summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2018-09-17 21:07:24 +0000
committerKarl Berry <karl@freefriends.org>2018-09-17 21:07:24 +0000
commit3b85244437b017368c0c619981139f3ad30322e4 (patch)
tree4497c8a60725dc1c279bd8358abb86148d393c86 /Master/texmf-dist/doc
parentab5a71f0a9e93dbd2834b56de9cca430bbe082f5 (diff)
firamath-otf (17sep18)
git-svn-id: svn://tug.org/texlive/trunk@48687 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/fonts/firamath-otf/Changes1
-rw-r--r--Master/texmf-dist/doc/fonts/firamath-otf/README.md11
-rw-r--r--Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.pdfbin0 -> 120864 bytes
-rw-r--r--Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.tex948
4 files changed, 960 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/firamath-otf/Changes b/Master/texmf-dist/doc/fonts/firamath-otf/Changes
new file mode 100644
index 00000000000..e2c21702711
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/firamath-otf/Changes
@@ -0,0 +1 @@
+0.01 2018-09-17 - first CTAN version
diff --git a/Master/texmf-dist/doc/fonts/firamath-otf/README.md b/Master/texmf-dist/doc/fonts/firamath-otf/README.md
new file mode 100644
index 00000000000..b9d508aff57
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/firamath-otf/README.md
@@ -0,0 +1,11 @@
+# README #
+Package firamath-otf supports the free math font for Fira Sans
+
+% This file is distributed under the terms of the LaTeX Project Public
+% License from CTAN archives in directory macros/latex/base/lppl.txt.
+% Either version 1.3 or, at your option, any later version.
+%
+%
+% Copyright 2018 Herbert Voss hvoss@tug.org
+%
+
diff --git a/Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.pdf b/Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.pdf
new file mode 100644
index 00000000000..5d510dd4db6
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.tex b/Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.tex
new file mode 100644
index 00000000000..7c80b1aac0a
--- /dev/null
+++ b/Master/texmf-dist/doc/fonts/firamath-otf/firamath-otf-doc.tex
@@ -0,0 +1,948 @@
+%% $Id: firamath-otf-doc.tex 809 2018-09-17 06:58:43Z herbert $
+\listfiles
+\documentclass[english,log-declarations=false]{article}
+\usepackage{amsmath,esvect}
+\usepackage{FiraSans}
+\usepackage{FiraMono}
+\usepackage[fakebold]{firamath-otf}
+\usepackage{babel}
+\usepackage{booktabs}
+\usepackage{xltabular}
+\usepackage{listings}
+\usepackage{xspace}
+\usepackage{ctexhook}
+\usepackage{physics}
+\usepackage{xcolor,url}
+\usepackage{varioref,multido}
+\newcommand\Macro[1]{\texttt{\textbackslash#1}}
+\usepackage{dtk-extern}
+
+\newenvironment{demoquote}
+ {\begingroup
+ \setlength{\topsep}{0pt}
+ \setlength{\partopsep}{0pt}
+ \list{}{\rightmargin\leftmargin}%
+ \item\relax}
+ {\endlist\endgroup}
+
+\def\testfeature#1#2#3{{\fontspec[RawFeature={+#2}]{#1}#3\relax}}
+
+
+\makeatletter
+\def\e@alloc#1#2#3#4#5#6{%
+ \global\advance#3\@ne
+ \e@ch@ck{#3}{#4}{#5}#1%
+ \allocationnumber#3\relax
+ \global#2#6\allocationnumber
+ }
+\def\@pr@videpackage[#1]{%
+ \expandafter\xdef\csname ver@\@currname.\@currext\endcsname{#1}}
+\def\@providesfile#1[#2]{%
+ \expandafter\xdef\csname ver@#1\endcsname{#2}%
+ \endgroup}
+\def\@latex@info#1{}
+\def\@font@info#1{}
+\def\ClassInfo#1#2{}
+\def\PackageInfo#1#2{}
+
+\ExplSyntaxOn
+\cs_new:Npn \__fonttest_close_msg:nn #1#2
+ { \msg_redirect_name:nnn {#1} {#2} { none } }
+\__fonttest_close_msg:nn { LaTeX / xparse } { not-single-char }
+% \__fonttest_close_msg:nn { fontspec } { defining-font }
+% \__fonttest_close_msg:nn { fontspec } { no-scripts }
+\__fonttest_close_msg:nn { unicode-math } { patch-macro }
+\ctex_at_end_package:nn { geometry } { \def\Gm@showparams#1{} }
+
+\unimathsetup
+ {
+ math-style = ISO,
+ bold-style = ISO,
+ mathrm = sym
+ }
+
+\str_new:N \l_fonttest_font_str
+\str_set:Nn \l_fonttest_font_str { fira } % Can be either fira/xits/lm
+\cs_set:Npn \WIEGHT { Regular }
+\cs_set:Npn \SSTY { }
+%%%%%%%%%%%%%%%%%%%%
+
+\str_if_eq:VnTF \l_fonttest_font_str { fira }
+ {
+ \cs_new:Npn \__fonttest_set_fira_math:n #1
+ { \setmathfont { FiraMath-\WIEGHT.otf } [ BoldFont = *, #1 ] }
+ \cs_if_exist:NTF \SSTY
+ {
+ \__fonttest_set_fira_math:n { }
+ \__fonttest_set_fira_math:n { version = pnum, Numbers = Proportional }
+ \__fonttest_set_fira_math:n { version = upintegral, StylisticSet = 1 }
+ \__fonttest_set_fira_math:n { version = hbar, StylisticSet = 2 }
+ \__fonttest_set_fira_math:n { version = complement, StylisticSet = 3 }
+ }
+ {
+ \__fonttest_set_fira_math:n { }
+ \__fonttest_set_fira_math:n { version = pnum }
+ \__fonttest_set_fira_math:n { version = upintegral }
+ \__fonttest_set_fira_math:n { version = hbar }
+ \__fonttest_set_fira_math:n { version = complement }
+ }
+ \newfontface\firatext{FiraMath-\WIEGHT.otf}[BoldFont = *]
+ }
+ {
+ \str_if_eq:VnTF \l_fonttest_font_str { xits }
+ {
+ \setmathfont { XITS~ Math }
+ \setmathfont { XITS~ Math } [ BoldFont = *, version = pnum ]
+ \setmathfont { XITS~ Math } [ BoldFont = *, StylisticSet = 8, version = upintegral ]
+ \setmathfont { XITS~ Math } [ BoldFont = *, StylisticSet = 10, version = hbar ]
+ \setmathfont { XITS~ Math } [ BoldFont = *, version = complement ]
+ \newfontface \firatext { XITS~ Math } [ BoldFont = * ]
+ }
+ {
+ \str_if_eq:VnT \l_fonttest_font_str { lm }
+ {
+ \setmathfont { Latin~ Modern~ Math }
+ \setmathfont { Latin~ Modern~ Math } [ BoldFont = *, version = pnum ]
+ \setmathfont { Latin~ Modern~ Math } [ BoldFont = *, version = upintegral ]
+ \setmathfont { Latin~ Modern~ Math } [ BoldFont = *, version = hbar ]
+ \setmathfont { Latin~ Modern~ Math } [ BoldFont = *, version = complement ]
+ \newfontface \firatext { Latin~ Modern~ Math } [ BoldFont = * ]
+ }
+ }
+ }
+
+\cs_set:Npn \LatinAlphabets { ABCDEFGHIJKLMNOPQRSTUVWXYZ }
+\cs_set:Npn \latinAlphabets { abcdefghijklmnopqrstuvwxyz }
+
+% ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ
+% αβγδεζηθικλμνξοπρστυφχψω
+\cs_set:Npn \GreekAlphabets
+ {
+ \Alpha \Beta \Gamma \Delta \Epsilon
+ \Zeta \Eta \Theta \varTheta \Iota
+ \Kappa \Lambda \Mu \Nu \Xi
+ \Omicron \Pi \Rho \Sigma \Tau
+ \Upsilon \Phi \Chi \Psi \Omega
+ }
+\cs_set:Npn \greekAlphabets
+ {
+ \alpha \beta \gamma \delta \epsilon
+ \varepsilon \zeta \eta \theta \vartheta
+ \iota \kappa \varkappa \lambda \mu
+ \nu \xi \omicron \pi \rho
+ \varrho \sigma \varsigma \tau \upsilon
+ \phi \varphi \chi \psi \omega
+ }
+
+% More characters.
