summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2015-12-07 22:21:44 +0000
committerKarl Berry <karl@freefriends.org>2015-12-07 22:21:44 +0000
commit8c1327256a3343e32ed31678b9dc84ae4fd38644 (patch)
treea138eb68277f8dd56b1de2fb079fa0de7208fe57 /Master/texmf-dist/doc
parent7b6f2d40e5ceee3427a6050b2f6b159fd03b002a (diff)
bhcexam (7dec15)
git-svn-id: svn://tug.org/texlive/trunk@39041 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc')
-rw-r--r--Master/texmf-dist/doc/latex/bhcexam/Makefile88
-rw-r--r--Master/texmf-dist/doc/latex/bhcexam/README2
-rw-r--r--Master/texmf-dist/doc/latex/bhcexam/test1.tex143
-rw-r--r--Master/texmf-dist/doc/latex/bhcexam/test2.tex144
-rw-r--r--Master/texmf-dist/doc/latex/bhcexam/test3.tex144
-rw-r--r--Master/texmf-dist/doc/latex/bhcexam/test4.tex144
6 files changed, 664 insertions, 1 deletions
diff --git a/Master/texmf-dist/doc/latex/bhcexam/Makefile b/Master/texmf-dist/doc/latex/bhcexam/Makefile
new file mode 100644
index 00000000000..667c2424913
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/bhcexam/Makefile
@@ -0,0 +1,88 @@
+PACKAGE = BHCexam
+########################################################################
+## LaTeX2e Makefile
+##
+## Update the following defines for your local configuration,
+##
+TEXMFDIR = ~/texmf/tex/latex/BHCexam
+GZIP = gzip
+XELATEX = xelatex
+PDFLATEX = pdflatex
+MAKEINDEX = makeindex
+########################################################################
+## make [all] Generates the class(.cls) file, the configuration(.cfg)
+## file and the documentation (.pdf). If you don't have
+## the required MAKEINDEX (along with `gglo.ist' and
+## `gind.ist'), then change the first dependency
+## of "all" from "fullpdf" to "pdf" below.
+## make [un]install Install or uninstall the class(.cls) file and
+## the configuration(.cfg) file.
+## make [very]clean Clean out various auxillary files. "veryclean"
+## cleans out more stuff.
+########################################################################
+## make [full]doc Generate the documentation. The "fulldoc" version
+## adds the change log and the cross-references.
+## make idx Generate the change log and the cross-references
+## (for fulldoc -- requires MAKEINDEX).
+## make cls Generate the class(.cls) file and the
+## configuration(.cfg) file.
+
+########################################################################
+## make test Run test file(s)
+## make src Builds a src distribution (.tar.gz) file.
+## make distribtion Builds a distribution (.tar.gz) file.
+########################################################################
+
+all: veryclean cls fulldoc test clean
+
+install: cls
+ cp $(PACKAGE).{cls,cfg} $(TEXMFDIR)
+uninstall: ; rm $(TEXMFDIR)/$(PACKAGE).{cls,cfg}
+clean: ; -rm -f *.dvi *.log *.aux *.lof *.lot *.toc
+ -rm -f *.idx *.ind *.glo *.gls *.ilg *.out *~
+veryclean: ; -rm -f *.dvi *.log *.aux *.lof *.lot *.toc
+ -rm -f *.idx *.ind *.glo *.gls *.ilg *.out
+ -rm -f *.idx *.ind *.glo *.gls *.ilg *.out
