diff options
author | Karl Berry <karl@freefriends.org> | 2006-07-05 23:46:50 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-07-05 23:46:50 +0000 |
commit | c019dd2804c957c3982731903682dc99178207e4 (patch) | |
tree | a10e115e97978170c8082bae0fc0b5a95846a68c /Master/texmf-dist/dvips/pst-func | |
parent | 1701810d2d2c62e39c9cb8dc3178f5aa1659c607 (diff) |
pst-func 0.45
git-svn-id: svn://tug.org/texlive/trunk@1780 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/dvips/pst-func')
-rw-r--r-- | Master/texmf-dist/dvips/pst-func/pst-func.pro | 221 |
1 files changed, 216 insertions, 5 deletions
diff --git a/Master/texmf-dist/dvips/pst-func/pst-func.pro b/Master/texmf-dist/dvips/pst-func/pst-func.pro index 580e702c837..56b43d8c605 100644 --- a/Master/texmf-dist/dvips/pst-func/pst-func.pro +++ b/Master/texmf-dist/dvips/pst-func/pst-func.pro @@ -3,9 +3,9 @@ %% %% IMPORTANT NOTICE: %% -%% Package `pst-func.tex' +%% Package `pst-func' %% -%% Herbert Voss <voss _at_ perce.de> +%% Herbert Voss <voss _at_ pstricks.de> %% %% This program can be redistributed and/or modified under the terms %% of the LaTeX Project Public License Distributed from CTAN archives @@ -15,13 +15,70 @@ %% `pst-func' is a PSTricks package to plot special math functions %% %% -%% version 0.02 / 2004-11-08 Herbert Voss <voss _at_ pstricks.de> +%% version 0.06 / 2006-04-16 Herbert Voss <voss _at_ pstricks.de> % -/tx@FuncDict 40 dict def +/tx@FuncDict 100 dict def tx@FuncDict begin % /eps1 1.0e-05 def /eps2 1.0e-04 def +/eps8 1.0e-08 def +/Pi2 1.57079632679489661925640 def +/CEuler 0.5772156649 def % Euler-Mascheroni constant +% +/factorial { % n on stack, returns n! + dup 0 eq { 1 }{ + dup 1 gt { dup 1 sub factorial mul } if } + ifelse } def +% +/MoverN { % m n on stack, returns the binomial coefficient m over n + /n exch def /m exch def + n 0 eq { 1 }{ + m n eq { 1 }{ + m factorial n factorial m n sub factorial mul div } ifelse } ifelse +} def +% +/Si { % integral sin from 0 to x (arg on stack) + /arg exch def + /Sum arg def + /sign -1 def + /index 3 def + { + arg index exp index div index factorial div sign mul + dup abs eps8 lt { pop exit } if + Sum add /Sum exch def + /sign sign neg def + /index index 2 add def + } loop + Sum +} def +/si { % integral sin from x to infty -> si(x)=Si(x)-pi/2 + Si Pi2 sub +} def +/Ci { % integral cosin from x to infty (arg on stack) + abs /arg exch def + arg 0 eq { 0 } { + /argExp 1 def + /fact 1 def + /Sum CEuler arg ln add def + /sign -1 def + /index 2 def + { + /argExp argExp arg arg mul mul def + /fact fact index 1 sub index mul mul def + argExp index div fact div sign mul + dup abs exch Sum add /Sum exch def + eps8 lt { exit } if + /sign sign neg def + /index index 2 add def + } loop + Sum + } ifelse +} def +/ci { % integral cosin from x to infty -> ci(x)=-Ci(x)+ln(x)+CEuler + dup Ci neg exch abs ln add CEuler add +} def +% /MaxIter 255 def /func { coeff Derivation FuncValue } def /func' { coeff Derivation 1 add FuncValue } def @@ -54,7 +111,7 @@ tx@FuncDict begin y0 F sub /Phi exch def Phi func /F2 exch def F2 abs eps2 le { exit }{ - Phi y0 sub dup mul Phi F2 sub 2 Phi mul sub y0 add div /Diff exch def + Phi y0 sub dup mul Phi F2 sub 2 Phi mul sub y0 add Div /Diff exch def y0 Diff sub /y0 exch def Diff abs eps1 le { exit } if } ifelse @@ -113,5 +170,159 @@ tx@FuncDict begin } for } def % +/Simpson { % on stack must be a b M +% /SFunc must be defined + /M ED /b ED /a ED + /h b a sub M 2 