summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2017-04-16 22:05:35 +0000
committerKarl Berry <karl@freefriends.org>2017-04-16 22:05:35 +0000
commitd1a1a8aa97b00e8dfb3d1b8366c29591e0a65ea7 (patch)
tree399b10e70cf4b6a4a49d16438ad6850c53ad6efc /Master/texmf-dist/doc
parentbf2a940bb5ec1bd50bff144ef44931ae39b266a4 (diff)
halloweenmath (16apr17)
git-svn-id: svn://tug.org/texlive/trunk@43851 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/00readme.txt4
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/Makefile2
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/README4
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.pdfbin258960 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.tex206
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-doc.pdfbin310944 -> 335482 bytes
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.pdfbin0 -> 539864 bytes
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.tex1060
-rw-r--r--Master/texmf-dist/doc/latex/halloweenmath/manifest.txt6
9 files changed, 1068 insertions, 214 deletions
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/00readme.txt b/Master/texmf-dist/doc/latex/halloweenmath/00readme.txt
index bbc4103480e..f211f14107b 100644
--- a/Master/texmf-dist/doc/latex/halloweenmath/00readme.txt
+++ b/Master/texmf-dist/doc/latex/halloweenmath/00readme.txt
@@ -26,7 +26,7 @@ This file, after giving a brief description of the halloweenmath
package, explains how to install it and how to generate its--alas, still
incomplete!--documentation.
-January 6, 2017 (vers. 0.01)
+April 16, 2017 (vers. 0.10)
@@ -137,7 +137,7 @@ input directories! :-)
d) You may also choose to install the halloweenmath package inside the
main texmf tree of your TeX installation (as opposed to installing it
inside a directory devoted to private classes and packages). In this
-case, note that the _proposed_ TDS-compliant location for the
+case, note that the--now accepted--TDS-compliant location for the
halloweenmath package, that is, the directory inside which you should
put all the files listed in 2), is
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/Makefile b/Master/texmf-dist/doc/latex/halloweenmath/Makefile
index 8292e7c8602..41b9f8d8035 100644
--- a/Master/texmf-dist/doc/latex/halloweenmath/Makefile
+++ b/Master/texmf-dist/doc/latex/halloweenmath/Makefile
@@ -1,6 +1,6 @@
# makefile
#
-# 2017 Jan 06
+# 2017 Apr 16
#
# Macro definitions
ROOT_NAME = halloweenmath
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/README b/Master/texmf-dist/doc/latex/halloweenmath/README
index 26277efd6a5..212a09dd57e 100644
--- a/Master/texmf-dist/doc/latex/halloweenmath/README
+++ b/Master/texmf-dist/doc/latex/halloweenmath/README
@@ -1,4 +1,4 @@
-(Version indicator: 2017 Jan 06)
+(Version indicator: 2017 Apr 16)
The halloweenmath package originated from a question asked for enjoyment
on TeX-LaTeX Stack Exchange <http://tex.stackexchange.com> by the user
@@ -18,7 +18,7 @@ For more information, read the following files:
00readme.txt -- start by reading this file
halloweenmath-doc.pdf -- overview of the halloweenmath package (PDF)
-halloweenexample.pdf -- output produced by sample source file (PDF)
+halloweenmath-man.pdf -- user's manual for this same package (PDF)
Other files that make up the distribution are:
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.pdf b/Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.pdf
deleted file mode 100644
index 91e55fad8b4..00000000000
--- a/Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.tex b/Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.tex
deleted file mode 100644
index d6e30050822..00000000000
--- a/Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.tex
+++ /dev/null
@@ -1,206 +0,0 @@
-\documentclass[12pt,a4paper]{article}
-\usepackage[T1]{fontenc} % not necessary, but recommended
-\usepackage{halloweenmath}
-\usepackage{hyperref} % just for "\hypersetup"
-
-\title{Sample Halloween Math}
-\author{A.~U.~Thor}
-\date{January~6, 2017}
-
-\hypersetup{
- pdftitle = {Sample Halloween Math},
- pdfauthor = {A. U. Thor},
- pdfsubject = {Sample source file for the halloweenmath package},
- pdfkeywords = {Halloween, math, scary mathematical symbols},
- pdfcreationdate = {D:20170106000000},
- pdfmoddate = {D:20170106000000}
-}
-
-
-
-\begin{document}
-
-\maketitle
-
-A reduction my students are likely to make:
-\[\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
-The same reduction as an in-line formula:
-\(\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).
-
-Now with limits:
-\[
- \mathwitch_{i=1}^{n} \frac
- {\text{$i$-th magic term}}
- {\text{$2^{i}$-th wizardry}}
-\]
-And repeated in-line: \( \mathwitch_{i=1}^{n} x_{i}y_{i} \).
-
-The \texttt{bold} math version is honored:\mathversion{bold}
-\[
- \mathwitch*
- \genfrac{<}{>}{0pt}{}
- {\textbf{something terribly}}{\textbf{complicated}}
- = 0
-\]
-Compare it with \texttt{normal} math\mathversion{normal}:
-\[
- \mathwitch*
- \genfrac{<}{>}{0pt}{}
- {\text{something terribly}}{\text{complicated}}
- = 0
-\]
-In-line math comparison:
-{\boldmath $\mathwitch* f(x)$} versus $\mathwitch* f(x)$.
-
-There is also a left-facing witch:
-\[\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
-And here is the in-line version:
-\(\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).
-
-Test for \verb|\dots|:
-\[
- \mathwitch_{i_{1}=1}^{n_{1}} \dots \mathwitch_{i_{p}=1}^{n_{p}}
- \frac
- {\text{$i_{1}$-th magic factor}}
- {\text{$2^{i_{1}}$-th wizardry}}
- \pumpkin\dots\pumpkin
- \frac
- {\text{$i_{p}$-th magic factor}}
- {\text{$2^{i_{p}}$-th wizardry}}
-\]
-And repeated in-line: \( \mathwitch\dots\mathwitch_{i=1}^{n} x_{i}y_{i} \).
-
-\bigbreak
-
-Now the pumpkins. First the \texttt{bold} math version:\mathversion{bold}:
-\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
-Then the \texttt{normal} one\mathversion{normal}:
-\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
-In-line math comparison:
-{\boldmath \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \)}
-versus \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \).
-
-Close test: {\boldmath $\bigoplus$}$\bigoplus$.
-And against the pumpkins:
-{\boldmath $\bigpumpkin$}$\bigpumpkin\bigoplus${\boldmath $\bigoplus$}.
-
-In-line, but with \verb|\limits|:
-\( \bigoplus\limits_{h=1}^{m}\bigpumpkin\limits_{k=1}^{n} P_{h,k} \).
-
-Binary: \( x\pumpkin y \neq x\oplus y \). And in display:
-\[ a\pumpkin\frac{x\pumpkin y}{x\oplus y}\otimes b \]
-Close test: {\boldmath $\oplus$}$\oplus$.
-And with the pumpkins too:
-{\boldmath $\pumpkin$}$\pumpkin\oplus${\boldmath $\oplus$}.
-
-In general,
-\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]
-
-\begingroup
-
-\bfseries\boldmath
-
-The same in bold:
-\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]
-
-\endgroup
-
-Other styles: \( \frac{x\pumpkin y}{2} \), exponent~$Z^{\pumpkin}$,
-subscript~$W_{\!x\pumpkin y}$, double script \( 2^{t_{x\pumpkin y}} \).
-
-\bigbreak
-
-Clouds. A hypothetical identity:
-\( \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \).
-Now the same identity set in display:
-\[ \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \]
-Now in smaller size: \( \frac{\sin x+\cos x}{\mathcloud} = 1 \).
-
-Specular clouds, \texttt{bold}\ldots\mathversion{bold}
-\[ \reversemathcloud \longleftrightarrow \mathcloud \]
-\ldots and in \texttt{normal} math.\mathversion{normal}
-\[ \reversemathcloud \longleftrightarrow \mathcloud \]
-In-line math comparison:
-{\boldmath \( \reversemathcloud \leftrightarrow \mathcloud \)}
-versus \( \reversemathcloud \leftrightarrow \mathcloud \).
-Abutting: {\boldmath $\mathcloud$}$\mathcloud$.