+ -rm -f *.sty *.cls *.pdf *pk *.cfg *.tar *~
+
+
+doc: ; $(XELATEX) $(PACKAGE).dtx
+
+cls: ; $(XELATEX) $(PACKAGE).ins
+
+fulldoc: doc $(PACKAGE).gls $(PACKAGE).ind
+ $(XELATEX) $(PACKAGE).dtx
+
+src: ; mkdir $(PACKAGE)
+ cp -p README Makefile $(PACKAGE)
+ cp -p $(PACKAGE).dtx $(PACKAGE).ins $(PACKAGE)
+ cp -p test*.tex $(PACKAGE)
+ tar -cvf $(PACKAGE)-src.tar ./$(PACKAGE)
+ rm -rf $(PACKAGE)
+ $(GZIP) -9 $(PACKAGE)-src.tar
+
+distribution: veryclean cls fulldoc test clean
+ mkdir $(PACKAGE)
+ cp -p $(PACKAGE).cls $(PACKAGE).cfg $(PACKAGE)
+ cp -p *.tex $(PACKAGE)
+ cp -p *.pdf $(PACKAGE)
+ tar -cvf $(PACKAGE).tar ./$(PACKAGE)
+ rm -rf $(PACKAGE)
+ $(GZIP) -9 $(PACKAGE).tar
+
+$(PACKAGE).gls: doc
+ $(MAKEINDEX) -s gglo.ist -o $(PACKAGE).gls $(PACKAGE).glo
+
+$(PACKAGE).ind: doc
+ $(MAKEINDEX) -s gind.ist -o $(PACKAGE).ind $(PACKAGE).idx
+
+test: cls
+ $(XELATEX) test1.tex
+ $(XELATEX) test1.tex
+ $(XELATEX) test2.tex
+ $(XELATEX) test2.tex
+ $(XELATEX) test3.tex
+ $(XELATEX) test3.tex
+ $(XELATEX) test4.tex
+ $(XELATEX) test4.tex
+
diff --git a/Master/texmf-dist/doc/latex/bhcexam/README b/Master/texmf-dist/doc/latex/bhcexam/README
index c7ede393ba3..73804a8a61e 100644
--- a/Master/texmf-dist/doc/latex/bhcexam/README
+++ b/Master/texmf-dist/doc/latex/bhcexam/README
@@ -1,4 +1,4 @@
-This is version 0.3 of the BHCexam document class, dated Feb 18, 2014.
+This is version 0.4 of the BHCexam document class, dated Oct 10, 2015.
The BHCexam document class attempts to make it easy for even a LaTeX novice to prepare exams.
diff --git a/Master/texmf-dist/doc/latex/bhcexam/test1.tex b/Master/texmf-dist/doc/latex/bhcexam/test1.tex
new file mode 100644
index 00000000000..01fc0b2035a
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/bhcexam/test1.tex
@@ -0,0 +1,143 @@
+\documentclass[printbox,marginline,noindent,adobefonts]{BHCexam}
+\begin{document}
+\printmlol
+\maketitle
+
+\begin{questions}
+\tiankong
+\question 已知~$\bm{a}=(k,-9)$、$\bm{b}=(-1,k)$, $\bm{a}$~与~$\bm{b}$~为平行向量,
+ 则~$k=$\stk{$\pm3$}.
+
+\question 若函数~$f(x)=x^{6m^2-5m-4}\,(m\in\mathbb{Z})$~的图像关于~$y$~轴对称,
+ 且~$f(2)<f(6)$, 则~$f(x)$~的解析式为\stk{$f(x)=x^{-4}$}.
+
+\question 若~$f(x+1)=x^2\,(x\leq0)$, 则~$f^{-1}(1)=$\stk{0}.
+
+\question 在~$b\text{g}$~糖水中含糖~$a\text{g}$\,($b>a>0$), 若再添加~$m\text{g}$~糖~($m>0$),
+
+
+\question 已知~$f(x)=1-\textbf{c}_8^1x+\textbf{c}_8^2x^2-\textbf{c}_8^3x^3+\cdots+\textbf{c}_8^8x^8$,
+ 则~$f\big(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\textbf{i}\big)$~的值是\ltk{$-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\textbf{i}$}.
+
+\question 自然数~$1,2,3,\ldots,10$~的方差记为~$\sigma^2$,
+ 其中的偶数~$2,4,6,8,10$~的方差记为~$\sigma_1^2$,
+ 则~$\sigma^2$~与~$\sigma_1^2$~的大小关系为~$\sigma^2$\stk{$>$}$\sigma_1^2$.
+
+\question 若~$\theta$~为三角形的一个内角, 且~$\sin\theta+\cos\theta=\dfrac{2}{3}$,
+ 则方程~$x^2\csc\theta-y^2\sec\theta=1$~表示的曲线的焦点坐标是\stk{$\big(\pm\dfrac{\sqrt{6}}{3},0\big)$}.
+
+
+\question 高为~$h$~的棱锥被平行于棱锥底面的截得棱台侧面积是
+ 原棱锥的侧面积的~$\dfrac{5}{9}$,
+ 则截得的棱台的体积与原棱锥的体积之比是\stk{$19:27$}.
