diff options
author | Karl Berry <karl@freefriends.org> | 2013-01-02 22:58:30 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2013-01-02 22:58:30 +0000 |
commit | 974049fc5bfe6f05001c1e9ea136448852679a0e (patch) | |
tree | f4d7cc769bb15ab31990f90060b7d6ba1688fadd /Master/texmf-dist/doc/latex/xpicture | |
parent | 8b511d7868b89cd4504656503dc9e3f4f8c2a1f6 (diff) |
new latex package xpicture (2jan13)
git-svn-id: svn://tug.org/texlive/trunk@28704 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/xpicture')
-rw-r--r-- | Master/texmf-dist/doc/latex/xpicture/README | 117 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/xpicture/xpicture-doc.pdf | bin | 0 -> 874526 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/latex/xpicture/xpicture-doc.tex | 3105 | ||||
-rw-r--r-- | Master/texmf-dist/doc/latex/xpicture/xpicture.pdf | bin | 0 -> 403099 bytes |
4 files changed, 3222 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/xpicture/README b/Master/texmf-dist/doc/latex/xpicture/README new file mode 100644 index 00000000000..6a7705ed90e --- /dev/null +++ b/Master/texmf-dist/doc/latex/xpicture/README @@ -0,0 +1,117 @@ + + The xpicture package, version 1.2a + (Several extensions of the "picture" standard environment, + including graphs of functions and parametric curves) + Robert Fuster, 2012/12/17 + + +1. Licence +---------- +This material is subject to the LaTeX Project Public License. + +See http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html +for the details of that license. + + +2. About this package +--------------------- + +The xpicture package introduces several new graphical instructions, +and some enriched versions of standard instructions used inside the picture +environment that, among other utilities, will provide the possibility of +using different reference systems and a fine control the precise position +where the objects are placed in your drawing. + +But the most interesting feature of this package is the ability to draw high +quality curves such that conic sections, graphs of elementary functions and +parametric curves, from LaTeX and using the typical LaTeX syntax. + +The new instructions defined by this package can be classified as follows: + + -- Reference systems and coordinates: + + - Declaration and use of different reference systems, + with Cartesian or polar coordinates. + - Instructions to show Cartesian or polar reference systems. + + -- An alternative to the picture environment, compatible with + the new reference systems. + + -- Alternative instructions or extensions of the standard picture + commands and those defined by the packages pict2e and curve2e: + + - Enriched versions of marks \put and \multiput, providing an + adequate control of the precise position in which objects + are composed. + - Instructions for drawing straight segments, vectors + (in any direction and using any reference system), polygonal + lines, and regular and arbitrary polygons. + + -- Regular curves: + + - Instructions for drawing conic sections (circles, ellipses, + hyperbolas and parabolas) and arcs of these curves. + - Instructions to graph functions and parametrically defined + curves. + + +This package requires the "calculator" and "calculus" packages. You can +download these packages from CTAN: + + /macros/latex/contrib/calculator + +Packages "pict2e", "curve2e" and "xcolor" are also needed. These packages are +included in major TeX distributions. + + +3. Installation and documentation +--------------------------------- + +After uncompressing "xpicture.zip" you will have the following files: + + -- "README". This file. + -- "xpicture.dtx". The source file. + -- "xpicture-doc.pdf". The compiled "xpicture" user manual. + -- "xpicture-doc.tex". The user manual source file. + -- "xpicture.tds.zip". Ready to use tds-structures zip file. + +Then, you can install the package in two ways: + + a) Unpacking the zip file xpicture.tds.zip into your local texmf tree + and updating the file database, or + + b) By compiling the source file "xpicture.dtx" in the following sequence + + >> pdflatex xpicture.dtx + >> pdflatex xpicture.dtx + >> makeindex -s gind.ist -o xpicture.ind xpicture.idx + >> pdflatex xpicture.dtx + + Then, several files will be generated: + + "xpicture.sty" (the package). + Move this file where LaTeX search for (typically, in a local + texmf tree, at tex/latex/xpicture/) and refresh the file database. + + "xpicture.pdf" (documented source and reference manual). + + "xpicture.cfgxmpl" (costumizable local configuration file). + + Recall that the user manual is not "xpicture.pdf", but + "xpicture-doc.pdf". If you re-compile this file, + many small files, named "xpictureNN.tex" are generated. + These files contain the source code of all examples included + in the manual. + You can store or discard this files. + +Please, visit the "xpicture" homepage at + + http://www.upv.es/~rfuster/xpicture + +--------------------------------------------------- +Robert Fuster +rfuster@mat.upv.es + +Universitat Polit\`ecnica de Val\`encia, 2012/12/17 +--------------------------------------------------- + diff --git a/Master/texmf-dist/doc/latex/xpicture/xpicture-doc.pdf b/Master/texmf-dist/doc/latex/xpicture/xpicture-doc.pdf Binary files differnew file mode 100644 index 00000000000..65863bad688 --- /dev/null +++ b/Master/texmf-dist/doc/latex/xpicture/xpicture-doc.pdf diff --git a/Master/texmf-dist/doc/latex/xpicture/xpicture-doc.tex b/Master/texmf-dist/doc/latex/xpicture/xpicture-doc.tex new file mode 100644 index 00000000000..df3ce30ded4 --- /dev/null +++ b/Master/texmf-dist/doc/latex/xpicture/xpicture-doc.tex @@ -0,0 +1,3105 @@ +\documentclass{article} + +\usepackage[a4paper,margin=2cm]{geometry} +\usepackage[T1]{fontenc} + +\usepackage{xpicture} + +\usepackage{ifthen} +\usepackage{array} +\usepackage{fancyvrb} +\usepackage[colorlinks]{hyperref} + +\usepackage{amsmath} +\usepackage{paralist} +\usepackage{graphicx} +\usepackage{makeidx} +\makeindex +\renewcommand{\today}{2012/12/17} + +\newcommand{\TIT}{\textit} +\newcommand{\TTT}{\texttt} +\newcommand{\TTTit}[1]{\TTT{\TIT{#1}}} +\newcommand{\cs}[1]{\mbox{\textnormal{\TTT{\textbackslash #1}}}} +\newcommand{\environ}[1]{\textnormal{\TTT{#1}}} +\newcommand{\package}[1]{\textnormal{\TTT{#1}}} +\newcommand{\ttindex}[1]{\index{#1@\texttt{#1}}} +\newcommand{\ttslashindex}[1]{\index{#1@\texttt{\textbackslash #1}}} +\newcommand{\csdef}[1]{\cs{#1}\ttslashindex{#1}} +\newcommand{\packagedef}[1]{% + \package{#1}\index{#1@\texttt{#1} (package)}} +\newcommand{\environdef}[1]{% + \package{#1}\index{#1@\texttt{#1} (environment)}} +\newcommand{\optiondef}[1]{% + \textnormal{\TTT{#1}}\index{#1@\texttt{#1} (package option)}} +\newcounter{exem}\stepcounter{exem} +\newenvironment{exemple}{% + \VerbatimEnvironment\begin{VerbatimOut}{./xpicture\theexem.tex}}{% + \end{VerbatimOut} + \par\medskip\noindent + \marginpar{\fbox{Ex. \theexem}}\begin{minipage}{\linewidth} + \begin{minipage}{0.45\linewidth} + \setlength{\parindent}{2ex} + \catcode`\%=14 + \input{./xpicture\theexem} + \end{minipage}\hfill + \begin{minipage}{0.45\linewidth} + \small + \VerbatimInput{./xpicture\theexem.tex} + \end{minipage} + \end{minipage} + \stepcounter{exem}\par\bigskip\noindent} +\newenvironment{Exemple}{% + \VerbatimEnvironment\begin{VerbatimOut}{./xpicture\theexem.tex}}{% + \end{VerbatimOut} + \par\noindent + \marginpar{\fbox{Ex. \theexem}}\fbox{\begin{minipage}{\linewidth} + \begin{minipage}{\linewidth} + \setlength{\parindent}{2ex} + \bigskip\par + \catcode`\%=14 + \input{./xpicture\theexem} + \end{minipage}\medskip\par + \hspace*{0.125\linewidth}\rule{0.75\linewidth}{0.4pt}\par\medskip + \small + \VerbatimInput{./xpicture\theexem.tex} + \end{minipage}}\stepcounter{exem}\par\bigskip\noindent} + +\begin{document} +\begin{titlepage} + \centering + \bfseries\Large Robert Fuster + + \rule{\textwidth}{1pt} + + The \textsf{xpicture} package + + (\Verb+http://www.upv.es/~rfuster/xpicture+) + + Several extensions of the \textsf{picture} standard environment + + User Manual + \vspace{\stretch{1}} + \begin{Exemple} + \setlength{\unitlength}{1cm} + \footnotesize + \DIVIDE{1}{12}{\invXII} + \MULTIPLY{12}{\numberTWOPI}{\phione} + \MULTIPLY{12}{64}{\divisions} + + \COMPOSITIONfunction{\EXPfunction}{\COSfunction}{\Afunction} + \SCALEVARIABLEfunction{4}{\COSfunction}{\Bfunction} + \SCALEVARIABLEfunction{\invXII}{\SINfunction}{\cfunction} + \POWERfunction{\cfunction}{5}{\Cfunction} + \LINEARCOMBINATIONfunction{1}{\Afunction}{-2}{\Bfunction}{\ABfunction} + \SUMfunction{\ABfunction}{\Cfunction}{\ABCfunction} + \PRODUCTfunction{\SINfunction}{\ABCfunction}{\Xfunction} + % x=(sin t)(exp(cos t)-2 cos 4t + (sin(t/12))^5) + \PRODUCTfunction{\COSfunction}{\ABCfunction}{\Yfunction} + % y=(cos t)(exp(cos t)-2 cos 4t + (sin(t/12))^5) + \PARAMETRICfunction{\Xfunction}{\Yfunction}{\butterfly} + \centering + \begin{Picture}(-4,-3)(4,4) + \PlotParametricFunction[\divisions]\butterfly{0}{\phione} + \end{Picture} + \begin{gather*} + x=\sin t\left(\mathrm e^{\cos t}-2\cos 4t + +\sin^5\left(\frac t{12}\right)\right) \\ + y=\cos t\left(\mathrm e^{\cos t}-2\cos 4t + +\sin^5\left(\frac t{12}\right)\right) + \end{gather*} + \end{Exemple} + \footnotesize\today +\end{titlepage} +\stepcounter{page} + +\tableofcontents +\newpage + + The \package{xpicture} package extends the + \environ{picture} standard environment + and packages \package{pict2e} and \package{curve2e}, + adding the ability to work with arbitrary + reference systems and with Cartesian or polar coordinates. + In addition to other utilities, + the greater interest of \package{xpicture} + lies in its capacity to draw function graphs, + conic sections and arcs, and parametrically defined curves. + + This is the user manual of \package{xpicture}. + Technical documentation and reference manual are contained + in file \texttt{xpicture.pdf}, distributed together with the package. + +\section{Introduction. New graphical instructions} +The \package{xpicture} package introduces several new graphical +instructions, and some enriched versions of standard +instructions used inside the \environ{picture} environment. +All these new instructions can be classified as follows: +\begin{itemize} + \item Reference systems and coordinates: +\begin{itemize} +\item Declaration and use of different reference systems, +with Cartesian or polar coordinates. +\item Instructions to show Cartesian or polar reference systems. +\end{itemize} + \item An alternative to the \environ{picture} environment, +compatible with the new reference systems. + \item Alternative instructions or extensions of the standard + \environ{picture} commands and those defined by the