diff options
author | Karl Berry <karl@freefriends.org> | 2021-04-12 20:04:49 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2021-04-12 20:04:49 +0000 |
commit | 8291b997365ae1d722de13105044fa5074fb9240 (patch) | |
tree | 66b823a42abf55a874e4bfcc104677cc42dbef18 /Master/texmf-dist/doc/latex | |
parent | 1b46f20416a9e8cc55188c0b4ad13cc91ace5aed (diff) |
aomart (12apr21)
git-svn-id: svn://tug.org/texlive/trunk@58855 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex')
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/README | 5 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/aomart.pdf | bin | 413744 -> 414567 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/aomfrench.pdf | bin | 204430 -> 204681 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/aomsample.pdf | bin | 477825 -> 479193 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/aomsample.tex | 32 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/aomsample1.pdf | bin | 477842 -> 479194 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/aomsample1.tex | 18 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/aomart/fullref.pl | 4 |
8 files changed, 34 insertions, 25 deletions
diff --git a/Master/texmf-dist/doc/latex/aomart/README b/Master/texmf-dist/doc/latex/aomart/README index 31738d4abed..2fa8715ea8d 100644 --- a/Master/texmf-dist/doc/latex/aomart/README +++ b/Master/texmf-dist/doc/latex/aomart/README @@ -1,12 +1,15 @@ LaTeX Class for The Annals of Mathematics Boris Veytsman - Version 1.24 + Version 1.25 This package provides the class for typesetting articles for The Annals of Mathematics, http://annals.princeton.edu/. Changes: + Version 1.25 + New command: \fullpageref + Version 1.24 Optionally print MSC designation diff --git a/Master/texmf-dist/doc/latex/aomart/aomart.pdf b/Master/texmf-dist/doc/latex/aomart/aomart.pdf Binary files differindex 58366ab2604..1ae47991e84 100644 --- a/Master/texmf-dist/doc/latex/aomart/aomart.pdf +++ b/Master/texmf-dist/doc/latex/aomart/aomart.pdf diff --git a/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf b/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf Binary files differindex 5b411b76b1b..2412c929015 100644 --- a/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf +++ b/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample.pdf b/Master/texmf-dist/doc/latex/aomart/aomsample.pdf Binary files differindex 817a42f5ee9..1faf78a4e94 100644 --- a/Master/texmf-dist/doc/latex/aomart/aomsample.pdf +++ b/Master/texmf-dist/doc/latex/aomart/aomsample.pdf diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample.tex b/Master/texmf-dist/doc/latex/aomart/aomsample.tex index 9d331b0b85e..2ecba3e18d7 100644 --- a/Master/texmf-dist/doc/latex/aomart/aomsample.tex +++ b/Master/texmf-dist/doc/latex/aomart/aomsample.tex @@ -365,7 +365,7 @@ D(t_1,\dots,t_n) where $\mathbf{K}(t=1,t_1,\dots,t_n; i|i)$ is the $i$th principal submatrix of $\mathbf{K}(t=1,t_1,\dots,t_n)$. -Theorem ~\ref{thm-main} leads to +Theorem~\ref{thm-main} leads to \begin{equation}\label{detK1} \det\mathbf{K}(t_1,t_1,\dots,t_n) =\sum_{I\in\mathbf{n}}(-1)^{\envert{I}}t^{n-\envert{I}} @@ -379,7 +379,7 @@ Note that ^{(\lambda)}(\overline{I}|\overline{I})=0. \end{equation} -Let $t_i=\hat x_i,i=1,\dots,n$. Lemma ~\ref{lem-per} yields +Let $t_i=\hat x_i,i=1,\dots,n$. Lemma~\ref{lem-per} yields \begin{multline} \biggl(\sum_{\,i\in\mathbf{n}}a_{l _i}x_i\biggr) \det\mathbf{K}(t=1,x_1,\dots,x_n;l |l )\\ @@ -421,8 +421,8 @@ D(t_1,\dots,t_n)}_{t_i=\left\{\begin{smallmatrix} \section{Application} \label{lincomp} -We consider here the applications of Theorems~\ref{th-info-ow-ow} and -~\ref{th-weak-ske-owf} to a complete +We consider here the applications of Theorems~\ref{th-info-ow-ow} +and~\ref{th-weak-ske-owf} on page~\pageref{th-weak-ske-owf} to a complete multipartite graph $K_{n_1\dots n_p}$. It can be shown that the number of spanning trees of $K_{n_1\dots n_p}$ may