summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2020-10-20 20:39:10 +0000
committerKarl Berry <karl@freefriends.org>2020-10-20 20:39:10 +0000
commit91c386913cf9993cb4271471921934a5c2e019a0 (patch)
tree392fd984d6c207e452f86f4644e330fac61a4140 /Master/texmf-dist/doc/latex
parent735245a8b0ba602e5e319d146fbbb7ffe1c39ca5 (diff)
jupynotex (20oct20)
git-svn-id: svn://tug.org/texlive/trunk@56715 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex')
-rw-r--r--Master/texmf-dist/doc/latex/jupynotex/LICENSE201
-rw-r--r--Master/texmf-dist/doc/latex/jupynotex/README.md73
-rwxr-xr-xMaster/texmf-dist/doc/latex/jupynotex/example/build5
-rw-r--r--Master/texmf-dist/doc/latex/jupynotex/example/example.tex27
-rw-r--r--Master/texmf-dist/doc/latex/jupynotex/example/notebook.ipynb593
-rwxr-xr-xMaster/texmf-dist/doc/latex/jupynotex/tests/run3
-rw-r--r--Master/texmf-dist/doc/latex/jupynotex/tests/test_cellparser.py79
-rw-r--r--Master/texmf-dist/doc/latex/jupynotex/tests/test_main.py111
-rw-r--r--Master/texmf-dist/doc/latex/jupynotex/tests/test_notebook.py237
9 files changed, 1329 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/jupynotex/LICENSE b/Master/texmf-dist/doc/latex/jupynotex/LICENSE
new file mode 100644
index 00000000000..261eeb9e9f8
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/Master/texmf-dist/doc/latex/jupynotex/README.md b/Master/texmf-dist/doc/latex/jupynotex/README.md
new file mode 100644
index 00000000000..d19b75542c4
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/README.md
@@ -0,0 +1,73 @@
+# What is Jupynotex?
+
+A Jupyter Notebook to LaTeX translator to include whole or partial notebooks in your papers.
+
+## Wait, what?
+
+A TeX package that you can use in your project to include Jupyter Notebooks (all of them, or some specific cells) as part of your text.
+
+It will convert the Jupyter Notebook format to proper LaTeX so it gets included seamless, supporting text, latex, images, etc.
+
+
+# How To Use?
+
+All you need to do is include the `jupynotex.py` and `jupynotex.sty` files in your LaTeX project, and use the package from your any of your `.tex` files:
+
+ \usepackage{jupynotex}
+
+After that, you can include a whole Jupyter Notebook in your file just specifying it's file name:
+
+ \jupynotex{file_name_for_your_notebook.ipynb}
+
+If you do not want to include it completely, you can optionally specify which cells:
+
+ \jupynotex[<which cells>]{sample.ipynb}
+
+The cells specification can be numbers separated by comma, or ranges using dashes (defaulting to first and last if any side is not included).
+
+Examples:
+
+- include the whole *foobar* notebook:
+
+ `\jupynotex{foobar.ipynb}`
+
+- include just the cell #7:
+
+ `\jupynotex[7]{sample.ipynb}`
+
+- include cells 1, 3, and 6, 7, and 8 from the range:
+
+ `\jupynotex[1,3,6-8]{sample.ipynb}`
+
+- include everything up to the fourth cell, and the eigth:
+
+ `\jupynotex[-4,8]{whatever.ipynb}`
+
+- include the cell number 3, and from 12 to the notebook's end
+
+ `\jupynotex[3,12-]{somenote.ipynb}`
+
+
+## Full Example
+
+Check the `example` directory in this project.
+
+There you will find an example `notebook.ipynb`, an `example.tex` file that includes cells from that notebook in different ways, and a `build` script.
+
+Play with it. Enjoy.
+
+
+# Dependencies
+
+You need Python 3 in your system, and the [tcolorbox](https://ctan.org/pkg/tcolorbox) module in your LaTeX toolbox.
+
+
+# Feedback & Development
+
+Please open any issue or ask any question [here](https://github.com/facundobatista/jupynotex/issues/new).
+
+To run the tests (need to have [fades](https://github.com/pyar/fades) installed):
+
+ ./tests/run
+
+This material is subject to the Apache 2.0 license.
diff --git a/Master/texmf-dist/doc/latex/jupynotex/example/build b/Master/texmf-dist/doc/latex/jupynotex/example/build
new file mode 100755
index 00000000000..51598c0450f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/example/build
@@ -0,0 +1,5 @@
+#!/bin/sh
+
+ln -s ../jupynotex.py .
+ln -s ../jupynotex.sty .
+xelatex -shell-escape example.tex
diff --git a/Master/texmf-dist/doc/latex/jupynotex/example/example.tex b/Master/texmf-dist/doc/latex/jupynotex/example/example.tex
new file mode 100644
index 00000000000..5251586b63d
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/example/example.tex
@@ -0,0 +1,27 @@
+\documentclass{article}
+
+\usepackage{jupynotex}
+
+\begin{document}
+
+One cell:
+
+\jupynotex[1]{notebook.ipynb}
+
+
+A range of cells:
+
+\jupynotex[4-6]{notebook.ipynb}
+
+
+Some specific cells:
+
+\jupynotex[12,17]{notebook.ipynb}
+
+
+The whole notebook:
+
+\jupynotex{notebook.ipynb}
+
+
+\end{document}
diff --git a/Master/texmf-dist/doc/latex/jupynotex/example/notebook.ipynb b/Master/texmf-dist/doc/latex/jupynotex/example/notebook.ipynb
new file mode 100644
index 00000000000..a423e9a11fa
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/example/notebook.ipynb
@@ -0,0 +1,593 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Non alphanums {'>', '\\t', '[', '\\r', '\\x13', '\\x1d', '<', '^', '\\x04', '\\x08', '\\x17', '\\x1b', '\\\\', '\\x19', '`', '\\x1f', '$', '\\x0b', '\\x14', '\\x12', '\\x18', ')', '=', '?', ' ', \"'\", '\\x1c', '|', ';', '/', '\\x1e', '\\n', '\\x07', '\\x10', '\\x03', '\\x02', '#', '\\x0c', '@', '\\x16', '_', '}', '.', '-', '(', '!', '+', '\\x06', ']', '{', ':', '\\x01', '\\x11', '\\x0f', '\\x05', ',', '~', '\\x15', '\\x00', '\"', '%', '\\x0e', '*', '&', '\\x1a'}\n",
+ "Separators b'([\\\\>\\\\\\t\\\\[\\\\\\r\\\\\\x13\\\\\\x1d\\\\<\\\\^\\\\\\x04\\\\\\x08\\\\\\x17\\\\\\x1b\\\\\\\\\\\\\\x19\\\\`\\\\\\x1f\\\\$\\\\\\x0b\\\\\\x14\\\\\\x12\\\\\\x18\\\\)\\\\=\\\\?\\\\ \\\\\\'\\\\\\x1c\\\\|\\\\;\\\\/\\\\\\x1e\\\\\\n\\\\\\x07\\\\\\x10\\\\\\x03\\\\\\x02\\\\#\\\\\\x0c\\\\@\\\\\\x16\\\\_\\\\}\\\\.\\\\-\\\\(\\\\!\\\\+\\\\\\x06\\\\]\\\\{\\\\:\\\\\\x01\\\\\\x11\\\\\\x0f\\\\\\x05\\\\,\\\\~\\\\\\x15\\\\\\x00\\\\\"\\\\%\\\\\\x0e\\\\*\\\\&\\\\\\x1a])'\n"
+ ]
+ }
+ ],
+ "source": [
+ "import string\n",
+ "\n",
+ "non_alphanums = set(chr(x) for x in range(127)) - set(string.ascii_letters) - set(string.digits)\n",
+ "print(\"Non alphanums\", non_alphanums)\n",
+ "separators = '([' + ''.join('\\\\' + x for x in non_alphanums) + '])'\n",
+ "separators = separators.encode('ascii')\n",
+ "print(\"Separators\", separators)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[b'dlg',\n",
+ " b'=',\n",
+ " b'Resource',\n",
+ " b'.',\n",
+ " b'loadfromresfile',\n",
+ " b'(',\n",
+ " b'filename',\n",
+ " b',',\n",
+ " b'win',\n",
+ " b',',\n",
+ " b'QuoteDialog',\n",