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\newpage
+
+\xuanze
+\question 已知集合~$A=\{x\mid \abs{x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\question 已知集合~$A=\{x\mid \abs{x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\newpage
+\jianda
+\question 已知复数~$z$ 满足:$\abs{z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[7] 求复数~$z$;
+\part[7] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~$\abs{z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part $\abs{z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\question[14] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+
+\question[16] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+\question 已知复数~$z$ 满足:$\abs{z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[8] 求复数~$z$;
+\part[8] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~$\abs{z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part $\abs{z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\newpage
+
+\question[18] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\end{questions}
+\end{document}
diff --git a/Master/texmf-dist/doc/latex/bhcexam/test2.tex b/Master/texmf-dist/doc/latex/bhcexam/test2.tex
new file mode 100644
index 00000000000..8dac567787b
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/bhcexam/test2.tex
@@ -0,0 +1,144 @@
+\documentclass[16kpaper]{BHCexam}
+\begin{document}
+
+\maketitle
+\mininotice
+
+\begin{questions}
+\tiankong
+\question 已知~$\bm{a}=(k,-9)$、$\bm{b}=(-1,k)$, $\bm{a}$~与~$\bm{b}$~为平行向量,
+ 则~$k=$\stk{$\pm3$}.
+
+\question 若函数~$f(x)=x^{6m^2-5m-4}\,(m\in\mathbb{Z})$~的图像关于~$y$~轴对称,
+ 且~$f(2)<f(6)$, 则~$f(x)$~的解析式为\stk{$f(x)=x^{-4}$}.
+
+\question 若~$f(x+1)=x^2\,(x\leq0)$, 则~$f^{-1}(1)=$\stk{0}.
+
+\question 在~$b\text{g}$~糖水中含糖~$a\text{g}$\,($b>a>0$), 若再添加~$m\text{g}$~糖~($m>0$),
+
+
+\question 已知~$f(x)=1-\textbf{c}_8^1x+\textbf{c}_8^2x^2-\textbf{c}_8^3x^3+\cdots+\textbf{c}_8^8x^8$,
+ 则~$f\big(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\textbf{i}\big)$~的值是\ltk{$-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\textbf{i}$}.
+
+\question 自然数~$1,2,3,\ldots,10$~的方差记为~$\sigma^2$,
+ 其中的偶数~$2,4,6,8,10$~的方差记为~$\sigma_1^2$,
+ 则~$\sigma^2$~与~$\sigma_1^2$~的大小关系为~$\sigma^2$\stk{$>$}$\sigma_1^2$.
+
+\question 若~$\theta$~为三角形的一个内角, 且~$\sin\theta+\cos\theta=\dfrac{2}{3}$,
+ 则方程~$x^2\csc\theta-y^2\sec\theta=1$~表示的曲线的焦点坐标是\stk{$\big(\pm\dfrac{\sqrt{6}}{3},0\big)$}.
+
+
+\question 高为~$h$~的棱锥被平行于棱锥底面的截得棱台侧面积是
+ 原棱锥的侧面积的~$\dfrac{5}{9}$,
+ 则截得的棱台的体积与原棱锥的体积之比是\stk{$19:27$}.
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\newpage
+
+\xuanze
+\question 已知集合~$A=\{x\mid \abs{x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\question 已知集合~$A=\{x\mid \abs{x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\newpage
+\jianda
+\question 已知复数~$z$ 满足:$\abs{z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[7] 求复数~$z$;
+\part[7] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~$\abs{z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part $\abs{z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\question[14] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+
+\question[16] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+\question 已知复数~$z$ 满足:$\abs{z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[8] 求复数~$z$;
+\part[8] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~$\abs{z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part $\abs{z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\newpage
+
+\question[18] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\end{questions}
+\end{document}
diff --git a/Master/texmf-dist/doc/latex/bhcexam/test3.tex b/Master/texmf-dist/doc/latex/bhcexam/test3.tex
new file mode 100644
index 00000000000..0748babf7a5
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/bhcexam/test3.tex
@@ -0,0 +1,144 @@
+\documentclass[answers]{BHCexam}
+\begin{document}
+
+\maketitle
+\mininotice
+
+\begin{questions}
+\tiankong
+\question 已知~$\bm{a}=(k,-9)$、$\bm{b}=(-1,k)$, $\bm{a}$~与~$\bm{b}$~为平行向量,
+ 则~$k=$\stk{$\pm3$}.