-
-\bigbreak
-
-Ghosts: \( \mathleftghost \mathghost \mathrightghost \mathghost \mathleftghost
-\mathghost \mathrightghost \). Now with letters: \( H \mathghost H \mathghost h
-\mathghost ab \mathghost f \mathghost wxy \mathghost \), and also \(
-2\mathghost^{3} + 5\mathleftghost^{\!2}-3\mathrightghost_{i} =
-12\mathrightghost_{j}^{4} \). Then, what about~$x^{2\mathghost}$ and \(
-z_{\!\mathrightghost+1} = z_{\!\mathrightghost}^{2} + z_{\mathghost} \)?
-
-In subscripts:
-\begin{align*}
- F_{\mathghost+2} &= F_{\mathghost+1} + F_{\mathghost} \\
- F_{\!\mathrightghost+2} &= F_{\!\mathrightghost+1} + F_{\!\mathrightghost}
-\end{align*}
-Another test: \( \mathghost | \mathrightghost | \mathghost | \mathleftghost |
-\mathghost | \mathrightghost | \mathghost | \mathleftghost | \mathghost \). We
-should also try this: \( \mathrightghost \mathleftghost \mathrightghost
-\mathleftghost \).
-
-Extensible arrows:
-\begin{gather*}
- A \xrightwitchonbroom[a\star f(t)]{x_{1}+\dots+x_{n}} B
- \xrightwitchonbroom{x+z} C \xrightwitchonbroom{} D \\
- A \xrightwitchonbroom*[a\star f(t)]{x_{1}+\dots+x_{n}} B
- \xrightwitchonbroom*{x+z} C \xrightwitchonbroom*{} D \\
- A \xleftwitchonbroom*[a\star f(t)]{x_{1}+\dots+x_{n}} B
- \xleftwitchonbroom*{x+z} C \xleftwitchonbroom*{} D \\
- A \xleftwitchonbroom[a\star f(t)]{x_{1}+\dots+x_{n}} B
- \xleftwitchonbroom{x+z} C \xleftwitchonbroom{} D
-\end{gather*}
-And \( \overrightwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) versus \(
-\overrightwitchonbroom{x_{1}+\dots+x_{n}}=0 \); or \(
-\overleftwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) versus \(
-\overleftwitchonbroom{x_{1}+\dots+x_{n}}=0 \).
-
-Hovering ghosts: \( \overrightswishingghost{x_{1}+\dots+x_{n}}=0 \). You might
-wonder whether there is enough space left for the swishing ghost; let's try
-again: \( \overrightswishingghost{(x_{1}+\dots+x_{n})y}=0 \). As you can see,
-there is enough room. Lorem ipsum dolor sit amet consectetur adipisci elit.
-And \( \overrightswishingghost{\mathstrut} \) too.
-\begin{gather*}
- A \xrightswishingghost[a\star f(t)]{x_{1}+\dots+x_{n}} B
- \xrightswishingghost{x+z} C \xrightswishingghost{} D \\
- A \xleftswishingghost[a\star f(t)]{x_{1}+\dots+x_{n}} B
- \xleftswishingghost{x+z} C \xleftswishingghost{} D
-\end{gather*}
-Another hovering ghost: \( \overleftswishingghost{x_{1}+\dots+x_{n}}=0 \)..
-Lorem ipsum dolor sit amet consectetur adipisci elit. Ulla rutrum, vel sivi sit
-anismus oret, rubi sitiunt silvae. Let's see how it looks like when the ghost
-hovers on a taller formula, as in \(
-\overrightswishingghost{H_{1}\oplus\dots\oplus H_{k}} \). Mmmh, it's
-suboptimal, to say the least.\footnote{We'd better try \(
-\underleftswishingghost{y_{1}+\dots+y_{n}} \), too; well, this one looks good!}
-
-Under ``arrow-like'' symbols: \( \underleftswishingghost{x_{1}+\dots+x_{n}}=0 \)
-and \( \underrightswishingghost{x+y+z} \). There are \(
-\underleftwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) and \(
-\underrightwitchonbroom*{x+y+z} \) as well.
-
-\bigbreak
-
-A comparison between the ``standard'' and the ``script-style'' over\slash under
-extensible arrows:
-\begin{align*}
- \overrightarrow{f_{1}+\dots+f_{n}}
- &\neq\overscriptrightarrow{f_{1}+\dots+f_{n}} \\
- \overleftarrow{f_{1}+\dots+f_{n}}
- &\neq\overscriptleftarrow{f_{1}+\dots+f_{n}} \\
- \overleftrightarrow{f_{1}+\dots+f_{n}}
- &\neq\overscriptleftrightarrow{f_{1}+\dots+f_{n}} \\
- \underrightarrow{f_{1}+\dots+f_{n}}
- &\neq\underscriptrightarrow{f_{1}+\dots+f_{n}} \\
- \underleftarrow{f_{1}+\dots+f_{n}}
- &\neq\underscriptleftarrow{f_{1}+\dots+f_{n}} \\
- \underleftrightarrow{f_{1}+\dots+f_{n}}
- &\neq\underscriptleftrightarrow{f_{1}+\dots+f_{n}}
-\end{align*}
-
-\end{document}
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-doc.pdf b/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-doc.pdf
index 8bc4d0a6fa3..dedc5c23610 100644
--- a/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-doc.pdf
+++ b/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.pdf b/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.pdf
new file mode 100644
index 00000000000..34e554e756c
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.tex b/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.tex
new file mode 100644
index 00000000000..add54e3ae43
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/halloweenmath/halloweenmath-man.tex
@@ -0,0 +1,1060 @@
+\documentclass[a4paper]{article}
+\usepackage[T1]{fontenc}
+\usepackage{amsmath,amsfonts}
+\usepackage{halloweenmath}[2017/04/16]
+\usepackage{array}
+\usepackage[bookmarksnumbered]{hyperref}
+
+\title{User's manual\\for the \halloweenmath\ package}
+\author{G. Mezzetti}
+\date{April~16, 2017}
+
+\hypersetup{
+ pdftitle = {User's manual for the halloweenmath package},
+ pdfauthor = {G. Mezzetti},
+ pdfsubject = {The halloweenmath LaTeX package},
+ pdfkeywords = {TeX,LaTeX,Halloween,math,math symbold},
+ pdfcreationdate = {D:20170416000000},
+ pdfmoddate = {D:20170416000000}
+}
+
+\DeclareTextFontCommand{\packlass}{\normalfont\sffamily}
+\DeclareTextFontCommand{\opt} {\normalfont\ttfamily}
+\newcommand*{\meta}[1]{{\normalfont \(\langle\textit{#1}\rangle\)}}
+\newcommand*{\halloweenmath}{\packlass{halloweenmath}}
+\newcommand*{\amsmath} {\packlass{amsmath}}
+
+\newcommand*{\sumxn}{x_{1}+\dots+x_{n}}
+
+\makeatletter
+
+\newcolumntype{H}[3]{>{\hb@xt@ #3\bgroup#1}c<{#2\egroup}}
+\newcolumntype{U}[2]{H{\hss$#1}{$\hss}{#2}@{\hspace{.5em}}}
+\newcolumntype{V}[1]{H{\ttfamily}{\hss}{#1}}
+\newcolumntype{W}[1]{H{}{\hss}{#1}}
+\newcolumntype{O}{U{}{15\p@}}
+\newcolumntype{D}{U{\displaystyle}{30\p@}}
+\newcolumntype{L}{OD}
+\newcolumntype{A}{U{}{40\p@}}
+
+\newenvironment*{@symtable}[2]{\par
+ \centering
+ \addtolength\leftskip {-80\p@}%
+ \addtolength\rightskip{-80\p@}%
+ \setlength\arraycolsep{.5em}%
+ \tabular{@{}*{#2}{#1}@{}}%
+}{%
+ \endtabular
+ \par
+}
+\newenvironment{symtable}[1][\thr@@]{%
+ \@symtable{OV{90\p@}}{#1}%
+}{%
+ \end@symtable
+}
+\newenvironment{opsymtable}[1][\tw@]{%
+ \def\arraystretch{\tw@}%
+ \@symtable{LV{120\p@}}{#1}%
+}{%
+ \end@symtable
+}
+\newenvironment{xasymtable}[1][\tw@]{%
+ \def\arraystretch{\tw@}%
+ \@symtable{AW{200\p@}}{#1}%
+}{%
+ \end@symtable
+}
+\newcommand*\Sym[1] {#1&\string#1}
+\newcommand*\OpSym[1]{#1&#1&\string#1}
+
+\makeatother
+
+
+
+\begin{document}
+
+\maketitle
+
+\tableofcontents
+\listoftables
+
+
+
+\clearpage
+
+\section{Package loading}
+\label{S:Loading}
+
+Load the \halloweenmath\ package as any other \LaTeXe\ package, that is, via the
+usual \verb|\usepackage| declaration:
+\begin{verbatim}
+ \usepackage{halloweenmath}
+\end{verbatim}
+Note that the \halloweenmath\ package requires the \amsmath\ package, and loads
+it (without specifying any option) if it is not already loaded. If you want to
+pass options to \amsmath, load it before \halloweenmath.
