summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2021-04-12 20:04:49 +0000
committerKarl Berry <karl@freefriends.org>2021-04-12 20:04:49 +0000
commit8291b997365ae1d722de13105044fa5074fb9240 (patch)
tree66b823a42abf55a874e4bfcc104677cc42dbef18 /Master/texmf-dist/doc/latex
parent1b46f20416a9e8cc55188c0b4ad13cc91ace5aed (diff)
aomart (12apr21)
git-svn-id: svn://tug.org/texlive/trunk@58855 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex')
-rw-r--r--Master/texmf-dist/doc/latex/aomart/README5
-rw-r--r--Master/texmf-dist/doc/latex/aomart/aomart.pdfbin413744 -> 414567 bytes
-rw-r--r--Master/texmf-dist/doc/latex/aomart/aomfrench.pdfbin204430 -> 204681 bytes
-rw-r--r--Master/texmf-dist/doc/latex/aomart/aomsample.pdfbin477825 -> 479193 bytes
-rw-r--r--Master/texmf-dist/doc/latex/aomart/aomsample.tex32
-rw-r--r--Master/texmf-dist/doc/latex/aomart/aomsample1.pdfbin477842 -> 479194 bytes
-rw-r--r--Master/texmf-dist/doc/latex/aomart/aomsample1.tex18
-rw-r--r--Master/texmf-dist/doc/latex/aomart/fullref.pl4
8 files changed, 34 insertions, 25 deletions
diff --git a/Master/texmf-dist/doc/latex/aomart/README b/Master/texmf-dist/doc/latex/aomart/README
index 31738d4abed..2fa8715ea8d 100644
--- a/Master/texmf-dist/doc/latex/aomart/README
+++ b/Master/texmf-dist/doc/latex/aomart/README
@@ -1,12 +1,15 @@
LaTeX Class for The Annals of Mathematics
Boris Veytsman
- Version 1.24
+ Version 1.25
This package provides the class for typesetting articles for The Annals
of Mathematics, http://annals.princeton.edu/.
Changes:
+ Version 1.25
+ New command: \fullpageref
+
Version 1.24
Optionally print MSC designation
diff --git a/Master/texmf-dist/doc/latex/aomart/aomart.pdf b/Master/texmf-dist/doc/latex/aomart/aomart.pdf
index 58366ab2604..1ae47991e84 100644
--- a/Master/texmf-dist/doc/latex/aomart/aomart.pdf
+++ b/Master/texmf-dist/doc/latex/aomart/aomart.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf b/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf
index 5b411b76b1b..2412c929015 100644
--- a/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf
+++ b/Master/texmf-dist/doc/latex/aomart/aomfrench.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample.pdf b/Master/texmf-dist/doc/latex/aomart/aomsample.pdf
index 817a42f5ee9..1faf78a4e94 100644
--- a/Master/texmf-dist/doc/latex/aomart/aomsample.pdf
+++ b/Master/texmf-dist/doc/latex/aomart/aomsample.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample.tex b/Master/texmf-dist/doc/latex/aomart/aomsample.tex
index 9d331b0b85e..2ecba3e18d7 100644
--- a/Master/texmf-dist/doc/latex/aomart/aomsample.tex
+++ b/Master/texmf-dist/doc/latex/aomart/aomsample.tex
@@ -365,7 +365,7 @@ D(t_1,\dots,t_n)
where $\mathbf{K}(t=1,t_1,\dots,t_n; i|i)$ is the $i$th principal
submatrix of $\mathbf{K}(t=1,t_1,\dots,t_n)$.
-Theorem ~\ref{thm-main} leads to
+Theorem~\ref{thm-main} leads to
\begin{equation}\label{detK1}
\det\mathbf{K}(t_1,t_1,\dots,t_n)
=\sum_{I\in\mathbf{n}}(-1)^{\envert{I}}t^{n-\envert{I}}
@@ -379,7 +379,7 @@ Note that
^{(\lambda)}(\overline{I}|\overline{I})=0.
\end{equation}
-Let $t_i=\hat x_i,i=1,\dots,n$. Lemma ~\ref{lem-per} yields
+Let $t_i=\hat x_i,i=1,\dots,n$. Lemma~\ref{lem-per} yields
\begin{multline}
\biggl(\sum_{\,i\in\mathbf{n}}a_{l _i}x_i\biggr)
\det\mathbf{K}(t=1,x_1,\dots,x_n;l |l )\\
@@ -421,8 +421,8 @@ D(t_1,\dots,t_n)}_{t_i=\left\{\begin{smallmatrix}
\section{Application}
\label{lincomp}
-We consider here the applications of Theorems~\ref{th-info-ow-ow} and
-~\ref{th-weak-ske-owf} to a complete
+We consider here the applications of Theorems~\ref{th-info-ow-ow}
+and~\ref{th-weak-ske-owf} on page~\pageref{th-weak-ske-owf} to a complete
multipartite graph $K_{n_1\dots n_p}$. It can be shown that the
number of spanning trees of $K_{n_1\dots n_p}$
may be written
@@ -463,7 +463,7 @@ H_c&=\frac12\sum^{n-1}_{l =0}
\end{equation}
The enumeration of $H_c$ in a $K_{n_1\dotsm n_p}$ graph can also be
-carried out by Theorem ~\ref{thm-H-param} or ~\ref{thm-asym}
+carried out by Theorem~\ref{thm-H-param} or~\ref{thm-asym}
together with the algebraic method of \eqref{multdef}.