+\AtBeginDocument{
+ \__um_sym:nnn { "0323 } { \underdot } { \mathbotaccent }
+ \__um_sym:nnn { "0324 } { \twounderdot } { \mathbotaccent }
+ \__um_sym:nnn { "20D3 } { \shortvertoverlay } { \mathaccent }
+ \__um_sym:nnn { "20D6 } { \cev } { \mathaccent }
+ \__um_sym:nnn { "20E1 } { \leftrightarrowaccent } { \mathaccent }
+ \__um_sym:nnn { "20EC } { \underrightharpoon } { \mathbotaccent }
+ \__um_sym:nnn { "20ED } { \underleftharpoon } { \mathbotaccent }
+ \__um_sym:nnn { "20EE } { \underleftarrow } { \mathbotaccent }
+ \__um_sym:nnn { "20EF } { \underrightarrow } { \mathbotaccent }
+}
+
+\tl_const:Nn \c__fonttest_accents_tl
+ {
+ % accent
+ \acute \grave \check \hat \bar \breve
+ % dot
+ \mathring \dot \ddot \dddot \ddddot
+ % arrow
+ \cev \vec \leftrightarrowaccent \leftharpoonaccent \rightharpoonaccent
+ % other
+ \tilde \asteraccent \vertoverlay \shortvertoverlay \annuity
+ % long accent
+ \widehat \widetilde \widebridgeabove
+ % under
+ \underdot \twounderdot \threeunderdot \underleftharpoon \underrightharpoon
+ \underleftarrow \underrightarrow
+ }
+
+\cs_set:Npn \MatrixII
+ {
+ a & b & c & d \\
+ x & y & z & w
+ }
+\cs_set:Npn \MatrixIII
+ {
+ a & b & c & d \\
+ k & l & m & n \\
+ x & y & z & w
+ }
+\cs_set:Npn \MatrixIV
+ {
+ a & b & c & d \\
+ k & l & m & n \\
+ p & q & s & t \\
+ x & y & z & w
+ }
+
+\NewDocumentCommand \TopAccentMap { m m }
+ { \fonttest_top_accent_map:Nx #1 {#2} }
+\cs_new:Npn \fonttest_top_accent_map:Nn #1#2
+ { \tl_map_inline:nn {#2} { \[ \__fonttest_top_accent:n { #1 {##1} } \] } }
+\cs_generate_variant:Nn \fonttest_top_accent_map:Nn { Nx }
+\cs_new:Npn \__fonttest_top_accent:n #1
+ { \tl_map_inline:Nn \c__fonttest_accents_tl { ##1 {#1} \, } }
+
+\cs_set:Npn \OverUnderline #1
+ {
+ #1{} \quad #1{b} \quad #1{ab} \quad #1{abc} \quad #1{abcd} \quad #1{abcde} \quad #1{a+b+c}
+ }
+\cs_set:Npn \ListText
+ { x\sb{1}, \, x\sb{2}, \, \ldots, \, x\sb{n} }
+\cs_set:Npn \LigatureText
+ { ff \quad fi \quad fl \quad ffi \quad ffl }
+
+\NewDocumentCommand \PrintRadical { m m m }
+ { \fonttest_print_root:nnn {#1} {#2} {#3} }
+\cs_new_protected:Npn \fonttest_print_root:nnn #1#2#3
+ {
+ \tl_set:Nn \l__fonttest_root_tl {#2}
+ \int_step_inline:nn {#3}
+ {
+ \tl_set:Nx \l__fonttest_root_tl
+ { \exp_not:n {#1} { \exp_not:V \l__fonttest_root_tl } }
+ }
+ \tl_use:N \l__fonttest_root_tl
+ }
+\tl_new:N \l__fonttest_root_tl
+
+\NewDocumentCommand \PrintDelimiters { m m }
+ { \fonttest_print_delimiters:nnnnn {#1} {#2} { 9 } { 1.8 } { 40 } }
+\cs_new_protected:Npn \fonttest_print_delimiters:nnnnn #1#2#3#4#5
+ {
+ \cs_set:Npn \__fonttest_left_delimiter:n ##1
+ { \left #1 \vbox_to_ht:nn { ##1 pt } { } }
+ \cs_set:Npn \__fonttest_right_delimiter:n ##1
+ { \vbox_to_ht:nn { ##1 pt } { } \right #2 }
+ \tl_set:Nx \l__fonttest_delimiter_tl
+ {
+ \fp_step_function:nnnN {#5} { - #4 } {#3} \__fonttest_left_delimiter:n
+ #1
+ }
+ \tl_set:Nx \l__fonttest_delimiter_tl
+ {
+ \l__fonttest_delimiter_tl
+ #2
+ \fp_step_function:nnnN {#3} {#4} {#5} \__fonttest_right_delimiter:n
+ }
+ \tl_use:N \l__fonttest_delimiter_tl
+ }
+\tl_new:N \l__fonttest_delimiter_tl
+
+\ExplSyntaxOff
+
+
+
+\renewcommand\familydefault{\sfdefault}
+
+
+
+\title{OpenType math font Fira}
+\author{Herbert Voß}
+\usepackage{parskip}
+\parindent=0pt
+
+
+\begin{document}
+\maketitle
+
+\tableofcontents
+
+
+\begin{abstract}
+The math font FIRA is derived from the Fira Sans and Fira Go sans serif.
+There are several math versions available (\url{https://github.com/Stone-Zeng/FiraMath/}) but
+only the regular version has from todays update all symbols.
+\end{abstract}
+
+
+\section{Usage}
+
+\begin{verbatim}
+\usepackage[<options>]{firamath-otf}
+\end{verbatim}
+
+Optional arguments are
+
+\begin{description}
+\item[\texttt{fakebold}] Use faked bold symbols
+\item[\texttt{usefilenames}] Use filenames for the fonts instead of the symbolic font names
+\end{description}
+
+
+The package itself loads by default
+
+\begin{verbatim}
+\RequirePackage{ifxetex,ifluatex,xkeyval,textcomp}
+\RequirePackage{unicode-math}
+\end{verbatim}
+
+
+
+
+\section{The default regular weight}
+
+\def\Q#1#2{\frac{\uppartial #1}{\uppartial #2}}
+\def\half{\frac{1}{2}}
+\def\vvec#1{\vv{#1}}
+\newcommand\uppartial{\symup{\partial}}
+\newcommand*\diff{\mathop{}\!\symup{d}}
+\newcommand*\<{\negthickspace}
+\newcommand*\TT{{\setBold\symup{T}\unsetBold}}
+\def\DD{{\setBold\symup{D}\unsetBold}}
+
+
+\subsection{Version normal}
+
+\begin{align}
+\begin{aligned}
+ \Q{\varrho}{t}+\symup{div}(\varrho\vec{v}) &= 0 \\
+ \varrho\Q{\vec{v}}{t}+(\varrho\vec{v}\cdot\nabla)\vec{v} &= \vec{f}_0+\symup{div}\TT=\vec{f}_0
+ -\symup{grad}p+\symup{div}\TT' \\
+ \varrho T\frac{\diff s}{\diff t} &= \varrho\frac{\diff e}{\diff t}
+ -\frac{p}{\varrho}\frac{\diff\varrho}{\diff t}=-\symup{div}\vec{q}+\TT':\DD
+\end{aligned}
+\end{align}
+
+\begin{align}
+ \Q{}{t}\iiint\<\varrho\diff^3V+\oiint\varrho(\vec{v}\cdot\vec{v}ec{n})\diff^2A &= 0\\
+ \Q{}{t}\iiint\<\varrho\vec{v}\diff^3V+\oiint\varrho\vec{v}(\vec{v}\cdot\vec{n}\,)\diff^2A &=
+ \iiint\<f_0\diff^3V+\oiint\vec{n}\cdot\TT\diff^2A \\
+ \Q{}{t}\iiint\<\left(\half v^2+e\right)\varrho\diff^3V+\oiint\left(\half v^2+e\right)
+ \varrho\left(\vec{v}\cdot\vec{n}\,\right)\diff^2A & =\\
+ \multispan2{\hfill${\displaystyle-\oiint\left(\vec{q}\cdot\vec{v}ec{n}\right)\diff^2A+
+ \iiint\<\left(\vec{v}\cdot\vec{f}_0\right)\diff^3V+\oiint\left(\vec{v}
+ \cdot\vec{n}~\TT\right)\diff^2A}$}.\nonumber
+\end{align}
+
+
+\subsection{Version bold}
+
+The bold characters are created with the optional argument \texttt{fakebold} which loads the
+package \texttt{xfakebold} which writes some information into the created PDF to get bold
+characters. For more informations see the documentation of \texttt{xfakebold}.