+
+The \halloweenmath\ package defines no options by itself; nevertheless, it does
+honor the [\opt{no}]\opt{sumlimits} options from the \amsmath\ package.
+
+
+
+\section{Package usage}
+\label{S:Usage}
+
+The \halloweenmath\ package defines a handful of commands, all of which are
+intended for use \emph{in mathematical mode}, where they yield some kind of
+symbol that draws from the classic Halloween-related iconography (pumpkins,
+witches, ghosts, bats, and so on). Below, these symbols are grouped according
+to their mathematical ``r\^{o}le'' (ordinary symbols, binary operators,
+arrows\ldots).
+
+
+
+\subsection{Ordinary symbols}
+\label{sS:Ordinary}
+
+Table~\ref{tab:ordinary} lists the ordinary symbols provided by the
+\halloweenmath\ package.
+
+\begin{table}[t!p]
+ \centering
+ \begin{symtable}\relax
+ \Sym{\mathleftghost} & \Sym{\mathghost} & \Sym{\mathrightghost} \\
+ \Sym{\mathleftbat} & \Sym{\mathbat} & \Sym{\mathrightbat} \\
+ \end{symtable}
+ \caption{Ordinary symbols}
+ \label{tab:ordinary}
+\end{table}
+
+
+
+\subsection{Binary operators}
+\label{sS:Binary}
+
+Table~\ref{tab:binary} lists the binary operators available. Note that each
+binary operator has an associated ``large'' operator (see
+subsection~\ref{sS:Large}).
+
+\begin{table}[t!p]
+ \centering
+ \begin{symtable}[2]
+ \Sym{\pumpkin} & \Sym{\skull} \\
+ \end{symtable}
+ \caption{Binary operators}
+ \label{tab:binary}
+\end{table}
+
+
+
+\subsection{\textquotedblleft Large\textquotedblright\ operators}
+\label{sS:Large}
+
+Table~\ref{tab:large} lists the ``large'' operators. Each of them is depicted
+in two variants: the variant used for in-line math and the variant used for
+displayed formulas. In the table, besides the ``large'' operators called
+\verb|\bigpumpkin|\footnote{As a homage to Linus van Pelt,
+\texttt{\string\greatpumpkin} is defined as synonym of
+\texttt{\string\bigpumpkin}.} and \verb|\bigskull|, which are correlated to the
+binary operators \verb|\pumpkin| and \verb|\skull|, repectively, we find the
+commands \verb|\mathwitch| and \verb|\reversemathwitch|: note how these two last
+command have a \mbox{$*$-form} that adds a black cat on the broomstick.
+
+\begin{table}[t!p]
+ \centering
+ \begin{opsymtable}\relax
+ \OpSym{\mathwitch} & \OpSym{\reversemathwitch} \\
+ \OpSym{\mathwitch*} & \OpSym{\reversemathwitch*} \\
+ \OpSym{\bigpumpkin}\normalfont\footnotemark[\value{footnote}]
+ & \OpSym{\bigskull} \\
+ \end{opsymtable}
+ \caption{\textquotedblleft Large\textquotedblright\ operators}
+ \label{tab:large}
+\end{table}
+
+All the ``large'' operators listed in table~\ref{tab:large} honor the
+[\opt{no}]\opt{sumlimits} options from the \amsmath\ package.
+
+
+
+\subsection{\textquotedblleft Fraction-like\textquotedblright\ symbols}
+\label{sS:Inner}
+
+There are also two commands, listed on table~\ref{tab:inner}, that yield symbols
+that are somewhat similar to fractions, in that they grow in size when they are
+typeset in display style.\footnote{Another \TeX nical aspect of these commands
+is that they yield an atom of type Inner.} They are intended to denote
+an unspecified subformula that appears as a part of a larger one.
+
+\begin{table}[t!p]
+ \centering
+ \begin{opsymtable}\relax
+ \OpSym{\mathcloud} & \OpSym{\reversemathcloud} \\
+ \end{opsymtable}
+ \caption{\textquotedblleft Fraction-like\textquotedblright\ symbols}
+ \label{tab:inner}
+\end{table}
+
+
+
+\subsection{\textquotedblleft Arrow-like\textquotedblright\ symbols}
+\label{sS:Arrow}
+
+As we'll see in subsection~\ref{sS:XArrow}, the \halloweenmath\ package provides
+a series of commands whose usage parallels that of ``extensible arrows'' like
+\verb|\xrightarrow| or \verb|\xleftarrow|; but the symbols that those commands
+yield when used with an empty argument turn out to be too short, and it is for
+this reason that the \halloweenmath\ package also offers you the four commands
+you can see in table~\ref{tab:arrow}: they produce brooms, or pitchforks, having
+fixed length, which is approximately the same size of a
+\verb|\longrightarrow|~($\longrightarrow$). All of these symbols are treated as
+relations.
+
+\begin{table}[t!p]
+ \centering
+ \begin{symtable}[2]
+ \Sym{\leftbroom} & \Sym{\rightbroom} \\
+ \Sym{\hmleftpitchfork} & \Sym{\hmrightpitchfork} \\
+ \end{symtable}
+ \caption{\textquotedblleft Arrow-like\textquotedblright\ symbols}
+ \label{tab:arrow}
+\end{table}
+
+
+
+\subsection{Extensible \textquotedblleft arrow-like\textquotedblright\ symbols}
+\label{sS:XArrow}
+
+You are probably already familiar with the ``extensible arrows'' like
+$\xrightarrow{abc}$ and~$\xleftarrow{abc}$; for example, you probably know that
+the input
+\begin{verbatim}
+ \[
+ \bigoplus_{i=1}^{n} A_{i} \xrightarrow{f_{1}+\dots+f_{n}} B
+ \]
+\end{verbatim}
+produces this result:
+\[
+ \bigoplus_{i=1}^{n} A_{i} \xrightarrow{f_{1}+\dots+f_{n}} B
+\]
+The \halloweenmath\ package features a whole assortment of extensible symbols of
+this kind, which are listed in table~\ref{tab:xarrow}. For example, you could
+say
+\begin{verbatim}
+ \[
+ G \xrightswishingghost{h_{1}+\dots+h_{n}}
+ \bigpumpkin_{t=1}^{n} S_{t}
+ \]
+\end{verbatim}
+to get the following in print:
+\[
+ G \xrightswishingghost{h_{1}+\dots+h_{n}}
+ \bigpumpkin_{t=1}^{n} S_{t}
+\]
+
+\begin{table}[t!p]
+ \centering
+ \begin{xasymtable}\relax
+ \xleftwitchonbroom{abc\dots z}
+ & \verb|\xleftwitchonbroom{abc\dots z}| &
+ \xrightwitchonbroom{abc\dots z}
+ & \verb|\xrightwitchonbroom{abc\dots z}| \\
+ \xleftwitchonbroom*{abc\dots z}
+ & \verb|\xleftwitchonbroom*{abc\dots z}| &
+ \xrightwitchonbroom*{abc\dots z}
+ & \verb|\xrightwitchonbroom*{abc\dots z}| \\
+ \xleftwitchonpitchfork{abc\dots z}
+ & \verb|\xleftwitchonpitchfork{abc\dots z}| &
+ \xrightwitchonpitchfork{abc\dots z}
+ & \verb|\xrightwitchonpitchfork{abc\dots z}| \\
+ \xleftwitchonpitchfork*{abc\dots z}
+ & \verb|\xleftwitchonpitchfork*{abc\dots z}| &
+ \xrightwitchonpitchfork*{abc\dots z}
+ & \verb|\xrightwitchonpitchfork*{abc\dots z}| \\
+ \xleftbroom{abc\dots z}
+ & \verb|\xleftbroom{abc\dots z}| &
+ \xrightbroom{abc\dots z}
+ & \verb|\xrightbroom{abc\dots z}| \\
+ \xleftpitchfork{abc\dots z}
+ & \verb|\xleftpitchfork{abc\dots z}| &
+ \xrightpitchfork{abc\dots z}
+ & \verb|\xrightpitchfork{abc\dots z}| \\
+ \xleftswishingghost{abc\dots z}
+ & \verb|\xleftswishingghost{abc\dots z}| &
+ \xrightswishingghost{abc\dots z}
+ & \verb|\xrightswishingghost{abc\dots z}| \\
+ \xleftflutteringbat{abc\dots z}
+ & \verb|\xleftflutteringbat{abc\dots z}| &
+ \xrightflutteringbat{abc\dots z}
+ & \verb|\xrightflutteringbat{abc\dots z}| \\
+ \end{xasymtable}
+ \caption{Extensible \textquotedblleft arrow-like\textquotedblright\ symbols}
+ \label{tab:xarrow}
+\end{table}
+
+More generally, exactly as the commands \verb|\xleftarrow| and
+\verb|\xrightarrow|, on which they are modeled, all the commands listed in
+table~\ref{tab:xarrow} take one optional argument, in which you can specify a
+subscript, and one mandatory argument, where a---possibly empty---superscript
+must be indicated. For example,
+\begin{verbatim}
+ \[
+ A \xrightwitchonbroom*[abc\dots z]{f_{1}+\dots+f_{n}} B
+ \xrightwitchonbroom*{f_{1}+\dots+f_{n}} C
+ \xrightwitchonbroom*[abc\dots z]{} D
+ \]
+\end{verbatim}
+results in
+\[
+ A \xrightwitchonbroom*[abc\dots z]{f_{1}+\dots+f_{n}} B
+ \xrightwitchonbroom*{f_{1}+\dots+f_{n}} C
+ \xrightwitchonbroom*[abc\dots z]{} D
+\]
+
+Note that, also in this family of symbols, the commands that involve a witch all
+provide a \mbox{$*$-form} that adds a cat on the broom (or pitchfork).