packages + \packagedef{pict2e} and \packagedef{curve2e}: +\begin{itemize} + \item Enriched versions of marks \cs{put} and \cs{multiput}, + providing an adequate control of the precise position +in which objects are composed +(this functionality is especially useful in the composition +of not strictly graphical objects, such as formulas or labels). +\item Instructions for drawing straight segments, vectors +(in any direction and using any reference system), polygonal lines, +and regular and arbitrary polygons. +\end{itemize} +\item Regular curves: +\begin{itemize} +\item Instructions for drawing conic sections (circles, ellipses, +hyperbolas and parabolas) and arcs of these curves. +\item Instructions to graph functions and parametrically defined curves +(this is the most interesting feature of this package). +\end{itemize} +\end{itemize} + +The only requeriments for \package{xpicture} are packages +\packagedef{calculator}, \packagedef{calculus}, +\packagedef{curve2e} and \packagedef{xcolor}. +Therefore, it works with any \TeX{} +extension compatible with these packages. You can compile a document +including \package{xpicture} pictures directly with +\TTT{pdflatex},\ttindex{pdflatex} +\TTT{lualatex},\ttindex{lualatex} +\TTT{xelatex}\ttindex{xelatex} +or indirectly, via \TTT{latex/dvips}\ttindex{latex},\ttindex{dvips} + \TTT{latex/dvips/dvipdfm},\ttindex{dvipdfm} \ldots +Pure \TTT{dvi} files are not supported, but some \TTT{dvi} previewers +may show partially \package{xpicture} draws included in \TTT{dvi} files. + +\section{A preliminary observation. + Compatibility with text composition in color} +The \package{xpicture} package automatically loads the +\packagedef{xcolor} package. +So, we can compose our +pictures (and the whole document) in various colors. However, +when used in the body of the \textsf{picture} environment, +marks \cs{color} and \cs{colortext} +often introduce spurious spaces. +For this reason, the \package{xpicture} package introduces the new command +\csdef{pictcolor}. +\begin{Verbatim}[commandchars=\|\[\]] +\pictcolor{|TIT[color]} +\end{Verbatim} +This mark behaves like the \cs{color} command, but does not produces these +inappropriate spaces. +To change colors inside a picture, instead of \cs{color} or \cs{colortext}, +use always the \cs{pictcolor} declaration. + +\section{Coordinate systems and the \environ{Picture} environment} +\subsection{Coordinates} +The standard \environ{picture} environment establishes +a rectangular coordinate system, so that all +graphic objects are placed in the picture using the canonical +coordinates of the plane. From now on, we will call +this reference system \emph{the standard reference system}. +Loading the \package{xpicture} package, we can use any other affine +reference system and combine it with the use of polar coordinates. + +\subsubsection{Reference systems} +The \package{xpicture} package allows us to use other reference systems. +For the purpose we are interested, a reference system consists +of an origin of coordinates and a pair of linearly independent vectors. +Typing\ttslashindex{referencesystem} +\begin{Verbatim}[commandchars=\|\[\]] +\referencesystem(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1])(|TIT[x2],|TIT[y2]) +\end{Verbatim} +we declare the new reference system with origin at point +$(\TTT{\TIT{x0}},\TTT{\TIT{y0})} $ and coordinate vectors +$(\TTT{\TIT{x1}},\TTT{\TIT{y1}})$ and +$(\TTT{\TIT{x2}},\TTT{\TIT{y2}})$. +If the coordinates of the point $P$ with respect to this reference system +are $(\bar{\TTT{\TIT{x}}},\bar{\TTT{\TIT{y}}})$, then the +coordinates of $ P $ with respect to the standard system, +$(\TTT{\TIT{x}},\TTT{\TIT{y}})$, are calculated with the formula +\newenvironment{qmatrix}{\left[\begin{matrix}}{\end{matrix}\right]} +\[ + \begin{qmatrix} + \TTT{\TIT{x}} \\ \TTT{\TIT{y}} + \end{qmatrix}=\begin{qmatrix} + \TTT{\TIT{x0}} \\ \TTT{\TIT{y0}} + \end{qmatrix} + + \begin{qmatrix} + \TTT{\TIT{x1}} & \TTT{\TIT{x2}} \\ + \TTT{\TIT{y1}} & \TTT{\TIT{y2}} + \end{qmatrix} \begin{qmatrix} + \bar{\TTT{\TIT{x}}} \\ \bar{\TTT{\TIT{y}}} + \end{qmatrix} +\] + +For example, +\begin{Verbatim}[commandchars=\|\[\]] +\referencesystem(1,2)(1,0)(0.5,0.5) +\end{Verbatim} +sets a new reference system that has its origin in the point $O(1,2)$ +and the coordinate vectors $\vec u_1=(1,0)$ and $\vec u_2=(1/2,1/2)$. +The following pictures show this coordinate system built on the standard +reference system +and a Cartesian grid refered to the new reference system. + +\noindent +\setlength\unitlength{1cm}% + \renewcommand{\Pictlabelsep}{0.2} +\begin{Picture}(-3.1,-3.1)(3.1,3.1) +\put(-1.5,0){\line(1,0){3}} +\put(0,-1.5){\line(0,1){3}} +{\makenolabels +\cartesianaxes(-3,-3)(3,3)} +\thicklines + \xVECTOR(0,0)(1,2) +\pictcolor{red} +\referencesystem(1,2)(1,0)(0.5,0.5) +\Put[-45](0,0){$O$} +\renewcommand\axescolor{red} +\renewcommand\axeslabelcolor{red} +\cartesianaxes(-2.1,-2.1)(2.1,2.1) +\linethickness{1pt} +\xVECTOR(0,0)(1,0) +\xVECTOR(0,0)(0,1) +\rPut{SE}(1,0){$\vec u_1$} +\Put[SE](0,1){$\vec u_2$} +\end{Picture} +\hfill% +{\referencesystem(1,2)(1,0)(0.5,0.5) +\begin{Picture}(-3.6,-3.6)(3.5,3.5) +\thinlines +\cartesiangrid(-3,-3)(3,3) +\pictcolor{red} +\linethickness{1pt} +\xVECTOR(0,0)(1,0) +\xVECTOR(0,0)(0,1) +\end{Picture}} + +Alternatively, you can use the \csdef{changereferencesystem} declaration: +in the instruction +\begin{Verbatim}[commandchars=\|\[\]] +\changereferencesystem(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1])(|TIT[x2],|TIT[y2]) +\end{Verbatim} +point $(\TTT{\TIT{x0}},\TTT{\TIT{y0})}$ and vectors +$(\TTT{\TIT{x1}},\TTT{\TIT{y1}})$ i $(\TTT{\TIT{x2}},\TTT{\TIT{y2}})$ +are not refered to the standard system, +but to the \emph{active} reference system.\footnote{% +In other words, the instruction +\cs{referencesystem} changes from the standard reference system +to the new one, while +\cs{changereferencesystem} changes from the active system.} +Moreover, as the more interesting (and frequent) reference system changes +consist of translations of the origin, rotations of the axes +and symmetries, \package{xpicture} +introduces three specific commands to these special cases: +\ttslashindex{translateorigin} +\begin{Verbatim}[commandchars=\|\[\]] +\translateorigin(|TIT[x0],|TIT[y0]) +\end{Verbatim} +moves the origin to the specified coordinates. +\ttslashindex{rotateaxes} +\begin{Verbatim}[commandchars=\|\[\]] +\rotateaxes{|TIT[angle]} +\end{Verbatim} +rotates the axes. The \TTT{\TIT{angle}} parameter is interpreted +as the rotation angle in radians +(if the \csdef{radiansangles} declaration is active) or in +sexagesimal degrees (if the \csdef{degreesangles} declaration is active). +And\ttslashindex{symmetrize} +\begin{Verbatim}[commandchars=\|\[\]] +\symmetrize{|TIT[angle]} +\end{Verbatim} +performs a symmetry, being \TTT{\TIT{angle}} +the angle between the $x$ axis and the symmetry axis. +Also here, the \csdef{radiansangles} and \csdef{degreesangles} +declarations determine if angles are +interpreted as radians or degrees. +% +These three declarations always apply to the active reference system. +\begin{Exemple} +\newcommand{\mypicture}{% +{\thicklines +\xVECTOR(-1,-1)(1,1) +\pictcolor{red}\Circle{1} +\pictcolor{blue}\regularPolygon{1}{4} +\polarreference\degreesangles +\pictcolor{green}\Polygon(1,90)(0,0)(1,-30)}} +\centering +\setlength{\unitlength}{1cm} +\fbox{\begin{Picture}[black!5!white](-1.5,-6.5)(14.5,1.5) +\cartesiangrid(-1,-1)(14,1) +\mypicture +{\referencesystem(3,0)(1,1)(1,0) +\mypicture +\changereferencesystem(0,4)(-1,1)(1,-2) +\mypicture} +\degreesangles +\translateorigin(10,0) +{\rotateaxes{45} +\mypicture} +\translateorigin(3,0) +\symmetrize{45} +\mypicture +\referencesystem(6.5,-4)(7,0)(0,-2)\mypicture +\end{Picture}} +\end{Exemple} + +The \csdef{standardreferencesystem} declaration restores the standard +reference. + +\medskip + +Changes of reference system can +be used inside or outside the \environ{Picture} environment. +In the next sections we will see what are the effects produced in each case. + +\subsubsection{Polar coordinates} +Instead of Cartesian coordinates, we can refer to a point $P$ using the +polar coordinates $(r,\phi)$ of this point: +$r$ is the distance from the origin $O$ and $\phi$ is the angle between +the first coordinate vector and the $OP$ segment. +The \csdef{cartesianreference} and \csdef{polarreference} declarations +establish the coordinates of one or the other type. +By default, the Cartesian coordinates are used, but in some cases +is much easier determine polar coordinates. +Additionally, the \csdef{radiansangles} and \csdef{degreesangles} +declarations +sets angle measuring in radians or in degrees, respectively +(by default, angles are measured in radians). + +The following example shows a typical situation in which it is more +appropriate to use polar coordinates: +the \emph{natural} way to enter coordinates on a circle is using +polar coordinates. + +\begin{exemple} +\setlength{\unitlength}{3cm} +\fbox{\begin{Picture}(-1.3,-1.3)(1.3,1.3) +\polarreference +\degreesangles + +\renewcommand{\Pictlabelsep}{0.1} + +\multiPut(1,0)(0,30){12}{\circle*{0.05}} + % Put twelve dots, one unit apart, + % at 0, 30, 60, ..., 330 degrees + +\cPut{90}(1,90){\textsc{xii}} +\cPut{0}(1,0){\textsc{iii}} +\cPut{270}(1,270){\textsc{vi}} +\cPut{180}(1,180){\textsc{ix}} + +\pictcolor{blue}\thicklines + +\arrowsize{8}{2} +\xtrivVECTOR(0,0)(0.5,37.5) +\xtrivVECTOR(0,0)(0.9,180) + +\Put(0,0){\circle*{0.1}} +\linethickness{4pt} +\Circle{1.3} +\end{Picture}} +\end{exemple} + +The new commands defined in the \package{xpicture} package and requiring +some kind of coordinates support polar coordinates, +except the \environ{Picture} and \environ{xpicture} environments +and the \cs{cartesianaxes} and \cs{cartesiangrid} environments. +\subsection{The \environ{Picture} (or \environ{xpicture}) environment} +The \package{xpicture} package supports all drawing commands +from standard \LaTeX; +in particular, you can use the \environ{picture} environment. +However, in the expression +\begin{Verbatim}[commandchars=\|\[\]] +\begin{picture}(|TIT[x],|TIT[y])(|TIT[x0],|TIT[y0]) +\end{Verbatim} +the pairs of numbers \TTT{(\TIT x,\TIT y)} and +\TTT{(\TIT{x0},\TIT{y0})} always denote standard coordinates, +namely, +the \environ{picture} environment only uses the standard reference, +thus it defines, as drawing area, the rectangle +\TTT{[\TIT{x0},\TIT{x-x0}]}$\times$\TTT{[\TIT{y0},\TIT{y-y0}]}, +regardless of whether this is the active reference. +If we want draw a picture referring coordinates to an alternative reference +system, to determine the appropriate drawing area in absolute coordinates +is not obvious (and often is difficult). +However, the \environdef{Picture} environment +defines a working area on the active reference system: the +\begin{Verbatim}[commandchars=\|\{\}] +\begin|{Picture|}[|TIT{color}](|TIT{x0},|TIT{y0})(|TIT{x1},|TIT{y1}) +\end{Verbatim} +instruction fixes the drawing area +\TTT{[\TIT{x0},\TIT{x1}]}$\times$\TTT{[\TIT{y0},\TIT{y1}]}, +refered to the active reference system. +Here, the \TTT{(\TIT{x0},\TIT{y0})} i \TTT{(\TIT{x1},\TIT{y1})} +coordinates are always rectangular +(even when reference in polar coordinates is active). +More precisely, this environment defines a \environ{picture} box +that circumscribes our drawing area. +If the optional argument is used, background is colored in the given +\textit{color}. + +\emph{Very important: note that the syntax of the +\environ{picture} environment is not analogous +to the new environment \environ{Picture}}: +Here two pairs of coordinates are required, +\TTT{(\TIT{x0},\TIT{y0})} and \TTT{(\TIT{x1},\TIT{y1})}, +representing two opposite corners of the drawing area.