+
+\setBold
+\begin{align}
+ \Q{}{t}\iiint\<\varrho\diff^3V+\oiint\varrho(\vec{v}\cdot\vec{v}ec{n})\diff^2A &= 0\\
+ \Q{}{t}\iiint\<\varrho\vec{v}\diff^3V+\oiint\varrho\vec{v}(\vec{v}\cdot\vec{n}\,)\diff^2A &=
+ \iiint\<f_0\diff^3V+\oiint\vec{n}\cdot\symup{T}\diff^2A \\
+ \Q{}{t}\iiint\<\left(\half v^2+e\right)\varrho\diff^3V+\oiint\left(\half v^2+e\right)
+ \varrho\left(\vec{v}\cdot\vec{n}\,\right)\diff^2A & =\\
+ \multispan2{\hfill${\displaystyle-\oiint\left(\vec{q}\cdot\vec{v}ec{n}\right)\diff^2A+
+ \iiint\<\left(\vec{v}\cdot\vec{f}_0\right)\diff^3V+\oiint\left(\vec{v}
+ \cdot\vec{n}~\symup{T}\right)\diff^2A}$}.\nonumber
+\end{align}
+\unsetBold
+
+
+\iffalse
+\section{The thin weight}
+
+\setsansfont{FiraSans-Thin.otf}[BoldFont=FiraSans-SemiBold.otf]
+\setmathfont{FiraMath-Thin.otf}
+
+\subsection{Version normal}
+
+\begin{align}
+\begin{aligned}
+ \Q{\varrho}{t}+\symup{div}(\varrho\vec{v}) &= 0 \\
+ \varrho\Q{\vec{v}}{t}+(\varrho\vec{v}\cdot\nabla)\vec{v} &= \vec{f}_0+\symup{div}\TT=\vec{f}_0
+ -\symup{grad}p+\symup{div}\TT' \\
+ \varrho T\frac{\diff s}{\diff t} &= \varrho\frac{\diff e}{\diff t}
+ -\frac{p}{\varrho}\frac{\diff\varrho}{\diff t}=-\symup{div}\vec{q}+\TT':\DD
+\end{aligned}
+\end{align}
+
+\begin{align}
+ \Q{}{t}\iiint\<\varrho\diff^3V+\oiint\varrho(\vec{v}\cdot\vec{v}ec{n})\diff^2A &= 0\\
+ \Q{}{t}\iiint\<\varrho\vec{v}\diff^3V+\oiint\varrho\vec{v}(\vec{v}\cdot\vec{n}\,)\diff^2A &=
+ \iiint\<f_0\diff^3V+\oiint\vec{n}\cdot\TT\diff^2A \\
+ \Q{}{t}\iiint\<\left(\half v^2+e\right)\varrho\diff^3V+\oiint\left(\half v^2+e\right)
+ \varrho\left(\vec{v}\cdot\vec{n}\,\right)\diff^2A & =\\
+ \multispan2{\hfill${\displaystyle-\oiint\left(\vec{q}\cdot\vec{v}ec{n}\right)\diff^2A+
+ \iiint\<\left(\vec{v}\cdot\vec{f}_0\right)\diff^3V+\oiint\left(\vec{v}
+ \cdot\vec{n}~\TT\right)\diff^2A}$}.\nonumber
+\end{align}
+
+\subsection{Version bold}
+
+
+
+\setBold
+\begin{align}
+ \Q{}{t}\iiint\<\varrho\diff^3V+\oiint\varrho(\vec{v}\cdot\vec{v}ec{n})\diff^2A &= 0\\
+ \Q{}{t}\iiint\<\varrho\vec{v}\diff^3V+\oiint\varrho\vec{v}(\vec{v}\cdot\vec{n}\,)\diff^2A &=
+ \iiint\<f_0\diff^3V+\oiint\vec{n}\cdot\symup{T}\diff^2A \\
+ \Q{}{t}\iiint\<\left(\half v^2+e\right)\varrho\diff^3V+\oiint\left(\half v^2+e\right)
+ \varrho\left(\vec{v}\cdot\vec{n}\,\right)\diff^2A & =\\
+ \multispan2{\hfill${\displaystyle-\oiint\left(\vec{q}\cdot\vec{v}ec{n}\right)\diff^2A+
+ \iiint\<\left(\vec{v}\cdot\vec{f}_0\right)\diff^3V+\oiint\left(\vec{v}
+ \cdot\vec{n}~\symup{T}\right)\diff^2A}$}.\nonumber
+\end{align}
+\unsetBold
+
+
+
+\section{The light weight}
+
+\setsansfont{FiraSans-Light.otf}[BoldFont=FiraSans-SemiBold.otf]
+\setmathfont{FiraMath-Light.otf}
+
+\subsection{Version normal}
+
+\begin{align}
+\begin{aligned}
+ \Q{\varrho}{t}+\symup{div}(\varrho\vec{v}) &= 0 \\
+ \varrho\Q{\vec{v}}{t}+(\varrho\vec{v}\cdot\nabla)\vec{v} &= \vec{f}_0+\symup{div}\TT=\vec{f}_0
+ -\symup{grad}p+\symup{div}\TT' \\
+ \varrho T\frac{\diff s}{\diff t} &= \varrho\frac{\diff e}{\diff t}
+ -\frac{p}{\varrho}\frac{\diff\varrho}{\diff t}=-\symup{div}\vec{q}+\TT':\DD
+\end{aligned}
+\end{align}
+
+\begin{align}
+ \Q{}{t}\iiint\<\varrho\diff^3V+\oiint\varrho(\vec{v}\cdot\vec{v}ec{n})\diff^2A &= 0\\
+ \Q{}{t}\iiint\<\varrho\vec{v}\diff^3V+\oiint\varrho\vec{v}(\vec{v}\cdot\vec{n}\,)\diff^2A &=
+ \iiint\<f_0\diff^3V+\oiint\vec{n}\cdot\TT\diff^2A \\
+ \Q{}{t}\iiint\<\left(\half v^2+e\right)\varrho\diff^3V+\oiint\left(\half v^2+e\right)
+ \varrho\left(\vec{v}\cdot\vec{n}\,\right)\diff^2A & =\\
+ \multispan2{\hfill${\displaystyle-\oiint\left(\vec{q}\cdot\vec{v}ec{n}\right)\diff^2A+
+ \iiint\<\left(\vec{v}\cdot\vec{f}_0\right)\diff^3V+\oiint\left(\vec{v}
+ \cdot\vec{n}~\TT\right)\diff^2A}$}.\nonumber
+\end{align}
+
+\subsection{Bold version with optional argument \texttt{fakebold}}
+
+
+\setBold
+\begin{align}
+ \Q{}{t}\iiint\<\varrho\diff^3V+\oiint\varrho(\vec{v}\cdot\vec{v}ec{n})\diff^2A &= 0\\
+ \Q{}{t}\iiint\<\varrho\vec{v}\diff^3V+\oiint\varrho\vec{v}(\vec{v}\cdot\vec{n}\,)\diff^2A &=
+ \iiint\<f_0\diff^3V+\oiint\vec{n}\cdot\symup{T}\diff^2A \\
+ \Q{}{t}\iiint\<\left(\half v^2+e\right)\varrho\diff^3V+\oiint\left(\half v^2+e\right)
+ \varrho\left(\vec{v}\cdot\vec{n}\,\right)\diff^2A & =\\
+ \multispan2{\hfill${\displaystyle-\oiint\left(\vec{q}\cdot\vec{v}ec{n}\right)\diff^2A+
+ \iiint\<\left(\vec{v}\cdot\vec{f}_0\right)\diff^3V+\oiint\left(\vec{v}
+ \cdot\vec{n}~\symup{T}\right)\diff^2A}$}.\nonumber
+\end{align}
+\unsetBold
+
+
+\fi
+
+
+\section{Examples}
+
+\subsection{Digits}
+
+\begin{itemize}
+ \item Digits:
+ \[ 0123456789 \]
+ \item Proportional digits:
+ \begingroup
+ \mathversion{pnum}
+ \[ 0123456789 \]
+ \endgroup
+ \item Bold digits (\verb|\symbf|):
+ \[ \symbf{0123456789} \]
+ \item Bold proportional digits (\verb|\symbf|):
+ \begingroup
+ \mathversion{pnum}
+ \[ \symbf{0123456789} \]
+ \endgroup
+\end{itemize}
+
+\subsection{Alphabets}
+
+\begin{itemize}
+ \item Latin letters (mathnormal):
+ \[ \LatinAlphabets \latinAlphabets \]
+
+ \item Latin upright letters (\verb|\symup|):
+ \[ \symup{\LatinAlphabets} \symup{\latinAlphabets}\]
+
+ \item Latin typewriter letters (\verb|\symtt|):
+ \[ \symtt{\LatinAlphabets} \symtt{\latinAlphabets} \]
+ \item Latin bold letters (\verb|\symbf|):
+ \[ \symbf{\LatinAlphabets} \symbf{\latinAlphabets}\]
+ \item Latin bold upright letters (\verb|\symbfup|):
+ \[ \symbfup{\LatinAlphabets} \symbfup{\latinAlphabets} \]
+ \item Latin blackboard letters (\verb|\symbb|):
+ \[ \symbb{\LatinAlphabets} \symbb{\latinAlphabets}\]