mul div def + /s1 0 def + /s2 0 def + 1 1 M { + /k exch def + /x k 2 mul 1 sub h mul a add def + /s1 s1 x SFunc add def + } for + 1 1 M 1 sub { + /k exch def + /x k 2 mul h mul a add def + /s2 s2 x SFunc add def + } for + /I a SFunc b SFunc add s1 4 mul add s2 2 mul add 3 div h mul def +} def + +% +% subroutines for complex numbers, given as an array [a b] +% which is a+bi = Real+i Imag +% +/cxadd { % [a1 b1] [a2 b2] = [a1+a2 b1+b2] + dup 0 get % [a1 b1] [a2 b2] a2 + 3 -1 roll % [a2 b2] a2 [a1 b1] + dup 0 get % [a2 b2] a2 [a1 b1] a1 + 3 -1 roll % [a2 b2] [a1 b1] a1 a2 + add % [a2 b2] [a1 b1] a1+a2 + 3 1 roll % a1+a2 [a2 b2] [a1 b1] + 1 get % a1+a2 [a2 b2] b1 + exch 1 get % a1+a2 b1 b2 + add 2 array astore +} def +% +/cxneg { % [a b] + dup 1 get % [a b] b + exch 0 get % b a + neg exch neg % -a -b + 2 array astore +} def +% +/cxsub { cxneg cxadd } def % same as negative addition +% +% [a1 b1][a2 b2] = [a1a2-b1b2 a1b2+b1a2] = [a3 b3] +/cxmul { % [a1 b1] [a2 b2] + dup 0 get % [a1 b1] [a2 b2] a2 + exch 1 get % [a1 b1] a2 b2 + 3 -1 roll % a2 b2 [a1 b1] + dup 0 get % a2 b2 [a1 b1] a1 + exch 1 get % a2 b2 a1 b1 + dup % a2 b2 a1 b1 b1 + 5 -1 roll dup % b2 a1 b1 b1 a2 a2 + 3 1 roll mul % b2 a1 b1 a2 b1a2 + 5 -2 roll dup % b1 a2 b1a2 b2 a1 a1 + 3 -1 roll dup % b1 a2 b1a2 a1 a1 b2 b2 + 3 1 roll mul % b1 a2 b1a2 a1 b2 a1b2 + 4 -1 roll add % b1 a2 a1 b2 b3 + 4 2 roll mul % b1 b2 b3 a1a2 + 4 2 roll mul sub % b3 a3 + exch 2 array astore +} def +% +% [a b]^2 = [a^2-b^2 2ab] = [a2 b2] +/cxsqr { % [a b] square root + dup 0 get exch 1 get % a b + dup dup mul % a b b^2 + 3 -1 roll % b b^2 a + dup dup mul % b b^2 a a^2 + 3 -1 roll sub % b a a2 + 3 1 roll mul 2 mul % a2 b2 + 2 array astore +} def +% +/cxsqrt { % [a b] +% dup cxnorm sqrt /r exch def +% cxarg 2 div RadtoDeg dup cos r mul exch sin r mul cxmake2 + cxlog % log[a b] + 2 cxrdiv % log[a b]/2 + aload pop exch % b a + 2.781 exch exp % b exp(a) + exch cxconv exch % [Re +iIm] exp(a) + cxrmul % +} def +% +/cxarg { % [a b] + aload pop % a b + exch atan % arctan b/a + DegtoRad % arg(z)=atan(b/a) +} def +% +% log[a b] = [a^2-b^2 2ab] = [a2 b2] +/cxlog { % [a b] + dup % [a b][a b] + cxnorm % [a b] |z| + log % [a b] log|z| + exch % log|z|[a b] + cxarg % log|z| Theta + cxmake2 % [log|z| Theta] +} def +% +% square of magnitude of complex number +/cxnorm2 { % [a b] + dup 0 get exch 1 get % a b + dup mul % a b^2 + exch dup mul add % a^2+b^2 +} def % +/cxnorm { % [a b] + cxnorm2 sqrt +} def +% +/cxconj { % conjugent complex + dup 0 get exch 1 get % a b + neg 2 array astore % [a -b] +} def +% +/cxre { 0 get } def % real value +/cxim { 1 get } def % imag value +% +% 1/[a b] = ([a -b]/(a^2+b^2) +/cxrecip { % [a b] + dup cxnorm2 exch % n2 [a b] + dup 0 get exch 1 get % n2 a b + 3 -1 roll % a b n2 + dup % a b n2 n2 + 4 -1 roll exch div % b n2 a/n2 + 3 1 roll div % a/n2 b/n2 + neg 2 array astore +} def +% +/cxmake1 { 0 2 array astore } def % make a complex number, real given +/cxmake2 { 2 array astore } def % dito, both given +% +/cxdiv { cxrecip cxmul } def +% +% multiplikation by a real number +/cxrmul { % [a b] r + exch aload pop % r a b + 3 -1 roll dup % a b r r + 3 1 roll mul % a r b*r + 3 1 roll mul % b*r a*r + exch 2 array astore % [a*r b*r] +} def +% +% division by a real number +/cxrdiv { % [a b] r + 1 exch div % [a b] 1/r + cxrmul +} def +% +% exp(i theta) = cos(theta)+i sin(theta) polar<->cartesian +/cxconv { % theta + RadtoDeg dup sin exch cos cxmake2 +} def end |