+
+The commands listed above should not be confused with those presented in
+subsection~\ref{sS:OUArrow}.
+
+
+
+\subsection{Extensible \textquotedblleft over-\protect\slash
+ under-arrow-like\textquotedblright\ symbols}
+\label{sS:OUArrow}
+
+The commands dealt with in subsection~\ref{sS:XArrow} typeset an extensible
+``arrow-like'' symbol having some math above or below it. But the \amsmath\
+package also provides commands that act the other way around, that is, they put
+an arrow over, or under, some math, as in the case of
+\begin{verbatim}
+ \overrightarrow{x_{1}+\dots+x_{n}}
+\end{verbatim}
+that yields \( \overrightarrow{x_{1}+\dots+x_{n}} \). The \halloweenmath\
+package provides a whole bunch of commands like this, which are listed in
+table~\ref{tab:ouarrow}, and which all share the same syntax as the
+\verb|\overrightarrow| command.
+
+\begin{table}[t!p]
+ \centering
+ \begin{xasymtable}\relax
+ \overleftwitchonbroom{abc\dots z}
+ & \verb|\overleftwitchonbroom{abc\dots z}| &
+ \overrightwitchonbroom{abc\dots z}
+ & \verb|\overrightwitchonbroom{abc\dots z}| \\
+ \overleftwitchonbroom*{abc\dots z}
+ & \verb|\overleftwitchonbroom*{abc\dots z}| &
+ \overrightwitchonbroom*{abc\dots z}
+ & \verb|\overrightwitchonbroom*{abc\dots z}| \\
+ \overleftwitchonpitchfork{abc\dots z}
+ & \verb|\overleftwitchonpitchfork{abc\dots z}| &
+ \overrightwitchonpitchfork{abc\dots z}
+ & \verb|\overrightwitchonpitchfork{abc\dots z}| \\
+ \overleftwitchonpitchfork*{abc\dots z}
+ & \verb|\overleftwitchonpitchfork*{abc\dots z}| &
+ \overrightwitchonpitchfork*{abc\dots z}
+ & \verb|\overrightwitchonpitchfork*{abc\dots z}| \\
+ \overleftbroom{abc\dots z}
+ & \verb|\overleftbroom{abc\dots z}| &
+ \overrightbroom{abc\dots z}
+ & \verb|\overrightbroom{abc\dots z}| \\
+ \overscriptleftbroom{abc\dots z}
+ & \verb|\overscriptleftbroom{abc\dots z}| &
+ \overscriptrightbroom{abc\dots z}
+ & \verb|\overscriptrightbroom{abc\dots z}| \\
+ \overleftpitchfork{abc\dots z}
+ & \verb|\overleftpitchfork{abc\dots z}| &
+ \overrightpitchfork{abc\dots z}
+ & \verb|\overrightpitchfork{abc\dots z}| \\
+ \overscriptleftpitchfork{abc\dots z}
+ & \verb|\overscriptleftpitchfork{abc\dots z}| &
+ \overscriptrightpitchfork{abc\dots z}
+ & \verb|\overscriptrightpitchfork{abc\dots z}| \\
+ \overleftswishingghost{abc\dots z}
+ & \verb|\overleftswishingghost{abc\dots z}| &
+ \overrightswishingghost{abc\dots z}
+ & \verb|\overrightswishingghost{abc\dots z}| \\
+ \overleftflutteringbat{abc\dots z}
+ & \verb|\overleftflutteringbat{abc\dots z}| &
+ \overrightflutteringbat{abc\dots z}
+ & \verb|\overrightflutteringbat{abc\dots z}| \\
+ \underleftwitchonbroom{abc\dots z}
+ & \verb|\underleftwitchonbroom{abc\dots z}| &
+ \underrightwitchonbroom{abc\dots z}
+ & \verb|\underrightwitchonbroom{abc\dots z}| \\
+ \underleftwitchonbroom*{abc\dots z}
+ & \verb|\underleftwitchonbroom*{abc\dots z}| &
+ \underrightwitchonbroom*{abc\dots z}
+ & \verb|\underrightwitchonbroom*{abc\dots z}| \\
+ \underleftwitchonpitchfork{abc\dots z}
+ & \verb|\underleftwitchonpitchfork{abc\dots z}| &
+ \underrightwitchonpitchfork{abc\dots z}
+ & \verb|\underrightwitchonpitchfork{abc\dots z}| \\
+ \underleftwitchonpitchfork*{abc\dots z}
+ & \verb|\underleftwitchonpitchfork*{abc\dots z}| &
+ \underrightwitchonpitchfork*{abc\dots z}
+ & \verb|\underrightwitchonpitchfork*{abc\dots z}| \\
+ \underleftbroom{abc\dots z}
+ & \verb|\underleftbroom{abc\dots z}| &
+ \underrightbroom{abc\dots z}
+ & \verb|\underrightbroom{abc\dots z}| \\
+ \underscriptleftbroom{abc\dots z}
+ & \verb|\underscriptleftbroom{abc\dots z}| &
+ \underscriptrightbroom{abc\dots z}
+ & \verb|\underscriptrightbroom{abc\dots z}| \\
+ \underleftpitchfork{abc\dots z}
+ & \verb|\underleftpitchfork{abc\dots z}| &
+ \underrightpitchfork{abc\dots z}
+ & \verb|\underrightpitchfork{abc\dots z}| \\
+ \underscriptleftpitchfork{abc\dots z}
+ & \verb|\underscriptleftpitchfork{abc\dots z}| &
+ \underscriptrightpitchfork{abc\dots z}
+ & \verb|\underscriptrightpitchfork{abc\dots z}| \\
+ \underleftswishingghost{abc\dots z}
+ & \verb|\underleftswishingghost{abc\dots z}| &
+ \underrightswishingghost{abc\dots z}
+ & \verb|\underrightswishingghost{abc\dots z}| \\
+ \underleftflutteringbat{abc\dots z}
+ & \verb|\underleftflutteringbat{abc\dots z}| &
+ \underrightflutteringbat{abc\dots z}
+ & \verb|\underrightflutteringbat{abc\dots z}| \\
+ \end{xasymtable}
+ \caption{Extensible \textquotedblleft over-\protect\slash
+ under-arrow-like\textquotedblright\ symbols}
+ \label{tab:ouarrow}
+\end{table}
+
+Although they are not extensible, and are thus more similar to math accents, we
+have chosen to include in this subsection also the commands listed in
+table~\ref{tab:oubat}. They typeset a subformula either surmounted by the bat
+produced by \verb|\mathbat|, or with that symbol underneath. The normal
+(\emph{i.e.}, unstarred) form pretends that the bat has zero width (but some
+height), whereas the starred variant takes the actual width of the bat be into
+account; for example, given the input
+\begin{verbatim}
+ \begin{align*}
+ &x+y+z && x+y+z \\
+ &x+\overbat{y}+z && x+\overbat*{y}+z
+ \end{align*}
+\end{verbatim}
+compare the spacing you get in the two columns of the output:
+\begin{align*}
+ &x+y+z && x+y+z \\
+ &x+\overbat{y}+z && x+\overbat*{y}+z
+\end{align*}
+
+\begin{table}[t!p]
+ \centering
+ \begin{xasymtable}\relax
+ \overbat{xyz} & \verb|\overbat{xyz}| &
+ \underbat{xyz} & \verb|\underbat{xyz}| \\
+ \end{xasymtable}
+ \caption{Over\protect\slash under bats}
+ \label{tab:oubat}
+\end{table}
+
+
+
+\subsection{Script-style versions of
+ \texorpdfstring{\amsmath}{amsmath}\textquoteright s
+ over\protect\slash under arrows}
+\label{sS:ScriptArrow}
+
+The commands listed in table~\ref{tab:scriptarrow} all produce an output similar
+to that of the corresponding \amsmath's command having the same name, but
+stripped of the \texttt{script} substring, with the only difference that the
+size of the arrow is smaller. More precisely, they use for the arrow the
+relative script size of the current size (that is, of the size in which their
+argument is typeset). For example, whilst \verb|\overrightarrow{x+y+z}| yields
+$\overrightarrow{x+y+z}$, \verb|\overscriptrightarrow{x+y+z}| results in
+$\overscriptrightarrow{x+y+z}$ (do you see the difference?), which, in the
+author's humble opinion, looks \emph{much} better.