+ % \[ \symbb{The\ quick\ brown\ fox\ jumps\ over\ the\ lazy\ dog.} \]
+ % \[ \symbb{The\ Quick\ Brown\ Fox\ Jumps\ Over\ The\ Lazy\ Dog.} \]
+ % \[ \symbb{THE\ QUICK\ BROWN\ FOX\ JUMPS\ OVER\ THE\ LAZY\ DOG.} \]
+ \item Greek letters:
+ \[ \GreekAlphabets \greekAlphabets \]
+ \item Greek upright letters (\verb|\symup|):
+ \[ \symup{\GreekAlphabets} \symup{\greekAlphabets}\]
+ \item Greek bold letters (\verb|\symbf|):
+ \[ \symbf{\GreekAlphabets}\symbf{\greekAlphabets} \]
+ \item Greek bold upright letters (\verb|\symbfup|):
+ \[ \symbfup{\GreekAlphabets} \symbfup{\greekAlphabets} \]
+ \item Dotless letters:
+ \[ \imath + \jmath + \symup{\imath} + \symup{\jmath} \]
+ % \TopAccentMap{\symbf}{\imath\jmath}
+ % \TopAccentMap{\symup}{\imath\jmath}
+ \item Hebrew
+ \[ \aleph + \beth + \gimel + \daleth \]
+ \item Ligature (text):
+ {\firatext\LigatureText}
+ \item Non-ligature (math):
+ \[ \LigatureText + \symit{\LigatureText} + \symrm{\LigatureText} \]
+ \item Miscellaneous:
+ \[
+ \hslash
+ + \mbox{\mathversion{hbar}$\hslash$}
+ + \Angstrom
+ \]
+ \[ \forall x > x_0, \, \exists \delta, \delta \in \varnothing \]
+\end{itemize}
+
+\subsection{Equations test}
+
+\begin{itemize}
+ \item Basic:
+ \[ 1 + 2 - 3 \times 4 \div 5 \pm 6 \mp 7 \dotplus 8 = -a \oplus b \otimes c \]
+ \item Binary relations
+ \[ x + - \oplus \otimes \ominus \odot \oslash \cdot \cdotp \times \div y \]
+ \item Set theory
+ \[ A \cap B \cup C \sqcap D \sqcup R \cupleftarrow k \cupdot l \uplus m \]
+ \[
+ A \subset B \supset C \subseteq D \supseteq E \Subset F \Supset G
+ + A \sqsubset B \sqsupset C \sqsubseteq D \sqsupseteq E
+ \]
+ \[
+ \complement_U A \cup \complement_C C
+ \subset \mbox{\mathversion{complement}$\complement_U A \cup \complement_C C$}
+ \in R \smallin Q \ni Z \smallni N
+ \]
+ \item Superscript and subscript:
+ \[ 2^2 + 2^{2^2} + 2^{2^{2^2}} + {2^2}^2 + x_a + x_{a_i} + x_{a_{i_1}} \]
+ \item Arrows:
+ \[
+ x \leftarrow y \rightarrow z \leftrightarrow w
+ \nleftarrow y \nrightarrow z \nleftrightarrow w
+ \Leftarrow a = \Rightarrow b \Leftrightarrow c
+ \nLeftarrow a = \nRightarrow b \nLeftrightarrow c
+ \]
+ \[
+ x \uparrow y \downarrow z \updownarrow w
+ \Uparrow a \Downarrow b \Updownarrow c
+ \]
+ \[
+ p \nwarrow p \nearrow p \searrow p \swarrow p
+ \Nwarrow p \Nearrow p \Searrow p \Swarrow p
+ \]
+ \[
+ x \leftharpoonup x \leftharpoondown x
+ \upharpoonright x \upharpoonleft x
+ \rightharpoonup x \rightharpoondown x
+ \downharpoonright x \downharpoonleft x
+ \]
+ \[
+ A \longleftarrow B \longrightarrow C \longleftrightarrow D
+ \Longleftarrow E = \Longrightarrow F \Longleftrightarrow G
+ \]
+ \[
+ X \mapsfrom Y \mapsto Z \mapsup W \mapsdown P \Mapsfrom S \Mapsto R
+ \]
+ \[
+ M \longmapsfrom N \longmapsto O \Longmapsfrom K \Longmapsto L
+ \]
+ \[
+ f \rightleftarrows f \updownarrows f \leftrightarrows f \downuparrows
+ g \rightrightarrows g \upuparrows g \leftleftarrows g \downdownarrows
+ h \rightthreearrows h \leftthreearrows
+ p \leftrightharpoons p \rightleftharpoons
+ p \updownharpoonsleftright p \downupharpoonsleftright p
+ \]
+ \item Math accents:
+ \TopAccentMap{\symnormal}{x}
+ % \begin{itemize}
+ % \item Latin capital letters:
+ % \TopAccentMap{\symnormal}{\LatinAlphabets}
+ % \item Latin small letters:
+ % \TopAccentMap{\symnormal}{\latinAlphabets}
+ % \item Latin capital upright letters:
+ % \TopAccentMap{\symup}{\LatinAlphabets}
+ % \item Latin small upright letters:
+ % \TopAccentMap{\symup}{\latinAlphabets}
+ % \item Latin capital bold letters:
+ % \TopAccentMap{\symbf}{\LatinAlphabets}
+ % \item Latin small bold letters:
+ % \TopAccentMap{\symbf}{\latinAlphabets}
+ % \item Latin capital bold upright letters:
+ % \TopAccentMap{\symbfup}{\LatinAlphabets}
+ % \item Latin small bold upright letters:
+ % \TopAccentMap{\symbfup}{\latinAlphabets}
+ % \item Greek capital letters:
+ % \TopAccentMap{\symnormal}{\GreekAlphabets}
+ % \item Greek small letters:
+ % \TopAccentMap{\symnormal}{\greekAlphabets}
+ % \item Greek capital upright letters:
+ % \TopAccentMap{\symup}{\GreekAlphabets}
+ % \item Greek small upright letters:
+ % \TopAccentMap{\symup}{\greekAlphabets}
+ % \item Greek capital bold letters:
+ % \TopAccentMap{\symbf}{\GreekAlphabets}
+ % \item Greek small bold letters:
+ % \TopAccentMap{\symbf}{\greekAlphabets}
+ % \item Greek capital bold upright letters:
+ % \TopAccentMap{\symbfup}{\GreekAlphabets}
+ % \item Greek small bold upright letters:
+ % \TopAccentMap{\symbfup}{\greekAlphabets}
+ % \end{itemize}
+ \item Integral:
+ \[
+ \int_0^\pi \sin x \, \mathrm{d} x
+ = \int\limits_0^\pi \sin x \, \mathrm{d} x
+ = \cos 0 - \cos\pi + C
+ \]
+ \[
+ \int_{-\infty}^{+\infty} \mathrm{d} z
+ \iint_{-\infty}^{+\infty} \mathrm{d}^2 y
+ \iiint_{-\infty}^{+\infty} \mathrm{d}^3 x
+ \iiiint_{-\infty}^{+\infty} \mathrm{d}^4 p
+ \]
+ \[ \oint \dd{r} \oiint \dd{\theta} \oiiint \dd{\varphi}\]
+ \begingroup
+ \mathversion{upintegral}
+ \[
+ \int_0^\pi \sin x \, \mathrm{d} x
+ = \int\limits_0^\pi \sin x \, \mathrm{d} x
+ = \cos 0 - \cos\pi + C
+ \]
+ \[
+ \int_{-\infty}^{+\infty} \mathrm{d} z
+ \iint_{-\infty}^{+\infty} \mathrm{d}^2 y
+ \iiint_{-\infty}^{+\infty} \mathrm{d}^3 x
+ \iiiint_{-\infty}^{+\infty} \mathrm{d}^4 p
+ \]
+ \[ \oint \dd{r} \oiint \dd{\theta} \oiiint \dd{\varphi} \]
+ \endgroup
+ \item Huge operators:
+ \[
+ \int\limits_0^\infty \int_0^\infty
+ \sum_{i=1}^\infty \prod_{j=i}^\infty \coprod_{k=i}^\infty
+ \]
+ \[
+ \sum_{i=1}^\infty \frac{1}{x^i} = \frac{1}{1-x} \quad
+ \prod_{i=1}^\infty \frac{1}{x^i} = x^{-n(n+1)/2} \quad
+ \coprod_{i=i}^\infty \frac{1}{x^i} = ?