be written @@ -463,7 +463,7 @@ H_c&=\frac12\sum^{n-1}_{l =0} \end{equation} The enumeration of $H_c$ in a $K_{n_1\dotsm n_p}$ graph can also be -carried out by Theorem ~\ref{thm-H-param} or ~\ref{thm-asym} +carried out by Theorem~\ref{thm-H-param} or~\ref{thm-asym} together with the algebraic method of \eqref{multdef}. Some elegant representations may be obtained. For example, $H_c$ in a $K_{n_1n_2n_3}$ graph may be written @@ -930,8 +930,8 @@ achieve the general result using \thmref{t:conl}. \begin{step} Assume that $n=1$. Since $S_u$ is at most countable, \eqref{sum-bij} -yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that -\eqref{e:st} and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is +yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that~\eqref{e:st} +and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is the Radon-Nikod\'ym decomposition of $Dv$ in absolutely continuous and singular part with respect to $\abs{\wt{D} u}$. By \thmref{th-weak-ske-owf}, we have @@ -959,8 +959,8 @@ and \hat v(t)=f(\hat u(t))\qquad\forall t\in\mathbf{R}.\end{equation} Let $t\in\mathbf{R}$ be such that $\abs{\wt{D}u}(\interval{\left[t,s\right[})>0$ for every $s>t$ and -assume that the limits in \eqref{joe} exist. By \eqref{j:mark} and -\eqref{far-d} we get +assume that the limits in \eqref{joe} exist. By \eqref{j:mark} +and~\eqref{far-d} we get \begin{equation*}\begin{split} \frac{\hat v(s)-\hat v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}&=\frac {f(\hat @@ -1021,8 +1021,8 @@ for $\mathcal{H}_{n-1}$-almost every $y\in \pi_\nu$. We claim that }}(y+t\nu)=\frac{\wt{D}u_y} {\abs{\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\mathbf{R} \end{equation} -for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, by -\eqref{sum-ali} and \eqref{delta-l} we get +for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, +by~\eqref{sum-ali} and \eqref{delta-l} we get \begin{multline*} \int_{\pi_\nu}\frac{\wt{D}u_y}{\abs{\wt{D}u_y}}\cdot\abs{\wt{D}u_y }\,d\mathcal{H}_{n-1}(y)=\int_{\pi_\nu}\wt{D}u_y\,d\mathcal{H}_{n-1}(y)\\ @@ -1046,8 +1046,7 @@ u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu))-f(\tilde u(y+t\nu))}{h} =\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu)\] -for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again -\eqref{detK1}, \eqref{detK2} we get +for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again~\eqref{detK1}, \eqref{detK2} we get \[ \lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde @@ -1126,8 +1125,9 @@ A^{(\lambda)}_l =\sum_{I_l \subseteq\mathbf{n}}\per \mathbf{A} \end{thm} It is worth noting that $A_l ^{(\lambda)}$ of \eqref{A-l-lambda} is -similar to the coefficients $b_l $ of the characteristic polynomial of -\eqref{bl-sum}. It is well known in graph theory that the coefficients +similar to the coefficients $b_l $ of the characteristic polynomial +of~\eqref{bl-sum}. It is well known in graph theory that the +coefficients $b_l $ can be expressed as a sum over certain subgraphs. It is interesting to see whether $A_l $, $\lambda=0$, structural properties of a graph. @@ -1153,7 +1153,7 @@ A_l = 0,&\text{otherwise }.\end{cases} \label{compl-bip-gr} \end{equation} -Theorem ~\ref{thm-H-param} +Theorem~\ref{thm-H-param} leads to \begin{equation} H_c=\frac1{n_1+n_2}n_1!n_2!\delta_{n_1n_2}. diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf b/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf Binary files differindex cbc4470d341..da11f5c5743 100644 --- a/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf +++ b/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample1.tex b/Master/texmf-dist/doc/latex/aomart/aomsample1.tex index 29257baeadd..30a52e5691f 100644 --- a/Master/texmf-dist/doc/latex/aomart/aomsample1.tex +++ b/Master/texmf-dist/doc/latex/aomart/aomsample1.tex @@ -421,7 +421,8 @@ D(t_1,\dots,t_n)}_{t_i=\left\{\begin{smallmatrix} \section{Application} \label{lincomp} -We