+
+\begin{table}[t!p]
+ \centering
+ \begin{xasymtable}\relax
+ \overscriptleftarrow{abc\dots z}
+ & \verb|\overscriptleftarrow{abc\dots z}| &
+ \underscriptleftarrow{abc\dots z}
+ & \verb|\underscriptleftarrow{abc\dots z}| \\
+ \overscriptrightarrow{abc\dots z}
+ & \verb|\overscriptrightarrow{abc\dots z}| &
+ \underscriptrightarrow{abc\dots z}
+ & \verb|\underscriptrightarrow{abc\dots z}| \\
+ \overscriptleftrightarrow{abc\dots z}
+ & \verb|\overscriptleftrightarrow{abc\dots z}| &
+ \underscriptleftrightarrow{abc\dots z}
+ & \verb|\underscriptleftrightarrow{abc\dots z}| \\
+ \end{xasymtable}
+ \caption{Extensible over\protect\slash under arrows with reduced size}
+ \label{tab:scriptarrow}
+\end{table}
+
+
+
+\clearpage
+
+\section{Examples of use}
+\label{S:Example}
+
+This section illustrates the use of the commands provided by the \halloweenmath\
+package: by reading the source code for this document, you can see how the
+output presented below can be obtained.
+
+
+
+\subsection{Applying black magic}
+
+The $\mathwitch$~symbol was invented with the intent to provide a notation for
+the operation of applying black magic to a formula. Its applications range from
+simple reductions sometimes made by certain undergraduate freshmen, as in
+\[
+ \mathwitch 2\sin\frac{x}{2} = \sin x
+\]
+to key steps that permit to simplify greatly the proof of an otherwise totally
+impenetrable theorem, for example
+\[
+ \mathwitch\Bigl(
+ \sup\,\{\,p\in\mathbb{N}\mid \text{$p$ and $p+2$ are both prime}\,\}
+ \Bigr) = \infty
+\]
+Another way of denoting the same operation is to place the broom and the witch
+\emph{over} the relevant subformula:
+\[
+ \overrightwitchonbroom{
+ \sup\,\{\,p\in\mathbb{N}\mid \text{$p$ and $p+2$ are both prime}\,\}
+ } = \infty
+\]
+
+Different types of magic, that you might want to apply to a given formula, can
+be distinguished by adding a black cat on the broom: for example, a student
+could claim that
+\begin{align*}
+ \mathwitch 2x\sin x &= 2\sin x^{2}\\
+ \intertext{whereas, for another student,}
+ \mathwitch*2x\sin x &= \sin 3x
+\end{align*}
+
+
+
+\subsection{Monoids}
+
+Let $X$ be a non-empty set, and suppose there exists a map
+\begin{equation}
+ X\times X\longrightarrow X,\qquad
+ (x,y)\longmapsto P(x,y)=x\pumpkin y
+ \label{eq:Pdef}
+\end{equation}
+Suppose furthermore that this map satisfies the \textbf{associative property}
+\begin{equation}
+ \forall x\in X,\;\forall y\in X,\;\forall z\in X\qquad
+ x\pumpkin(y\pumpkin z) = (x\pumpkin y)\pumpkin z
+ \label{eq:Passoc}
+\end{equation}
+Then, the pair $(X,\pumpkin)$ is called a \textbf{semigroup}, and $\pumpkin$
+denotes its \textbf{operation}. If, in addition, there exists in~$X$ an
+element~$\mathghost$ with the property that
+\begin{equation}
+ \forall x\in X\qquad
+ \mathghost\pumpkin x = x = x\pumpkin\mathghost
+ \label{eq:Punit}
+\end{equation}
+the triple $(X,\pumpkin,\mathghost)$ is called a \textbf{monoid}, and the
+element~$\mathghost$ is called its \textbf{unit}. It is immediate to prove that
+the unit of a monoid is unique: indeed, if $\mathghost'$ is another element
+of~$X$ having the property~\eqref{eq:Punit}, then
+\[
+ \mathghost' = \mathghost'\pumpkin\mathghost = \mathghost
+\]
+(the first equality holds because \( \mathghost'\in X \) and
+$\mathghost$~satisfies~\eqref{eq:Punit}, and the second because \( \mathghost\in
+X \) and $\mathghost'$~satisfies~\eqref{eq:Punit}).
+
+Let $(X,\pumpkin)$ be a monoid. Since the operation~$\pumpkin$ is associative,
+we may set, for \( x,y,z\in X \),
+\[
+ x\pumpkin y\pumpkin z =_{\mathrm{def}}
+ (x\pumpkin y)\pumpkin z = x\pumpkin (y\pumpkin z)
+\]
+More generally, since the order in which the operations are performed doesn't
+matter, given $n$~elements \( x_{1},\dots,x_{n} \in X \), with $n\ge1$, the
+result of
+\[
+ \bigpumpkin_{i=1}^{n} x_{i} = x_{1}\pumpkin\dots\pumpkin x_{n}
+\]
+is unambiguously defined.
+
+A monoid $(X,\pumpkin)$ is said to be \textbf{commutative} if
+\begin{equation}
+ \forall x\in X,\;\forall y\in X\qquad
+ x\pumpkin y = y\pumpkin x
+ \label{eq:Pcomm}
+\end{equation}
+In this case, even the order of the \emph{operands} becomes irrelevant, so that,
+for any finite set~$F$, the notation \( \bigpumpkin_{i\in F} x_{i} \) also
+acquires a meaning.
+
+
+
+\subsection{Applications induced on power sets}
+
+If $X$ is a set, we'll denote by~$\wp(X)$ the set of all subsets of~$X$, that is
+\[
+ \wp(X) = \{\,S:S\subseteq X\,\}
+\]
+
+Let \( f\colon A\longrightarrow B \) a function. Starting from~$f$, we can
+define two other functions \( f^{\mathrightbat} \colon \wp(A) \longrightarrow
+\wp(B) \) and \( f^{\mathleftbat} \colon \wp(B) \longrightarrow \wp(A) \) in the
+following way:
+\begin{alignat}{2}
+ &\text{for $X\subseteq A$,}\quad
+ &f^{\mathrightbat}(X) &= \{\,f(x):x\in X\,\} \\
+ &\text{for $Y\subseteq B$,}\quad
+ &f^{\mathleftbat}(Y) &= \{\,x\in A:f(x)\in Y\,\}
+\end{alignat}
+In the case of functions with long names, or with long descriptions, we'll also
+use a notation like \( \overrightflutteringbat{f_{1}+\dots+f_{n}} \) to mean the
+same thing as \( (f_{1}+\dots+f_{n})^{\mathrightbat} \).