+ " b'.',\n",
+ " b'MyQuoteDialog',\n",
+ " b',',\n",
+ " b\"'\",\n",
+ " b'QuoteDialog',\n",
+ " b\"'\",\n",
+ " b',',\n",
+ " b'win',\n",
+ " b')']"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import re\n",
+ "program_line = b\"\"\"dlg = Resource.loadfromresfile(filename, win, QuoteDialog.MyQuoteDialog, 'QuoteDialog', win)\"\"\"\n",
+ "tokens = [t for x in re.split(separators, program_line) if (t := x.strip())]\n",
+ "tokens"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Checking base dir: HTML document\n",
+ "Checking base dir: C source\n",
+ "Checking base dir: C++ source\n",
+ "Checking base dir: PHP script\n",
+ "Checking base dir: ReStructuredText file\n",
+ "Checking base dir: Python script\n",
+ "Checking base dir: Ruby script\n",
+ "Checking base dir: Java source\n",
+ "Checking base dir: Objective-C source\n",
+ "Checking base dir: Perl5 module source\n",
+ "Checking base dir: XML 1.0 document\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "from collections import Counter\n",
+ "\n",
+ "DUMP_BASE = '/home/facundo/devel/ml/dump'\n",
+ "\n",
+ "# directories with 1000 files of each code type, excluding \"just text\" (ascii, utf8, etc)\n",
+ "CODE_TYPES = [\n",
+ " 'HTML document',\n",
+ " 'C source',\n",
+ " 'C++ source',\n",
+ " 'PHP script',\n",
+ " 'ReStructuredText file',\n",
+ " 'Python script',\n",
+ " 'Ruby script',\n",
+ " 'Java source',\n",
+ " 'Objective-C source',\n",
+ " 'Perl5 module source',\n",
+ " 'XML 1.0 document',\n",
+ "]\n",
+ "\n",
+ "# let's collect ALL tokens present in all the program files\n",
+ "tokens = Counter()\n",
+ "for basedir in CODE_TYPES:\n",
+ " print(\"Checking base dir:\", basedir)\n",
+ " for dirpath, dirnames, filenames in os.walk(os.path.join(DUMP_BASE, basedir)):\n",
+ " for fname in filenames:\n",
+ " fpath = os.path.join(dirpath, fname)\n",
+ " with open(fpath, 'rb') as fh:\n",
+ " tokens.update(t for x in re.split(separators, fh.read()) if (t := x.strip()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total different tokens 213400\n",
+ " 870525 b'.'\n",
+ " 756849 b'_'\n",
+ " 730609 b'('\n",
+ " 717433 b'='\n",
+ " 699725 b')'\n",
+ " 688556 b'/'\n",
+ " 661461 b'\"'\n",
+ " 640989 b','\n",
+ " 625121 b'-'\n",
+ " 594091 b'>'\n"
+ ]
+ }
+ ],
+ "source": [
+ "different_tokens = len(tokens)\n",
+ "print(\"Total different tokens\", different_tokens)\n",
+ "for name, quant in tokens.most_common(10):\n",
+ " print(\"{:8d} {}\".format(quant, name))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total tokens found: 20101050\n",
+ "Total representative: 3324\n",
+ "Last ten...\n",
+ " 289 b'enables'\n",
+ " 289 b'smaller'\n",
+ " 289 b'Creates'\n",
+ " 289 b'cross'\n",
+ " 289 b'GLFW'\n",
+ " 289 b'Os'\n",
+ " 289 b'usb'\n",
+ " 288 b'stylesheets'\n",
+ " 288 b'ad'\n",
+ " 288 b'WIDTH'\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "total_tokens = sum(tokens.values())\n",
+ "print(\"Total tokens found:\", total_tokens)\n",
+ "\n",
+ "most = total_tokens * 0.9\n",
+ "tot = 0\n",
+ "representative_data = []\n",
+ "for name, quant in tokens.most_common():\n",
+ " representative_data.append((name, quant))\n",
+ " tot += quant\n",
+ " if tot > most:\n",
+ " break\n",
+ "\n",
+ "print(\"Total representative:\", len(representative_data))\n",
+ "print(\"Last ten...\")\n",
+ "for name, quant in representative_data[-10:]:\n",
+ " print(\"{:8d} {}\".format(quant, name))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting data from base dir HTML document\n",
+ "Collecting data from base dir C source\n",
+ "Collecting data from base dir C++ source\n",
+ "Collecting data from base dir PHP script\n",
+ "Collecting data from base dir ReStructuredText file\n",
+ "Collecting data from base dir Python script\n",
+ "Collecting data from base dir Ruby script\n",
+ "Collecting data from base dir Java source\n",
+ "Collecting data from base dir Objective-C source\n",
+ "Collecting data from base dir Perl5 module source\n",
+ "Collecting data from base dir XML 1.0 document\n",
+ "Src data samples: 11000\n"
+ ]
+ }
+ ],
+ "source": [
+ "import random\n",
+ "\n",
+ "# real \"ML data\": a list of (code_type, features) (one pair for each file)\n",
+ "# code_type: the *position* of the code type corresponding to the file (needs to be an int)\n",
+ "# features: a list of values, each value corresponds to how many of the tokens of that position the file has\n",
+ "\n",
+ "representative_tokens = [name for name, _ in representative_data]\n",
+ "\n",
+ "all_src_data = []\n",
+ "for idx, basedir in enumerate(CODE_TYPES):\n",
+ " print(\"Collecting data from base dir\", basedir)\n",
+ " for dirpath, dirnames, filenames in os.walk(os.path.join(DUMP_BASE, basedir)):\n",
+ " for fname in filenames:\n",
+ " fpath = os.path.join(dirpath, fname)\n",
+ " with open(fpath, 'rb') as fh:\n",
+ " fcontent = fh.read()\n",
+ " \n",
+ " file_tokens = Counter(t for x in re.split(separators, fcontent) if (t := x.strip()))\n",
+ " token_quantities = [file_tokens.get(t, 0) for t in representative_tokens]\n",
+ "\n",
+ " all_src_data.append((idx, token_quantities))\n",
+ "\n",
+ "print(\"Src data samples:\", len(all_src_data))\n",
+ "\n",
+ "# shuffle, as currently is too much \"per directory\"\n",
+ "random.shuffle(all_src_data)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "from tensorflow.keras import Model, layers\n",
+ "import numpy as np\n",
+ "\n",
+ "# representation of our model\n",
+ "num_classes = len(CODE_TYPES)\n",
+ "num_features = len(representative_tokens)\n",
+ "\n",
+ "# 1st and 2nd layer number of neurons (these numbers are just chamuyo)\n",
+ "n_hidden_1 = 128 \n",
+ "n_hidden_2 = 256\n",
+ "\n",
+ "# training parameters (more chamuyo)\n",
+ "learning_rate = 0.1\n",
+ "\n",
+ "batch_size = 256\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example code types: (2, 0, 4, 4, 5)\n",
+ "Example token quants: [246, 786, 246, 61, 246] [32, 32, 5, 22, 5]\n",
+ "Token quants shape: (11000, 3324)\n",
+ "Example normalized quants: [0.3129771 1. 0.3129771 0.07760815 0.3129771 ] [0.9411765 0.9411765 0.14705883 0.64705884 0.14705883]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# separate the source data and into two pairing lists\n",
+ "code_types, token_quantities = zip(*all_src_data)\n",
+ "print(\"Example code types:\", code_types[:5])\n",
+ "print(\"Example token quants:\", token_quantities[0][:5], token_quantities[117][:5])\n",
+ "\n",
+ "# convert features to float\n",
+ "float_quantities = np.array(token_quantities, np.float32)\n",