\footnote{% +Although it may seem more \emph{logical} +preserve the syntax of \environ{picture} environment, +it is more natural to define the drawing area in that way.} +Obviously, if the reference sustem is the standard, expression +\begin{Verbatim}[commandchars=\|\[\]] +\begin{Picture}(0,0)(|TIT[x],|TIT[y]) +\end{Verbatim} +is equivalent to +\begin{Verbatim}[commandchars=\|\[\]] +\begin{picture}(|TIT[x],|TIT[y]) +\end{Verbatim} + +The following example shows the boxes produced by the +\environ{picture} and \environ{Picture} environments. + +\medskip + +\begin{Exemple} + \begin{center} + \setlength{\unitlength}{0.5cm} + \referencesystem(0,0)(1,-1)(1,1) + + \fbox{\begin{picture}(6,6)(-3,-3) + \cartesiangrid(-3,-3)(3,3) + \end{picture}}\qquad + \fbox{\begin{Picture}(-3,-3)(3,3) + \cartesiangrid(-3,-3)(3,3) + \end{Picture}} + \end{center} +\end{Exemple} + +The left picture does not fit the box. + In fact, some elementary geometric considerations +shown that a square box of $ 12\times12$ units of length must be reserved, +\begin{Verbatim}[commandchars=\|\[\]] +\begin{picture}(12,12)(-6,-6) +\end{Verbatim} +The use of the \environ{Picture} environment frees us to determine the +actual dimensions of the drawing. + +The new environment \environdef{xpicture} is an alias to the +\environ{Picture} environment. +Its sintax and its behavior are identical. + +On the other hand, the \csdef{draftPictures} declaration +disables all the instructions defined in this package, +replacing each picture set in a \environ{Picture} environment +by a parallelogram circumscribed by a white rectangle (the box that shows +the area reserved for the drawing).\footnote{If you use an instruction +not directly defined by \package{xpicture} (inside of a \environ{Picture} +environment), this instruction may take effect.} + +\begin{center} +\setlength{\unitlength}{1cm} +\draftPictures + +\begin{minipage}{5cm}\centering +\begin{Picture}(0,0)(5,5) +\end{Picture} + +\verb+\standardreferencesystem+ +\end{minipage}\quad +\begin{minipage}{7.5cm}\centering +\referencesystem(0,0)(1,0)(0.5,1) +\begin{Picture}(0,0)(5,5) +\end{Picture} + +\verb+\referencesystem(0,0)(1,0)(0.5,1)+ +\end{minipage} +\end{center} + +\subsection{Coordinate axes} +Instruction\ttslashindex{cartesianaxes} +\begin{Verbatim}[commandchars=\|\[\]] +\cartesianaxes(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1]) +\end{Verbatim} +draws the coordinate axes corresponding to the +\TTT{[\TIT{x0},\TIT{x1}]}$\times$\TTT{[\TIT{y0},\TIT{y1}]} rectangle. +Arguments \TTT{\TIT{x0}}, \TTT{\TIT{y0}}, +\TTT{\TIT{x1}} and \TTT{\TIT{y1}} must satisfy the conditions +\TTT{\TIT{x0}}$<$\TTT{\TIT{x1}} and \TTT{\TIT{y0}}$<$\TTT{\TIT{y1}}. +Here, coordinates \TTT{(\TIT{x0},\TIT{y0})} and \TTT{(\TIT{x1},\TIT{y1})} +are always rectangular (even when reference in polar coordinates is active). +\begin{exemple} +\begin{center} +\setlength{\unitlength}{0.75cm}% +\begin{Picture}[black!10!white](-4,-3)(4,3) +\renewcommand{\Pictlabelsep}{0.2} +\cartesianaxes(-3.5,-2.5)(3.5,2.5) +\Put[r](3.5,0){$x$} +\Put[t](0,2.5){$y$} +\end{Picture} +\end{center} +\end{exemple} +\begin{exemple} +\begin{center} +\referencesystem(0,0)(1,0)(0.5,1) +\setlength{\unitlength}{0.75cm}% +\begin{Picture}[black!10!white](-4,-3)(4,3) +\renewcommand{\Pictlabelsep}{0.2} +\cartesianaxes(-3.5,-2.5)(3.5,2.5) +\Put[r](3.5,0){$x$} +\Put[t](0,2.5){$y$} +\end{Picture} +\end{center} +\end{exemple} +The following parameters control the style of the axes, the cut marks +and labels on the axes: + +\subsubsection{The style of the axes} +\begin{description} +\item[\csdef{axescolor}] By default, the axes color is \TTT{black}, but +we can change it by redefining the \cs{axescolor} declaration. For example, +\begin{Verbatim}[commandchars=\|\[\]] +\renewcommand{\axescolor}{orange} +\end{Verbatim} + +We must use a color name predefined in the package \textsf{xcolor} +or defined by the user (for example, using the \cs{definecolor} command). +\item[\csdef{axesthickness}] Length determining the thickness of axes +(default \verb+1 pt+). +You can modify it using any command that fixes a length (as \cs{setlength} +or \cs{settowidth}). +\item[\csdef{xunitdivisions}, \csdef{yunitdivisions}] Number of subdivisions of +the unit (in each axis). +By default, 1. These arguments can also be redefined using +the \cs{renewcommand} command (they must be positive integers). +\end{description} +\begin{exemple} +\renewcommand{\xunitdivisions}{2} +\renewcommand{\yunitdivisions}{3} + +\begin{center} +\setlength{\unitlength}{1cm}% +\begin{Picture}(-4,-4)(4,4) +\cartesianaxes(-3.5,-3.5)(3.5,3.5) +\end{Picture} +\end{center} +\end{exemple} +\subsubsection{Axes position} +The coordinate axes (and also tags and cut marks) +are placed by default in the traditional way, on the $y = 0$ (the $x$ axis) +and $x = 0$ (the $y$ axis) lines. +However, sometimes the fact that labels are inside the graphic can be +annoying.\footnote{And produces strange effects when the origin $(0.0)$ +is not in the drawing area.} +Alternatively, we can place axes and tags at the +lower and left sides of the coordinate rectangle. +To choose between these two options we should use the following +declarations: +\begin{description} +\item[\csdef{internalaxes}, \csdef{externalaxes}] +If the \cs{internalaxes} declaration is active, then axes lies +on $y=0$ and $x=0$. + +However, if we activate the \cs{externalaxes} declaration, the axes +produced by the instruction +\begin{Verbatim}[commandchars=\|\[\]] +\cartesianaxes(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1]) +\end{Verbatim} +lies on $y=\TTT{\TIT{y0}}$ and $x=\TTT{\TIT{x0}}$. + +By default, the \cs{internalaxes} declaration is active. +\end{description} +\begin{exemple} +\renewcommand{\xunitdivisions}{2} +\renewcommand{\yunitdivisions}{2} + +\begin{center} +\externalaxes +\setlength{\unitlength}{1cm}% +\begin{Picture}(-4,-4)(4,4) +\cartesianaxes(-3.5,-3.5)(3.5,3.5) +\end{Picture} +\end{center} +\end{exemple} + +\subsubsection{Tags style} +The numerical tags on the axes are made in math mode. +If you need textual labels, put them in a \cs{mbox} or, +using \package{amsmath}, a \cs{text} box. +We can control the color, attributes and distance to the axes of these tags, +redefining +(with \cs{renewcommand}) the following marks: +\begin{description} +\item[\csdef{axeslabelcolor}] The color of the numerical tags on the axes. +By default, this color is identical to the axes color. +\item[\csdef{axeslabelsize}] Size of numerical tags. +By default, \cs{small}. +\item[\csdef{axeslabelmathversion}] + Mathversion of numerical tags. +By default, \TTT{normal}.\footnote{Standard \emph{math versions} +are \TTT{normal} and \TTT{bold}, but some packages +define other math versions.} +\item[\csdef{axeslabelmathalphabet}] Mathalphabet of numerical tags. +By default, \cs{mathrm}. +\item[\csdef{axislabelsep}] Distance between tags and cut marks, +measured in \cs{unitlength} units;\footnote{The distance between axes and +tags equals \cs{ticssize}$+$\cs{axislabelsep}.} +by default, \verb+0.1+ (see later the description of \cs{makenotics}). +\end{description} + +\subsubsection{Tags position} +Position of tags is controlled by two declarations: +\begin{description} +\item[\cs{xlabelpos\{\TIT{position}\}}]\ttslashindex{xlabelpos} +change the relative position of labels in $x$ axis. +Admissible values are those allowed in the \TTT{\TIT{position}} +argument of command \cs{Put} (see subsection~\ref{subsec:put}). +Default is \verb+-90+. +\item[\cs{ylabelpos\{\TIT{position}\}}]\ttslashindex{ylabelpos} +change the relative position of labels in $y$ axis. +Default is \verb+180+. +\end{description} + +\subsubsection{Style of cut marks} +Units (and, optionally, unit fractions) are marked over axes with small +segments, +the style of which is controlled by the following parameters: +\begin{description} +\item[\csdef{ticssize}, \csdef{secundaryticssize}] +These lengths control the size of the tics: +\cs{ticssize} is half the length of main cuts +(by default, \verb+4pt+) +and \cs{secundaryticssize} is half the length of secundary cuts +(by default, \verb+2pt+). +\item[\csdef{ticsthickness}] Thickness of the marks on axes +(by default, \verb+1pt+). +\item[\csdef{ticscolor}] Color of the marks on axes (by default, \verb+black+). +\end{description} +\begin{exemple} +\renewcommand{\axescolor}{blue} +\setlength{\axesthickness}{3pt} +\renewcommand{\xunitdivisions}{2} +\renewcommand{\yunitdivisions}{3} + +\renewcommand{\axeslabelcolor}{teal} +\renewcommand{\axeslabelsize}{\footnotesize} +\renewcommand{\axeslabelmathversion}{bold} +\renewcommand{\axeslabelmathalphabet}{\mathsf} +\renewcommand{\axislabelsep}{0.05} +\xlabelpos{ttl} +\ylabelpos{r} + +\setlength{\ticssize}{0.2cm} +\setlength{\secundaryticssize}{0.1cm} +\setlength{\ticsthickness}{2pt} +\renewcommand{\ticscolor}{blue!50} + +\begin{center} +\degreesangles +\rotateaxes{-30} +\setlength{\unitlength}{0.75cm}% +\begin{Picture}(-5,-4)(5,4) +\cartesianaxes(-4.5,-3.5)(4.5,3.5) +\end{Picture} +\end{center} +\end{exemple} + +\subsubsection{Removing and directly printing cut marks and labels} +\begin{description} + \item [\csdef{maketics}, \csdef{makenotics}] + These two declarations determine if + divisions on the axes should be marked or not. + By default the \cs{maketics} declaration is active. + +If divisions are not marked, the \csdef{axislabelsep} +declaration determines the distance between axes and labels. +\end{description} +\begin{exemple} +\begin{center} +\setlength{\unitlength}{0.75cm}% +\begin{Picture}(-4.5,-2.5)(4.5,2.5) +\makenotics +\cartesianaxes(-4,-2)(4,2) +\end{Picture} +\end{center} +\end{exemple} +\begin{description} + \item [\csdef{makelabels}, \csdef{makenolabels}] Two declarations +determining whether numerical labels on the axes must appear or not. +By default, the \cs{makelabels} declaration is active. +\end{description} +\begin{exemple} +\begin{center} +\setlength{\unitlength}{0.75cm}% +\begin{Picture}(-4.5,-2.5)(4.5,2.5) +\makenolabels +\cartesianaxes(-4,-2)(4,2) +\end{Picture} +\end{center} +\end{exemple} + +Declarations \cs{makenotics} and \cs{makenolabels} +can be useful when you want to show only some specific coordinates, +when the points to be highlighted on the axes are not integers +and when you need to print labels in some special format. In this cases +you can plot tics and/or print labels using the following commands. +\begin{description} +\item [\cs{plotxtic\{\TIT{x-coor}\}}, \cs{plotytic\{\TIT{y-coor}\}}] +\ttslashindex{plotxtic}\ttslashindex{plotytic} +plot a tic for the given \TIT{x} or \TIT{y} coordinate. +\item [\cs{printxlabel\{\TIT{x-coor}\}\{\TIT{label}\}}, + \cs{printylabel\{\TIT{y-coor}\}\{\TIT{label}\}}] +\ttslashindex{printxlabel}\ttslashindex{printylabel} +print \TIT{label} +for the given \TIT{x} or \TIT{y} coordinate. Labels are printed in math mode. +\item [\cs{printxticlabel\{\TIT{x-coor}\}\{\TIT{label}\}}, + \cs{printyticlabel\{\TIT{y-coor}\}\{\TIT{label}\}}] +plot a tic and print \TIT{label} for the given \TIT{x} or \TIT{y} coordinate. +\end{description} +\begin{exemple} +\begin{center} +\setlength{\unitlength}{1cm}% +\begin{Picture}(-4.5,-0.5)(4.5,3.5) +\makenolabels +\makenotics +\cartesianaxes(-4,0)(4,3) + +\plotytic{0.5} +\printylabel{0.5}{1/2} +\printxticlabel{2}{2} + +\Polyline(2,0)(2,0.5)(0,0,5) +\thicklines +\SCALEfunction{0.125}{\SQUAREfunction}{\F} +\PlotFunction[3]{\F}{-4}{4} +\end{Picture} +\end{center} +\end{exemple} + +Multiple equally spaced tics and/or labels can be drawn simultaneously: +\begin{description} +\item [\cs{plotxtics\{\TIT{firstcoor}\}\{\TIT{incr}\}\{\TIT{bound}\}}, + \cs{plotytics\{\TIT{firstcoor}\}\{\TIT{incr}\}\{\TIT{bound}\}}] +\ttslashindex{plotxtics}\ttslashindex{plotytics} +plot several (\TIT{x} or \TIT{y}) tics, +from the initial coordinate \TIT{firstcoor}; \TIT{incr} is the distance +between consecutive tics, and the last tic is not in a position +greater than \TIT{bound}. +\item [\cs{printxlabels[\TIT{digits}]\{\TIT{firstcoor}\}\{\TIT{incr}\}% + \{\TIT{bound}\}}, + \cs{printylabels[\TIT{digits}]\{\TIT{firstcoor}\}\{\TIT{incr}\}% + \{\TIT{bound}\}}] +\ttslashindex{printxlabels}\ttslashindex{printylabels} print several labels, +from the initial coordinate \TIT{firstcoor}; \TIT{incr} is the distance +between consecutive label positions, +and the last position is not greater than \TIT{bound}. +The optional argument \TIT{digits} is the number of decimal digits to be +printed (by default, numbers are printed with its natural number of decimals). +\item [\cs{printxticslabels[\TIT{digits}]\{\TIT{firstcoor}\}\{\TIT{incr}\}% + \{\TIT{bound}\}}]\ttslashindex{printxticslabels} + plot \TIT{x} tics and labels simultaneously. +\item [\cs{printyticslabels[\TIT{digits}]\{\TIT{firstcoor}\}\{\TIT{incr}\}% + \{\TIT{bound}\}}]\ttslashindex{printyticslabels} + plot \TIT{y} tics and labels simultaneously. +\end{description} +\begin{exemple} +\externalaxes +\setlength{\unitlength}{1cm} +\renewcommand{\axeslabelsize}{\tiny} +\referencesystem(0,0)(1.5,0)(0,2) +\begin{center} +\begin{Picture}(-2.5,-1.5)(2.5,1.5) +\makenotics +\makenolabels +\cartesianaxes(-2.25,-1.25)(2.25,1.25) +\printxticslabels[1]{-2}{0.5}{2.25} +\printyticslabels[4]{-1}{0.25}{1} +\end{Picture} +\end{center} +\end{exemple} +\begin{Exemple} +\setlength{\unitlength}{1cm} +\begin{center} +\begin{Picture}(-7,-2.5)(7,2.5) +{\referencesystem(0,0)(\numberHALFPI,0)(0,1) +\renewcommand{\xunitdivisions}{2} +\renewcommand{\yunitdivisions}{2} +\makenolabels +\renewcommand{\Pictlabelsep}{0.25} +\cartesianaxes(-4.2,-2.2)(4.2,2.2) + +\printylabels{-2}{0.5}{2} + +\highestlabel{$-3\pi/2$} +\printxlabel{-4}{-2\pi} +\printxlabel{-3}{-3\pi/2} +\printxlabel{-2}{-\pi} +\printxlabel{-1}{-\pi/2} +\printxlabel{1}{\pi/2} +\printxlabel{2}{\pi} +\printxlabel{3}{3\pi/2} +\printxlabel{4}{2\pi} +} +\end{Picture} +\end{center} +\end{Exemple} + +\subsection{Cartesian grids} +As an alternative to the \cs{cartesianaxes} command, +we can use \csdef{cartesiangrid}, +to better visualize the coordinates: +\begin{Verbatim}[commandchars=\|\[\]] +\cartesiangrid(|begin[math]x0,y0|end[math])(|begin[math]x1,y1|end[math]) +\end{Verbatim} +\begin{exemple} +\definecolor{myblue}{cmyk}{1,1,0,0.5} +\renewcommand{\gridcolor}{myblue} +\renewcommand{\secundarygridcolor}{cyan} +\setlength{\gridthickness}{0.5pt} +\setlength{\secundarygridthickness}{0.1pt} +\renewcommand{\xunitdivisions}{5} +\renewcommand{\yunitdivisions}{5} +\renewcommand{\axeslabelsize}{\footnotesize} +\begin{center} +\setlength{\unitlength}{1cm} +\begin{Picture}(-3.5,-2.5)(3.5,2.5) +\cartesiangrid(-3.4,-2.4)(3.4,2.4) +\end{Picture} +\end{center} +\end{exemple} +\begin{exemple} +\definecolor{myblue}{cmyk}{1,1,0,0.5} +\renewcommand{\gridcolor}{myblue} +\renewcommand{\secundarygridcolor}{cyan} +\setlength{\gridthickness}{0.5pt} +\setlength{\secundarygridthickness}{0.1pt} +\renewcommand{\xunitdivisions}{5} +\renewcommand{\yunitdivisions}{5} +\renewcommand{\axeslabelsize}{\footnotesize} +\begin{center} +\setlength{\unitlength}{1cm} +\referencesystem(0,0)(1,0)(0.25,1) +\externalaxes +\begin{Picture}(-4,-3)(4,3) +\cartesiangrid(-3.4,-2.4)(3.4,2.4) +\end{Picture} +\end{center} +\end{exemple} + +\subsubsection{Grid style} +Note that, in addition to the parameters outlined above, there are the +following ones, which control the style of the grid +(as in previous cases, these parameters are changed +by redefining them with the \cs{renewcommand} declaration, +or using the usual instructions when they are lengths). + +\begin{description} + \item [\csdef{gridcolor}] determines the color of main divisions in the grid +(regardless of the axes color). By default, this color is \verb+gray+. + \item [\csdef{secundarygridcolor}] determines the color of secundary +divisions in the grid. +By default, \verb+lightgray+). +\item[\csdef{gridthickness}] thickness of main divisions +(by default, \verb+0.4pt+). +\item[\csdef{secundarygridthickness}] thickness of secundary divisions +(by default, \verb+0.2pt+). +\end{description} +\subsection{Polar grids} +Finally, instead of Cartesian axes, we can construct a polar grid +(obviously, this option will be interesting when we use polar coordinates). +\ttslashindex{polargrid} +\begin{Verbatim}[commandchars=\|\[\]] +\polargrid{|TIT[radius]}{|TIT[circledivs]} +\end{Verbatim} +(\TTT{\TIT{radius}} and \TTT{\TIT{circledivs}} are, respectively, +the radius and the number of divisions of the circle +(\TTT{\TIT{circledivs}}must be a positive integer). + +This command supports the same parameters that \cs{cartesianaxes} and +\cs{cartesiangrid} (when they makes sense), and also the following: +\begin{description} +\item[\csdef{runitdivisions}] Number of radial subdivisions of the unit. +By default, $1$ (it must be a positive integer). +\end{description} +\begin{exemple} +\renewcommand{\runitdivisions}{2} +\setlength{\unitlength}{0.75cm} +\renewcommand{\gridcolor}{magenta} +\begin{center} +\begin{Picture}(-4,-4)(4,4) +\polargrid{3.5}{12} +\end{Picture} +\end{center} +\end{exemple} +\begin{exemple} +\renewcommand{\runitdivisions}{2} +\setlength{\unitlength}{0.75cm} +\renewcommand{\gridcolor}{magenta} +\referencesystem(0,0)(1,-1)(0.5,0.5) +\begin{center} +\begin{Picture}(-3.5,-3.5)(3.5,3.5) +\polargrid{3.5}{12} +\end{Picture} +\end{center} +\end{exemple} +\begin{description} +\item[\csdef{degreespolarlabels}, \csdef{radianspolarlabels}] +Arcs are printed, by default, in radians. +If you want angular units mesured in degrees, +use the \csdef{degreespolarlabels} declaration (obviously, +\csdef{radianspolarlabels} recovers tags in radians). +\end{description} +\begin{exemple} +\begin{center} +\degreespolarlabels +\setlength{\unitlength}{1cm} +\begin{Picture}(-4,-4)(4,4) +\polargrid{3}{24} +\end{Picture} +\end{center} +\end{exemple} +\begin{description} +\item[\csdef{rlabelpos}] Relative position of labels in polar axis. +Admissible values are those allowed in the \TTT{\TIT{position}} +argument of command \cs{Put} (see subsection~\ref{subsec:put}). +Default is \verb+bbr+. +\end{description} +\begin{exemple} +\begin{center} +\setlength{\unitlength}{1cm} +\begin{Picture}(-4,-4)(4,4) +\rlabelpos{b} +\polargrid{3.5}{10} +\end{Picture} +\end{center} +\end{exemple} + + +To remove tags on the polar axis and angles you can use the +\csdef{makenolabels} declaration. + +\section[Alternatives to some standard commands]{% + Alternatives to standard commands + \cs{put},\cs{multiput}, \cs{line}, and \cs{vector}} +Standard commands used inside the \environ{picture} environment +are not modified by this package +(although if we include these commands in the body of a \environ{Picture} +environment). +In particular, there does not affect the \cs{referencesystem} declaration. +This package introduces similar commands to those which are sensitive to the +active reference system and give us a greater control over their behavior. +These are the instructions described below. + +\subsection{Extensions of the \cs{put} command}\label{subsec:put} + \begin{description} + \item[\csdef{Put}, \csdef{cPut}, \csdef{rPut}] +\mbox{} + +\begin{Verbatim}[commandchars=\|\{\}] +\Put[|TIT{position}](|TIT{x},|TIT{y})|{|TIT{object}|} +\Put*[|TIT{position}](|TIT{x},|TIT{y})|{|TIT{object}|} +\cPut|{|TIT{position}|}(|TIT{x},|TIT{y})|{|TIT{object}|} +\rPut|{|TIT{position}|}(|TIT{x},|TIT{y})|{|TIT{object}|} +\rPut*|{|TIT{position}|}(|TIT{x},|TIT{y})|{|TIT{object}|} +\end{Verbatim} +place the drawing pointer in the point +of coordinates \verb+(+\TTT{\TIT{x}}\verb+,+\TTT{\TIT{y}}\verb+)+ +with respect to the active reference system (which may coincide or not with +the standard system). +These commands differ in the criteria used to determine the precise position +of the object. + +Involved parameters are (see below) +\ttslashindex{Pictlabelsep} +\ttslashindex{defaultPut} +\ttslashindex{highestlabel} +\begin{Verbatim}[commandchars=\|\[\]] +\Pictlabelsep|{|TIT[distance]|} +\defaultPut|{c|}/\defaultPut|{r|} +\highestlabel|{|TIT[text]|} +\end{Verbatim} +\medskip + +In the following example, the red circle (included as an argument in the +\cs{put} command) is at the point +of standard coordinates $(1,-1)$; however, in the case of the +blue circle, coordinates $(1,-1)$ refer to the active reference