+
+For example,
+\begin{align*}
+ \mathop{\overrightflutteringbat{\sin}}(\mathbb{R}) &= [-1,1] \\
+ \mathop{\overrightflutteringbat{\sin}}\bigl([0,\pi]\bigr) &= [0,1] \\
+ \mathop{\overrightflutteringbat{\sin+\cos}}(\mathbb{R})
+ &= \bigl[-\tfrac{\sqrt{2}}{2},\tfrac{\sqrt{2}}{2}\bigr] \\
+ \mathop{\overleftflutteringbat{\log}}\bigl(\mathopen]-\infty,0]\bigr)
+ &= \mathopen]0,1]
+\end{align*}
+
+
+
+\subsection{A comprehensive test}
+
+A comparison between the ``standard'' and the ``script'' extensible over\slash
+under arrows:
+\begin{align*}
+ \overrightarrow{f_{1}+\dots+f_{n}}
+ &\neq\overscriptrightarrow{f_{1}+\dots+f_{n}} \\
+ \overleftarrow{f_{1}+\dots+f_{n}}
+ &\neq\overscriptleftarrow{f_{1}+\dots+f_{n}} \\
+ \overleftrightarrow{f_{1}+\dots+f_{n}}
+ &\neq\overscriptleftrightarrow{f_{1}+\dots+f_{n}} \\
+ \underrightarrow{f_{1}+\dots+f_{n}}
+ &\neq\underscriptrightarrow{f_{1}+\dots+f_{n}} \\
+ \underleftarrow{f_{1}+\dots+f_{n}}
+ &\neq\underscriptleftarrow{f_{1}+\dots+f_{n}} \\
+ \underleftrightarrow{f_{1}+\dots+f_{n}}
+ &\neq\underscriptleftrightarrow{f_{1}+\dots+f_{n}}
+\end{align*}
+
+\bigbreak
+
+A reduction my students are likely to make:
+\[\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
+The same reduction as an in-line formula:
+\(\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).
+
+Now with limits:
+\[
+ \mathwitch_{i=1}^{n} \frac
+ {\text{$i$-th magic term}}
+ {\text{$2^{i}$-th wizardry}}
+\]
+And repeated in-line: \( \mathwitch_{i=1}^{n} x_{i}y_{i} \).
+
+The \texttt{bold} math version is honored:\mathversion{bold}
+\[
+ \mathwitch*
+ \genfrac{<}{>}{0pt}{}
+ {\textbf{something terribly}}{\textbf{complicated}}
+ = 0
+\]
+Compare it with \texttt{normal} math\mathversion{normal}:
+\[
+ \mathwitch*
+ \genfrac{<}{>}{0pt}{}
+ {\text{something terribly}}{\text{complicated}}
+ = 0
+\]
+In-line math comparison:
+{\boldmath $\mathwitch* f(x)$} versus $\mathwitch* f(x)$.
+
+There is also a left-facing witch:
+\[\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
+And here is the in-line version:
+\(\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).
+
+Test for \verb|\dots|:
+\[
+ \mathwitch_{i_{1}=1}^{n_{1}} \dots \mathwitch_{i_{p}=1}^{n_{p}}
+ \frac
+ {\text{$i_{1}$-th magic factor}}
+ {\text{$2^{i_{1}}$-th wizardry}}
+ \pumpkin\dots\pumpkin
+ \frac
+ {\text{$i_{p}$-th magic factor}}
+ {\text{$2^{i_{p}}$-th wizardry}}
+\]
+And repeated in-line: \( \mathwitch\dots\mathwitch_{i=1}^{n} x_{i}y_{i} \).
+
+\bigbreak
+
+Now the pumpkins. First the \texttt{bold} math version:\mathversion{bold}:
+\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
+Then the \texttt{normal} one\mathversion{normal}:
+\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
+In-line math comparison:
+{\boldmath \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \)}
+versus \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \).
+
+Close test: {\boldmath $\bigoplus$}$\bigoplus$.
+And against the pumpkins:
+{\boldmath $\bigpumpkin$}$\bigpumpkin\bigoplus${\boldmath $\bigoplus$}.
+
+In-line, but with \verb|\limits|:
+\( \bigoplus\limits_{h=1}^{m}\bigpumpkin\limits_{k=1}^{n} P_{h,k} \).
+
+Binary: \( x\pumpkin y \neq x\oplus y \). And in display:
+\[ a\pumpkin\frac{x\pumpkin y}{x\oplus y}\otimes b \]
+Close test: {\boldmath $\oplus$}$\oplus$.
+And with the pumpkins too:
+{\boldmath $\pumpkin$}$\pumpkin\oplus${\boldmath $\oplus$}.
+
+In general,
+\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]
+
+\begingroup
+
+\bfseries\boldmath
+
+The same in bold:
+\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]
+
+\endgroup
+
+Other styles: \( \frac{x\pumpkin y}{2} \), exponent~$Z^{\pumpkin}$,
+subscript~$W_{\!x\pumpkin y}$, double script \( 2^{t_{x\pumpkin y}} \).
+
+\bigbreak
+
+Clouds. A hypothetical identity:
+\( \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \).
+Now the same identity set in display:
+\[ \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \]
+Now in smaller size: \( \frac{\sin x+\cos x}{\mathcloud} = 1 \).
+
+Specular clouds, \texttt{bold}\ldots\mathversion{bold}
+\[ \reversemathcloud \longleftrightarrow \mathcloud \]
+\ldots and in \texttt{normal} math.\mathversion{normal}
+\[ \reversemathcloud \longleftrightarrow \mathcloud \]
+In-line math comparison:
+{\boldmath \( \reversemathcloud \leftrightarrow \mathcloud \)}
+versus \( \reversemathcloud \leftrightarrow \mathcloud \).
+Abutting: {\boldmath $\mathcloud$}$\mathcloud$.
+
+\bigbreak
+
+Ghosts: \( \mathleftghost \mathghost \mathrightghost \mathghost \mathleftghost
+\mathghost \mathrightghost \). Now with letters: \( H \mathghost H \mathghost h
+\mathghost ab \mathghost f \mathghost wxy \mathghost \), and also \(
+2\mathghost^{3} + 5\mathleftghost^{\!2}-3\mathrightghost_{i} =
+12\mathrightghost_{j}^{4} \). Then, what about~$x^{2\mathghost}$ and \(
+z_{\!\mathrightghost+1} = z_{\!\mathrightghost}^{2} + z_{\mathghost} \)?
+
+In subscripts:
+\begin{align*}
+ F_{\mathghost+2} &= F_{\mathghost+1} + F_{\mathghost} \\
+ F_{\!\mathrightghost+2} &= F_{\!\mathrightghost+1} + F_{\!\mathrightghost}
+\end{align*}
+Another test: \( \mathghost | \mathrightghost | \mathghost | \mathleftghost |
+\mathghost | \mathrightghost | \mathghost | \mathleftghost | \mathghost \). We
+should also try this: \( \mathrightghost \mathleftghost \mathrightghost
+\mathleftghost \).
+
+Let us now compare ghosts set in normal math
+\( \mathrightghost \mathleftghost \mathghost \mathrightghost \mathleftghost \)
+with (a few words to push the bold ghosts to the right)
+{\bfseries\boldmath ghosts like these
+\( \mathrightghost \mathleftghost \mathghost \mathrightghost \mathleftghost \),
+which are set in bold math.}
+
+\bigbreak
+
+Extensible arrows:
+\begin{gather*}
+ A \xrightwitchonbroom[a]{\sumxn} B \xrightwitchonbroom{x+z}
+ C \xrightwitchonbroom{} D \\
+ A \xrightwitchonbroom*[a]{\sumxn} B \xrightwitchonbroom*{x+z}
+ C \xrightwitchonbroom*{} D \\
+ A \xleftwitchonbroom*[a]{\sumxn} B \xleftwitchonbroom*{x+z}
+ C \xleftwitchonbroom*{} D \\
+ A \xleftwitchonbroom[a]{\sumxn} B \xleftwitchonbroom{x+z}
+ C \xleftwitchonbroom{} D
+\end{gather*}
+And \( \overrightwitchonbroom*{\sumxn}=0 \) versus \(
+\overrightwitchonbroom{\sumxn}=0 \); or \( \overleftwitchonbroom*{\sumxn}=0 \)
+versus \( \overleftwitchonbroom{\sumxn}=0 \).