+ "print(\"Token quants shape:\", float_quantities.shape)\n",
+ "\n",
+ "# normalize EACH ONE to [0, 1]\n",
+ "for quants in float_quantities:\n",
+ " quants /= max(quants)\n",
+ "print(\"Example normalized quants:\", float_quantities[0][:5], float_quantities[117][:5])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Real training set: 89.70%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# let's prepare the teching sets, input and output for training first (90% of cases) and\n",
+ "# then testing what's learned (the remaining 10%); \n",
+ "input_training = []\n",
+ "output_training = []\n",
+ "input_testing = []\n",
+ "output_testing = []\n",
+ "for token_distribution, code_type in zip(float_quantities, code_types):\n",
+ " if random.random() < .1:\n",
+ " input_testing.append(token_distribution)\n",
+ " output_testing.append(code_type)\n",
+ " else:\n",
+ " input_training.append(token_distribution)\n",
+ " output_training.append(code_type)\n",
+ "print(\"Real training set: {:.2f}%\".format(100 * len(input_training) / len(float_quantities))) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "from tensorflow.keras import Model\n",
+ "\n",
+ "class NeuralNet(Model):\n",
+ " \"\"\"Chamuyo al cuadrado.\"\"\"\n",
+ " \n",
+ " def __init__(self):\n",
+ " super(NeuralNet, self).__init__()\n",
+ " self.fc1 = layers.Dense(n_hidden_1, activation=tf.nn.sigmoid) # se puede cambiar a relu\n",
+ " self.fc2 = layers.Dense(n_hidden_2, activation=tf.nn.sigmoid) # se puede cambiar a relu\n",
+ " self.out = layers.Dense(num_classes)\n",
+ "\n",
+ " def call(self, x, is_training=False):\n",
+ " x = self.fc1(x)\n",
+ " x = self.fc2(x)\n",
+ " x = self.out(x)\n",
+ " if not is_training:\n",
+ " # tf cross entropy expect logits without softmax, so only\n",
+ " # apply softmax when not training.\n",
+ " x = tf.nn.softmax(x)\n",
+ " return x\n",
+ "\n",
+ "neural_net = NeuralNet()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Note that this will apply 'softmax' to the logits.\n",
+ "def cross_entropy_loss(x, y):\n",
+ " # Convert labels to int 64 for tf cross-entropy function.\n",
+ " y = tf.cast(y, tf.int64)\n",
+ " # Apply softmax to logits and compute cross-entropy.\n",
+ " loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x)\n",
+ " # Average loss across the batch.\n",
+ " return tf.reduce_mean(loss)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Stochastic gradient descent optimizer.\n",
+ "optimizer = tf.optimizers.SGD(learning_rate)\n",
+ "\n",
+ "# Optimización. \n",
+ "def run_optimization(x, y):\n",
+ " # Funciones para calcular el gradiente\n",
+ " with tf.GradientTape() as g:\n",
+ " # Algoritmo de forward\n",
+ " pred = neural_net(x, is_training=True)\n",
+ " # Computa la función de costo o pérdida utilizando entropía cruzada\n",
+ " loss = cross_entropy_loss(pred, y)\n",
+ " \n",
+ " # Actualiza las variables de entrenamiento.\n",
+ " trainable_variables = neural_net.trainable_variables\n",
+ "\n",
+ " # Computa los gradientes\n",
+ " gradients = g.gradient(loss, trainable_variables)\n",
+ " \n",
+ " # Actualiza los nuevos parámetros W (pesos) y b (bias).\n",
+ " optimizer.apply_gradients(zip(gradients, trainable_variables))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Accuracy metric.\n",
+ "def accuracy(y_pred, y_true):\n",
+ " # Predicted class is the index of highest score in prediction vector (i.e. argmax).\n",
+ " correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))\n",
+ " return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Step 100: loss=2.379924, accuracy=0.125000\n",
+ "Step 200: loss=2.372284, accuracy=0.128906\n",
+ "Step 300: loss=2.366430, accuracy=0.140625\n",
+ "Step 400: loss=2.360768, accuracy=0.121094\n",
+ "Step 500: loss=2.347394, accuracy=0.109375\n",
+ "Step 600: loss=2.349795, accuracy=0.199219\n",
+ "Step 700: loss=2.312950, accuracy=0.218750\n",
+ "Step 800: loss=2.284508, accuracy=0.289062\n",
+ "Step 900: loss=2.173395, accuracy=0.335938\n",
+ "Step 1000: loss=2.115966, accuracy=0.300781\n",
+ "Step 1100: loss=1.977837, accuracy=0.441406\n",
+ "Step 1200: loss=1.860783, accuracy=0.425781\n",
+ "Step 1300: loss=1.866206, accuracy=0.425781\n",
+ "Step 1400: loss=1.773057, accuracy=0.402344\n",
+ "Step 1500: loss=1.736271, accuracy=0.546875\n",
+ "Step 1600: loss=1.626320, accuracy=0.578125\n",
+ "Step 1700: loss=1.537970, accuracy=0.539062\n",
+ "Step 1800: loss=1.369012, accuracy=0.609375\n",
+ "Step 1900: loss=1.286771, accuracy=0.625000\n",
+ "Step 2000: loss=1.270916, accuracy=0.640625\n"
+ ]
+ }
+ ],
+ "source": [
+ "train_data = tf.data.Dataset.from_tensor_slices((input_training, output_training))\n",
+ "\n",
+ "# NOTE: this doesn't only selectes, it completely transform the structures\n",
+ "# from <TensorSliceDataset shapes: ((3324,), ()), types: (tf.float32, tf.int32)>\n",
+ "# to <PrefetchDataset shapes: ((None, 3324), (None,)), types: (tf.float32, tf.int32)>\n",
+ "train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)\n",
+ "\n",
+ "display_step = 100\n",
+ "training_steps = 2000\n",
+ "\n",
+ "# Run training for the given number of steps.\n",
+ "for step, (input_batch, output_batch) in enumerate(train_data.take(training_steps), 1):\n",
+ " # Run the optimization to update W and b values.\n",
+ " run_optimization(input_batch, output_batch)\n",
+ " \n",
+ " if step % display_step == 0:\n",
+ " pred = neural_net(input_batch, is_training=True)\n",
+ " loss = cross_entropy_loss(pred, output_batch)\n",
+ " acc = accuracy(pred, output_batch)\n",
+ " print(\"Step {}: loss={:f}, accuracy={:f}\".format(step, loss, acc))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Test Accuracy: 0.578994\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Test model on validation set\n",
+ "input_testing = np.array(input_testing)\n",
+ "pred = neural_net(input_testing, is_training=False)\n",
+ "print(\"Test Accuracy: {:f}\".format(accuracy(pred, output_testing)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# If we consider the \"more probable\" prediction on each item, how well it goes?\n",
+ "all_guesses = neural_net(input_testing, is_training=False)\n",
+ "guesses_ok = [0] * len(CODE_TYPES)\n",
+ "guesses_bad = [0] * len(CODE_TYPES)\n",
+ "\n",
+ "for guess, real in zip(all_guesses, output_testing):\n",
+ " # guess is an array of len(CODE_TYPES) with a float in each position showing\n",
+ " # which one is the most probable to be real, so we need to get position \n",
+ " # for the max one and check if it matches with the real real :)\n",
+ " position_for_max = np.where(guess == np.amax(guess))[0][0]\n",