Some elegant representations may be obtained. For example, $H_c$ in
a $K_{n_1n_2n_3}$ graph may be written
@@ -930,8 +930,8 @@ achieve the general result using \thmref{t:conl}.
\begin{step}
Assume that $n=1$. Since $S_u$ is at most countable, \eqref{sum-bij}
-yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that
-\eqref{e:st} and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is
+yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that~\eqref{e:st}
+and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is
the Radon-Nikod\'ym decomposition of $Dv$ in absolutely continuous and
singular part with respect to $\abs{\wt{D} u}$. By
\thmref{th-weak-ske-owf}, we have
@@ -959,8 +959,8 @@ and
\hat v(t)=f(\hat u(t))\qquad\forall t\in\mathbf{R}.\end{equation}
Let $t\in\mathbf{R}$ be such that
$\abs{\wt{D}u}(\interval{\left[t,s\right[})>0$ for every $s>t$ and
-assume that the limits in \eqref{joe} exist. By \eqref{j:mark} and
-\eqref{far-d} we get
+assume that the limits in \eqref{joe} exist. By \eqref{j:mark}
+and~\eqref{far-d} we get
\begin{equation*}\begin{split}
\frac{\hat v(s)-\hat
v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}&=\frac {f(\hat
@@ -1021,8 +1021,8 @@ for $\mathcal{H}_{n-1}$-almost every $y\in \pi_\nu$. We claim that
}}(y+t\nu)=\frac{\wt{D}u_y}
{\abs{\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\mathbf{R}
\end{equation}
-for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, by
-\eqref{sum-ali} and \eqref{delta-l} we get
+for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact,
+by~\eqref{sum-ali} and \eqref{delta-l} we get
\begin{multline*}
\int_{\pi_\nu}\frac{\wt{D}u_y}{\abs{\wt{D}u_y}}\cdot\abs{\wt{D}u_y
}\,d\mathcal{H}_{n-1}(y)=\int_{\pi_\nu}\wt{D}u_y\,d\mathcal{H}_{n-1}(y)\\
@@ -1046,8 +1046,7 @@ u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu))-f(\tilde
u(y+t\nu))}{h}
=\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle
\wt{D}u,\nu\rangle }}(y+t\nu)\]
-for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again
-\eqref{detK1}, \eqref{detK2} we get
+for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again~\eqref{detK1}, \eqref{detK2} we get
\[
\lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\langle
\wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde
@@ -1126,8 +1125,9 @@ A^{(\lambda)}_l =\sum_{I_l \subseteq\mathbf{n}}\per \mathbf{A}
\end{thm}
It is worth noting that $A_l ^{(\lambda)}$ of \eqref{A-l-lambda} is
-similar to the coefficients $b_l $ of the characteristic polynomial of
-\eqref{bl-sum}. It is well known in graph theory that the coefficients
+similar to the coefficients $b_l $ of the characteristic polynomial
+of~\eqref{bl-sum}. It is well known in graph theory that the
+coefficients
$b_l $ can be expressed as a sum over certain subgraphs. It is
interesting to see whether $A_l $, $\lambda=0$, structural properties
of a graph.
@@ -1153,7 +1153,7 @@ A_l =
0,&\text{otherwise }.\end{cases}
\label{compl-bip-gr}
\end{equation}
-Theorem ~\ref{thm-H-param}
+Theorem~\ref{thm-H-param}
leads to
\begin{equation}
H_c=\frac1{n_1+n_2}n_1!n_2!\delta_{n_1n_2}.
diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf b/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf
index cbc4470d341..da11f5c5743 100644
--- a/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf
+++ b/Master/texmf-dist/doc/latex/aomart/aomsample1.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/aomart/aomsample1.tex b/Master/texmf-dist/doc/latex/aomart/aomsample1.tex
index 29257baeadd..30a52e5691f 100644
--- a/Master/texmf-dist/doc/latex/aomart/aomsample1.tex
+++ b/Master/texmf-dist/doc/latex/aomart/aomsample1.tex
@@ -421,7 +421,8 @@ D(t_1,\dots,t_n)}_{t_i=\left\{\begin{smallmatrix}
\section{Application}
\label{lincomp}
-We consider here the applications of \fullref{Theorems}{th-info-ow-ow} \fullref{and}{th-weak-ske-owf} to a complete
+We consider here the applications of \fullref{Theorems}{th-info-ow-ow}
+\fullref{and}{th-weak-ske-owf} on \fullpageref[page]{th-weak-ske-owf} to a complete
multipartite graph $K_{n_1\dots n_p}$. It can be shown that the
number of spanning trees of $K_{n_1\dots n_p}$
may be written
@@ -928,7 +929,8 @@ achieve the general result using \thmref{t:conl}.