+
+\begingroup
+
+\bfseries \mathversion{bold}
+
+Now repeat in bold:
+\begin{gather*}
+ A \xrightwitchonbroom[a]{\sumxn} B \xrightwitchonbroom{x+z}
+ C \xrightwitchonbroom{} D \\
+ A \xrightwitchonbroom*[a]{\sumxn} B \xrightwitchonbroom*{x+z}
+ C \xrightwitchonbroom*{} D \\
+ A \xleftwitchonbroom*[a]{\sumxn} B \xleftwitchonbroom*{x+z}
+ C \xleftwitchonbroom*{} D \\
+ A \xleftwitchonbroom[a]{\sumxn} B \xleftwitchonbroom{x+z}
+ C \xleftwitchonbroom{} D
+\end{gather*}
+And \( \overrightwitchonbroom*{\sumxn}=0 \) versus \(
+\overrightwitchonbroom{\sumxn}=0 \); or \( \overleftwitchonbroom*{\sumxn}=0 \)
+versus \( \overleftwitchonbroom{\sumxn}=0 \).
+
+\endgroup
+
+Hovering ghosts: \( \overrightswishingghost{\sumxn}=0 \). I~wonder whether
+there is enough space left for the swishing ghost; let's try again:
+\( \overrightswishingghost{(\sumxn)y}=0 \)! Yes, it looks like there is enough
+room, although, of course, we cannot help the line spacing going awry. Also try
+\( \overrightswishingghost{\mathstrut} \).
+\begin{gather*}
+ A \xrightswishingghost[a]{\sumxn} B \xrightswishingghost{x+z} C
+ \xrightswishingghost{} D \\
+ A \xleftswishingghost[a]{\sumxn} B \xleftswishingghost{x+z} C
+ \xleftswishingghost{} D
+\end{gather*}
+Another hovering ghost: \( \overleftswishingghost{\sumxn}=0 \).
+Lorem ipsum dolor sit amet consectetur adipisci elit. Ulla rutrum, vel sivi sit
+anismus oret, rubi sitiunt silvae. Let's see how it looks like when the ghost
+hovers on a taller formula, as in \(
+\overrightswishingghost{H_{1}\oplus\dots\oplus H_{k}} \). Mmm, it's suboptimal,
+to say the least.\footnote{We'd better try \(
+\underleftswishingghost{y_{1}+\dots+y_{n}} \), too; well, this one looks good!}
+
+Under ``arrow-like'' symbols: \( \underleftswishingghost{\sumxn}=0 \) and \(
+\underrightswishingghost{x+y+z} \). There are \(
+\underleftwitchonbroom*{\sumxn}=0 \) and \( \underrightwitchonbroom*{x+y+z} \)
+as well.
+
+Compare \( A\xrightswishingghost{\sumxn} B \) with (add a few words to push it
+to the next line) {\bfseries\boldmath its bold version \(
+A\xrightswishingghost{\sumxn} B \).}
+
+\bigbreak
+
+Bats: $\mathbat${\boldmath $\mathbat$}. We are interested in seeing whether a
+bat affixed to a letter as an exponent causes the lines of a paragraph to be
+further apart than usual. Therefore, we now try~$f^{\mathbat}$, also
+{\bfseries\boldmath in bold~$f^{\mathbat}$,} then we type a few more words (just
+enough to obtain another typeset line or two) in order to see what happens. We
+need to look at the transcript file, to check the outcome of the following
+tracing commands.
+
+Asymmetric bats: $\mathleftbat${\boldmath $\mathleftbat$}, and also
+$\mathrightbat${\boldmath $\mathrightbat$}. Exponents: this is \texttt{normal}
+math \( x^{\mathleftbat} \pumpkin y^{\mathrightbat} \), while
+{\bfseries\boldmath this is \texttt{bold} math \( x^{\mathleftbat} \pumpkin
+y^{\mathrightbat} \).} Do you note the difference? Let's try subscripts, too:
+\( f_{\mathleftbat} \pumpkin g_{\mathrightbat} \) versus {\bfseries\boldmath
+bold \( f_{\mathleftbat} \pumpkin g_{\mathrightbat} \).}
+Now, keep on repeating some silly text, just in order to fill up the paragraph
+with a sufficient number of lines. Now, keep on repeating some silly text, just
+in order to fill up the paragraph with a sufficient number of lines. Now, keep
+on repeating some silly text, just in order to fill up the paragraph with a
+sufficient number of lines. That's enough!
+
+Hovering bats: \( \overrightflutteringbat{\sumxn}=0 \). I~wonder whether there
+is enough space left for the swishing bat; let's try again:
+\( \overrightflutteringbat{(\sumxn)y}=0 \)! Yes, it looks like there is enough
+room (with the usual remark abut line spacing). Also try
+\( \overrightflutteringbat{\mathstrut} \).
+\begin{gather*}
+ A \xrightflutteringbat[a]{\sumxn} B \xrightflutteringbat{x+z}
+ C \xrightflutteringbat{} D \\
+ A \xleftflutteringbat[a]{\sumxn} B \xleftflutteringbat{x+z} C
+ \xleftflutteringbat{} D
+\end{gather*}
+Another hovering bat: \( \overleftflutteringbat{\sumxn}=0 \).
+
+Under ``arrow-like'' bats: \( \underleftflutteringbat{\sumxn}=0 \) and \(
+\underrightflutteringbat{x+y+z} \).
+
+Compare \( A\xrightflutteringbat{\sumxn} B \) with (add a few words to push it
+to the next line) {\bfseries\boldmath its bold version \(
+A\xrightflutteringbat{\sumxn} B \).}
+
+Test for checking the placement of the formulas that go over or under the
+fluttering bat:
+\begin{gather*}
+ A \xrightflutteringbat[\text{a long subscript}]{\text{a long superscript}} B
+ \xrightflutteringbat[\text{a long subscript}]{|} C
+ \xrightflutteringbat{|} D \xrightflutteringbat{} E \\
+ A \xleftflutteringbat[\text{a long subscript}]{\text{a long superscript}} B
+ \xleftflutteringbat[\text{a long subscript}]{|} C
+ \xleftflutteringbat{|} D \xleftflutteringbat{} E
+\end{gather*}
+I'd say it's now OK\@\ldots
+
+\bigbreak
+
+Extensible arrows with pitchfork:
+\begin{gather*}
+ A \xrightwitchonpitchfork[a]{\sumxn} B \xrightwitchonpitchfork{x+z} C
+ \xrightwitchonpitchfork{} D \\
+ A \xrightwitchonpitchfork*[a]{\sumxn} B \xrightwitchonpitchfork*{x+z} C
+ \xrightwitchonpitchfork*{} D \\
+ A \xleftwitchonpitchfork*[a]{\sumxn} B \xleftwitchonpitchfork*{x+z} C
+ \xleftwitchonpitchfork*{} D \\
+ A \xleftwitchonpitchfork[a]{\sumxn} B \xleftwitchonpitchfork{x+z} C
+ \xleftwitchonpitchfork{} D
+\end{gather*}
+And \( \overrightwitchonpitchfork*{\sumxn}=0 \) versus \(
+\overrightwitchonpitchfork{\sumxn}=0 \); or \(
+\overleftwitchonpitchfork*{\sumxn}=0 \) versus \(
+\overleftwitchonpitchfork{\sumxn}=0 \). There are \(
+\underleftwitchonpitchfork*{\sumxn}=0 \) and \(
+\underrightwitchonpitchfork*{x+y+z} \) as well.
+
+\begingroup
+
+\bfseries \mathversion{bold}
+
+Now again, but all in boldface:
+\begin{gather*}
+ A \xrightwitchonpitchfork[a]{\sumxn} B \xrightwitchonpitchfork{x+z} C
+ \xrightwitchonpitchfork{} D \\
+ A \xrightwitchonpitchfork*[a]{\sumxn} B \xrightwitchonpitchfork*{x+z} C
+ \xrightwitchonpitchfork*{} D \\
+ A \xleftwitchonpitchfork*[a]{\sumxn} B \xleftwitchonpitchfork*{x+z} C
+ \xleftwitchonpitchfork*{} D \\
+ A \xleftwitchonpitchfork[a]{\sumxn} B \xleftwitchonpitchfork{x+z} C
+ \xleftwitchonpitchfork{} D
+\end{gather*}
+And \( \overrightwitchonpitchfork*{\sumxn}=0 \) versus \(
+\overrightwitchonpitchfork{\sumxn}=0 \); or \(
+\overleftwitchonpitchfork*{\sumxn}=0 \) versus \(
+\overleftwitchonpitchfork{\sumxn}=0 \). There are \(
+\underleftwitchonpitchfork*{\sumxn}=0 \) and \(
+\underrightwitchonpitchfork*{x+y+z} \) as well.