+ \]
+ \item Huge operators (inline):
+ $ \int\limits_0^\infty \int_0^\infty \iint \dd{x} \iiint \dd{y} \iiiint \dd{p}
+ \oint \dd{r} \oiint \dd{\theta} \oiiint \dd{\varphi}
+ \sum_{i=1}^\infty \prod_{j=i}^\infty \coprod_{i=i}^\infty $
+ \item Huge operators (inline):
+ \begingroup
+ \mathversion{upintegral}
+ $ \int\limits_0^\infty \int_0^\infty \iint \dd{x} \iiint \dd{y} \iiiint \dd{p}
+ \oint \dd{r} \oiint \dd{\theta} \oiiint \dd{\varphi}
+ \sum_{i=1}^\infty \prod_{j=i}^\infty \coprod_{i=i}^\infty $
+ \endgroup
+ \item Fraction:
+ \[ \frac{1}{2} + \frac{1}{\frac{2}{3}+4} + \frac{\frac{1}{2}+3}{4} \]
+ \item Fraction (inline):
+ $ \frac{1}{2} + \frac{1g}{2} + \frac{1}{\frac{2}{3}+4} + \frac{\frac{1}{2}+3}{4} $
+ \item Radical:
+ \[
+ \sqrt{2} + \sqrt{2^2} + \sqrt{1+\sqrt{2}} + \sqrt{1+\sqrt{1+\sqrt{3}}}
+ + \sqrt{\sqrt{\sqrt{\sqrt{2}}}} + \sqrt{\frac{1}{2}}
+ \]
+ \[
+ \cuberoot{2} + \cuberoot{2^2} + \cuberoot{1+\cuberoot{2}}
+ + \cuberoot{1+\cuberoot{1+\cuberoot{3}}}
+ + \cuberoot{\cuberoot{\cuberoot{\cuberoot{2}}}} + \cuberoot{\frac{1}{2}}
+ \]
+ \[
+ \fourthroot{2} + \fourthroot{2^2} + \fourthroot{1+\fourthroot{2}}
+ + \fourthroot{1+\fourthroot{1+\fourthroot{3}}}
+ + \fourthroot{\fourthroot{\fourthroot{\fourthroot{2}}}} + \fourthroot{\frac{1}{2}}
+ \]
+ \[
+ \sqrt[x]{y} + \sqrt[x]{\sqrt[x]{y}} + \sqrt[x]{\sqrt[x]{\sqrt[x]{y}}}
+ + \sqrt[x]{\frac{1}{2}}
+ + \sqrt { \begin{matrix} x \\ y \\ z \\ w \end{matrix} }
+ + \cuberoot { \begin{matrix} x \\ y \\ z \\ w \end{matrix} }
+ + \fourthroot{ \begin{matrix} x \\ y \\ z \\ w \end{matrix} }
+ + \sqrt[x] { \begin{matrix} x \\ y \\ z \\ w \end{matrix} }
+ + \sqrt { \begin{matrix} x \\ y \\ z \\ w \\ p \end{matrix} }
+ + \cuberoot { \begin{matrix} x \\ y \\ z \\ w \\ p \end{matrix} }
+ + \fourthroot{ \begin{matrix} x \\ y \\ z \\ w \\ p \end{matrix} }
+ + \sqrt[x] { \begin{matrix} x \\ y \\ z \\ w \\ p \end{matrix} }
+ \]
+ \[ \PrintRadical{\sqrt}{x}{25} \]
+ \[ \PrintRadical{\cuberoot}{x}{25} \]
+ \[ \PrintRadical{\fourthroot}{x}{25} \]
+ \[ \PrintRadical{\sqrt[x]}{x}{4} \]
+ \item Brackets:
+ \[ (a) (A) (O) (Y) (y) (f) (Q) (T) (Y) (j) (q) \]
+ % \[ \PrintDelimiters{(}{)} \]
+ % \[ \PrintDelimiters{\lgroup}{\rgroup} \]
+ % \[ \PrintDelimiters{[}{]} \]
+ % \[ \PrintDelimiters{\{}{\}} \]
+ % \[ \PrintDelimiters{\vert}{\vert} \]
+ % \[ \PrintDelimiters{\Vert}{\Vert} \]
+ % \[ \PrintDelimiters{\Vvert}{\Vvert} \]
+ % \[ \PrintDelimiters{\langle}{\rangle} \]
+ % \[ \PrintDelimiters{\lAngle}{\rAngle} \]
+ % \[ \PrintDelimiters{\lceil}{\rceil} \]
+ % \[ \PrintDelimiters{\lfloor}{\rfloor} \]
+ \[
+ \Biggl( \biggl( \Bigl( \bigl( (x) \bigr) \Bigr) \biggr) \Biggr) \quad
+ \Biggl\lgroup \biggl\lgroup \Bigl\lgroup \bigl\lgroup \lgroup x \rgroup
+ \bigr\rgroup \Bigr\rgroup \biggr\rgroup \Biggr\rgroup \quad
+ \Biggl[ \biggl[ \Bigl[ \bigl[ [x] \bigr] \Bigr] \biggr] \Biggr] \quad
+ \Biggl\{ \biggl\{ \Bigl\{ \bigl\{ \{x\} \bigr\} \Bigr\} \biggr\} \Biggr\}
+ \]
+ \[
+ \left( x \right) + \left( x^2 \right)
+ + \left( \frac{1}{2} \right) + \left( \frac{2^2}{3} \right)
+ + \left( \frac{\frac{1}{2}}{\frac{3}{4}} \right)
+ \]
+ \[
+ ( \vert ) [ \Vert ] \{ \Vvert \} \quad
+ \bigl( \bigm\vert \bigr) \bigl[ \bigm\Vert \bigr] \bigl\{ \bigm\Vvert \bigr\} \quad
+ \Bigl( \Bigm\vert \Bigr) \Bigl[ \Bigm\Vert \Bigr] \Bigl\{ \Bigm\Vvert \Bigr\} \quad
+ \biggl( \biggm\vert \biggr) \biggl[ \biggm\Vert \biggr] \biggl\{ \biggm\Vvert \biggr\} \quad
+ \Biggl( \Biggm\vert \Biggr) \Biggl[ \Biggm\Vert \Biggr] \Biggl\{ \Biggm\Vvert \Biggr\} \quad
+ \left( \vbox to 40pt {} \middle\vert \right)
+ \left[ \vbox to 40pt {} \middle\Vert \right]
+ \left\{ \vbox to 40pt {} \middle\Vvert \right\} \quad
+ \left( \vbox to 50pt {} \middle\vert \right)
+ \left[ \vbox to 50pt {} \middle\Vert \right]
+ \left\{ \vbox to 50pt {} \middle\Vvert \right\}
+ \]
+ \item More brackets:
+ \[
+ \lceil ceiling \rceil \quad
+ \lfloor floor \rfloor \quad
+ \lgroup group \rgroup
+ \]
+ \item Bra-kets:
+ \[
+ \bra{x} + \ket{x} + \ip{\alpha}{\beta} + \op{\alpha^2}{\beta^2}
+ + \bra{\frac{1}{2}} + \ket{\frac{1}{2}}
+ + \ip{\frac{1}{2}}{\frac{1}{2}} + \op{\frac{1}{2}}{\frac{1}{2}}
+ + \bra{\frac{a^2}{b^2}}
+ + \Biggl\vert \frac{\mathrm{e}^{x^2}}{\mathrm{e}^{y^2}} \Biggr\rangle
+ \]
+ \[
+ \langle \vert \rangle \quad
+ \bigl\langle \bigl\vert \bigl\rangle \quad
+ \Bigl\langle \Bigl\vert \Bigl\rangle \quad