system. +\begin{exemple} +\begin{center} +\setlength{\unitlength}{0.75cm} +\referencesystem(0,0)(1,-1)(1,1) +\begin{Picture}(-2.5,-2.5)(2.5,2.5) +\cartesiangrid(-2,-2)(2,2) +\pictcolor{red} +\put(1,-1){\circle*{0.25}} +\pictcolor{blue} +\Put(1,-1){\circle*{0.25}} +\end{Picture} +\end{center} +\end{exemple} + +Recall that coordinates can be rectangular or polar, and angles may +be measured in radians or in degrees. +\begin{exemple} +\begin{center} +\setlength{\unitlength}{1cm} +\begin{Picture}(-2.5,-2.5)(2.5,2.5) +\cartesiangrid(-2,-2)(2,2) +\polarreference +\pictcolor{blue} +\Put(1,\numberHALFPI){\circle*{0.25}} +\degreesangles +\pictcolor{red} +\Put(1,180){\circle*{0.25}} +\end{Picture} +\end{center} +\end{exemple} +\subsubsection{Accurate positioning of the graphical object} +The \TTT{\TIT{position}} argument allows us to fix the relative position of +\TTT{\TIT{object}} respect to point \TTT{(\TIT{x},\TIT{y})}. +Note that this argument is optional in \cs{Put} and \cs{Put*}, +but mandatory in the other commands we are describing. +The purpose of this parameter is to rationalize the disposition of +objects, especially when they are not strictly graphical objects +(but labels, text boxes or mathematical formulas). In these cases, +the appropriate choice of coordinates seems a problem that is not well +solved with standard instructions, despite the special syntax of the +\cs{makebox} command in the \environ{picture} environment. +For example, in this picture (which we made using only the standard +\LaTeX{} commands) +\begin{center} +\setlength{\unitlength}{2cm} + +\begin{picture}(7,3)(-0.5,-1.5) + +\put(0,0){\line(1,0){7}} +\put(0,-1.5){\line(0,1){3}} +\put(0,-1.5){\line(0,-1){0}} +\multiput(1.570796,-0.1)(1.570796,0){4}{\line(0,1){0.2}} +\multiput(-0.1,-1)(0,1){3}{\line(1,0){0.2}} + +\qbezier(0,0)(1,1)(1.570796,1) +\qbezier(1.570796,1)(2.141593,1)(3.141593,0) +\qbezier(3.141593,0)(4.141593,-1)(4.712389,-1) +\qbezier(4.712389,-1)(5.283185,-1)(6.283185,0) + +\put(-1.570796,0){% + \qbezier(1.570796,1)(2.141593,1)(3.141593,0) + \qbezier(3.141593,0)(4.141593,-1)(4.712389,-1) + \qbezier(4.712389,-1)(5.283185,-1)(6.283185,0)} +\put(4.712389,0){\qbezier(0,0)(1,1)(1.570796,1)} + +\put(2.356194,0.707107){$\sin x$} +\put(6.283185,1){$\cos x$} +\put(-0.15,-1){\makebox(0,0)[r]{$-1$}} +\put(-0.15,0){\makebox(0,0)[r]{$0$}} +\put(-0.15,1){\makebox(0,0)[r]{$1$}} +\put(1.570796,-0.15){\makebox(0,0)[t]{$\pi/2$}} +\put(3.141593,-0.15){\makebox(0,0)[t]{$\pi$}} +\put(4.712389,-0.15){\makebox(0,0)[t]{$3\pi/2$}} +\put(6.283185,-0.15){\makebox(0,0)[t]{$2\pi$}} +\end{picture} +\end{center} +we have located numerical labels ($0$, $1$, $\pi$\ldots) at +\TTT{0.15\cs{unitlength}} of its \emph{natural} position over the axes, +while the reference points of tags +``$\sin x$'' and ``$\cos x$'' are just in points $(3\pi/4,\sin(3\pi/4))$ and +$(2\pi,1)$, using these instructions: +\begin{Verbatim} +\put(2.356194,0.707107){$\sin x$} +\put(6.283185,1){$\cos x$} +\put(-0.15,-1){\makebox(0,0)[r]{$-1$}} +\put(-0.15,0){\makebox(0,0)[r]{$0$}} +\put(-0.15,1){\makebox(0,0)[r]{$1$}} +\put(1.570796,-0.15){\makebox(0,0)[t]{$\pi/2$}} +\put(3.141593,-0.15){\makebox(0,0)[t]{$\pi$}} +\put(4.712389,-0.15){\makebox(0,0)[t]{$3\pi/2$}} +\put(6.283185,-0.15){\makebox(0,0)[t]{$2\pi$}} +\end{Verbatim} + +If we change the value of \cs{unitlength}, then these values become +inappropriate and we need to change several lines of code. +\begin{center} +\setlength{\unitlength}{1cm} + +\begin{picture}(7,3)(-0.5,-1.5) + +\put(0,0){\line(1,0){7}} +\put(0,-1.5){\line(0,1){3}} +\put(0,-1.5){\line(0,-1){0}} +\multiput(1.570796,-0.1)(1.570796,0){4}{\line(0,1){0.2}} +\multiput(-0.1,-1)(0,1){3}{\line(1,0){0.2}} + +\qbezier(0,0)(1,1)(1.570796,1) +\qbezier(1.570796,1)(2.141593,1)(3.141593,0) +\qbezier(3.141593,0)(4.141593,-1)(4.712389,-1) +\qbezier(4.712389,-1)(5.283185,-1)(6.283185,0) + +\put(-1.570796,0){% + \qbezier(1.570796,1)(2.141593,1)(3.141593,0) + \qbezier(3.141593,0)(4.141593,-1)(4.712389,-1) + \qbezier(4.712389,-1)(5.283185,-1)(6.283185,0)} +\put(4.712389,0){\qbezier(0,0)(1,1)(1.570796,1)} + +\put(2.356194,0.707107){$\sin x$} +\put(6.283185,1){$\cos x$} +\put(-0.15,-1){\makebox(0,0)[r]{$-1$}} +\put(-0.15,0){\makebox(0,0)[r]{$0$}} +\put(-0.15,1){\makebox(0,0)[r]{$1$}} +\put(1.570796,-0.15){\makebox(0,0)[t]{$\pi/2$}} +\put(3.141593,-0.15){\makebox(0,0)[t]{$\pi$}} +\put(4.712389,-0.15){\makebox(0,0)[t]{$3\pi/2$}} +\put(6.283185,-0.15){\makebox(0,0)[t]{$2\pi$}} +\end{picture} +\end{center} + +Note that, regarding labels along the $x$ axis, instead of aligning them to a +fixed distance of this axis, there would be better to align the baselines +($\pi$ and $2\pi$ should go down); +some of these labels should +move slightly to the right or to the left to avoid that it cut the graph. +Finally, the tag ``$\cos x$'' should be vertically centered +(with respect to the curve) and slightly moved to the right. +\medskip + +Using the \package{xpicture} package we construct this picture +in the following way: +\begin{Exemple} +\MULTIPLY{3}{\numberQUARTERPI}{\numberTQPI} +\SIN{\numberTQPI}{\sinTQPI} + +\begin{center} +\setlength{\unitlength}{2cm} +\begin{Picture}(-0.5,-1.5)(6.5,1.5) +{\referencesystem(0,0)(\numberHALFPI,0)(0,1) +\makenolabels +\renewcommand{\Pictlabelsep}{0.1} +\highestlabel{$-3\pi/2$} +\cartesianaxes(0,-1.5)(4.25,1.5) + +\rPut{l}(0,-1){$-1$} % put the y-axis labels at left +\rPut{l}(0,0){$0$} +\rPut{l}(0,1){$1$} +\rPut*{bbl}(1,0){$\pi/2$} % put "\pi/2" at bbl +\rPut*{b}(2,0){$\pi$} % put "\pi" at bottom +\rPut*{bbr}(3,0){$3\pi/2$} % put "3\pi/2" at bbr +\rPut*{b}(4,0){$2\pi$} % put "2\pi" at bottom + +\rPut*{b}(0,0){\pictcolor{gray}\xLINE(0.75,0)(4.25,0)}} % \baseline of x-labels + +\PlotFunction[8]{\COSfunction}{0}{\numberTWOPI} +\PlotFunction[8]{\SINfunction}{0}{\numberTWOPI} + +\Put[NE](\numberTQPI,\sinTQPI){$\sin x$} % put "\sin x" at NorthEast +\Put[E](\numberTWOPI,1){$\cos x$} % put "\cos x" at East +\end{Picture} +\end{center} +\end{Exemple} +Here we used several tools to draw the graphs of the functions. +But aside from this, commands \cs{Put}, \cs{rPut} and \cs{rPut*} have allowed +we to determine the logical position of objects in a much more +reasonable way.\footnote{Regarding to labels on coordinated axes +a better choice would be to use other specific commands, +as \cs{printxlabels}. Here we have chosen \cs{rPut} because we are +illustrating this instruction.} + +Argument \TTT{\TIT{position}} supports multiple values: +\begin{description} +\item[An integer or decimal number,] determining the angle (in degrees) +where \TTT{\TIT{object}} is placed, + with respect to the reference point \TTT{(\TIT{x},\TIT{y})}. +\end{description} + +\begin{Exemple} +\begin{center} +\setlength{\unitlength}{1cm} +\begin{Picture}(0,-1)(9,1) +\makenolabels +\renewcommand{\axescolor}{lightgray}\renewcommand{\ticscolor}{lightgray} +\cartesiangrid(0,-1)(8,1) +\pictcolor{blue} +\Put[0](0,0){0} +\Put[45](1,0){45} +\Put[90](2,0){90} +\Put[135](3,0){135} +\Put[180](4,0){180} +\Put[225](5,0){225} +\Put[270](6,0){270} +\Put[315](7,0){315} +\Put[360](8,0){360} +\end{Picture} +\end{center} +\end{Exemple} +\begin{description} +\item[Letter \TTT{c}] (from \emph{center}), +which places the center of \TTT{\TIT{object}} at point +\verb+(+\TTT{\TIT{x}}\verb+,+\TTT{\TIT{y}}\verb+)+. +\end{description} +\begin{exemple} +\begin{center} +\setlength{\unitlength}{2cm} +\begin{Picture}(-1,-1)(1,1) +\cartesianaxes(-1,-1)(1,1) +\pictcolor{blue} +\Put[c](0,0){A CENTERED BOX} +\end{Picture} +\end{center} +\end{exemple} +Note that this option is not equivalent to the suppression of the optional +argument, because in that case +the reference point of \TTT{\TIT{object}} is located +in \verb+(+\TTT{\TIT{x}}\verb+,+\TTT{\TIT{y}}\verb+)+. +\begin{exemple} +\begin{center} +\setlength{\unitlength}{2cm} +\begin{Picture}(-1,-1)(1,1) +\cartesianaxes(-1,-1)(1,1) +\pictcolor{blue} +\Put(0,0){A NONCENTERED BOX} +\end{Picture} +\end{center} +\end{exemple} +\begin{description} +\item[Letters or letter combinations \TTT N, \TTT E, \TTT S, \TTT W, +\TTT{NE}, \TTT{SE}, \TTT{SW}, \TTT{NW}, +\TTT{NNE}, \TTT{ENE}, \TTT{ESE}, \TTT{SSE}, \TTT{SSW}, \TTT{WSW}, \TTT{WNW}, +\TTT{NNW}]\mbox{} + +Abbreviation of \emph{North}, \emph{East}\ldots, \emph{North-East}\ldots, +\emph{North-North-East}\ldots + +For example, the +\begin{Verbatim} +\Put[NE](0,0){A} +\end{Verbatim} +instruction writes ``\verb+A+'' \emph{at north-east} of point \verb+(0,0)+. +\item[Letters o letter combinations \TTT t, \TTT r, \TTT b, \TTT l, + \TTT{tr}, \TTT{br}, \TTT{bl}, \TTT{tl}, + \TTT{ttr}, \TTT{rtr}, \TTT{rbr}, \TTT{bbr}, \TTT{bbl}, \TTT{lbl}, \TTT{ltl}, + \TTT{ttl}]\mbox{} + +Abbreviation of \emph{top}, \emph{right}\ldots, \emph{top-right}\ldots, +\emph{top-top-right}\ldots + +For example, +\begin{Verbatim} +\Put[tr](0,0){A} +\end{Verbatim} +writes ``\verb+A+'' \emph{at top and right} of point \verb+(0,0)+. + +Parameter \cs{Pictlabelsep} determines the distance between the graphical +object and the given point. +In the following examples we have made this argument very big to clearly +appreciate the positioning of objects. +\end{description} +\begin{exemple} +\renewcommand{\Pictlabelsep}{1} +\begin{center} +\setlength{\unitlength}{2.5cm}% + +\begin{Picture}(-1.5,-1.5)(1.5,1.5) +\Put[N](0,0){N} +\Put[S](0,0){S} +\Put[E](0,0){E} +\Put[W](0,0){W} +\Put[NE](0,0){NE} +\Put[SE](0,0){SE} +\Put[SW](0,0){SW} +\Put[NW](0,0){NW} +% +\Put[NNE](0,0){NNE} +\Put[ENE](0,0){ENE} +\Put[ESE](0,0){ESE} +\Put[SSE](0,0){SSE} +\Put[SSW](0,0){SSW} +\Put[WSW](0,0){WSW} +\Put[WNW](0,0){WNW} +\Put[NNW](0,0){NNW} +\Put(0,0){\Circle{1}} +\xLINE(-1,0)(1,0) +\xLINE(0,-1)(0,1) +\end{Picture} +\end{center} +\end{exemple} +\begin{exemple} +\renewcommand{\Pictlabelsep}{1} +\begin{center} +\setlength{\unitlength}{2.5cm}% + +\begin{Picture}(-1.5,-1.5)(1.5,1.5) +\Put[t](0,0){t} +\Put[r](0,0){r} +\Put[b](0,0){b} +\Put[l](0,0){l} +\Put[tr](0,0){tr} +\Put[br](0,0){br} +\Put[bl](0,0){bl} +\Put[tl](0,0){tl} +\Put[ttr](0,0){ttr} +\Put[rtr](0,0){rtr} +\Put[rbr](0,0){rbr} +\Put[bbr](0,0){bbr} +\Put[bbl](0,0){bbl} +\Put[lbl](0,0){lbl} +\Put[ltl](0,0){ltl} +\Put[ttl](0,0){ttl} +\Put(0,0){% + \regularPolygon[45]{\numberSQRTTWO}{4}} +\xLINE(-1,0)(1,0) +\xLINE(0,-1)(0,1) +\end{Picture} +\end{center} +\end{exemple} +\end{description} +\paragraph{Rectangular o circular distance?} +Commands \cs{rPut} and \cs{cPut} differ only in the criterion they use +to determine the distance between the reference point and the graphical object. +Command \cs{rPut} places the object (outside of) +the square centered at the reference point and side \verb+2\Pictlabelsep+, +while \cs{cPut} places it in the cercle of radius \verb+\Pictlabelsep+ +(letters \verb+r+ and \verb+c+ mean, respectively, +a \emph{rectangular} and \emph{circular} layout).