\begin{step}
Assume that $n=1$. Since $S_u$ is at most countable, \eqref{sum-bij}
-yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that \eqref{e:st} and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is
+yields that $\abs{\wt{D}v}(S_u\backslash S_v)=0$, so that~\eqref{e:st}
+and \eqref{e:barwq} imply that $Dv=\wt{D}v+Jv$ is
the Radon-Nikod\'ym decomposition of $Dv$ in absolutely continuous and
singular part with respect to $\abs{\wt{D} u}$. By
\thmref{th-weak-ske-owf}, we have
@@ -956,7 +958,8 @@ and
\hat v(t)=f(\hat u(t))\qquad\forall t\in\mathbf{R}.\end{equation}
Let $t\in\mathbf{R}$ be such that
$\abs{\wt{D}u}(\interval{\left[t,s\right[})>0$ for every $s>t$ and
-assume that the limits in \eqref{joe} exist. By \eqref{j:mark} and \eqref{far-d} we get
+assume that the limits in \eqref{joe} exist. By \eqref{j:mark}
+and~\eqref{far-d} we get
\begin{equation*}\begin{split}
\frac{\hat v(s)-\hat
v(t)}{\abs{\wt{D}u}(\interval{\left[t,s\right[})}&=\frac {f(\hat
@@ -1017,7 +1020,8 @@ for $\mathcal{H}_{n-1}$-almost every $y\in \pi_\nu$. We claim that
}}(y+t\nu)=\frac{\wt{D}u_y}
{\abs{\wt{D}u_y}}(t)\qquad\abs{\wt{D}u_y}\text{-a.e. in }\mathbf{R}
\end{equation}
-for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact, by \eqref{sum-ali} and \eqref{delta-l} we get
+for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$. In fact,
+by~\eqref{sum-ali} and \eqref{delta-l} we get
\begin{multline*}
\int_{\pi_\nu}\frac{\wt{D}u_y}{\abs{\wt{D}u_y}}\cdot\abs{\wt{D}u_y
}\,d\mathcal{H}_{n-1}(y)=\int_{\pi_\nu}\wt{D}u_y\,d\mathcal{H}_{n-1}(y)\\
@@ -1041,7 +1045,7 @@ u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(y+t\nu))-f(\tilde
u(y+t\nu))}{h}
=\frac{\langle \wt{D}v,\nu\rangle }{\abs{\langle
\wt{D}u,\nu\rangle }}(y+t\nu)\]
-for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again \eqref{detK1}, \eqref{detK2} we get
+for $\mathcal{H}_{n-1}$-almost every $y\in\pi_\nu$, and using again~\eqref{detK1}, \eqref{detK2} we get
\[
\lim_{h\to 0}\frac{f(\tilde u(x)+h\dfrac{\langle
\wt{D}u,\nu\rangle }{\abs{\langle \wt{D}u,\nu\rangle }}(x))-f(\tilde
@@ -1120,7 +1124,9 @@ A^{(\lambda)}_l =\sum_{I_l \subseteq\mathbf{n}}\per \mathbf{A}
\end{thm}
It is worth noting that $A_l ^{(\lambda)}$ of \eqref{A-l-lambda} is
-similar to the coefficients $b_l $ of the characteristic polynomial of \eqref{bl-sum}. It is well known in graph theory that the coefficients
+similar to the coefficients $b_l $ of the characteristic polynomial
+of~\eqref{bl-sum}. It is well known in graph theory that the
+coefficients
$b_l $ can be expressed as a sum over certain subgraphs. It is
interesting to see whether $A_l $, $\lambda=0$, structural properties
of a graph.
diff --git a/Master/texmf-dist/doc/latex/aomart/fullref.pl b/Master/texmf-dist/doc/latex/aomart/fullref.pl
index 0414089ea00..0eba808aa84 100644
--- a/Master/texmf-dist/doc/latex/aomart/fullref.pl
+++ b/Master/texmf-dist/doc/latex/aomart/fullref.pl
@@ -4,7 +4,7 @@
# perl fullref.pl original.tex > converted.tex
#
#
-# Copyright (C) 2010 Annals of Mathematics. Public domain.
+# Copyright (C) 2010-2021 Annals of Mathematics. Licenses under CC0
#
# Author: Boris Veytsman
#
@@ -44,7 +44,7 @@ while (<>) {
}
s/(\s)([^\s\\]\S*[^~\s\(\)\[\]])[\s~]*\[\\ref\{([^\}]+)\}\]/$1\\bfullref{$2}{$3}/g;
s/(\s)([^\s\\]\S*[^~\s\(\)\[\]])[\s~]*\\ref\{([^\}]+)\}/$1\\fullref{$2}{$3}/g;
-
+ s/(\s)([^\s\\]\S*[^~\s\(\)\[\]])[\s~]*\\pageref\{([^\}]+)\}/$1\\fullpageref[$2]{$3}/g;
# Now delete the extra space
s/^ //;
$prevline=$_;