+ \biggl\langle \biggl\vert \biggl\rangle \quad
+ \Biggl\langle \Biggl\vert \Biggl\rangle \qquad
+ \lAngle \vert \rAngle \quad
+ \bigl\lAngle \bigl\vert \bigl\rAngle \quad
+ \Bigl\lAngle \Bigl\vert \Bigl\rAngle \quad
+ \biggl\lAngle \biggl\vert \biggl\rAngle \quad
+ \Biggl\lAngle \Biggl\vert \Biggl\rAngle
+ \]
+ \item Matrices:
+ \[ \mqty(a & b \\ c & d) + \mqty*(a & b \\ c & d) \]
+ \[
+ \begin{pmatrix} \MatrixII \end{pmatrix} \quad
+ \begin{bmatrix} \MatrixII \end{bmatrix} \quad
+ \begin{Bmatrix} \MatrixII \end{Bmatrix} \quad
+ \begin{vmatrix} \MatrixII \end{vmatrix} \quad
+ \begin{Vmatrix} \MatrixII \end{Vmatrix}
+ \]
+ \[
+ \begin{pmatrix} \MatrixIII \end{pmatrix} \quad
+ \begin{bmatrix} \MatrixIII \end{bmatrix} \quad
+ \begin{Bmatrix} \MatrixIII \end{Bmatrix} \quad
+ \begin{vmatrix} \MatrixIII \end{vmatrix} \quad
+ \begin{Vmatrix} \MatrixIII \end{Vmatrix}
+ \]
+ \[
+ \begin{pmatrix} \MatrixIV \end{pmatrix} \quad
+ \begin{bmatrix} \MatrixIV \end{bmatrix} \quad
+ \begin{Bmatrix} \MatrixIV \end{Bmatrix} \quad
+ \begin{vmatrix} \MatrixIV \end{vmatrix} \quad
+ \begin{Vmatrix} \MatrixIV \end{Vmatrix}
+ \]
+ \item Nablas:
+ \[ \nabla x + \grad{f} + \divergence{\symbf{u}} + \curl{\symbf{v}} \]
+ \[
+ \nabla \quad \symbf{\nabla} \quad
+ \symit{\nabla} \quad \symbfit{\nabla}; \quad
+ \tilde{\nabla} \quad \tilde{\symbf{\nabla}} \quad
+ \tilde{\symit{\nabla}} \quad \tilde{\symbfit{\nabla}}
+ \]
+ \item Over-/underline and over-/underbraces
+ \[ \OverUnderline{\overline} \quad \overline {\ListText} \]
+ \[ \OverUnderline{\overparen} \quad \overparen {\ListText}^n \]
+ \[ \OverUnderline{\overbracket} \quad \overbracket {\ListText}^n \]
+ \[ \OverUnderline{\overbrace} \quad \overbrace {\ListText}^n \]
+ \[ \OverUnderline{\underline} \quad \underline {\ListText} \]
+ \[ \OverUnderline{\underparen} \quad \underparen {\ListText}_n \]
+ \[ \OverUnderline{\underbracket} \quad \underbracket {\ListText}_n \]
+ \[ \OverUnderline{\underbrace} \quad \underbrace {\ListText}_n \]
+ \item Primes
+ \[ x' x'' x''' x'''' x` x^{x'} x^{x''} x^{x'''} x^{x''''} x^{x`} \]
+ \[ x \prime x \dprime x \trprime x \qprime \]
+ \[ x^{\prime} x^{\dprime} x^{\trprime} x^{\qprime} \] % the same as ', '' or ''' => ssty
+ \begin{center}
+ \firatext x\symbol{"2032} x\symbol{"2033} x\symbol{"2034} x' x'' x'''
+ \end{center}
+\end{itemize}
+
+\verb|\lim_{x\to\infty} \frac{1}{x^2} = 0|
+\[ \lim_{x\to\infty} \frac{1}{x^2} = 0 \]
+
+\verb|\frac{\partial y(x)}{\partial x} = \frac{\mathrm{d}y(x)}{\mathrm{d}x} = y'(x)|
+\[ \frac{\partial y(x)}{\partial x} = \frac{\mathrm{d}y(x)}{\mathrm{d}x} = y'(x) \]
+
+
+
+\iffalse
+\subsection{More Samples}
+
+\def\ee{\mathrm{e}}
+\def\ii{\mathrm{i}}
+\def\bm{\symbf}
+\newcommand{\innerprod}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
+\newcommand{\brakket}[3]{\left\langle{#1}\middle\vert{#2}\middle\vert{#3}\right\rangle}
+% \newcommand{\ket}[1]{\left\lvert{#1}\right\rangle}
+% \newcommand{\bra}[1]{\left\langle{#1}\right\rvert}
+% \newcommand{\ip}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
+% \newcommand{\op}[2]{\left\lvert{#1}\middle\rangle\middle\langle{#2}\right\rvert}
+% \newcommand{\dd}{\,\mathrm{d}}
+% \newcommand{\norm}[1]{\left\lVert{#1}\right\rVert}
+
+\[ g^{mn} g_{mn} T^{i}_{jk} \]
+
+\[ x \to \infty + \infty - \infty \]
+
+\begin{align*}
+ \int_{-\infty}^\infty \ee^{-x^2} \dd{x}
+ &= \qty[\int_{-\infty}^\infty \ee^{-x^2} \dd{x} \, \int_{-\infty}^\infty \ee^{-y^2} \dd{y}]^{1/2} \\
+ &= \qty[\int_0^{2\pi} \int_0^\infty \ee^{-r^2} r \dd{r}\dd{\theta}]^{1/2} \\
+ &= \qty[\pi \int_0^\infty \ee^{-u} \dd{u}]^{1/2} \\
+ &= \sqrt{\pi}
+\end{align*}
+
+
+\begin{align*}
+\int_{0}^aJ_0\left[\frac{x_n^{(0)}}{a}r\right]J_0\left[\frac{x_m^{(0)}}{a}r\right]r\dd{r}=\frac{a^2}{2}J_1^2[x_n^{(0)}]\delta_m^n.\\
+\int_{0}^{\infty}\frac{\cos x-\ee^{-x}}{x}\dd{x}=0\\
+\end{align*}
+\[\oint_{\partial\Sigma}\vec E\cdot \dd{\vec{l}}=-\frac{1}{c}\frac{\dd}{\dd t}\iint_{\Sigma}\vec B \cdot \dd{\vec{S}};\]
+\[\partial_{[a}F_{\beta\gamma]}=0;\quad \partial_\alpha F^{\alpha\beta}=\mu_0J^\beta\]
+\[\left(\frac{-\hbar^2}{2m}\nabla^2+V\right)\Psi=i\hbar\dot{\Psi}\]
+\[\begin{split}
+\frac{1}{\mathcal{C}^2}&{}=\frac{\innerprod{g'}{g'}}{\mathcal{C}^2}=\sum_{\bm{k}}\sum_{\bm{k}'}\brakket{g}{c_{\bm{k}',\uparrow}^\dagger c_{\bm{k}',\downarrow} c_{\bm{k},\downarrow}^\dagger c_{\bm{k},\uparrow}}{g}=\sum_{\bm{k}}\brakket{g}{c_{\bm{k},\uparrow}^\dagger c_{\bm{k},\downarrow} c_{\bm{k},\downarrow}^\dagger c_{\bm{k},\uparrow}}{g}\\