+ " if position_for_max == real:\n",
+ " guesses_ok[real] += 1\n",
+ " else:\n",
+ " guesses_bad[real] += 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFmCAYAAACC84ZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABBB0lEQVR4nO3debyc4/3/8dc7mwSJWPJNEZHUEiUbkqC2iLWqltb6pYKiliLftrZuWt+26LdVxY9GLaGUoLbqYkkT+5KECEFsDUIQscUSJD6/P65r5txnMnPOnGSue87yeT4e8zhz3/fM/bnuOTNzzbXLzHDOOecAOtU7Ac4551oPzxScc84VeabgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJFnCq4RSQdLurPe6XCBpG0lzc4p1hxJOyU6dw9JD0jarYnHjJY0N7M9S9LoFOlxlXmm0M5JmiLpXUkrVPN4M7vGzHZZjngTJP1yWZ/f0UkySesXts3sPjMbVM801ch44Hdm9q9qn2Bmm5jZlHRJcuV4ptCOSRoAbAsYsGcO8TqnjtFeSOpS7zTkycwONbOb6p0O1zzPFNq3Q4GHgQnA2OwBSetIuknSfEkLJF0Y9x8m6f7M4zaSdJekdyTNlrR/5tgESRdL+oekj4DvAAcDp0j6UNLf4uO+Ekss78UqgT0z59hd0tOSFkp6TdIPy12IpE6SfiLpZUlvSbpK0ioVHjta0lxJP4iPnSfp8MzxVeLz58fz/URSVZ+FeB1nSXpU0geSbpW0Wub4nvEa34uP/Urm2BxJp0qaCXxUmjFIujfefSK+fgeUqVKZI+n0+Jq9K+kKSd0zx4+S9EL8f90maa0mruXb8foXSPpxybFOkk6T9GI8fn32Osucay9JM+Jr8mKhmkjSWjEd78R0HZV5To/4HnpX0tPAyJJzFquz4mOvjI99RtIpJa9LxfeYayEz81s7vQEvAMcBmwOfA33j/s7AE8DvgZWA7sA28dhhwP3x/krAq8DhQBdgU+BtYON4fALwPrA14QdG97jvl5k0dI3p+BHQDRgDLAQGxePzgG3j/VWBzSpcyxHxPF8GVgZuAv5c4bGjgcXAmTH+7sDHwKrx+FXArUBPYADwHPCdKl/TKcBrwOD4+vwVuDoe2xD4CNg5xj0lprlbPD4HmAGsA/SocH4D1i+5lrmZ7TnAU/EcqwEPFF7v+Nq+DWwGrABcANxbIc7GwIfAdvGx58bXbKd4/CTCD4p+8fh44NoK5xoV3wc7x/fB2sBG8di9wEXxvTEcmA+MicfOBu6L17FOvK7Sa90p89h74nukHzCz8FiaeY/5rYXfG/VOgN8S/WNhG0JGsEbcfhb4n3h/q/jh7FLmeYfRkCkcANxXcnw8cEa8PwG4quT4BBpnCtsCbwCdMvuuBX4e778CfBfo1cz1TAKOy2wPitdX7hpGA59kjwFvAVsSMsTPiBlbPPZdYEqVr+sU4OzM9sbxfJ2BnwLXZ451ImQgo+P2HOCIZs5fTaZwTGZ7d+DFeP8y4DeZYyvH12hAmTg/A67LbK8Ur6PwJfwMsGPm+JpNvN7jgd+X2b8OsATomdl3FjAh3n8J2C1z7Ogy17pT5rG7Zo4dSUOm0OR7zG8tu3n1Ufs1FrjTzN6O23+hoQppHeBlM1vczDnWBbaIRfL3JL1HqB76UuYxrzZzjrWAV83si8y+lwm/JgG+Rfhie1nSPZK2auI8L5ecowvQt8LjF5Rc38eEL8k1CL8sS8+1NtXLXvPL8XxrlKYxXvOrJedu7vValviFKqLS+B8CCyh/bWtlz2NmH8XHFqwL3Jz5vz9D+IIv93qvA7xYIcY7ZrawJL1rZ46XXkslpY99tfRYE+8x1wIdqrGro5DUA9gf6Czpjbh7BaC3pGGED1R/SV2ayRheBe4xs52beEzpNLul268D60jqlPnQ9idU2WBmU4G9JHUFvgdcT/iSKfU64YuqoD+huuPNJtJWztuEX7zrAk9nzvVaC86RTV//eL63YxqHFA5IUnxs9ty1mJa4NP7r8X6j10jSSsDqlL+2eUC2vWPF+NiCVwmlmgeqSM+rwHpl9r8OrCapZyZjyL7W8+K1zMocq2Qeodqo8D/LvgZNvsdcy3hJoX3am/CrbmNCPe5wwhfAfYTG50cJH7KzJa0kqbukrcuc53Zgw9gg2TXeRmYbT8t4k1DvX/AI4Vf6KfH5o4FvANdJ6qYwLmIVM/sc+AD4ovSE0bXA/0gaKGll4NfAxCpKO42Y2RJCxvMrST0lrQt8H7gaQo8thW6hA5o4zSGSNo5fpGcCN2bO+3VJO8ZM7gfAp8CDLUhi6etXzvGS+sWG3x8DE+P+a4HDJQ1X6IL8a+ARM5tT5hw3AntI2kZSt3gd2e+DPxJeo3UBJPWRtFeF9FwW4+4YG6jXlrSRmb1KuPaz4ntsKKEzwtXxedcDp0taVVI/4IQmrjn72LUJPyAKKr7Hmjifq6Te9Vd+q/0N+BehT3jp/v0Jda9dCL+kbiFUGbwNnB8fcxixTSFuDwL+TmiDWAD8Gxgej00g034Q921AaEx9D7gl7tuE0Ej4PuGX3j5xf7eY1ncJGcJUYoN3mbR3ItSDvxrTcjWx4bjMY0eTqZuO++bQUD+9anz+/Hi+nxHrown103OArhXOPYVQL/5oTPPfiO028fg+8Rrfj9e8Sbk0NPG/O4aQYb8X/1+NriWe4/QY4z3gSmDFkue/CLxDyNT7NRFrLKFNZwEhc8m+Rp0ImeVsQqPti8CvmzjXPoTG34WERt9d4/5+MR3vxHNk20NWJDT6vxev5+Qy11pIz0rAn+NjnwF+QmxLaeo95reW3xRfUOccIOknwHwzG1/h+BRCb6NLc01YQ/w5wJFmdnc94rcWko4FDjSz7eudlvbG2xScyzAzH43dCklak1Ct9hChNPoD4MK6Jqqd8kzBOdcWdCN0fR1IqEK6jjD+wdWYVx8555wr8t5Hzjnnitp89dEaa6xhAwYMqHcynHOuTZk+ffrbZtandH+bzxQGDBjAtGnT6p0M55xrUySVHUHu1UfOOeeKPFNwzjlX5JmCc865ojbfpuA6ls8//5y5c+eyaNGieiel3ejevTv9+vWja9eu9U6KawU8U3Btyty5c+nZsycDBgwgTELqloeZsWDBAubOncvAgQPrnRzXCnj1kWtTFi1axOqrr+4ZQo1IYvXVV/eSlytKmilIulxhjdynMvv+T9KzkmZKullS78yx0+M6rrMl7Zoyba7t8gyhtvz1dFmpSwoTgN1K9t0FDDazoYRFME4HkLQxcCBhCtzdgIskdU6cPueccxlJ2xTM7N7SxUrM7M7M5sPAvvH+XoQ1Yz8F/iPpBcKC4A+lTKNr2wac9veanm/O2V+v6nFvvPEG48aNY+rUqfTu3Zu+ffty3nnnseGGG9Y0PeVMmDCBXXbZhbXWWqv5BzvXQvVuaD6ChlWj1iZkEgVzqbDGqqSjCYt8079/Uyv4OVd7ZsY+++zD2LFjue66sLjXE088wZtvvtlsprB48WK6dOlScbsaEyZMYPDgwe0jU/j5KgnP/X66c7djdWtolvRjwhq717T0uWZ2iZmNMLMRffosNXWHc0lNnjyZrl27cswxxxT3DRs2jG222YaTTz6ZwYMHM2TIECZODL93pkyZwrbbbsuee+7JxhtvvNT2kiVLOPnkkxk5ciRDhw5l/PiG9X3OOecchgwZwrBhwzjttNO48cYbmTZtGgcffDDDhw/nk08+YdKkSWy66aYMGTKEI444gk8//TT318S1H3UpKUg6DNgD2NEa5u5+jcaLcfejZYupO5eLp556is0333yp/TfddBMzZszgiSee4O2332bkyJFst912ADz22GM89dRTDBw4kClTpjTavuSSS1hllVWYOnUqn376KVtvvTW77LILzz77LLfeeiuPPPIIK664Iu+88w6rrbYaF154Ib/97W8ZMWIEixYt4rDDDmPSpElsuOGGHHrooVx88cWMGzcu51fFtRe5lxQk7QacAuxpZh9nDt0GHChpBUkDCasrPZp3+pxbVvfffz8HHXQQnTt3pm/fvmy//fZMnToVgFGjRjUaB5DdvvPOO7nqqqsYPnw4W2yxBQsWLOD555/n7rvv5vDDD2fFFVcEYLXVVlsq5uzZsxk4cGCx2mrs2LHce++9qS/VtWNJSwqSriUsPL6GpLnAGYTeRisAd8WucA+b2TFmNkvS9YRFtxcDx5vZkpTpc25ZbLLJJtx4440tes5KK61UcdvMuOCCC9h118a9sO+4445lT6RzyyhpScHMDjKzNc2sq5n1M7PLzGx9M1vHzIbH2zGZx//KzNYzs0Fm9s+UaXNuWY0ZM4ZPP/2USy65pLhv5syZ9O7dm4kTJ7JkyRLmz5/Pvffey6hRo5o936677srFF1/M559/DsBzzz3HRx99xM4778wVV1zBxx+HAvU777wDQM+ePVm4cCEAgwYNYs6cObzwwgsA/PnPf2b77X0te7fs6t37yLnlUm0X0lqSxM0338y4ceM455xz6N69OwMGDOC8887jww8/ZNiwYUjiN7/5DV/60pd49tlnmzzfkUceyZw5c9hss80wM/r06cMtt9zCbrvtxowZMxgxYgTdunVj991359e//jWHHXYYxxxzDD169OChhx7iiiuuYL/99mPx4sWMHDmyUQO4cy3V5tdoHjFihPkiOx3HM888w1e+8pV6J6Pdqdvr6l1S60bSdDMbUbq/Y5cUUr0h/c3onGujfEI855xzRZ4pOOecK/JMwTnnXJFnCs4554o8U3DOOVfUsXsfubav1j3Iqug5tvLKK/Phhx/WNm4NnXfeeRx99NHF6TGcawkvKTjXiixevLjJ7Wqcd955xVHQzrWUZwrOLaMpU6YwevRo9t13XzbaaCMOPvhgCoNBp06dyle/+lWGDRvGqFGjWLhwIYsWLeLwww9nyJAhbLrppkyePBkI6yPsueeejBkzhh133HGp7Y8++ogjjjiCUaNGsemmm3LrrbcCsGTJEn74wx8yePBghg4dygUXXMD555/P66+/zg477MAOO+wAwLXXXsuQIUMYPHgwp556an1eLNdmePWRc8vh8ccfZ9asWay11lpsvfXWPPDAA4waNYoDDjiAiRMnMnLkSD744AN69OjBH/7wByTx5JNP8uyzz7LLLrvw3HPPAWFq7ZkzZ7LaaqsxYcKERts/+tGPGDNmDJdffjnvvfceo0aNYqedduKqq65izpw5zJgxgy5duhSn1j733HOZPHkya6yxBq+//jqnnnoq06dPZ9VVV2WXXXbhlltuYe+9967vC+daLS8pOLccRo0aRb9+/ejUqRPDhw9nzpw5zJ49mzXXXJORI0cC0KtXL7p06cL999/PIYccAsBGG23EuuuuW8wUdt5550ZTY2e377zzTs4++2yGDx/O6NGjWbRoEa+88gp333033/3ud4srt5WbWnvq1KmMHj2aPn360KVLFw4++GCfWts1yUsKzi2HFVZYoXi/c+fOy9QGAM1Prf3Xv/6VQYMGLVsinWsBLyk4V2ODBg1i3rx5xQV2Fi5cyOLFi9l222255pqw+uxzzz3HK6+8UtUX/a677soFF1xQbK94/PHHgVCaGD9+fDEjKje19qhRo7jnnnt4++23WbJkCddee61Pre2a5CUF17a1wskHu3XrxsSJEznhhBP45JNP6NGjB3fffTfHHXccxx57LEOGDKFLly5MmDChUUmjkp/+9KeMGzeOoUOH8sUXXzBw4EBuv/12jjzySJ577jmGDh1K165dOeqoo/je977H0UcfzW677cZaa63F5MmTOfvss9lhhx0wM77+9a+z11575fAquLaqY0+d7bOktjk+dXYaPnV2x1Np6myvPnLOOVfk1UeudvxXn3NtnpcUXJvT1qs8Wxt/PV2WZwquTenevTsLFizwL7IaMTMWLFhA9+7d650U10p49ZFrU/r168fcuXOZP39+vZPSbnTv3p1+/frVOxntVxvr0OKZgmtTunbtysCBA+udDOfaLa8+cs45V+SZgnPOuaKk1UeSLgf2AN4ys8Fx32rARGAAMAfY38zelSTgD8DuwMfAYWb2WMr05c67bLrWzt+jHV7qksIEYLeSfacBk8xsA2BS3Ab4GrBBvB0NXJw4bc4550okzRTM7F7gnZLdewFXxvtXAntn9l9lwcNAb0lrpkyfc865xurR+6ivmc2L998A+sb7awOvZh43N+6bRwlJRxNKE/Tv3z9dSl3r18a6+znX2tW1odnCCKQWj0Iys0vMbISZjejTp0+ClDnnXMdUj5LCm5LWNLN5sXrorbj/NWCdzOP6xX3OdVze8Ft7XrpsUj1KCrcBY+P9scCtmf2HKtgSeD9TzeSccy4HqbukXguMBtaQNBc4AzgbuF7Sd4CXgf3jw/9B6I76AqFL6uEp0+acc25pSTMFMzuowqEdyzzWgONTpsc551zTfESzc865Is8UnHPOFXmm4Jxzrsinzm7PvDujc66FvKTgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJE3NDvnXEIDFv0lyXnnJDmrlxScc85leEnBuZbwGTZdO+clBeecc0WeKTjnnCvy6iNXM6ka1CBdo5pzrjEvKTjnnCvykoJzrshLe85LCs4554o8U3DOOVfkmYJzzrkizxScc84VeabgnHOuyDMF55xzRZ4pOOecK6p6nIKkbsCGcXO2mX2eJknOOefqpapMQdJo4ErC+BMB60gaa2b3JkuZc8653FVbUvgdsIuZzQaQtCFwLbB5qoQ555zLX7VtCl0LGQKAmT0HdF2ewJL+R9IsSU9JulZSd0kDJT0i6QVJE2OVlXPOuZxUmylMk3SppNHx9idg2rIGlbQ2cCIwwswGA52BA4FzgN+b2frAu8B3ljWGc865lqs2UzgWeJrwRX5ivH/scsbuAvSQ1AVYEZgHjAFujMevBPZezhjOOedaoKo2BTP7FDg33pabmb0m6bfAK8AnwJ3AdOA9M1scHzYXWLvc8yUdDRwN0L9//1okyTnXQaSaCXZOkrPmr9reR08CVrL7fUIV0i/NbEFLgkpaFdgLGAi8B9wA7Fbt883sEuASgBEjRpSmyznn3DKqtvfRP4ElQCGLPZBQ5fMGMAH4Rgvj7gT8x8zmA0i6Cdga6C2pSywt9ANea+F5nXPOLYdqM4WdzGyzzPaTkh4zs80kHbIMcV8BtpS0IqH6aEdCqWMysC9wHTAWuHUZzu2cc24ZVdvQ3FnSqMKGpJGEHkMAi8s/pTIze4TQoPwY8GRMxyXAqcD3Jb0ArA5c1tJzO+ecW3bVlhSOBC6XtDJhRPMHwJGSVgLOWpbAZnYGcEbJ7peAUWUe7pxzLgfV9j6aCgyRtErcfj9z+PoUCXPOOZe/JjMFSYeY2dWSvl+yHwAzq0kXVeecc61DcyWFleLfnqkT4pxzrv6azBTMbHz8+4t8kuOcc66emqs+Or+p42Z2Ym2T41zr5qNhXXvXXJfU6fHWHdgMeD7ehgM+g6lzzrUzzVUfXQkg6Vhgm8K8RJL+CNyXPnnOOefyVO3gtVWBXpntleM+55xz7Ui1g9fOBh6XNJkweG074OepEuWcc64+qh28doWkfwJbEGZLPdXM3kiaMuecc7mrtqQAYfqJbeN9A/5W++Q455yrp4qZgqTtgIfM7HNJZwMjgWvi4RMlbWVmP8ojkc5V4l1EnautphqaFwF/jPd3B3Y2s8vN7HLCgjh7pE6cc865fFUsKZjZo5I+yuzqDbwT76+SMlHOOefqo7lxCrPi3bNYuvfRaYnT5pxzLmfV9j66VtIUQrsCeO8j55xrl6oavCZpH+BjM7vNzG4DFknaO2nKnHPO5a7aEc1nZBfWMbP3WHrVNOecc21cteMUymUeLRnj4JxzS0nVpRi8W/GyqrakME3SuZLWi7dzCbOnOueca0eqzRROAD4DJgLXEcYwHJ8qUc455+qj2t5HH+FdUJ1zrt2rtqTgnHOuA/BMwTnnXJFnCs4554qqHby2oaRJkp6K20Ml/WR5AkvqLelGSc9KekbSVpJWk3SXpOfjX1/dzTnnclRtSeFPwOnA5wBmNhM4cDlj/wH4l5ltBAwDniE0Zk8ysw2ASXjjtnPO5araTGFFM3u0ZN/iZQ0qaRXCpHqXAZjZZ3GU9F7AlfFhVwJ7L2sM55xzLVdtpvC2pPUIK64haV9g3nLEHQjMB66Q9LikSyWtBPQ1s8J53wD6lnuypKMlTZM0bf78+cuRDOecc1nVZgrHA+OBjSS9BowDjl2OuF2AzYCLzWxTYKlxEGZmxEyolJldYmYjzGxEnz59liMZzjnnsqodvPYSsFP8Nd/JzBYuZ9y5wFwzeyRu30jIFN6UtKaZzZO0JvDWcsZxzjnXAk1mCpK+X2E/AGZ27rIENbM3JL0qaZCZzQZ2BJ6Ot7HA2fHvrctyfuecc8umuZJCz/h3EGGBndvi9jeA0obnljoBuEZSN+Al4HBCddb1kr4DvAzsv5wxnHPOtUBzy3H+AkDSvcBmhWojST8H/r48gc1sBjCizKEdl+e8zjnnll21Dc19CbOkFnxGhZ5Bzjnn2q5qF8q5CnhU0s1xe29gQooEOeca+CI0Lm/V9j76laR/AtvGXYeb2ePpkuWcc64eql5S08weAx5LmBbnnHN15rOkOuecK/JMwTnnXFHV1UeS+hLGKgA8amY+2tg559qZatdT2J8wWG0/woCyR+KkeM4559qRaksKPwZGFkoHkvoAdxPmLHLOOddOVNum0KmkumhBC57rnHOujai2pPAvSXcA18btA4B/pEmSc865eql28NrJkr4JbBN3XWJmNzf1HOecc21P1b2PgAeBJcAXwNQ0yXHOOVdP1fY+OpLQ+2gfYF/gYUlHpEyYc865/FVbUjgZ2NTMFgBIWp1Qcrg8VcKcc87lr9oeRAuA7BKcC+M+55xz7Ui1JYUXCAPWbgUM2AuYWViuc1mX5XTOOde6VJspvBhvBYW1k3uWeaxzzrk2qtouqb9InRDnnHP112SmIOlCM/uepL8Rqo0aMbM9k6XMOedc7porKRwKfA/4bQ5pcc45V2fNZQovApjZPTmkxTnnXJ01lyn0KfQwKsd7HTnnXPvSXKbQGVgZUA5pcc45V2fNZQrzzOzMXFLinHOu7pob0ewlBOec60CayxR2TBlcUmdJj0u6PW4PlPSIpBckTZTULWV855xzjTWZKZjZO4njnwQ8k9k+B/i9ma0PvAt8J3F855xzGXVbUlNSP+DrwKVxW8AYGtZ9vhLYuy6Jc865Dqqe6yyfB5xCWLQHYHXgPTNbHLfnAmuXe6KkoyVNkzRt/vz5yRPqnHMdRV0yBUl7AG+Z2fRleb6ZXWJmI8xsRJ8+fWqcOuec67hashxnLW0N7Clpd6A70Av4A9BbUpdYWugHvFan9DnnXIdUl5KCmZ1uZv3MbABwIPBvMzsYmExY7hNgLA1TdDvnnMtBPdsUyjkV+L6kFwhtDJfVOT3OOdeh1Kv6qMjMpgBT4v2XgFH1TI9zznVkra2k4Jxzro48U3DOOVfkmYJzzrkizxScc84VeabgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJFnCs4554o8U3DOOVfkmYJzzrkizxScc84VeabgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJFnCs4554o8U3DOOVfkmYJzzrkizxScc84Vdal3AjqSAYv+kuzcc5Kd2TnXkXhJwTnnXJFnCs4554o8U3DOOVfkmYJzzrmiumQKktaRNFnS05JmSTop7l9N0l2Sno9/V61H+pxzrqOqV0lhMfADM9sY2BI4XtLGwGnAJDPbAJgUt51zzuWkLpmCmc0zs8fi/YXAM8DawF7AlfFhVwJ71yN9zjnXUdW9TUHSAGBT4BGgr5nNi4feAPpWeM7RkqZJmjZ//vx8Euqccx1AXTMFSSsDfwXGmdkH2WNmZoCVe56ZXWJmI8xsRJ8+fXJIqXPOdQx1yxQkdSVkCNeY2U1x95uS1ozH1wTeqlf6nHOuI6pX7yMBlwHPmNm5mUO3AWPj/bHArXmnzTnnOrJ6zX20NfBt4ElJM+K+HwFnA9dL+g7wMrB/fZLnnHMdU10yBTO7H1CFwzvmmRbnnHMN6t77yDnnXOvRoafOTjWV9ZwkZ3XOufS8pOCcc67IMwXnnHNFnik455wr8kzBOedckWcKzjnnijxTcM45V+SZgnPOuSLPFJxzzhV5puCcc67IMwXnnHNFnik455wr8kzBOedckWcKzjnnijxTcM45V+SZgnPOuSLPFJxzzhV5puCcc67IMwXnnHNFnik455wr8kzBOedckWcKzjnnijxTcM45V+SZgnPOuSLPFJxzzhW1ukxB0m6SZkt6QdJp9U6Pc851JK0qU5DUGfh/wNeAjYGDJG1c31Q551zH0aoyBWAU8IKZvWRmnwHXAXvVOU3OOddhyMzqnYYiSfsCu5nZkXH728AWZva9kscdDRwdNwcBs3NI3hrA2znEqVe8esT0eB6vtcdsz/HWNbM+pTu75BS8pszsEuCSPGNKmmZmI9prvHrE9Hger7XHbO/xymlt1UevAetktvvFfc4553LQ2jKFqcAGkgZK6gYcCNxW5zQ551yH0aqqj8xssaTvAXcAnYHLzWxWnZNVkGt1VR3i1SOmx/N4rT1me4+3lFbV0Oycc66+Wlv1kXPOuTryTME551yRZwouN5K2rmZfW9Xer8/VnqSB1ezLk2cKFUj6czX7ahhPkg6R9LO43V/SqFTxMnHXlbRTvN9DUs+E4S6ocl/NtOfrk3RONftqGG9FST+V9Ke4vYGkPVLFy8TdRtLh8X6f1F+aOb9n/lpm340J4zWrVfU+amU2yW7EeZk2TxjvIuALYAxwJrCQ8IYZmSqgpKMII8NXA9YjjAv5I7BjjeNsBXwV6CPp+5lDvQi9zJJo79cH7AycWrLva2X21coVwHRgq7j9GnADcHuieEg6AxhBmLngCqArcDWQpASW43tmI8J3zCqSvpk51AvoXstYLeWZQglJpwM/AnpI+qCwG/iMtN3FtjCzzSQ9DmBm78axGikdT5hv6pEY83lJ/5UgTjdgZcL7Lfur6wNg3wTxCtrl9Uk6FjgO+LKkmZlDPYEHah0vYz0zO0DSQQBm9rEkJYwHsA+wKfBYjPl64l/ueb1nBgF7AL2Bb2T2LwSOShCvap4plDCzs4CzJJ1lZqfnGPrzWBoxCMVkQskhpU/N7LPC51pSl0L8WjKze4B7JE0ws5cl9Qq7bWGtY5Vor9f3F+CfwFlAdnr5hWb2TqKYAJ9J6kHDe3Q94NOE8QA+MzOTVIi5UuJ4eb1nbgVulbSVmT1U6/MvD88UKjCz0yWtDaxL5nUys3sThTwfuBn4L0m/IvzC/EmiWAX3SCqUinYm/Pr8W8J4fSTdTvw1Lel94Agzm54oXru8PjN7H3ifMLX8ZsA2hC+uB4CUmcIZwL+AdSRdQ6jCOSxhPIDrJY0HeseqnSOAPyWMl/d75oUYbwCNv2eOSBizST54rQJJZxOm2XgaWBJ3m5ntmTDmRoS6SwGTzOyZVLFivE7Ad4BdYsw7gEst0ZsiVnUcb2b3xe1tgIvMbGiieO39+n4K7A/cFHftDdxgZr9MES/GXB3YkvB6PmxmyWf0jF/Oxf+hmd2VMFbe75kHgfsIbTWF7xnMrFwDdC48U6hA0mxgqJmlLh4X4m0JzCpUOcQqiK+Y2SMJY64ELDKzJXG7M7CCmX2cKN7jZrZpyb7HzGyzFPHylvf1xffoMDNbFLd7ADPMbFCiePsA/44lFST1Bkab2S0p4sUYA4F5JdfY18zmJIqX92dihpkNT3HuZeVdUit7idDTIS8XAx9mtj+M+1KaBPTIbPcA7k4Y7x5J4yWNlrS9pIuAKZI2i9UgNSHpSUkzK91qFaeMXK4v43Ua91RZgbSzCp9RyBAAzOw9QpVSSjfQuG1tSdyXSt6fidsl7Z7w/C3mbQqVfQzMkDSJTGOamZ2YKJ6yRVQz+yI2cqXU3cyKGZGZfShpxYTxhsW/pV8kmxLqxMfUKE7yvvMV5HV9Be8DsyTdFc+/M/CopPMhyXu13I/I1O/RLnEVRgBiI3DKXnl5fyZOAn4k6TNCD0eFsNYrYcwmeaZQ2W3kO233S5JOpKF0cByhtJLSR5I2M7PHACRtDnySKpiZ7ZDq3CVxXs4jTpm4uVxfxs3xVjAlcbxpks4lrKMOoftmqk4CBfMl7WlmtwFI2ou0K5Pl/ZlI2b12mXibQhNi/WV/M0u+3GfsC30+4dekEYqx48zsrYQxRwATCdUQAr4EHFDr3jKSDjGzq9V4YFeRmZ1b43j3m9k2khbSuDthkl9heV9fvcT69p8COxFe17uAX5nZRwljrgdcA6wVd80Fvm1mLyaKl8tnIhNPwMHAQDP7X0nrAGua2aMp4lXDSwoVSPoG8FvCwKSBkoYDZ6bofRQbs35vZgfW+tzNxNwW2IgwkAZgtpl9niBcoW95Xr+KDoVcf4Xlen2Srjez/SU9SZk+9Cl6O8X3y+15loZizGPNbEtJK0OozkkcL6/PREF2JoP/JbQl/j8SzmTQHC8pVCBpOuEfNaXQo0TSU2Y2OFG8+4Ex2frT1CQ9ambJ51eKsToDJ5rZ73OINd3MNpc0ycxqOj1BEzHzvL41zWyepHXLHU9VfRbb176ZbWxOTdLDZrZljvFy+0zEeI9ZnMkg8z3zhJkNa+65qXhJobLPzex9NR7Fn3KE8UvAA5JuA4rF8cRVDw9IupBQXM7GfKzWgcxsicL0CMm/NIFOcUDQhuWqdFK8pnleX8wQOgMTcm7H+BB4MjZsZ98vqTpfADwePxM3lMS8qfJTlktun4moHjMZNMkzhcpmSfpvoLOkDYATgQcTxnsx3jqRXzXL8Pj3zMy+FL1kCvL6