+
+\endgroup
+
+The big table of the rest:
+\begin{align*}
+ A &\xrightbroom{\sumxn} B &
+ \overrightbroom {\sumxn} = 0 &&
+ \underrightbroom{\sumxn} = 0 \\
+ &&
+ \overscriptrightbroom {\sumxn} = 0 &&
+ \underscriptrightbroom{\sumxn} = 0 \\
+ A &\xleftbroom{\sumxn} B &
+ \overleftbroom {\sumxn} = 0 &&
+ \underleftbroom{\sumxn} = 0 \\
+ &&
+ \overscriptleftbroom {\sumxn} = 0 &&
+ \underscriptleftbroom{\sumxn} = 0 \\
+ A &\xrightpitchfork{\sumxn} B &
+ \overrightpitchfork {\sumxn} = 0 &&
+ \underrightpitchfork{\sumxn} = 0 \\
+ &&
+ \overscriptrightpitchfork {\sumxn} = 0 &&
+ \underscriptrightpitchfork{\sumxn} = 0 \\
+ A &\xleftpitchfork{\sumxn} B &
+ \overleftpitchfork {\sumxn} = 0 &&
+ \underleftpitchfork{\sumxn} = 0 \\
+ &&
+ \overscriptleftpitchfork {\sumxn} = 0 &&
+ \underscriptleftpitchfork{\sumxn} = 0 \\
+\end{align*}
+
+Now in bold\ldots\space No, please, seriously, just the examples for the minimal
+size: in \texttt{normal} math we show \( A \xrightbroom{} B \) and \( C
+\xleftpitchfork{} D \) and \( \overscriptrightbroom{} \) and \(
+\overscriptleftpitchfork{} \), which we now repeat {\bfseries\boldmath in
+\texttt{bold} math \( A \xrightbroom{} B \) and \( C \xleftpitchfork{} D \) and
+\( \overscriptrightbroom{} \) and \( \overscriptleftpitchfork{} \).} Mmmh, the
+minimal size seems way too narrow: is it the same for the standard arrows?
+Let's see:
+\begin{align*}
+ A &\xrightarrow{} B & \overrightarrow{} && \overscriptrightarrow{} \\
+ A &\xleftarrow {} B & \overleftarrow {} && \overscriptleftarrow {} \\
+ A &\xrightbroom{} B & \overrightbroom{} && \overscriptrightbroom{} \\
+ A &\xleftbroom {} B & \overleftbroom {} && \overscriptleftbroom {}
+\end{align*}
+Well, almost so, but the arrow tip is much more ``discrete''\ldots
+
+To cope with this problem, \verb|\rightbroom| and siblings have been introduced:
+for example, \( X\rightbroom Y \).
+
+A comparative table follows:
+\begin{align*}
+ A &\rightbroom B & C &\hmrightpitchfork D \\
+ A &\leftbroom B & C &\hmleftpitchfork D \\
+ A &\longrightarrow B & C &\Longrightarrow D \\
+ A &\longleftarrow B & C &\Longleftarrow D \\
+ A &\xrightwitchonbroom{} B & C &\xrightwitchonpitchfork{} D \\
+ A &\xleftwitchonbroom{} B & C &\xleftwitchonpitchfork{} D \\
+\end{align*}
+
+Finally, \( \overbat{y} + \underbat{x} + z = 0 \) versus \( \overbat*{y} +
+\underbat*{x} + z = 0 \), and also note that \( {\overbat{x}}_{2} \ne
+{\overbat*{x}}_{2} \). Oh, wait, we have to check {\bfseries\boldmath the bold
+version \( {\overbat{x}}_{2} \ne {\overbat*{x}}_{2} \)} too!
+
+\bigbreak
+
+We've now gotten to skulls.
+\[ A \xrightswishingghost{\mspace{100mu}} B \skull C \]
+
+Skulls are similar to pumpkins, and thus to \verb|\oplus|:
+\begin{gather*}
+ H_{1} \skull \dots \skull H_{n} \\
+ H_{1} \oplus \dots \oplus H_{n} \\
+ H_{1} \pumpkin \dots \pumpkin H_{n}
+\end{gather*}
+As you can see, though, the dimensions differ slightly:
+\( {\skull}{\oplus}{\pumpkin} \).
+Subscript: \( A_{x\skull y} \).
+Now the ``large'' operator version:
+\begin{align*}
+ \bigskull _{i=1}^{n} H_{i} &= H_{1} \skull \dots \skull H_{n} \\
+ \bigoplus _{i=1}^{n} H_{i} &= H_{1} \oplus \dots \oplus H_{n} \\
+ \bigpumpkin_{i=1}^{n} H_{i} &= H_{1} \pumpkin \dots \pumpkin H_{n}
+\end{align*}
+In-line: \( \bigskull_{i=1}^{n} H_{i} = H_{1}\skull\dots\skull H_{n} \).
+Example of close comparison: \( \bigoplus\bigskull\bigpumpkin X \).
+{\bfseries\boldmath Now repeat in bold: \( \bigskull_{i=1}^{n} H_{i} =
+H_{1}\skull\dots\skull H_{n} \).}
+
+Skulls look much gloomier than pumpkins: compare \( P\pumpkin U\pumpkin M = P \)
+with \( S\skull K\skull U = L\odot L \). Why did~I ever outline such a grim and
+dreary picture? The ``large operator'' variant, then, is truly dreadful! How
+could anybody write a formula like \( \bigskull_{i}\bigskull_{j} A_{i}\otimes
+B_{j} \)? How much cheerer is \( \bigpumpkin_{i}\bigpumpkin_{j} A_{i}\otimes
+B_{j} \)? And look at the displayed version:
+\[
+ \bigskull_{i=1}^{m}\bigskull_{j=1}^{n} A_{i}\otimes B_{j} \neq
+ \bigpumpkin_{i=1}^{m}\bigpumpkin_{j=1}^{n} A_{i}\otimes B_{j}
+\]
+
+Comparison between math versions: $x\skull y$ is normal math,
+{\bfseries\boldmath whereas $x\skull y$ is bold.} Similarly, \(
+\bigskull_{i-1}^{n} K_{i} = L \) is normal, {\bfseries\boldmath but \(
+\bigskull_{i-1}^{n} K_{i} = L \) is bold.} And now the displays: normal
+\[
+ \bigskull_{i=1}^{m}\bigskull_{j=1}^{n} A_{i}\otimes B_{j} \neq
+ \bigpumpkin_{i=1}^{m}\bigpumpkin_{j=1}^{n} A_{i}\otimes B_{j}
+\]
+versus {\bfseries\boldmath bold
+\[
+ \bigskull_{i=1}^{m}\bigskull_{j=1}^{n} A_{i}\otimes B_{j} \neq
+ \bigpumpkin_{i=1}^{m}\bigpumpkin_{j=1}^{n} A_{i}\otimes B_{j}
+\]
+math.} Back to the normal font.
+
+\end{document}
diff --git a/Master/texmf-dist/doc/latex/halloweenmath/manifest.txt b/Master/texmf-dist/doc/latex/halloweenmath/manifest.txt
index 74ae5fc5634..137e4967b8c 100644
--- a/Master/texmf-dist/doc/latex/halloweenmath/manifest.txt
+++ b/Master/texmf-dist/doc/latex/halloweenmath/manifest.txt
@@ -21,7 +21,7 @@ precisely, it explains how the locutions "Work" and "Compiled Work",
used in the LaTeX Project Public License, are to be interpreted in the
case of this work.
-January 6, 2017 (vers. 0.01)
+April 16, 2017 (vers. 0.10)
@@ -82,8 +82,8 @@ Network (CTAN) includes also the following five files:
README -- guide to directory contents
halloweenmath-doc.pdf -- overview of the halloweenmath package (PDF)
-halloweenexample.tex -- example LaTeX source for this package
-halloweenexample.pdf -- typeset version of the preceding item (PDF)
+halloweenmath-man.pdf -- user's manual for this same package (PDF)
+halloweenmath-man.tex -- LaTeX source of the preceding item
Makefile -- Makefile to generate code or documentation
These five files are included only for convenience's sake and are _not_