+&{}=\sum_{\bm{k}}\brakket{g}{n_{\bm{k},\uparrow}\left(1-n_{\bm{k},\downarrow}\right)}{g}\\
+&{}=\sum_{\norm{\bm{k}}<k_F^\downarrow}\brakket{g}{0}{g}+\sum_{k_F^\downarrow<\norm{\bm{k}}<k_F^\uparrow}\brakket{g}{1}{g}+\sum_{\norm{\bm{k}}>k_F^\uparrow}\brakket{g}{0}{g}\\
+&{}=N_\uparrow-N_\downarrow
+\end{split}\]
+\[\left[ f,g \right]\equiv \sum_{\alpha =1}^{s}{\left( \frac{\partial f}{\partial {{q}_{\alpha }}}\frac{\partial g}{\partial {{p}_{\alpha }}}-\frac{\partial g}{\partial {{q}_{\alpha }}}\frac{\partial f}{\partial {{p}_{\alpha }}} \right)}=\sum\limits_{\alpha =1}^{s}{\begin{vmatrix}
+ \partial_{{q}_{\alpha }} f & \partial_{{p}_{\alpha }} f \\
+ \partial_{{q}_{\alpha }} g & \partial_{{p}_{\alpha }} g \\
+ \end{vmatrix} }=\sum\limits_{\alpha =1}^{s}{\frac{\partial \left( f,g \right)}{\partial \left( {{q}_{\alpha }},{{p}_{\alpha }} \right)}}\]
+\[\begin{split}
+& \frac{{{\text{d}}^{2}}f}{\text{d}{{t}^{2}}}=\frac{\text{d}}{\text{d}t}\left[ f,H \right]=\left[ \left[ f,H \right],H \right]=\hat{H}\hat{H}f={{{\hat{H}}}^{2}}f \\
+& \vdots \\
+& \frac{{{\text{d}}^{n}}f}{\text{d}{{t}^{n}}}=\underbrace{\left[ \left[ \left[ f,H \right],\cdots \right],H \right]}_{n}={{{\hat{H}}}^{n}}f \\
+\end{split}\]
+\[\tilde{U}(r,z)=E_0\dfrac{\omega_0}{\omega(z)}\exp\left[-r^2\left(\dfrac{1}{\omega^2(z)}+\dfrac{\ii k}{2R(z)}\right)-\ii k z+\ii \zeta(z)\right]\]
+\[\omega(z)=\omega_0\sqrt{1+\left(\dfrac{\lambda z}{\pi {\omega_0}^2}\right)^2};\quad R(z)=z\left[1+\left(\dfrac{\pi {\omega_0}^2}{\lambda z}\right)^2\right]\]
+\[\left( \begin{matrix}
+{mg}/{l}\;+k-m\omega _{1}^{2} & -k \\
+-k & {mg}/{l}\;+k-m\omega _{1}^{2} \\
+\end{matrix} \right)\left( \begin{matrix}
+{{a}_{11}} \\
+{{a}_{21}} \\
+\end{matrix} \right)=0\]
+\[V=\underbrace{{{V}_{0}}}_{=0}+\underbrace{\sum\limits_{\alpha =1}^{s}{{{\left( \frac{\partial V}{\partial {{q}_{\alpha }}} \right)}_{0}}{{q}_{\alpha }}}}_{=0}+\underbrace{\frac{1}{2}\sum\limits_{\alpha ,\beta =1}^{s}{{{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{\alpha }}\partial {{q}_{\beta }}} \right)}_{0}}{{q}_{\alpha }}{{q}_{\beta }}}}_{>0}+\cdots \]
+\[T=\frac{1}{2}\sum\limits_{i=1}^{n}{{{m}_{i}}{{{\dot{\bm r}}}_{i}}\cdot {{{\dot{\bm r}}}_{i}}}=\frac{1}{2}\sum\limits_{\alpha ,\beta =1}^{s}{\left[ \sum\limits_{i=1}^{n}{{{m}_{i}}{{\left( \frac{\partial {{\bm r}_{i}}}{\partial {{q}_{\alpha }}} \right)}_{0}}\cdot {{\left( \frac{\partial {{\bm r}_{i}}}{\partial {{q}_{\beta }}} \right)}_{0}}} \right]{{{\dot{q}}}_{\alpha }}{{{\dot{q}}}_{\beta }}}+\cdots \]
+\[\left( \begin{matrix}
+{{u}_{0}} \\
+{{u}_{1}} \\
+\vdots \\
+{{u}_{N-1}} \\
+\end{matrix} \right)=\sum\limits_{k>0}{\left[ \left( \begin{matrix}
+ 1 \\
+ \cos ka \\
+ \vdots \\
+ \cos k\left( N-1 \right)a \\
+ \end{matrix} \right)\underbrace{{{C}_{k+}}\cos \left( {{\omega }_{k}}t+{{\varphi }_{k+}} \right)}_{\frac{2}{\sqrt{N}}{{q}_{k+}}}+\left( \begin{matrix}
+ 0 \\
+ \sin ka \\
+ \vdots \\
+ \sin k\left( N-1 \right)a \\
+ \end{matrix} \right)\underbrace{{{C}_{k-}}\cos \left( {{\omega }_{k}}t+{{\varphi }_{k-}} \right)}_{\frac{2}{\sqrt{N}}{{q}_{k-}}} \right]}\]
+\[G(\vec{r},{\vec{r}}',\tau )=\int _{-\infty }^{\infty }\tilde{G}(\vec{r},{\vec{r}}',\omega )e^{-i \tau \omega }d\omega=\int_{-\infty }^{\infty } \frac{e^{-i \tau \omega } e^{i k |\vec{r}-{\vec{r}}'| }}{(2 \pi ) |\vec{r}-{\vec{r}}'| } \, d\omega=\frac{\delta \left(\tau -\frac{R}{c}\right)}{|\vec{r}-{\vec{r}}'| }\]
+\[
+\begin{split}
+\mathcal{F}^{-1}(\ket{j})
+&{}=\frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1}\exp\left(-2\uppi \ii \frac{jk}{2^n}\right)\ket{k}.\\
+&{}=\frac{1}{\sqrt{2^n}}\sum_{k_{n-1}=0}^1\cdots\sum_{k_{0}=0}^1\exp\left(-2\uppi \ii j\sum_{l=0}^{n-1}\frac{2^l k_l}{2^n}\right)\ket{k_{n-1}\cdots k_0}\\
+&{}=\frac{1}{\sqrt{2^n}}\sum_{k_{n-1}=0}^1\cdots\sum_{k_{0}=0}^1\bigotimes_{l=1}^n\left[\exp\left(-2\uppi \ii j\frac{k_{n-l}}{2^l}\right)\ket{k_{n-l}}\right]\\
+&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\sum_{k_{n-l}=0}^1\exp\left(-2\uppi \ii j\frac{k_{n-l}}{2^l}\right)\ket{k_{n-l}}\right]\\
+&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\ket{0}_{n-l}+\ee^{-2\uppi \ii j /2^l}\ket{1}_{n-l}\right]\\
+&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\ket{0}_{n-l}+\ee^{-2\uppi \ii ({0.j_{l-1}\ldots j_0})}\ket{1}_{n-l}\right].