+
+\question 若函数~$f(x)=x^{6m^2-5m-4}\,(m\in\mathbb{Z})$~的图像关于~$y$~轴对称,
+ 且~$f(2)<f(6)$, 则~$f(x)$~的解析式为\stk{$f(x)=x^{-4}$}.
+
+\question 若~$f(x+1)=x^2\,(x\leq0)$, 则~$f^{-1}(1)=$\stk{0}.
+
+\question 在~$b\text{g}$~糖水中含糖~$a\text{g}$\,($b>a>0$), 若再添加~$m\text{g}$~糖~($m>0$),
+
+
+\question 已知~$f(x)=1-\textbf{c}_8^1x+\textbf{c}_8^2x^2-\textbf{c}_8^3x^3+\cdots+\textbf{c}_8^8x^8$,
+ 则~$f\big(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\textbf{i}\big)$~的值是\ltk{$-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\textbf{i}$}.
+
+\question 自然数~$1,2,3,\ldots,10$~的方差记为~$\sigma^2$,
+ 其中的偶数~$2,4,6,8,10$~的方差记为~$\sigma_1^2$,
+ 则~$\sigma^2$~与~$\sigma_1^2$~的大小关系为~$\sigma^2$\stk{$>$}$\sigma_1^2$.
+
+\question 若~$\theta$~为三角形的一个内角, 且~$\sin\theta+\cos\theta=\dfrac{2}{3}$,
+ 则方程~$x^2\csc\theta-y^2\sec\theta=1$~表示的曲线的焦点坐标是\stk{$\big(\pm\dfrac{\sqrt{6}}{3},0\big)$}.
+
+
+\question 高为~$h$~的棱锥被平行于棱锥底面的截得棱台侧面积是
+ 原棱锥的侧面积的~$\dfrac{5}{9}$,
+ 则截得的棱台的体积与原棱锥的体积之比是\stk{$19:27$}.
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\newpage
+
+\xuanze
+\question 已知集合~$A=\{x\mid {x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\question 已知集合~$A=\{x\mid {x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\newpage
+\jianda
+\question 已知复数~$z$ 满足:${z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[7] 求复数~$z$;
+\part[7] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~${z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part ${z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\question[14] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+
+\question[16] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+\question 已知复数~$z$ 满足:${z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[8] 求复数~$z$;
+\part[8] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~${z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part ${z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\newpage
+
+\question[18] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\end{questions}
+\end{document}
diff --git a/Master/texmf-dist/doc/latex/bhcexam/test4.tex b/Master/texmf-dist/doc/latex/bhcexam/test4.tex
new file mode 100644
index 00000000000..17a5ef8f9bf
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/bhcexam/test4.tex
@@ -0,0 +1,144 @@
+\documentclass[UTF8,printbox]{BHCexam}
+\begin{document}
+
+\maketitle
+\notice
+
+\begin{questions}
+\tiankong
+\question 已知~$\bm{a}=(k,-9)$、$\bm{b}=(-1,k)$, $\bm{a}$~与~$\bm{b}$~为平行向量,
+ 则~$k=$\stk{$\pm3$}.
+
+\question 若函数~$f(x)=x^{6m^2-5m-4}\,(m\in\mathbb{Z})$~的图像关于~$y$~轴对称,
+ 且~$f(2)<f(6)$, 则~$f(x)$~的解析式为\stk{$f(x)=x^{-4}$}.
+
+\question 若~$f(x+1)=x^2\,(x\leq0)$, 则~$f^{-1}(1)=$\stk{0}.
+
+\question 在~$b\text{g}$~糖水中含糖~$a\text{g}$\,($b>a>0$), 若再添加~$m\text{g}$~糖~($m>0$),
+
+
+\question 已知~$f(x)=1-\textbf{c}_8^1x+\textbf{c}_8^2x^2-\textbf{c}_8^3x^3+\cdots+\textbf{c}_8^8x^8$,
+ 则~$f\big(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\textbf{i}\big)$~的值是\ltk{$-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\textbf{i}$}.