% +\footnote{For the mathematicians: command \cs{cPut} uses the euclidean norm +(or 2-norm), while \cs{rPut} uses the infinite norm.} +Although, for small values of the \cs{Pictlabelsep} parameter, +the difference is subtle and usually not very significant, it is generally best +to use the circular version (because it corresponds to the natural concept of +distance) and reserve the rectangular version +to objects that are placed on horizontal or vertical lines. +\begin{Exemple} +\begin{center} +\setlength{\unitlength}{1.5cm} +\renewcommand{\Pictlabelsep}{1} + +\begin{Picture}(-1.5,-1.5)(2,1.5) +\regularPolygon[45]{\numberSQRTTWO}{4} +\Put(0,0){\circle*{0.1}} +\rPut{45}(0,0){r} +\xLINE(0,0)(0,-1) +\thicklines +\renewcommand{\Pictlabelsep}{0.1} +\xLINE(0,0)(1,1) +\xLINE(0,0)(1,0) +\xtrivVECTOR(0,-1)(1,-1) +\xtrivVECTOR(1,-1)(0,-1) +\rPut{b}(0.5,-1){\footnotesize\textbackslash Pictlabelsep} +\xtrivVECTOR(1,-1)(1,0) +\xtrivVECTOR(1,0)(1,-1) +\rPut{r}(1,-0.5){\footnotesize\textbackslash Pictlabelsep} +\polarreference\degreesangles +\xArc{0.3}{0}{45} +\degreesangles +\Put[22.5](0.3,22.5){$45^{\mathrm o}$} +\end{Picture} +\begin{Picture}(-1.5,-1.5)(2,1.5) +\Put(0,0){\circle*{0.1}} +\cPut{45}(0,0){c} +\Circle{1} +\thicklines +\xLINE(0,0)(\numberCOSXLV,\numberCOSXLV) +\xLINE(0,0)(1,0) +\xtrivVECTOR(0,0)(0,-1) +\xtrivVECTOR(0,-1)(0,0) +\renewcommand{\Pictlabelsep}{0.1} +\rPut{r}(0,-0.5){\footnotesize\textbackslash Pictlabelsep} +\polarreference\degreesangles +\xArc{0.3}{0}{45} +\degreesangles +\Put[22.5](0.3,22.5){$45^{\mathrm o}$} +\end{Picture} +\end{center} +\end{Exemple} + +Note that if the commands we use are \cs{rPut} or \cs{cPut}, then the +positioners +\verb+t, r, tr+\ldots are equivalent to the corresponding \verb+N, E, NE+\ldots +However, the \cs{Put} command choose between rectangular or circular layout +following this criteria: +\begin{itemize} + \item Positioners of \emph{compass} type (like \verb+NE+) use the circular +layout. + \item Positioners \verb+t, tr+, et cetera use the rectangular layout. + \item If the positioner is an angle (a number), it uses a default position +which is set using the \cs{defaultPut} declaration: +\verb+\defaultPut{c}+ +determines a circular distance, while +\verb+\defaultPut{r}+ +determines the rectangular alternative. +\end{itemize} +\begin{exemple} +\renewcommand{\Pictlabelsep}{1} +\begin{center} +\setlength{\unitlength}{2.5cm}% + +\begin{Picture}(-1.5,-1.5)(1.5,1.5) +\defaultPut{c} +\Put[45](0,0){c} +\defaultPut{r} +\Put[45](0,0){r} +\regularPolygon[45]{\numberSQRTTWO}{4} +\Put(0,0){\Circle{1}} +\xLINE(-1,0)(1,0) +\xLINE(0,-1)(0,1) +\end{Picture} +\end{center} +\end{exemple} +\paragraph{Alignment by the baseline} +Starred versions \cs{Put*} and \cs{rPut*} allow us to align by the baseline +objects positioned below the reference point. +To use these commands, user must decide which is the higher object to be +positioned, and introduce it as an argument of +the \csdef{highestlabel} declaration. For example, typing +\begin{Verbatim} +\highestlabel{\Huge A} +\end{Verbatim} +we reserve a sufficient vertical space to write the character {\Huge A}. + +It should be noted that starred versions behave differently +only when the position of the object stands +under the reference point, with positioners +\verb+bbl+, \verb+b+ or \verb+bbr+, or with an appropiate angle +(as \verb+-90+ or \verb+300+); otherwise (including +\verb$S$, \verb$SSW$, et cetera), +the \cs{Put*} and \cs{rPut*} commands are equivalent +to the non-starred commands + \cs{Put} and \cs{rPut}. +\begin{exemple} +\begin{center} +\setlength{\unitlength}{1cm} + +\begin{Picture}(-3.5,-1.5)(3.5,1.5) +\xLINE(-3.5,0)(3.5,0) +\multiPut(-3,-0.1)(1,0){7}{\xLINE(0,0)(0,0.2)} +\highestlabel{\Huge A} +\renewcommand{\Pictlabelsep}{0.2} +\Put*[bbl](-3,0){\small A} +\Put*[b](-2,0){\normalsize A} +\Put*[-100](-1,0){\large A} +\Put*[-90](0,0){\Large A} +\Put*[270](1,0){\LARGE A} +\Put*[300](2,0){\huge A} +\Put*[bbr](3,0){\Huge A} +\Put*[bbl](-3.5,0){% + \pictcolor{gray}\xLINE(0,0)(7,0)} +\end{Picture} +\end{center} +\end{exemple} + + +When a \environ{Picture} environment starts, +highest label is set to \verb+\normalfont\normalsize$1$+ +(i.e., the high of a \emph{normal} $1$). +\subsection{Alternatives to the \cs{multiput} command} +The \package{xpicture} package introduces two families of commands +to generalize the \cs{multiput} command: +\begin{enumerate} + \item The natural generalization, with all versions, + \ttslashindex{multiPut}\ttslashindex{multicPut}\ttslashindex{multirPut} +\begin{Verbatim}[commandchars=\|\{\},commentchar=\%] +\multiPut[|TIT{position}](|TIT{x0},|TIT{y0})(|TIT{|(|Delta|)x},% +|TIT{|(|Delta|)y})|{|TIT{n}|}|{|TIT{object}|} +\multiPut*[|TIT{position}](|TIT{x0},|TIT{y0})(|TIT{|(|Delta|)x}% +,|TIT{|(|Delta|)y})|{|TIT{n}|}|{|TIT{object}|} +\multicPut|{|TIT{position}|}(|TIT{x0},|TIT{y0})(|TIT{|(|Delta|)x}% +,|TIT{|(|Delta|)y})|{|TIT{n}|}|{|TIT{object}|} +\multirPut|{|TIT{position}|}(|TIT{x0},|TIT{y0})(|TIT{|(|Delta|)x}% +,|TIT{|(|Delta|)y})|{|TIT{n}|}|{|TIT{object}|} +\multirPut*|{|TIT{position}|}(|TIT{x0},|TIT{y0})(|TIT{|(|Delta|)x}% +,|TIT{|(|Delta|)y})|{|TIT{n}|}|{|TIT{object}|} +\end{Verbatim} +These commands compose \TIT{n} copies of \TTT{\TIT{object}} +in $(\TIT{x0},\TIT{y0})$, $(\TIT{x0}+\Delta x,\TIT{y0}+\Delta y)$, + $(\TIT{x0}+2\Delta x,\TIT{y0}+2\Delta y)$,\ldots, + $(\TIT{x0}+(\TIT n-1)\Delta x,\TIT{y0}+(\TIT n-1)\Delta y)$. +\item A new command group, +\ttslashindex{multiPlot}\ttslashindex{multicPlot}\ttslashindex{multirPlot} +\begin{Verbatim}[commandchars=\|\{\},commentchar=\%] +\multiPlot[|TIT{position}]|{|TIT{object}|}(|TIT{x0},|TIT{y0})(|TIT{x1},% +|TIT{y1})...(|TIT{xn},|TIT{yn}) +\multiPlot*[|TIT{position}]|{|TIT{object}|}(|TIT{x0},|TIT{y0})(|TIT{x1},% +|TIT{y1})...(|TIT{xn},|TIT{yn}) +\multicPlot|{|TIT{position}|}|{|TIT{object}|}(|TIT{x0},|TIT{y0})(|TIT{x1},% +|TIT{y1})...(|TIT{xn},|TIT{yn}) +\multirPlot|{|TIT{position}|}|{|TIT{object}|}(|TIT{x0},|TIT{y0})(|TIT{x1},% +|TIT{y1})...(|TIT{xn},|TIT{yn}) +\multirPlot*|{|TIT{position}|}|{|TIT{object}|}(|TIT{x0},|TIT{y0})(|TIT{x1},% +|TIT{y1})...(|TIT{xn},|TIT{yn}) +\end{Verbatim} +These commands compose the done object in several positions, that are freely +entered as a list of coordinate pairs. +\end{enumerate} +\begin{exemple} +\begin{center} +\setlength{\unitlength}{1cm} +\referencesystem(0,0)(1,-1)(1,1) +\begin{Picture}(-2.5,-2.5)(2.5,2.5) +\cartesiangrid(-2,-2)(2,2) +\pictcolor{blue} +\multiPut(-2,-2)(1,1){5}{\circle*{0.25}} +\pictcolor{red} +\multiPlot{\circle*{0.25}}(-1,-2)(2,1)(-2,2) +\end{Picture} +\end{center} +\end{exemple} +\begin{exemple} +\begin{center} +\setlength{\unitlength}{1cm} +\referencesystem(0,0)(1,-1)(1,1) +\begin{Picture}(-2.5,-2.5)(2.5,2.5) +\cartesiangrid(-2,-2)(2,2) +\pictcolor{blue} +\multiPut[b](-2,-2)(1,1){5}{\circle*{0.25}} +\pictcolor{red} +\multiPlot[NE]{\circle*{0.25}}(-1,-2)(2,1)(-2,2) +\end{Picture} +\end{center} +\end{exemple} +\subsection{Alternatives to \cs{line} and \cs{vector}} +\begin{description} +\item[\csdef{xLINE}] This command draws line segments: +\begin{Verbatim}[commandchars=\|\[\]] +\xLINE(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1]) +\end{Verbatim} +draws the line segment between the two points +\verb+(+\TIT{x0}\verb+,+\TIT{y0}\verb+)+ and +\verb+(+\TIT{x1}\verb+,+\TIT{y1}\verb+)+ +(Cartesian or polar coordinates, in the active reference system). +This allows us to draw any segment in any direction. +\item[\csdef{xVECTOR}, \csdef{xtrivVECTOR}] plot arrows: +\begin{Verbatim}[commandchars=\|\[\]] +\xVECTOR(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1]) +\xtrivVECTOR(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1]) +\end{Verbatim} +draw an arrow between points +\verb+(+\TIT{x0}\verb+,+\TIT{y0}\verb+)+ and +\verb+(+\TIT{x1}\verb+,+\TIT{y1}\verb+)+. +The \cs{xtrivVECTOR} command draw an arrow +the end of which simply consists of a pair of segments +(\setlength{\unitlength}{1cm}% +\begin{Picture}(0,-0.1)(0.5,0.1)\xtrivVECTOR(0,0)(0.5,0)\end{Picture}). +length and aperture of the end of arrow are controled by the instruction +\ttslashindex{arrowsize} +\begin{Verbatim}[commandchars=\|\[\]] +\arrowsize{|TIT[xlen]}{|TIT[ylen]} +\end{Verbatim} +where the two parameters are non-negative numbers: +the first one for the length (in points); second +for the half of the aperture. Default is +\begin{Verbatim} +\arrowsize{5}{2} +\end{Verbatim} +\begin{exemple} +\setlength{\unitlength}{0.75cm} +\referencesystem(0,0)(1,0)(0.25,0.75) +\begin{Picture}(-4.5,-4.5)(4.5,4.5) +\cartesiangrid(-4,-4)(4,4) +\thicklines +\pictcolor{blue} +\xLINE(-4,0)(1,4) +\Put(1,-3){\xLINE(0,0)(3,2)} +\pictcolor{red} +\xtrivVECTOR(0,0)(2,3) +\xtrivVECTOR(0,0)(2,0) +\arrowsize{10}{4} +\xtrivVECTOR(0,0)(-2,-1) + +\pictcolor{magenta} +\xVECTOR(-3,-3)(-3,3) +\xVECTOR(-3,-3)(-2,-2) +\end{Picture} +\end{exemple} +\item[\csdef{xline}, \csdef{xvector}, \csdef{xtrivvector}] +draw lines and vectors using the standard \LaTeX{} syntax +(but without any restriction in allowed parameters, +that can be integer or decimal numbers, positive, negative or zero). +\begin{Verbatim}[commandchars=\|\[\]] +\xline(|TIT[x],|TIT[y]){|TIT[size]} +\xvector(|TIT[x],|TIT[y]){|TIT[size]} +\xtrivvector(|TIT[x],|TIT[y]){|TIT[size]} +\end{Verbatim} +\begin{exemple} +\setlength{\unitlength}{0.75cm} +\referencesystem(0,0)(1,0)(0.25,0.75) +\begin{Picture}(-4.5,-4.5)(4.5,4.5) +\cartesiangrid(-4,-4)(4,4) +\thicklines +\pictcolor{blue} +\Put(-4,0){\xline(5,4){5}} +\Put(1,-3){\xline(3,2){3}} +\pictcolor{red} +\Put(0,0){\xtrivvector(2,3){2}} +\xtrivvector(1,0){2} +\arrowsize{10}{4} +\Put(0,0){\xtrivvector(2,1){-2}} + +\pictcolor{magenta} +\Put(-3,-3){\xvector(0,1){6}} +\Put(-3,-3){\xvector(1,1){1}} +\end{Picture} +\end{exemple} + +If you want to draw only an arrowhead (without any line) +you can use either the +\csdef{zerovector}/\csdef{zerotrivvector} +or \cs{xvector}/\cs{xtrivvector} commands: +\begin{Verbatim}[commandchars=\|\[\]] +\zerovector(|TIT[x],|TIT[y]) +\zerotrivvector(|TIT[x],|TIT[y]) +\xvector(|TIT[x],|TIT[y]){0} +\xtrivvector(|TIT[x],|TIT[y]){0} +\end{Verbatim} +\end{description} +\subsection{Polygons anf polygonal lines} +The \package{pict2e} and \package{curve2e} packages include +specific instructions for drawing polygonal lines and polygons. +We introduce new versions of these +commands in order to refer to the active reference system. +\begin{description} +\item[\csdef{Polyline}] draws polygonal lines. +Logically, we must pass the list of vertices: +\begin{Verbatim}[commandchars=\|\[\]] +\Polyline(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1])...