + message "Package bpolynomial warning: Replacing lower range boundary " & decimal xl & " by " & decimal -@#.v & "!"; + yl := -@#.v; + fi + if (xr >= -@#.v): + yr := xr; + else: + message "Package bpolynomial warning: Replacing upper range boundary " & decimal xr & " by " & decimal -@#.v & "!"; + yr := -@#.v; + fi + bpolynomial__getBezierFromPolynomial(@#.a, @#.b, @#.c, @#.d, (@#.eval(yl), yl), (@#.eval(yr), yr)) + reflectedabout ((0,0),(1,1)) + enddef; + + %%% This macro returns a path tangent to cubic root @# + %%% at point (x, f(x)) covering the interval [x+xm, x+xp]. + vardef @#.getTangent(expr x, epsl, epsr)= + save m, y; + numeric m, y; + if (x >= -@#.v): + m := @#.u/3/((x + @#.v)**(2/3)); + y := @#.eval(x); + (x+epsl, y + m*epsl) -- (x+epsr, y + m*epsr) + else: + message "Package bpolynomial warning: Cannot draw tangent at x = " & decimal x & "!"; + (-@#.v, @#.w)--(-@#.v, @#.w+1) + fi + enddef; + +enddef; |