wB1IGMhVOhdRanlnsl9IWiXHX+430TBQLi/dgQU0fk9awnQMj3/z+kzUYyaDJnn1UQWxG9qPaTyy8X8Lg2hcy0maXGa3mVmSD5ykr5nZP1Ocu0K8vK/vVkJ31zx/ubsaU84zGTSbHs8UWof4hVKu0TDVLxQU124oE/PMcvtd6yJpbLn9ZnZlonj/ofx79Msp4sWYV1SImWRuoHp8JiStCqxD47mPUlVXNcurjyqIXdPKTVSVZB4b4IeZ+92BbwGLE8UqyHYl7E4Y9JXsV4qkXwO/iSNhCx+GH5hZXYvLtVKH67uRMlMyJIoFYV2Dgu7AfoR1B1LKrtXQnTCV9usJ4+X9mfhfwqSCL9KQ+aWsrmo+TV5SKE9hXpmTgSfJNPzkOTCqDj0hViBMODY60fnznhtoBSuZu6rcvhrGy/v6HgZ2KnTTjN027zSzr6aIVyEN080s5eJTpfE6AffndY05fCZmA0Py7HXYHC8pVDa/MIoyD5Kyv7g6EVZ5WyWv+NGKhJWmUumc/VKOgwNT/rJ9CCj9Qi63r1byvr5cp2Qomb+pE6HkkPd3yAZAikVvKkn9mXiKsNBOskGqLeWZQmVnSLqUMLI4O/dRql4P0wnFRhGqjf5DmMI3mZLBT52BPjTudVFr1wCTYj0xwOFAzeu/JX0JWJswJ/6mhNcUwlKHKeexyeX6MnKdkgH4Xeb+YmAOYeruZDKj0hX/vkG65Ubr8Zk4i9Dt9ikaf88km6K/OV59VIGkqwkjG2fRUH1kqRq46qFk8NNi4E0zS9qOIWk3wjQJAHeZ2R0JYowl1NOOAKbSkCl8AFyZMGPP5foysUYC15HTlAwdQd6fCUmzgPEsXU19T6qYzabJM4XyJM22RPPSV4jXFTgW2C7umgKMTzzEHknDCEP7Ae41s2RTS8e5cz6xMAPsIMJUAv9MdY2SvmU5LlaS9/XFmF3JaUoGSasQZoAtvEfvIUz9knSchKQ9MzGnmNntTT2+BvHy/ExMNbO6TWlRjq+nUNmDkjbOMd7FhHaEi+JtcxKvpyDpJEKVx3/F2zWSTkgY8l6gu8Iyp/8Cvg1MSBhv7/hFBoRfgXGqhlRyvT5J+xHaFZ4iDNabqDTrNhRcTlhYfv94+wC4oslnLCeFFRBPIqyA+DRwUuzllSpe3p+J+ySdJWkrxXU3Ev8Pm2dmfitzI3RD+wyYDcwkFO9mJoz3RDX7ahxzJrBSZnulxNf4WPx7AnBKvD8jYbzvAs8CuwNHAc8B32hH1zcz/t0GmAx8HXgkYbylriXl9RWuEeiU2e6c+D2a92dicpnbv1O+ps3dvKG5st1yjrdE0noWpwSW9GUya7YmopIYS2iof08ST9JWhKmCC43onVMFM7Pxsc52MmEO/k3N7I1U8cj5+mj4330d+JOZ/V1SsvWZgU8kbWNm9wNI2pq0DdsFvYF34v3UPfJy/UxY/mtwNMszhcrybmw5GZgs6SXCm3BdQu+VlK4AHpF0c4y5F3BZwngnAacDN5vZrJjxlZsaoiYkfZsw//+hwFDgH5ION7MnEoXM9fqA1ySNJ6y4dk7sU5+ySvhY4MpYJSfCF/VhCeNBQ++cyTHmdsBpCePl+plojbMKeENzBZmuaSKMbBxIaMjbJGHMFWjcaJhkkFVJzM0I1Q8A95nZ46lj5kXSLcDRFhcqkjQKuMRa2ULpyyqOSdgNeNLMnpe0JmEg1J2J4/YCMLMPUsbJxFuThvUFHk1c2sv1MyHpB5nN4ghqq2MvR88UqhTfKMeZ2ZGJzr8f8C8zWyjpJ4QBVr+0hHOgKKxqNdfMPpW0AzAEuMriNA3thaQVzezjeL+btaLRo21JbIS9gtDY/CfCe/S0lJlQrKKaYWYfSTokxvyDpVszoq6fidQjqKvhvY+qFL+ct0gY4qcxQ9iGMGPiZSTufQT8ldCWsT7wR8KkXH9JHDM3sUfH04TG5kJXw/Pqmqi27YhYOtgFWJ3Qu+rsxDEvBj6O/7vvE+YIuiphvHp/JlKPoG6WtylUoMaLs3Qi/EJJORFX3o2GAF+Y2WJJ3wQuNLMLJKUsKq9hZikXXS91HrArcBuAmT0habsmn+GaUmhw3Z3w63mWpJQdEwAWm5lJ2gv4f2Z2maSUI/3z/kzkPYK6WZ4pVJZdnGUx8HfCr4hU8m40hLDq00GEhthvxH1dax1EYb3ry4HFkpYA+5tZygWLiszs1ZLvrWQ9uhRWzTqKpWfWTTXN8wnA1Wb2borzlzFd0p2E9rXTJfUk/SphCyWdDhwCbKcwIV7N36MZuXwmMvbI3M9lVoHmeKZQgZn9IueQ+xMaDX9rZu/FxrWTE8c8HDgG+JWZ/UfSQODPCeL8CtjWzJ6VtAXwG2D7BHEAkLSlmT0MvCrpq4DFkb8nkXAaZOBW4D7gbtJ3JwboC0yV9Bgh073D0jYSfoewMtlLZvaxpNVJ30PuAOC/ge+Y2RuS+gP/lzBeXp+JgjWBWWa2EEBST0kbm9kjCWM2yRuaK1BYh3Y/azw3/nVmtmtdE9YGqWT66NLtVPEkrQH8gTAXkYA7gZPMbEGiuDPy7tkUq292IXyZjQCuBy4rjHdxrVusmtqskJnHktC0lJ+P5nhJobI+2R4HZvaupDyn7G1P/qukjabRtpmdmyJobL84OMW5K7hd0u5m9o+8Asb69jcIs4cuBlYFbpR0l5mdklc63DJTtnRnYd6sun4ve6ZQ2RJJ/c3sFSjOnujFqmXzJxq30ZRu19qXJVVcC8PSTUt8EvAjSZ8BhYnpzMx6pQgWu4geShitfSlwspl9Hn9tPg94ptD6vSTpRBp6Gh4HvFTH9Him0IQfA/dLuodQ9bAtcHStg8Sub33N7IGS/VsDb7SHaoA6tM/Mp/Hc/7kws5QZXTmrAd8s7bMff23uUeE5yy2WmLtn4r2SIEYfQmn96ZL9GxMWwJpf65glcYpjWxI7BjgfKCzZejcJvmdawtsUmhDrpLeMmw+n6E4p6XbgdDN7smT/EODXZvaN8s+saRpON7OzEp7//KaOm9mJNY73uJUsi5kX5T/Nc2H0rQEPJB7suCchs12LsFLYuoTRtzUf5S/pOuAiM7u3ZP+2wLFm9t+1jhnP/1VCqWtlM+sfx0d818yOSxGvNfLBa037KjA63rZs8pHLrm9phgAQ9w1IFLPUfonPPz1z27NkO8WCMP9JcM5mqfw0zykz258SVnZbHVgDuCKOhk/lfwmfg+fMbCBhkOXDiWKtX5ohAJjZfYR5rFL5PWFsy4IY7wkaMvmak9RP0s2S3oq3v0qq6+A1LylUED/gIwlzqwMcBEw1sx/VOM7zZrZBhWMvmNn6tYxXIU7S3kAlsZL/ipf0LZpo/7FEK69JmgkMN7Mv4nZn4HEzS/IlprDo+zAzWxS3exCmhEiyOJSkaWY2QtIThBlnv5D0hJkNSxCr4iJXTR2rQdxHzGyL7Ps01TXGc99FGDFd6PZ6CHCwme2cIl41vE2hst1p/AG/EngcqGmmAEyTdJSZ/Sm7U9KRpPkVXTj/f2iY8G9NNczOamb25VRxyaexvlCf/l+E0t6/4/YOwINAsuU4yXea59cJdfuL4vYKwGsJ470naWXCYkLXSHoL+ChRrBfK9eSS9DXSNsTmPbalj5llFyqaIGlcwnjN8kyhab1J/wEfB9ws6WAaMoERQDdgn0QxicV/oL518CmY2eEAcfTtxmY2L26vSdqV3nKZ5lnSBYTM9X1gVvy1aYTR8I/WOl7GXoT1E/6H0NV3FdJNyTAO+Luk/Wn8udiKxqOAa+0YwtiWtQkZ7J3A8QnjLVCY6O/auH0QseqqXrz6qII41P1swnz4xQ+4mU1MFG8HYHDcnGVm/27q8TWOnTRTkLSQhlJJD6DQq6NQMknVZfMZM/tKZrsT4bX9ShNPW96Yyad5ljS2qeNmdmWtY8a43wcmmlnK0kg23gqE0czFzwXwl0J1WXsQu7pfQMjsjFCSPTFFj66q0+SZQmV5fMBbA0kXmtn36p2OWpN0IbABDb/CDgBeMLNka+4qrM+8Lo3nPlqqwbQtknQGYTqWd4CJwA1m9maO8fdI1ZsrU/oqq9Y95FozzxRKqJlFs1N2+WuvJHUnFMvXJ6yBe7nlNOmXpH1o6D1yr5ndnDDWOYSMZxYNE8VZqsFymXahRhK3CSFpKOE6v0VYe2CnlPEycZN1iMi79NWaMyFvU1haYdBTd0Id5hOEao6hwDRCMa9dkbSJmc1KGOJKwgjf+wgN+JsQGvDy8Biw0MzulrSipJ4WJx9LYG9gkOWwYl40InO/O6Fr8Wo5xH2LMK3GAkJjfl5SrpWcpMqtCdPi362BjQklLwj/w6fLPiMnXlKoQNJNwBmFMQSSBgM/N7N965uy2sthgronzWxIvN+FUBWXvAuspKMIo0NXM7P1JG0A/NHMdkwU75+ESRQ/THH+KtMw3cw2T3Tu4wjVR32AG4DrS0ccpyRplJmlbEgndhIoV/oakyjew8A2hZJz7PF0n5mlGhfVLC8pVDYoO6jMzJ6SlKyBss5SL5RSmAcICwuYJA5XdDwwCngkxn5eCSY1zFQFfAzMkDQJKJYWUlUFlFR1diKUHFJ+ptcBxpnZjIQxGlFYh/oHQH8zOypm7IMSjhT/YeZ+d0IVWcqqzlWBXjT0clw57qsbzxQqmynpUuDquH0woT68XYiNhoUeQX0l/axwzMxq3c1wmKTCIu8CesTtpL2PgE/N7LNCJhRLKSmKxoWqgOnEVd4yUhbFs/M7LQbmkHB0upmdDvnMfZRxBeF1LVTbvkYopSTJFMysdGzQA5JSlk7OZuluzD9PGK9ZnilUdjhwLA113/eSfs3kPM3J3P8cSLIQOoCZdU517mbcI+lHhExoZ8IMlH+rdZBCfbSkk8zsD9ljCjOZJmFmO5TE6gwcCDyXIp7CCnrnUjL3EaGNKJX1zOyA2EUcC4v7JCtqSsq2yXQCNifhIEQzuyJWOxbWfz+13r0cvU3B5TrNRZ7il8eRhEVoBNwBXGqJ3vTlXscUY0Ak9SJUja1NWO3t7rj9A2Cmme1Vy3iZuE8AY4C7zWzTOLbmEDNLtmaypAcJcyw9YGHhpPWAa81sVKJ42ZH+iwnzaJ1pZveniNcaeUnBQfo2hdzFX82zzGwjwvoNKWMdRBhkNVCN13HoSUNdcS39GXgXeIiwJvSPCf/DfRLX939uZgskdZLUycwmSzovYTwIVSn/AtaRdA2ht85hqYJlR/p3VJ4pOAi/xNoVM1siabYyCyUl9CAwjzBTabaefyFp2qG+nOnNdWmM3T+Hkb6FuY/uI/3cRwCY2Z2SphNmZxVhOdUUU9h/s5l0pJwvq1XxTKEFJP3WzH7Y/CNbN5Us7GNm78T97WZhn2hVwtxAj5L58qr1YDILi9y8LOlaQvXNu7U8fxnZ3lxLJM3NaeqHPQmT751EmM2zF5B0ASVJfyPMInqbmaXMgArrluQ2iWKs3hxFqAaE0Ij+aKrqzWp5m0ILSHrFzPrXOx3LS61gYZ88SNq+3H4zuydRvF8SGnofAy4H7kjxAZe0hIZMLjufVJLeXJm5qxrtjn8XAS8CPzazSbWMG2NvTxg9/XVgKnAdcHuqTDBOojjWSiZRNLNdaxxnF+AiwrKphbmk+hFG/R9nZnfWMl6L0uaZQvUkvWpm69Q7HctL0lQzG1nhWHGgmWu5+OtvF0LvtRHA9cBl7aj01UhsuxkMXGNmg5t7/HLGGUNoQ9ktVTfmvCZRlPQM8DUzm1OyfyDwj1rHawmvPipR0iWt0SHaT4Ns7yaO9cgrEamV/MLtBnQFPko4LgIzM0lvEKaBWEyowrpR0l1mdkqquPViZkuAJ+IAviQUFg/6BqHEsBlh2pRUJkm6g8aTKN6dIE4XYG6Z/a8R3qd145nC0qbT0CWt1Odl9rVFdVnYJ29m1rNwP/6C34t0y6oWxiQcCrxNWOf3ZDP7PP7afB5od5lCgZmNT3FeSdcT6t3/BVwI3GNx4asUzOx7JZMoXpJoEsXLgakKa1G/GvetQ6h+vCxBvKp59VEHJKkvcDPwGWUW9qn34JmUUowbyJz7F4QZYJcaCCjpK2aWcgWvdknSroRxEUtyjNmXkBEZoeH3rURxvkL4oZJtaL4tz/mkyvFMoYQ60NTZquPCPnko6WZYmBtoezOr6Uy3ajw1+JOENoRcpgZvrySNMbN/V+oqmqqLqMJKb/8HTCHUFmxLKPHdmCJea+SZQglJXwBPEaoAoHE1kqWaLdHVnqTs2reFuYH+VOtffpIm0jA1+NeAl80sr6nB2yVJvzCzM0r+hwVmZkckivsEsHPhPSKpD6GkMixFvApp+LmZ/TyveKW8TWFp3wf2JaxFex1ws9VxKmS3XC4tjMUoiGMxal0dsHFmMNllpF0nuUMwszPi3TPN7D/ZY7GHTiqdSn40LCCUMvNU13a9vC+21TOz88xsG+AEQsPPJEnXSxpe35S5ZVCuR0yKXjKNpgZPcP6O7K9l9qWsyvmXpDskHSbpMODvwD8TxluKmdV80saW8JJCBWb2kqRbCV00vw1sCMyoa6JcVSRtRRiV2kdhsfmCXkCKGVvrNTV4uyVpI8Lsq6uUtCv0IjNtd62Z2cmSvkWYYwnS9T6qSNLPrPbT11fNM4USkr5M6Ba2F6Gr2HWEUb6f1DVhriW6ERYr6UKYlK7gA0LVYE1Z/aYGb88GAXsQxtRkR9gvJAxgS8bM/irpLuL3o6TVClPB5ORIoG6Zgjc0l4gNzTMJUxJ/QMnwfjM7tx7pci0nad1y3UNd2yFpKzN7KMd43yXM57QI+IKG0t6Xaxzng0qHgB5mVrcf7N6msLRfEPrwf0H4tdmz5Obajksl9S5sSFo1jlZ1bccxZf6HlyeM90NgsJkNMLMvm9nAWmcI0XvABmbWq+TWkzDrbd149dHSFpjZhfVOhKuJNczsvcKGmb2rBGs0u6SGlvkfJhl8GL1ImFwwtasIK9e9WebYX3KIX5FnCks7gjCc3rV9X2TXU5C0LmnXTHa110nSqoXpyOPcZCm/t04HHpT0CPBpYaeZnVjLIGb2kyaOnVrLWC3lmYJrz34M3C/pHhpGpx5d3yS5Fvod8JCkG+L2fsCvEsYbT1hL4UlCFXKH4w3NJSQtpnzx0bsXtkGS1qBhEryHLcGqXS4tSRsTps0G+HfKuYFSzo3VVnimUMLfFO2HpO3K7Teze/NOi1t2krYhNMpeEaedWLl0lHMNY/2aMB3K32hcfZRnl9S68kyhhGcK7UdcyrGgO2Hmy+k+f1XbIekMwkSGg8xsQ0lrATeY2dbNPHVZ45XLbGreJbWZNNR1hUdvU1jaDc0/xLUFVrKsqKR1gPPqkxq3jPYBNiUscYqZvS4pWddwM0s5r1K16rqYl2cKS1tT0vmVDta6F4LL1VygbsscumXyWVzNzgAkrVTvBOWgrtU3niksbVrm/i+AMyo90LVucYnIwgesEzCc+IvTtRnXSxoP9JZ0FKHL+J+aeU6rVzInV6NDhEGzdeNtCk3w9oW2TdLYzOZiYE7pVNqu9ZO0M7AL4QvzDjO7q85JWm6xraQiM/tFXmkp5ZlCEyQ9ZmZNrsTmWidJnYGrzOzgeqfFtT2SVibMjPxSdkR1R+DVR65dMrMlktaV1M3MPqt3elzLSLrfzLaRtJDydewLgP8zs4tqFO8iMzsu3t+GMNXEi8D6kr5rZv+oRZxMvIrtllDftksvKZQoeROuSMNANh+81sZIuorQsHwb8FFhv8902/ZJWh140MwG1eh8xVoBSZOBH5jZY3Eq/evNbEQt4mTifUZY9vd64HVKehyZ2ZW1jNcSXlIoEWcpdO3Di/HWiYYZbv1XUBsjaTNgG8L/7n4ze9zMFkganShkLzMrdIF9SVKK2aTXJEzZcQChvWsicGNrqKrykoJrtyTtZ2Y3NLfPtV6Sfkb48rwp7tqbMHjtlzWO8zHwAuEX+wCgf5yRtRMw08wG1zJeSex+hIW9vg+camZ/ThWrqvR4puDaq3IdBbzzQNsiaTYwzMwWxe0ewIxaVRtl4qxbsmuemX0W587azsxuKve8GsTdDDgI2BmYDvwu5dxO1fDqI9fuSPoasDuwdkmDXi9CUd21Ha8TpihZFLdXAF6rdZBKK/TFCRRrniFIOhP4OvAMYcnf082sVbw3vaTg2h1JwwgD1c4EfpY5tBCYXJib37VemYGH/YGRwF1xe2fgUTP7Zo3jPUn59qZCB5OhNY73BfAfGjqyFGInidcSnim4dktSVzP7XFJXYDDwmpm9Ve90ueaVDDxcSq1755SpPiqNV9O1vvOO1xKeKbh2R9IfgQvMbJakVYCHgCXAasAPzezauibQVU1Sd2D9uPlCoW0hUazOwN1mtkOqGJlYxRUByxzb1szuS52GSlJ0tXKu3rY1s1nx/uHAc2Y2BNgcOKV+yXLVktRF0m8IkxheSVjT+FVJv4klv5ozsyWEJVxXSXH+ElMknRIzIgAk9ZV0NfD7HOJX5JmCa4+yI5h3Bm4BMLM36pIatyz+j1CyG2hmm8ceY+sBvYHfJoz7IfCkpMsknV+4JYizOeF6ZkgaI+kk4FFCqXZUgnhV8+oj1+7EEam/I/RSmQxsZGZvSOoCPGVmG9U1ga5Zkp4HNrSSL6j4y/pZM9sgUdyybRmpRhjHzOD3hF5WW5rZ3BRxWsK7pLr26LvA+cCXgHGZEsKOwN/rlirXElaaIcSdSwprKyQKemUcC9HfzGaniiOpN3AOsAWwG6EL9T8lnWRm/04Vt6q0eUnBOdfaSLoFuMnMrirZfwiwv5ntmSjuNwjVU93MbKCk4cCZtY4n6SXgIuC8wviEGOsi4GUzO6iW8VqUNs8UXHslaUPgYqCvmQ2WNBTYs9ZTJLjak7Q2YdDYJ4SRvhDWau4B7GNmNR/AFuNOB8YAUwprqUh6qtbTXEjqV6mqSNJRZla3hYQ8U3DtlqR7gJOB8Sk/4C4dSWOATeLm02Y2KXG8h81sy+wCW5Jm1nMwWd68TcG1Zyua2aNSo1mJW8VUAq46sX49zzr2WZL+G+gsaQPgRODBHOPXnXdJde3Z25LWI04hIGlfYF59k+RauRMIJZNPCQvtvA+Mq2eC8uYlBdeeHQ9cAmwk6TXCXDO+PKdbShw5fQxh9PSTwFatZYK6vHmbgmv3JK1EKBV/DBxoZtfUOUmulZE0EfgcuA/4GjDHzMbVNVF14pmCa3ck9SKUEtYGbgXujts/ICyYslcdk+daIUlPxqlQiIMcH+2o62549ZFrj/4MvEuYMuAo4MeEKYn3MbMZdUyXa70+L9wxs8UlnRM6FC8puHan5FdfZ0Ljcv+UM2y6tk3SEuCjwiZhPMTHNKxv0KteacublxRce5T91bdE0lzPEFxTzKxz84/qGLyk4Nod/9Xn3LLzTME551yRD15zzjlX5JmCc865Is8UnHPOFXmm4JxzrsgzBeecc0X/H9sRjZFUhN64AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "<Figure size 432x288 with 1 Axes>"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "values_ok = [guesses_ok[i] for i in range(len(CODE_TYPES))]\n",
+ "values_bad = [guesses_bad[i] for i in range(len(CODE_TYPES))]\n",
+ "x_positions = np.arange(len(CODE_TYPES))\n",
+ "\n",
+ "p1 = plt.bar(x_positions, guesses_ok)\n",
+ "p2 = plt.bar(x_positions, guesses_bad, bottom=guesses_ok)\n",
+ "\n",
+ "plt.ylabel('Tipo de código')\n",
+ "plt.title('Aciertos o no, por tipo de código')\n",
+ "plt.xticks(x_positions, CODE_TYPES, rotation=90)\n",
+ "#plt.yticks(np.arange(0, 81, 10))\n",
+ "plt.legend((p1[0], p2[0]), ('Correcto', 'Incorrecto'))\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/Master/texmf-dist/doc/latex/jupynotex/tests/run b/Master/texmf-dist/doc/latex/jupynotex/tests/run
new file mode 100755
index 00000000000..a5fa69f44d2
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/tests/run
@@ -0,0 +1,3 @@
+#!/bin/sh
+
+PYTHONPATH=. fades -d pytest -x pytest -sv "$@"
diff --git a/Master/texmf-dist/doc/latex/jupynotex/tests/test_cellparser.py b/Master/texmf-dist/doc/latex/jupynotex/tests/test_cellparser.py
new file mode 100644
index 00000000000..f9108f4bb8f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/tests/test_cellparser.py
@@ -0,0 +1,79 @@
+# Copyright 2020 Facundo Batista
+# All Rights Reserved
+# Licensed under Apache 2.0
+
+import pytest
+import re
+
+from jupynotex import _parse_cells
+
+
+def test_empty():
+ msg = "Empty cells spec not allowed"
+ with pytest.raises(ValueError, match=re.escape(msg)):
+ _parse_cells('', 100)
+
+
+def test_simple():
+ r = _parse_cells('1', 100)
+ assert r == [1]
+
+
+def test_several_comma():
+ r = _parse_cells('1,3,5,9,7', 100)
+ assert r == [1, 3, 5, 7, 9]
+
+
+def test_several_range():
+ r = _parse_cells('1-9', 100)
+ assert r == [1, 2, 3, 4, 5, 6, 7, 8, 9]
+
+
+def test_several_limited():
+ msg = "Notebook loaded of len 3, smaller than requested cells: [1, 2, 3, 4]"
+ with pytest.raises(ValueError, match=re.escape(msg)):
+ _parse_cells('1-4', 3)
+
+
+def test_range_default_start():
+ r = _parse_cells('-3', 8)
+ assert r == [1, 2, 3]
+
+
+def test_range_default_end():
+ r = _parse_cells('5-', 8)
+ assert r == [5, 6, 7, 8]
+
+
+def test_not_int():
+ msg = "Found forbidden characters in cells definition (allowed digits, '-' and ',')"
+ with pytest.raises(ValueError, match=re.escape(msg)):
+ _parse_cells('1,a', 3)
+
+
+def test_not_positive():
+ msg = "Cells need to be >=1"
+ with pytest.raises(ValueError, match=re.escape(msg)):
+ _parse_cells('3,0', 3)
+
+
+def test_several_mixed():
+ r = _parse_cells('1,3,5-7,2,9,11-13', 80)
+ assert r == [1, 2, 3, 5, 6, 7, 9, 11, 12, 13]
+
+
+def test_overlapped():
+ r = _parse_cells('3,5-7,6-9,8', 80)
+ assert r == [3, 5, 6, 7, 8, 9]
+
+
+def test_bad_range_equal():
+ msg = "Range 'from' need to be smaller than 'to' (got '12-12')"
+ with pytest.raises(ValueError, match=re.escape(msg)):
+ _parse_cells('12-12', 80)
+
+
+def test_bad_range_smaller():
+ msg = "Range 'from' need to be smaller than 'to' (got '3-2')"
+ with pytest.raises(ValueError, match=re.escape(msg)):
+ _parse_cells('3-2', 80)
diff --git a/Master/texmf-dist/doc/latex/jupynotex/tests/test_main.py b/Master/texmf-dist/doc/latex/jupynotex/tests/test_main.py
new file mode 100644
index 00000000000..fabfa4e01eb
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/tests/test_main.py
@@ -0,0 +1,111 @@
+# Copyright 2020 Facundo Batista
+# All Rights Reserved
+# Licensed under Apache 2.0
+
+import textwrap
+
+import jupynotex
+from jupynotex import main
+
+
+class FakeNotebook:
+ """Fake notebook.