(|TIT[xn],|TIT[yn]) +\end{Verbatim} +\item[\csdef{Polygon}] plots polygons, ie, closed polygonal lines: +\begin{Verbatim}[commandchars=\|\[\]] +\Polygon(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1])...(|TIT[xn],|TIT[yn]) +\end{Verbatim} +is equivalent to +\begin{Verbatim}[commandchars=\|\[\],commentchar=\%] +\Polyline(|TIT[x0],|TIT[y0])(|TIT[x1],|TIT[y1])...(|TIT[xn],|TIT[yn])% +(|TIT[x0],|TIT[y0]) +\end{Verbatim} + +\begin{exemple} +\setlength{\unitlength}{0.75cm} +\referencesystem(0,0)(1,0)(0.25,0.75) +\begin{Picture}(-4.5,-4.5)(4.5,4.5) +\externalaxes +\cartesiangrid(-4,-4)(4,4) +\linethickness{1pt} +\pictcolor{blue} +\Polyline(-2,2)(-3,-1)(0,0)(2,3)(2,2) +\pictcolor{red} +\Polygon(0,0)(1,1)(3,1)(1,-1) +\end{Picture} +\end{exemple} +\item[\csdef{regularPolygon}] draws regular polygons: +\begin{Verbatim}[commandchars=\|\(\)] +\regularPolygon[|TIT(initial angle)]{|TIT(radius)}{|TIT(sides)} +\end{Verbatim} +makes the regular polygon with the given radius and sides. +The optional argument (zero, by default) determines +the slope of the first vertex, always measured in degrees. +\begin{exemple} +\begin{center} +\setlength{\unitlength}{0.5cm} +\begin{Picture}(-7.5,-7.5)(7.5,7.5) +\externalaxes +\cartesiangrid(-7,-7)(7,7) +\pictcolor{blue} +\regularPolygon{1}{5} +\Put(-4,0){\regularPolygon{2}{6}} +\Put(3,3){\regularPolygon{2}{4}} +\Put(-4,-4){\regularPolygon[45]{2}{4}} +\Put(4,-4){\regularPolygon[90]{2.5}{11}} +\Put(-4,4){\regularPolygon[90]{3}{3}} +\end{Picture} +\end{center} +\end{exemple} + +\end{description} +\section{Drawing curves} +This section highlights the true potentiality of the \package{xpicture} +package. +We will describe the instructions that can be used to easily (and effectively) +represent +several interesting curves: Firstly, conic sections and arcs. +Then, any piecewise regular curve +(including graphs of real variable functions, in rectangular or polar +coordinates, +and ---in a more general way--- curves defined by parametric equations). +\subsection{Conic sections} +The \package{xpicture} package defines new commands to draw conic sections: + ellipses, circles, hyperbolas and parabolas. +\subsubsection{Circles} +We can draw the circle of implicit equation $x^2+y^2=r^2$ typing +\ttslashindex{Circle} +\begin{Verbatim}[commandchars=\|\[\]] +\Circle{|TIT[r]} +\end{Verbatim} +Note than the standard command \cs{circle} +requeres the diameter as mandatory argument, while here we must insert the +radius. +\subsubsection{Ellipses} +To draw the ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ enter the +following instruction:\ttslashindex{Ellipse} +\begin{Verbatim}[commandchars=\|\[\]] +\Ellipse{|TIT[a]}{|TIT[b]} +\end{Verbatim} +\begin{exemple} +\setlength{\unitlength}{0.5cm} +\renewcommand{\axeslabelsize}{\footnotesize} +\begin{Picture}(-5.5,-4.5)(5.5,4.5) +\cartesiangrid(-5,-4)(5,4) +\pictcolor{blue} +\Ellipse{4}{3} +\Circle{2} +\end{Picture} + +\referencesystem(0,0)(1,0)(0.5,0.5) +\begin{Picture}(-5.5,-4.5)(5.5,4.5) +\cartesiangrid(-5,-4)(5,4) +\pictcolor{blue} +\Ellipse{4}{3} +\Circle{2} +\end{Picture} +\end{exemple} +\subsubsection{Hyperbolas} +Since the hyperbolas and parabolas are not bounded curves, to define the +portion of the curve that we want to draw we need to specify the +maximum values for the $x$ and $y$ variables.\ttslashindex{Hyperbola} +\begin{Verbatim}[commandchars=\|\[\]] +\Hyperbola{|TIT[a]}{|TIT[b]}{|TIT[xmax]}{|TIT[ymax]} +\end{Verbatim} +draws the hyperbola +$\displaystyle\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, +where variables $x$ and $y$ are limited, respectively, +to the $\TTT{[-\TIT{xmax}}, \TTT{\TIT{xmax}]}$ and +$\TTT{[-\TIT{ymax}}, \TTT{\TIT{ymax}]}$ intervals. +This curve is well defined if the parameter \TTT{\TIT{xmax}} +is greater than \TTT{\TIT{a}}. Otherwise, \package{xpicture} returns an error +message and does not draw any curve. + +In the following example, we show the hyperbola +$\displaystyle\frac{x^2}{5^2}-\frac{y^2}{2^2}=1$ +and its asymptotes, +using the \cs{xLINE} command (these asymptotes are lines $2x=\pm5y$, +passing through $(\pm16,\pm6.4)$). +\begin{Exemple} +\begin{center} +\setlength{\unitlength}{0.5cm} +\begin{Picture}(-17,-9)(17,9) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesiangrid(-16,-8)(16,8) +\pictcolor{blue} +\Hyperbola{5}{2}{16}{8} +\pictcolor{orange} +\xLINE(16,6.4)(-16,-6.4) +\xLINE(-16,6.4)(16,-6.4) +\end{Picture} +\end{center} +\end{Exemple} + +Instructions \csdef{lHyperbola} and \csdef{rHyperbola} draw, respectively, +only the \emph{left} or only the \emph{right} branch of the given hyperbola +(here, is interpreted as \emph{right} branch this one that belongs to positive +values of variable $x$). +\begin{exemple} +\begin{center} +\setlength{\unitlength}{0.5cm} +\begin{Picture}(-5.5,-5.5)(5.5,5.5) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesiangrid(-5,-5)(5,5) +\pictcolor{red} +\lHyperbola{2}{3}{5}{5} +\pictcolor{blue} +\rHyperbola{2}{3}{5}{5} +\end{Picture} +\end{center} +\end{exemple} +\subsubsection{Parabolas} +Instruction\ttslashindex{Parabola} +\begin{Verbatim}[commandchars=\|\[\]] +\Parabola{|TIT[a]}{|TIT[xmax]}{|TIT[ymax]} +\end{Verbatim} +draw the parabola $x=ay^2$, varying $x$, at most, in the interval +$[0,\TTT{\TIT{xmax}}]$ +(if \TTT{\TIT{a}} is positive) or in $[-\TTT{\TIT{xmax}},0]$ +(for negative values of \TTT{\TIT{a}}), +and $y$ in $[-\TTT{\TIT{ymax}},\TTT{\TIT{ymax}}]$. +Parameters \TTT{\TIT{xmax}} and \TTT{\TIT{ymax}} +must be positive. +\begin{exemple} +\begin{center} +\setlength{\unitlength}{0.5cm} +\begin{Picture}(-5.5,-5.5)(5.5,5.5) +\cartesiangrid(-5,-5)(5,5) +\pictcolor{blue} +\Parabola{2}{5}{5} +\Parabola{0.2}{5}{5} +\pictcolor{orange} +\Parabola{-2}{5}{5} +\Parabola{-0.2}{5}{5} +\end{Picture} +\end{center} +\end{exemple} +\medskip + +All commands drawing conic sections or arcs divide the curve in +\csdef{defaultplotdivs} pieces (8, by default). To obtain a greather +accuracy, you can redefine this parameter. + +\medskip + +Note that all these commands draw conic sections centered +at the coordinate origin, so that their +principal axes coincide with the coordinate axes. If we +want to move his +center to any other point, we can do it moving in advance +the origin of coordinates or simply +including the command as an argument of the \cs{Put} command. +\begin{Exemple} +\begin{center} +\setlength{\unitlength}{0.5cm} +\begin{Picture}(-11,-8)(11,8) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesiangrid(-10,-7)(11,7) +\pictcolor{blue} +\Put(2,3){\Ellipse{4}{3}} +\Put(2,3){\Circle{0.25}} +\pictcolor{orange} +\Put(2,-3){\Hyperbola{5}{2}{9}{3}} +\Put(2,-3){\Circle{0.25}} +\pictcolor{green} +\translateorigin(-10,2) +\Parabola{0.5}{21}{5} +\Circle{0.25} +\end{Picture} +\end{center} +\end{Exemple} +But, if the symmetry axes of our curve are not parallel to the coordinate +axes,\footnote{That is, in mathematical terms, +if the eigenvectors of the underlying quadratic form are not the canonical +vectors.} +then we will need a rotation of axes. +\begin{Exemple} +\setlength{\unitlength}{0.5cm} +\begin{center} +\begin{Picture}(-10.5,-7.5)(10.5,7.5) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesiangrid(-10,-7)(10,7) +{% +\pictcolor{blue} +\translateorigin(5,3) +\rotateaxes{\numberSIXTHPI} +\Ellipse{4}{3} +\xLINE(-4,0)(4,0) +\xLINE(0,-3)(0,3) +} +\degreesangles +{% +\pictcolor{orange} +\translateorigin(-3,0) +\rotateaxes{110} +\Hyperbola{3}{2}{6}{4} +\xLINE(-6,-4)(6,4) +\xLINE(6,-4)(-6,4) +} +\pictcolor{green} +\translateorigin(5,-6) +\rotateaxes{72} +\Parabola{1}{4}{3} +\xLINE(0,-2)(0,2) +\xLINE(0,0)(4,0) +\end{Picture} +\end{center} +\end{Exemple} +Note that we made a couple of changes of local reference system (one for each +curve) within the drawing. +We can use the recourse to the change of coordinates also to +draw the hyperbola $\displaystyle\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$ and the +parabola $y=ax^2$. +Note than \verb+\referencesystem(0,0)(0,1)(1,0)+ +(or \verb+\symmetrize{\numberQUARTERPI}+) +makes vertical the $x$ axis and horizontal the +$y$ axis.\footnote{We will use this trick later +to plot inverse functions.} +\begin{exemple} +\setlength{\unitlength}{0.5cm} +\begin{center} +\begin{Picture}(-5.5,-5.5)(5.5,5,5) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesiangrid(-5,-5)(5,5) +\referencesystem(0,0)(0,1)(1,0) +\pictcolor{blue} +\Parabola{0.22}{5}{5} +\pictcolor{red} +\Hyperbola{2}{3}{5}{5} +\end{Picture} +\end{center} +\end{exemple} + +\subsection{Arcs (of conic sections)} +The instructions described above allow us to draw whole circles, ellipses +hyperbolas and parabolas. More generally, we can represent any portion of +these curves, ie, circular, elliptic, hyperbolic and parabolic arcs. +\ttslashindex{xArc}\ttslashindex{circularArc} +\begin{Verbatim}[commandchars=\|\[\]] +\xArc{|TIT[r]}{|TIT[angle1]}{|TIT[angle2]} +\circularArc{|TIT[r]}{|TIT[angle1]}{|TIT[angle2]} +\end{Verbatim} +These two instructions are equivalent. +They draw the arc of the circle centered at $(0,0)$ +with radius $\TIT{r}$ +and limited by the $\TTT{\TIT{angle1}}$ and $\TTT{\TIT{angle2}}$ +angles. +\begin{exemple} +\setlength{\unitlength}{0.5cm} +\begin{center} +\begin{Picture}(-5.5,-5.5)(5.5,5,5) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesianaxes(-5,-5)(5,5) +\pictcolor{gray} +\circularArc{3}{\numberPI}{\numberTWOPI} +\pictcolor{red} +\xLINE(-2,2)(-2,5) +\xLINE(-2,2)(-5,2) +\degreesangles +\Put(-2,2){\circularArc{1}{90}{180}} +\pictcolor{blue} +\polarreference +\Put(1,30){\xLINE(0,0)(4,30)} +\Put(1,30){\xLINE(0,0)(4,60)} +\Put(1,30){\circularArc{2}{30}{60}} +\end{Picture} +\end{center} +\end{exemple} +\begin{exemple} +\SUBTRACT{\numberGOLD}{1}{\midaB} +\COPY{1}{\midaA} +\ADD{\midaA}{\midaB}{\Mida} +\setlength{\unitlength}{5cm} +\newcommand{\espiral}{% + \Put(0,0){\begin{Picture}(0,0)(0,0) + \translateorigin(\midaA,0) + \pictcolor{red} + \circularArc{\midaA}{\numberHALFPI}{\numberPI} + \pictcolor{blue} + \xLINE(0,0)(0,\midaA) + \end{Picture} + } + \COPY{\midaA}{\Mida} + \COPY{\midaB}{\midaA} + \SUBTRACT{\Mida}{\midaA}{\midaB} + \translateorigin(\Mida,\midaB) + \changereferencesystem(0,\midaA)(0,-1)(1,0) +} +\renewcommand{\defaultplotdivs}{2} + +\begin{center} +\begin{Picture}(0,0)(\numberGOLD,1) + \Polygon(0,0)(\Mida,0)(\Mida,1)(0,1) + % Plot 8 circular arcs + \espiral\espiral\espiral\espiral + \espiral\espiral\espiral\espiral +\end{Picture} + +Golden rectangles and spiral +\end{center} +\end{exemple} +\ttslashindex{ellipticArc} +\begin{Verbatim}[commandchars=\|\[\]] +\ellipticArc{|TIT[a]}{|TIT[b]}{|TIT[angle1]}{|TIT[angle2]} +\end{Verbatim} +This