summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/lualatex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2018-07-23 21:08:11 +0000
committerKarl Berry <karl@freefriends.org>2018-07-23 21:08:11 +0000
commited56f9c0b08fdf285ff4843816e8c288a1e6c9c2 (patch)
treea21428180397f571a7a85fe92140e07420f0f778 /Master/texmf-dist/doc/lualatex
parent1e9c91674124fe8a6274515c661e0ee5e0582bf4 (diff)
bezierplot (23jul18)
git-svn-id: svn://tug.org/texlive/trunk@48259 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/lualatex')
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/README2
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdfbin251324 -> 251792 bytes
-rw-r--r--Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex38
3 files changed, 28 insertions, 12 deletions
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/README b/Master/texmf-dist/doc/lualatex/bezierplot/README
index 38e4cb3e782..8b004c0a208 100644
--- a/Master/texmf-dist/doc/lualatex/bezierplot/README
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/README
@@ -8,7 +8,7 @@ points such as extreme points and inflection points and reduces the
number of used points.
VERSION:
-1.1 2018-06-10
+1.2 2018-07-23
LICENSE:
The package and the program are distributed on CTAN under the terms of
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
index 84cdd36dd4b..a62218abbf3 100644
--- a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
index d9efe21ee8e..680d72dfdbb 100644
--- a/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
+++ b/Master/texmf-dist/doc/lualatex/bezierplot/bezierplot-doc.tex
@@ -28,9 +28,9 @@ Given a smooth function, \texttt{bezierplot} returns a smooth bezier path writte
The following example will show a comparison of \textsc{gnuplot} with \verb|bezierplot| for the function $y=\sqrt{x}$ for $0\leq x \leq 5$:
\begin{center}
\begin{tikzpicture}[scale=1.4]
- \draw (0,0) .. controls (0,0.745) and (1.667,1.491) .. (5,2.236);
+ \draw (0,0) .. controls (0,0.7454) and (1.6667,1.4907) .. (5,2.2361);
\draw (0,0) circle(.02) -- (0,0.745) circle( .02);
- \draw (1.667,1.491) circle(.02) -- (5,2.236) circle( .02);
+ \draw (1.6667,1.4907) circle(.02) -- (5,2.2361) circle( .02);
\draw (2.5,.5) node[above]{\verb|bezierplot|};
\begin{scope}[shift={(5.2,0)}]
\draw[domain=0:5,samples=51] plot function{x**0.5};
@@ -68,11 +68,11 @@ The \texttt{bezierplot} package is loaded with \verb|\usepackage{bezierplot}|. T
\end{center}
\end{multicols}
\noindent
-The command \verb|\bezierplot| has 4 optional arguments in the sense of
+The command \verb|\bezierplot| has 6 optional arguments in the sense of
\begin{center}
- \verb|\bezierplot[XMIN][XMAX][YMIN][YMAX]{FUNCTION}|
+ \verb|\bezierplot[XMIN][XMAX][YMIN][YMAX][SAMPLES]{FUNCTION}|
\end{center}
-The defaults are \verb|XMIN| = \verb|YMIN| $= -5$ and \verb|XMAX| = \verb|YMAX| $= 5$.
+The defaults are \verb|XMIN| = \verb|YMIN| $= -5$, \verb|XMAX| = \verb|YMAX| $= 5$ and \verb|SAMPLES| $= 0$ (this will set as few samples as possible).
\begin{center}
\begin{tikzpicture}[scale=.7]
\draw \bezierplot[-1][2]{x^2};
@@ -116,17 +116,17 @@ lua bezierplot.lua "3*x^0.8+2"
\end{verbatim}
will return
\begin{verbatim}
-(0,2) .. controls (0.03,2.282) and (0.268,3.244) .. (1,5)
+(0,2) .. controls (0.0168,2.1905) and (0.2073,3.0978) .. (1.0004,5.001)
\end{verbatim}
-You can set the window of the graph as follows:
+You can set the window of the graph and the number of samples as follows:
\begin{verbatim}
-lua bezierplot.lua "FUNCTION" XMIN XMAX YMIN YMAX
+lua bezierplot.lua "FUNCTION" XMIN XMAX YMIN YMAX SAMPLES
\end{verbatim}
e.g.
\begin{verbatim}
-lua bezierplot.lua "FUNCTION" 0 1 -3 2.5
+lua bezierplot.lua "FUNCTION" 0 1 -3 2.5 201
\end{verbatim}
-will set $0\leq x\leq 1$ and $-3\leq y\leq 2.5$. You may also omit the $y$--range, hence
+will set $0\leq x\leq 1$ and $-3\leq y\leq 2.5$ and $201$ equidistant samples. You may also omit the $y$--range, hence
\begin{verbatim}
lua bezierplot.lua "FUNCTION" 0 1
\end{verbatim}
@@ -134,6 +134,18 @@ will set $0\leq x\leq 1$ and leave the default $-5\leq y\leq 5$. The variables \
\begin{verbatim}
lua bezierplot.lua "sin(x)" -pi pi
\end{verbatim}
+You may use \verb|huge| for $\infty$:
+\begin{verbatim}
+lua bezierplot "1/x" 0 1 0 huge
+\end{verbatim}
+As \verb|huge| is very huge and \verb|bezierplot| uses recursive calls for nontrivial functions and non--fixed samples, this can last very long:
+\begin{verbatim}
+lua bezierplot "1/x" -5 5 -huge huge
+\end{verbatim}
+But if you set fixed samples, it will be fast again (as this does not use recursive calls):
+\begin{verbatim}
+lua bezierplot "1/x" -5 5 -huge huge 100
+\end{verbatim}
\subsection{Notation Of Functions}
The function term given to \verb|bezierplot| must contain at most one variable: $x$. E.g. \verb|"2.3*(x-1)^2-3"|. You must not omit \verb|*| operators:
\begin{center}
@@ -153,15 +165,19 @@ The following functions and constants are possible:
\verb|cbrt| & cube root $\sqrt[3]{\quad}$ that works for negative numbers, too\\
\verb|cos| & cosine for angles in radians\\
\verb|exp| & the exponential function $e^{(\;)}$\\
+ \verb|huge| & the numerical $\infty$\\
\verb|e| & the euler constant $e=\mathrm{exp}(1)$\\
\verb|log| & the natural logarithm $\mathrm{log}_e(\;)$\\
\verb|pi| & Archimedes’ constant $\pi\approx 3.14$\\
\verb|sgn| & sign function\\
\verb|sin| & sine for angles in radians\\
\verb|sqrt| & square root $\sqrt{\quad}$\\
- \verb|tan| & tangent for angles in radians\\
+ \verb|tan| & tangent for angles in radians
\end{tabular}
\end{center}
+%
+\newpage
+%
\section{Examples of \texttt{bezierplot} in Comparison with \textsc{gnuplot}}
The following graphs are drawn with \texttt{bezierplot} (black) and \textsc{gnuplot} (red). \textsc{gnuplot} used 1000 samples per example. The functions are given below the pictures (left: bezierplot, right: \textsc{gnuplot}).
\begin{multicols}{3}