+
+ The instance supports calling (as it if were instantiated). The .get will return the
+ value in a dict for received key; raise it if exception.
+ """
+
+ def __init__(self, side_effects):
+ self.side_effects = side_effects
+
+ def __call__(self, path):
+ return self
+
+ def __len__(self):
+ return len(self.side_effects)
+
+ def get(self, key):
+ """Return or raise the stored side effect."""
+ value = self.side_effects[key]
+ if isinstance(value, Exception):
+ raise value
+ else:
+ return value
+
+
+def test_simple_ok(monkeypatch, capsys):
+ fake_notebook = FakeNotebook({
+ 1: ("test cell content up", "test cell content down"),
+ })
+ monkeypatch.setattr(jupynotex, 'Notebook', fake_notebook)
+
+ main('boguspath', '1')
+ expected = textwrap.dedent("""\
+ \\begin{tcolorbox}[title=Cell {01}]
+ test cell content up
+ \\tcblower
+ test cell content down
+ \\end{tcolorbox}
+ """)
+ assert expected == capsys.readouterr().out
+
+
+def test_simple_only_first(monkeypatch, capsys):
+ fake_notebook = FakeNotebook({
+ 1: ("test cell content up", ""),
+ })
+ monkeypatch.setattr(jupynotex, 'Notebook', fake_notebook)
+
+ main('boguspath', '1')
+ expected = textwrap.dedent("""\
+ \\begin{tcolorbox}[title=Cell {01}]
+ test cell content up
+ \\end{tcolorbox}
+ """)
+ assert expected == capsys.readouterr().out
+
+
+def test_simple_error(monkeypatch, capsys):
+ fake_notebook = FakeNotebook({
+ 1: ValueError("test problem"),
+ })
+ monkeypatch.setattr(jupynotex, 'Notebook', fake_notebook)
+
+ main('boguspath', '1')
+
+ # verify the beginning and the end, as the middle part is specific to the environment
+ # where the test runs
+ expected_ini = [
+ r"\begin{tcolorbox}[colback=red!5!white,colframe=red!75!,title={ERROR when parsing cell 1}]", # NOQA
+ r"\begin{verbatim}",
+ r"Traceback (most recent call last):",
+ ]
+ expected_end = [
+ r"ValueError: test problem",
+ r"\end{verbatim}",
+ r"\end{tcolorbox}",
+ ]
+ out = [line for line in capsys.readouterr().out.split('\n') if line]
+ assert expected_ini == out[:3]
+ assert expected_end == out[-3:]
+
+
+def test_multiple(monkeypatch, capsys):
+ fake_notebook = FakeNotebook({
+ 1: ("test cell content up", "test cell content down"),
+ 2: ("test cell content ONLY up", ""),
+ })
+ monkeypatch.setattr(jupynotex, 'Notebook', fake_notebook)
+
+ main('boguspath', '1-2')
+ expected = textwrap.dedent("""\
+ \\begin{tcolorbox}[title=Cell {01}]
+ test cell content up
+ \\tcblower
+ test cell content down
+ \\end{tcolorbox}
+ \\begin{tcolorbox}[title=Cell {02}]
+ test cell content ONLY up
+ \\end{tcolorbox}
+ """)
+ assert expected == capsys.readouterr().out
diff --git a/Master/texmf-dist/doc/latex/jupynotex/tests/test_notebook.py b/Master/texmf-dist/doc/latex/jupynotex/tests/test_notebook.py
new file mode 100644
index 00000000000..bf6511cbd30
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jupynotex/tests/test_notebook.py
@@ -0,0 +1,237 @@
+# Copyright 2020 Facundo Batista
+# All Rights Reserved
+# Licensed under Apache 2.0
+
+import base64
+import json
+import os
+import pathlib
+import re
+import tempfile
+import textwrap
+
+import pytest
+
+from jupynotex import Notebook
+
+
+@pytest.fixture
+def notebook():
+ _, name = tempfile.mkstemp()
+
+ def _f(cells):
+ with open(name, 'wt', encoding='utf8') as fh:
+ json.dump({'cells': cells}, fh)
+
+ return Notebook(name)
+
+ yield _f
+ os.unlink(name)
+
+
+def test_empty(notebook):
+ nb = notebook([])
+ assert len(nb) == 0
+
+
+def test_source_code(notebook):
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': ['line1\n', ' line2\n'],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ src, _ = nb.get(1)
+ expected = textwrap.dedent("""\
+ \\begin{verbatim}
+ line1
+ line2
+ \\end{verbatim}
+ """)
+ assert src == expected
+
+
+def test_source_markdown(notebook):
+ rawcell = {
+ 'cell_type': 'markdown',
+ 'source': ['line1\n', ' line2\n'],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ src, _ = nb.get(1)
+ expected = textwrap.dedent("""\
+ \\begin{verbatim}
+ line1
+ line2
+ \\end{verbatim}
+ """)
+ assert src == expected
+
+
+def test_output_missing(notebook):
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': [],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ _, out = nb.get(1)
+ assert out is None
+
+
+def test_output_simple_executeresult_plain(notebook):
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': [],
+ 'outputs': [
+ {
+ 'output_type': 'execute_result',
+ 'data': {
+ 'text/plain': ['default always present', 'line2'],
+ },
+ },
+ ],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ _, out = nb.get(1)
+ expected = textwrap.dedent("""\
+ \\begin{verbatim}
+ default always present
+ line2
+ \\end{verbatim}
+ """)
+ assert out == expected
+
+
+def test_output_simple_executeresult_latex(notebook):
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': [],
+ 'outputs': [
+ {
+ 'output_type': 'execute_result',
+ 'data': {
+ 'text/latex': ['some latex line', 'latex 2'],
+ 'text/plain': ['default always present'],
+ },
+ },
+ ],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ _, out = nb.get(1)
+ expected = textwrap.dedent("""\
+ some latex line
+ latex 2
+ """)
+ assert out == expected
+
+
+def test_output_simple_executeresult_image(notebook):
+ raw_content = b"\x01\x02 asdlklda3wudghlaskgdlask"
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': [],
+ 'outputs': [
+ {
+ 'output_type': 'execute_result',
+ 'data': {
+ 'image/png': base64.b64encode(raw_content).decode('ascii'),
+ 'text/plain': ['default always present'],
+ },
+ },
+ ],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ _, out = nb.get(1)
+ m = re.match(r'\\includegraphics\{(.+)\}\n', out)
+ assert m
+ (fpath,) = m.groups()
+ assert pathlib.Path(fpath).read_bytes() == raw_content
+
+
+def test_output_simple_stream(notebook):
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': [],
+ 'outputs': [
+ {
+ 'output_type': 'stream',
+ 'text': ['some text line', 'text 2'],
+ },
+ ],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ _, out = nb.get(1)
+ expected = textwrap.dedent("""\
+ \\begin{verbatim}
+ some text line
+ text 2
+ \\end{verbatim}
+ """)
+ assert out == expected
+
+
+def test_output_simple_display_data(notebook):
+ raw_content = b"\x01\x02 asdlklda3wudghlaskgdlask"
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': [],
+ 'outputs': [
+ {
+ 'output_type': 'display_data',
+ 'data': {
+ 'image/png': base64.b64encode(raw_content).decode('ascii'),
+ },
+ },
+ ],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ _, out = nb.get(1)
+ m = re.match(r'\\includegraphics\{(.+)\}\n', out)
+ assert m
+ (fpath,) = m.groups()
+ assert pathlib.Path(fpath).read_bytes() == raw_content
+
+
+def test_output_multiple(notebook):
+ rawcell = {
+ 'cell_type': 'code',
+ 'source': [],
+ 'outputs': [
+ {
+ 'output_type': 'execute_result',
+ 'data': {
+ 'text/latex': ['some latex line', 'latex 2'],
+ },
+ }, {
+ 'output_type': 'stream',
+ 'text': ['some text line', 'text 2'],
+ },
+ ],
+ }
+ nb = notebook([rawcell])
+ assert len(nb) == 1
+
+ _, out = nb.get(1)
+ expected = textwrap.dedent("""\
+ some latex line
+ latex 2
+ \\begin{verbatim}
+ some text line
+ text 2
+ \\end{verbatim}
+ """)
+ assert out == expected