consider here the applications of \fullref{Theorems}{th-info-ow-ow} \fullref{and}{th-weak-ske-owf} to a complete +We consider here the applications of \fullref{Theorems}{th-info-ow-ow} +\fullref{and}{th-weak-ske-owf} on \fullpageref[page]{th-weak-ske-owf} to a complete multipartite graph $K_{n_1\dots n_p}$. It can be shown that the number of spanning trees of $K_{n_1\dots n_p}$ may be written @@ -928,7 +929,8 @@ achieve the general result using \thmref{t:conl}. \begin{step} Assume that $n=1$. Since $S_u$ is at most countable, \eqref{sum-bij} -yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that \eqref{e:st} and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is +yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that~\eqref{e:st} +and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is the Radon-Nikod\'ym decomposition of $Dv$ in absolutely continuous and singular part with respect to $\abs{\wt{D} u}$. By \thmref{th-weak-ske-owf}, we have @@ -956,7 +958,8 @@ and \hat v(t)=f(\hat u(t))\qquad\forall t\in\mathbf{R}.\end{equation} Let $t\in\mathbf{R}$ be such that $\abs{\wt{D}u}(\interval{\left[t,s\right[})>0$ for every $s>t$ and -assume that the limits in \eqref{joe} exist. By \eqref{j:mark} and \eqref{far-d} we get +assume that the limits in \eqref{joe} exist. By \eqref{j:mark} +and~\eqref{far-d} we get \begin{equation*}\begin{split} \frac{\hat v(s)-\hat v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}&=\frac {f(\hat @@ -1017,7 +1020,8 @@ for $\mathcal{H}_{n-1}$-almost every $y\in \pi_\nu$. We claim that }}(y+t\nu)=\frac{\wt{D}u_y} {\abs{\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\mathbf{R} \end{equation} -for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, by \eqref{sum-ali} and \eqref{delta-l} we get +for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, +by~\eqref{sum-ali} and \eqref{delta-l} we get \begin{multline*} \int_{\pi_\nu}\frac{\wt{D}u_y}{\abs{\wt{D}u_y}}\cdot\abs{\wt{D}u_y }\,d\mathcal{H}_{n-1}(y)=\int_{\pi_\nu}\wt{D}u_y\,d\mathcal{H}_{n-1}(y)\\ @@ -1041,7 +1045,7 @@ u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu))-f(\tilde u(y+t\nu))}{h} =\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu)\] -for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again \eqref{detK1}, \eqref{detK2} we get +for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again~\eqref{detK1}, \eqref{detK2} we get \[ \lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\langle \wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde @@ -1120,7 +1124,9 @@ A^{(\lambda)}_l =\sum_{I_l \subseteq\mathbf{n}}\per \mathbf{A} \end{thm} It is worth noting that $A_l ^{(\lambda)}$ of \eqref{A-l-lambda} is -similar to the coefficients $b_l $ of the characteristic polynomial of \eqref{bl-sum}. It is well known in graph theory that the coefficients +similar to the coefficients $b_l $ of the characteristic polynomial +of~\eqref{bl-sum}. It is well known in graph theory that the +coefficients $b_l $ can be expressed as a sum over certain subgraphs. It is interesting to see whether $A_l $, $\lambda=0$, structural properties of a graph. diff --git a/Master/texmf-dist/doc/latex/aomart/fullref.pl b/Master/texmf-dist/doc/latex/aomart/fullref.pl index 0414089ea00..0eba808aa84 100644 --- a/Master/texmf-dist/doc/latex/aomart/fullref.pl +++ b/Master/texmf-dist/doc/latex/aomart/fullref.pl @@ -4,7 +4,7 @@ # perl fullref.pl original.tex > converted.tex # # -# Copyright (C) 2010 Annals of Mathematics. Public domain. +# Copyright (C) 2010-2021 Annals of Mathematics. Licenses under CC0 # # Author: Boris Veytsman # @@ -44,7 +44,7 @@ while (<>) { } s/(\s)([^\s\\]\S*[^~\s\(\)\[\]])[\s~]*\[\\ref\{([^\}]+)\}\]/$1\\bfullref{$2}{$3}/g; s/(\s)([^\s\\]\S*[^~\s\(\)\[\]])[\s~]*\\ref\{([^\}]+)\}/$1\\fullref{$2}{$3}/g; - + s/(\s)([^\s\\]\S*[^~\s\(\)\[\]])[\s~]*\\pageref\{([^\}]+)\}/$1\\fullpageref[$2]{$3}/g; # Now delete the extra space s/^ //; $prevline=$_; |