+\end{split}
+\]
+
+\newcommand{\lb}{\left(}
+\newcommand{\rb}{\right)}
+\newcommand{\ec}{\text{,}}
+\newcommand{\ed}{\text{.}}
+\newcommand{\bt}{\lb t\rb}
+\newcommand{\deltaup}{\updelta}
+\newcommand{\piup}{\uppi}
+\newcommand{\ndd}{\,\mathrm{d}}
+\subsubsection*{Problem 1}
+For convenience, first we set $t_i=0$, and in the end, we replace $t_f$ by $t_f-t_i$ and right answer is obtained.
+The classical path is \[x_c\lb t\rb=A \cos\omega t+B\sin \omega t\ec\]where $A$ and $B$ can be determined by plugging $\lb0,x_i\rb$ and $\lb t_f, x_f\rb$ into the equation. The result is
+\[x_c\lb t\rb=x_i \cos\omega t+\frac{x_f-x_i\cos\omega t_f}{\sin\omega t_f}\sin \omega t\ed\]
+We write $x\lb t\rb=x_c\lb t\rb+\deltaup x\bt$. Due to the fact that $\deltaup x$ should vanish at $t=0$ and $t=t_f$, $\deltaup x$ can be expanded as sine series: \[\deltaup x\bt=\sum_{n=1}^\infty a_n\sin\frac{n\piup t}{t_f}\ed\]
+Also, the functional integral can be rewritten as \[\int\mathcal{D}\left[x\bt\right]=c\int\prod_{n=1}^\infty \dd a_n\ed\]
+So, we have
+\[L=\frac{m}{2}\lb\dot{x}_c+\deltaup\dot{x}\rb^2-\frac{m\omega^2}{2}\lb x_c+\deltaup x\rb^2\ec\]
+\[\dot{x}\bt=-\omega x_i \sin\omega t +\omega \frac{x_f-x_i\cos\omega t_f}{\sin\omega t_f}\cos\omega t+\sum_{n=1}^\infty\frac{a_n n \piup}{t_f}\cos\frac{n \piup t}{t_f}\ec\]
+\[S=\int_0^{t_f} L\ndd t\ed\]
+Because $x_c$ is the classical path, $\deltaup S_\text{classical}=0$, so there can't be any the linear term in the expression of $S$, and we also have in mind that the sine and cosine series are orthogonal. So, we can write S as following:
+\[\begin{split}S&{}=\frac{m}{2}\int_0^{t_f}\left[\lb-\omega x_i\sin\omega t+\omega \frac{x_f-x_i\cos\omega t_f}{\sin\omega t_f}\cos\omega t\rb^2+\sum_{n=1}^\infty\lb\frac{a_n n \piup}{t_f}\rb^2\cos^2\frac{n \piup t}{t_f}\right]\ndd t\\%
+&\quad{}-\frac{m\omega^2}{2}\int_0^{t_f}\left[\lb x_i\cos\omega t+ \frac{x_f-x_i\cos\omega t_f}{\sin\omega t_f}\sin\omega t\rb^2+\sum_{n=1}^\infty {a_n}^2\sin^2\frac{n \piup t}{t_f}\right]\ndd t\\%
+&{}=\sum_{n=1}^\infty\int_0^{t_f}\left[\frac{m}{2}\lb\frac{a_n n \piup}{t_f}\rb^2\cos^2\frac{n \piup t}{t_f}-\frac{m\omega^2}{2}{a_n}^2\sin^2\frac{n \piup t}{t_f}\right]\ndd t\\%
+&\quad{}+\frac{m\omega^2}{2}\int_0^{t_f}\left[ {x_i}^2-\lb\frac{x_f-x_i\cos\omega t_f}{\sin\omega t_f}\rb^2\right]\lb\sin^2\omega t-\cos^2\omega t\rb\ndd t\\%
+&\quad{}-\frac{m\omega^2}{2}\int_0^{t_f}4 {x_i}\lb\frac{x_f-x_i\cos\omega t_f}{\sin\omega t_f}\rb\lb\sin\omega t\cos\omega t\rb\ndd t\ed\end{split}\]
+Using
+\[\int_0^{t_f}\lb\sin^2\omega t-\cos^2\omega t\rb\ndd t=-\frac{\sin2\omega t_f}{2\omega}\ec\]
+\[\int_0^{t_f}\sin\omega t\cdot\cos\omega t\ndd t=\frac{\sin^2\omega t_f}{2\omega}\ec\]
+\[\int_0^{t_f}\sin^2\frac{n\piup t}{t_f} \ndd t=\int_0^{t_f}\cos^2\frac{n\piup t}{t_f} \ndd t=\frac{a_n n \piup}{t_f}\ec\]
+we get
+\[S=\sum_{n=1}^\infty\left[\frac{m}{2}\lb\frac{a_n n \piup}{t_f}\rb^2-\frac{m\omega^2}{2}{a_n}^2\right]\frac{t_f}{2}+\frac{m\omega}{2\sin\omega t_f}\left[\lb {x_i}^2+{x_f}^2\rb\cos\omega t_f-2 x_i x_f\right]\ed\]
+\[\begin{split}U={}&\exp\left\{\frac{\ii}{\hbar}\frac{m\omega}{2\sin\omega t_f}\left[\lb {x_i}^2+{x_f}^2\rb\cos\omega t_f-2 x_i x_f\right]\right\}\\%
+&{}\times c\prod_{n=1}^{\infty}\int_{-\infty}^\infty\exp{\frac{\ii}{\hbar}\left[\frac{m}{2}\lb\frac{n \piup}{t_f}\rb^2-\frac{m\omega^2}{2}\right]\frac{t_f {a_n}^2}{2}}\ndd a_n\ed\end{split}\]
+Using the Fresnel integral formula:
+\[\int_{-\infty}^\infty\exp\lb \ii t\rb\ndd t=\sqrt{\piup \ii}\ec\]
+\[\int_{-\infty}^\infty\exp{\frac{\ii}{\hbar}\left[\frac{m}{2}\lb\frac{n \piup}{t_f}\rb^2-\frac{m\omega^2}{2}\right]\frac{t_f {a_n}^2}{2}}\ndd a_n\sim\frac{\sqrt{t_f}}{n}\ec\]
+\[U\lb x_f,t_f;x_i,t_i\rb=c'\lb t_f-t_i\rb\exp\left\{\frac{\ii m\omega}{2\hbar\sin\left[\omega \lb t_f-t_i\rb\right]}\left[\lb {x_i}^2+{x_f}^2\rb\cos\left[\omega\lb t_f-t_i\rb\right]-2 x_i x_f\right]\right\}\ed\]
+Because \[\int\dd x U\lb x_f,t_f;x,t\rb U\lb x,t;x_i,t_i\rb=U\lb x_f,t_f;x_i,t_i\rb\ec\]
+By using the Fresnel integral again:
+\[c'\lb t_f-t\rb c'\lb t-t_i\rb\sqrt{\frac{2 \piup \ii \hbar}{m \omega}\lb\frac{\cos\left[\omega\lb t_f-t\rb\right]}{\sin\left[\omega\lb t_f-t\rb\right]}+\frac{\cos\left[\omega\lb t-t_i\rb\right]}{\sin\left[\omega\lb t-t_i\rb\right]}\rb}=c'\lb t_f-t_i\rb\ec\]
+\[c'\lb t_f-t_i\rb=\sqrt{\frac{m\omega}{2\piup \ii \hbar\sin\left[\omega\lb t_f-t_i\rb\right]}}\ed\]
+Thus
+\[\begin{split}U\lb x_f,t_f;x_i,t_i\rb=&\sqrt{\frac{m\omega}{2\piup \ii \hbar\sin\left[\omega\lb t_f-t_i\rb\right]}}\\&{}\times\exp\left\{\frac{\ii m\omega}{2\hbar\sin\left[\omega \lb t_f-t_i\rb\right]}\left[\lb {x_i}^2+{x_f}^2\rb\cos\left[\omega\lb t_f-t_i\rb\right]-2 x_i x_f\right]\right\}\ed\end{split}\]
+
+
+\fi
+
+
+
+\end{document}