+
+\question 自然数~$1,2,3,\ldots,10$~的方差记为~$\sigma^2$,
+ 其中的偶数~$2,4,6,8,10$~的方差记为~$\sigma_1^2$,
+ 则~$\sigma^2$~与~$\sigma_1^2$~的大小关系为~$\sigma^2$\stk{$>$}$\sigma_1^2$.
+
+\question 若~$\theta$~为三角形的一个内角, 且~$\sin\theta+\cos\theta=\dfrac{2}{3}$,
+ 则方程~$x^2\csc\theta-y^2\sec\theta=1$~表示的曲线的焦点坐标是\stk{$\big(\pm\dfrac{\sqrt{6}}{3},0\big)$}.
+
+
+\question 高为~$h$~的棱锥被平行于棱锥底面的截得棱台侧面积是
+ 原棱锥的侧面积的~$\dfrac{5}{9}$,
+ 则截得的棱台的体积与原棱锥的体积之比是\stk{$19:27$}.
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\question 若~$\sqrt{\,\sin x}$~是有理数且~$x$~不是~$\dfrac{\pi}{6}$~的整数倍,
+ 则~$x$~可能取的值是\mtk{$\arcsin\dfrac{1}{4}$ 等}.(只要求写出一个)
+
+\question 马路上有编号~1~到~10~的~10~盏路灯, 为节约用电又不影响照明,
+ 可以关掉其中的~3~盏, 但又不能同时关掉相邻的两盏, 也不能关掉两端的路灯,
+ 满足条件的关灯方法有\stk{$20$}种.
+
+
+\question 以椭圆~$\dfrac{x^2}{169}+\dfrac{y^2}{144}=1$~的右焦点为圆心,
+ 且与双曲线~$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$~的渐近线相切的圆方程是\mtk{$(x-5)^2+y^2=16$}.
+
+\newpage
+
+\xuanze
+\question 已知集合~$A=\{x\mid \abs{x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\question 已知集合~$A=\{x\mid \abs{x-1}<3 \}$,
+集合~$B=\{y| y=x^2+2x+1,x\in\mathbb{R}\}$, 则~$A\cap
+\complement_U B$~为\stk{C}.
+\twoch{$[\,0,4)$}{$(-\infty,-2\,]\cup[4,+\infty)$}{$(-2,0)$}{$(0,4)$}
+
+\question 若~$a$、$b$~是直线, $\alpha$、$\beta$~是平面,
+则以下命题中真命题是\stk{D}.\\
+\fourch{若~$a$、$b$~异面, $a\subset\alpha$,$b\subset\beta$, 且~$a\perp b$, 则~$\alpha\perp\beta$}{若~$a\parallel b$, $a\subset\alpha$, $b\subset\beta$,则~$\alpha\parallel\beta$}{若~$a\parallel \alpha$,
+$b\subset\beta$, 则~$a$、$b$ 异面}{若~$a\perp b$, $a\perp\alpha$,$b\perp\beta$, 则~$\alpha\perp\beta$}
+
+\newpage
+\jianda
+\question 已知复数~$z$ 满足:$\abs{z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[7] 求复数~$z$;
+\part[7] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~$\abs{z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part $\abs{z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\question[14] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+
+\question[16] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\newpage
+\question 已知复数~$z$ 满足:$\abs{z}-z^*=\dfrac{10}{1-w\textbf{i}}$(其中~$z^*$
+是~$z$ 的共轭复数).
+\begin{parts}
+\part[8] 求复数~$z$;
+\part[8] 若复数~$w=\cos\theta+\textbf{i}\sin\theta\,(\theta\in\mathbb{R})$, 求~$\abs{z-2}$ 的取值范围.
+\end{parts}
+
+\begin{solution}
+\begin{parts}
+\part $z=3+4\textbf{i}$
+\part $\abs{z-w}\in[4,6]$
+\end{parts}
+\end{solution}
+
+\newpage
+
+\question[18] 函数~$f(x)=4\sin\dfrac{\pi}{12}x\cdot\sin
+ \left(\dfrac{\pi}{2}+\dfrac{\pi}{12}x\right),x\in[a,a+1]$,
+ 其中常数~$a\in[0,5]$, 求函数~$f(x)$ 的最大值~$g(a)$.
+
+\begin{solution}
+略
+\end{solution}
+
+\end{questions}
+\end{document}