instruction draws the arc of the ellipse centered at + $(0,0)$ with semiaxes $\TIT{a}$ +and $\TIT{b}$, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, +limited by angles $\TTT{\TIT{angle1}}$ and $\TTT{\TIT{angle2}}$. +\begin{exemple} +\setlength{\unitlength}{0.5cm} +\begin{center} +\begin{Picture}(-0.5,-3.5)(5.5,3.5) +\degreesangles +\ellipticArc{2}{3}{-90}{90} +\ellipticArc{5}{3}{-90}{90} +\end{Picture} +\end{center} +\end{exemple} +\ttslashindex{lhyperbolicArc}\ttslashindex{rhyperbolicArc} +\begin{Verbatim}[commandchars=\|\[\]] +\rhyperbolicArc{|TIT[a]}{|TIT[b]}{|TIT[y1]}{|TIT[y2]} +\lhyperbolicArc{|TIT[a]}{|TIT[b]}{|TIT[y1]}{|TIT[y2]} +\end{Verbatim} +Draw the arc (of the right or left branch, respectively) +of the hyperbola + $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ included between $y=\TTT{\TIT{y1}}$ and + $y=\TTT{\TIT{y2}}$. +\begin{exemple} +\setlength{\unitlength}{0.5cm} +\begin{center} +\begin{Picture}(-5.5,-5.5)(5.5,5,5) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesianaxes(-5,-5)(5,5) +\pictcolor{red} +\lhyperbolicArc{2}{3}{-4}{0} +\pictcolor{blue} +\rhyperbolicArc{2}{3}{-2}{5} +\end{Picture} +\end{center} +\end{exemple} +\ttslashindex{parabolicArc} +\begin{Verbatim}[commandchars=\|\[\]] +\parabolicArc{|TIT[a]}{|TIT[y1]}{|TIT[y2]} +\end{Verbatim} +Draw the arc of the parabola + $x=ay^2$ included between $y=\TTT{\TIT{y1}}$ and $y=\TTT{\TIT{y2}}$. +\begin{exemple} +\setlength{\unitlength}{1cm} +\begin{center} +\begin{Picture}(-2.5,-2.5)(2.5,2,5) +\renewcommand{\axeslabelsize}{\footnotesize} +\cartesianaxes(-2,-2)(2,2) +\pictcolor{red} +\parabolicArc{-2}{-1}{0} +\pictcolor{blue} +\parabolicArc{0.5}{0}{2} +\end{Picture} +\end{center} +\end{exemple} +\subsection{Real variable functions}\label{subsec:real} +The \package{xpicture} package provides us two commands +to draw the graph of a function: +\csdef{PlotFunction} and \csdef{PlotPointsOfFunction}. +\begin{Verbatim}[commandchars=\|\(\)] +\PlotFunction[|TIT(n)]{\|TIT(functionname)}{\|TIT(tzero)}{\|TIT(tone)} +\PlotPointsOfFunction{|TIT(n)}{\|TIT(functionname)}{\|TIT(tzero)}{\|TIT(tone)} +\end{Verbatim} +Note that the parameter $\TTT{\TIT{n}}$ is optional in one of these +instructions and mandatory in the other one. +In the case of \csdef{PlotFunction}, +if we do not use this optional parameter, +a quadratic approximation of the function +\cs{\TIT{functionname}} +in the $[\cs{\TIT{tzero}},\cs{\TIT{tone}}]$ interval is drawn. +\begin{exemple} +\setlength{\unitlength}{1cm} +\begin{Picture}(-2.5,-0.5)(3.5,4.5) +\cartesianaxes(-2,0)(2,4) +\pictcolor{blue} +\PlotFunction{\SQUAREfunction}{-2}{2} +\Put[E](2,4){$f(t)=t^2$} +\end{Picture} +\end{exemple} +Now, this almost never provides a right graphic. +To draw curves with a greater accuracy we should use the parameter, +\TTT{\TIT{n}}, +dividing the interval in \TTT{\TIT{n}} subintervals. +\begin{exemple} +\setlength{\unitlength}{1cm} +\CUBE{1.5}{\mymax} +\begin{Picture}(-2,-4)(2,4) +\cartesianaxes(-1.5,-\mymax)(1.5,\mymax) +\pictcolor{blue} +\PlotFunction[8]{\CUBEfunction}{-1.5}{1.5} +\Put[E](1.5,\mymax){$f(t)=t^3$} +\end{Picture} +\end{exemple} + +On the other hand, the \csdef{PlotPointsOfFunction} command +plots $\TTT{\TIT{n}}+1$ \emph{points}, uniformly distributed +about the $x$-axis. +\begin{exemple} +\setlength{\unitlength}{1cm} +\CUBE{1.5}{\mymax} +\begin{Picture}(-2,-4)(2,4) +\cartesianaxes(-1.5,-\mymax)(1.5,\mymax) +\pictcolor{blue} +\PlotPointsOfFunction{24}{\CUBEfunction}{-1.5}{1.5} +\Put[E](1.5,\mymax){$f(t)=t^3$} +\end{Picture} +\end{exemple} + +By default, \cs{PlotPointsOfFunction} plot \emph{points} as a filled circle +of diameter \verb+0.1\unitlength+. But you can modifie this diameter, by +redefining the \csdef{pointmarkdiam} parameter. +\begin{exemple} +\setlength{\unitlength}{1cm} +\CUBE{1.5}{\mymax} +\renewcommand{\pointmarkdiam}{0.3} +\begin{Picture}(-2,-4)(2,4) +\cartesianaxes(-1.5,-\mymax)(1.5,\mymax) +\pictcolor{blue} +\PlotPointsOfFunction{24}{\CUBEfunction}{-1.5}{1.5} +\Put[E](1.5,\mymax){$f(t)=t^3$} +\end{Picture} +\end{exemple} + +Moreover, you can select another symbol for these points, redefining +\csdef{pointmark}. +\begin{exemple} +\setlength{\unitlength}{1cm} +\CUBE{1.5}{\mymax} +\renewcommand{\pointmark}{$\diamond$} +\begin{Picture}(-2,-4)(2,4) +\cartesianaxes(-1.5,-\mymax)(1.5,\mymax) +\pictcolor{blue} +\PlotPointsOfFunction{24}{\CUBEfunction}{-1.5}{1.5} +\Put[E](1.5,\mymax){$f(t)=t^3$} +\end{Picture} +\end{exemple} + +Naturally, in order to apply these commands the function must be defined. +\package{xpicture} +loads the \packagedef{calculus} package, which +predefines some of the most common elementary functions +and includes several tools to build new ones. +The predefined functions are the following: +\begin{center} +\begin{tabular}{l>{$}l<{$}>{\qquad}l>{$}l<{$}} + \csdef{ZEROfunction} & f(t)=0 & + \csdef{ONEfunction} & f(t)=1 \\ + \csdef{IDENTITYfunction} & f(t)=t & + \csdef{RECIPROCALfunction} & f(t)=1/t \\ + \csdef{SQUAREfunction} & f(t)=t^2 & + \csdef{CUBEfunction} & f(t)=t^3 \\ + \csdef{SQRTfunction} & f(t)=\sqrt t \\ + \csdef{EXPfunction} & f(t)=\exp t & + \csdef{LOGfunction} & f(t)=\log t \\ + \csdef{COSfunction} & f(t)=\cos t & + \csdef{SINfunction} & f(t)=\sin t \\ + \csdef{TANfunction} & f(t)=\tan t & + \csdef{COTfunction} & f(t)=\cot t \\ + \csdef{COSHfunction} & f(t)=\cosh t & + \csdef{SINHfunction} & f(t)=\sinh t \\ + \csdef{TANHfunction} & f(t)=\tanh t & + \csdef{COTHfunction} & f(t)=\coth t \\ + \csdef{HEAVISIDEfunction} & f(t)=\begin{cases} + 0 & \text{si $t<0$} \\ + 1 & \text{si $t\geq0$} + \end{cases} +\end{tabular} +\end{center} + +\begin{Exemple} +\setlength{\unitlength}{1cm} +\linethickness{1.5pt} +\centering +\begin{Picture}(-5,-5)(6,5) +\externalaxes\makenotics +\cartesiangrid(-4.5,-4.5)(4.5,4.5) +\pictcolor{red} +\PlotFunction{\IDENTITYfunction}{-4.5}{4.5} +\Put[tr](4.5,4.5){$y=x$} + +\DIVIDE{1}{4.5}{\minx} +\pictcolor{magenta} +\PlotFunction[10]{\RECIPROCALfunction}{\minx}{4.5} +\PlotFunction[10]{\RECIPROCALfunction}{-\minx}{-4.5} +\Put[r](4.5,\minx){$y=1/x$} + +\SQRT{4.5}{\maxx} +\pictcolor{cyan} +\PlotFunction[10]{\SQUAREfunction}{-\maxx}{\maxx} +\Put[tr](\maxx,4.5){$y=x^2$} + +\pictcolor{blue} +\PlotFunction[10]{\CUBEfunction}{-1.6509}{1.6509} +\Put[t](1.6509,4.5){$y=x^3$} +\end{Picture} +\end{Exemple} + +\begin{Exemple} +\setlength{\unitlength}{1cm} +\linethickness{1.5pt} +\centering +\begin{Picture}(-7,-4.5)(7,4.5) +{\makenolabels +\changereferencesystem(0,0)(\numberHALFPI,0)(0,1) +\cartesiangrid(-4,-4)(4,4) +\highestlabel{$2\pi$} +\printylabels{-4}{1}{4} +\printxlabel{-4}{-2\pi} +\printxlabel{-2}{-\pi} +\printxlabel{2}{\pi} +\printxlabel{4}{2\pi}} +\pictcolor{red} +\PlotFunction[16]{\COSfunction}{-\numberTWOPI}{\numberTWOPI} +\pictcolor{blue} +\PlotFunction[16]{\SINfunction}{-\numberTWOPI}{\numberTWOPI} +\pictcolor{magenta} +\PlotFunction[6]{\TANfunction}{-1.3258}{1.3258} +\end{Picture} +\end{Exemple} + +From these basic functions we can define many others, +using the following \emph{operations}: +\newcommand{\functoper}{% + \{\cs{\TIT{function1}}\}\{\cs{\TIT{function2}}\}\{\cs{\TIT{newfunction}}\}} +\begin{description} +\item[Constant function:]\mbox{} + +\csdef{CONSTANTfunction}\{\TIT{k}\}\{\cs{\TIT{newfunction}}\} + + Example: defining the $F(t)=5$ function: + +\cs{CONSTANTfunction}\{5\}\{\cs{F}\} + +\item[Sum function:]\mbox{} + +\csdef{SUMfunction}\functoper + + +Example: defining the $F(t)=t^2+t^3$ function: + +\cs{SUMfunction}\{\cs{SQUAREfunction}\}\{\cs{CUBEfunction}\}\{\cs{F}\} + +\item[Difference function:]\mbox{} + +\csdef{SUBTRACTfunction}\functoper + +Example: defining the $F(t)=t^2-t^3$ function: + +\cs{SUBTRACTfunction}\cs{SQUAREfunction}\cs{CUBEfunction}\{\cs{F}\} + +\item[Product function:]\mbox{} + +\csdef{PRODUCTfunction}\functoper + +Example: defining the $F(t)=\mathrm e^t\cos t$ function: + +\cs{PRODUCTfunction}\cs{EXPfunction}\cs{COSfunction}\{\cs{F}\} + +\item[Quotient function:]\mbox{} + +\csdef{QUOTIENTfunction}\functoper + +Example: defining the $F(t)=\mathrm e^t/\cos t$ function: + +\cs{QUOTIENTfunction}\cs{EXPfunction}\cs{COSfunction}\{\cs{F}\} + +\item[Composition of two functions:]\mbox{} + +\csdef{COMPOSITIONfunction}\functoper + +Example: defining the $F(t)=\mathrm e^{\cos t}$ function: + +\cs{COMPOSITIONfunction}\cs{EXPfunction}\cs{COSfunction}\{\cs{F}\} + +\item[Scaled function:]\mbox{} + +\csdef{SCALEfunction}\{\TIT{k}\}\{\cs{\TIT{function}}\}% + \{\cs{\TIT{newfunction}}\} + +Example: defining the $F(t)=3{\cos t}$ function: + +\cs{SCALEfunction}\{3\}\cs{COSfunction}\{\cs{F}\} + +\item[Scaled variable:]\mbox{} + +\csdef{SCALEVARIABLEfunction}\{\TIT{k}\}\{\cs{\TIT{function}}\}% + \{\cs{\TIT{newfunction}}\} + +Example: defining the $F(t)=\cos 3t$ function: + +\cs{SCALEVARIABLEfunction}\{3\}\cs{COSfunction}\{\cs{F}\} + +\item[Power function:] (exponent enter positiu)\mbox{} + +\csdef{POWERfunction}\{\cs{\TIT{function}}\}\{\TIT{n}\}% + \{\cs{\TIT{newfunction}}\} + +Example: defining the $F(t)=t^5$ function: + +\cs{POWERfunction}\cs{IDENTITYfunction}\{5\}\{\cs{F}\} + +\item[Linear combination:]\mbox{} + +\csdef{LINEARCOMBINATIONfunction}\{\TIT{a}\}\{\cs{\TIT{function1}}\}% + \{\TIT{b}\}\{\cs{\TIT{function2}}\}\{\cs{\TIT{newfunction}}\} + +Example: defining the $F(t)=2t-3\cos t$ function: + +\cs{LINEARCOMBINATIONfunction}\{2\}\cs{IDENTITYfunction}\{-3\}% + \cs{COSfunction}\{\cs{F}\} +\end{description} + +By combining properly these operations, we can draw graphs of many functions. +Some examples are shown in next pages. +\newpage + +First, we will draw the function $f(t)=t^3-2t$, +dividing the interval $[-2,2]$ in ten subintervals. +The simplest way to construct this function is as a linear combination of +$f_1(t)=t^3$ and $f_2(t)=t$. + +\begin{exemple} +\LINEARCOMBINATIONfunction + {1}{\CUBEfunction} + {-2}{\IDENTITYfunction} + {\Ffunction} +\begin{center} +\setlength{\unitlength}{1cm} +\begin{Picture}(-2.5,-4.5)(2.5,4.5) +\cartesianaxes(-2,-4)(2,4) +\pictcolor{blue} +\PlotFunction[10]{\Ffunction}{-2}{2} +\Put[rbr](2,4){$f(t)=t^3-2t$} +\end{Picture} +\end{center} +\end{exemple} +\newpage + +Graph of $g(t)=t\cos t$. We multiply the identity and the cosine functions: + +\begin{Exemple} +\setlength{\unitlength}{0.5cm} +\begin{center} +\begin{Picture}(-11,-11)(11,11) +\cartesianaxes(-10,-10)(10,10) +\PRODUCTfunction{\IDENTITYfunction}{\COSfunction}{\Gfunction} +\pictcolor{red} +\PlotFunction[30]{\Gfunction}{-10}{10} +\end{Picture} +\end{center} +\end{Exemple} +\newpage + +Graph of $f(t)=(\cos t)^3$. + +\begin{Exemple} +\setlength{\unitlength}{1cm} +\begin{center} +\begin{Picture}(-7,-3)(7,3) +\cartesianaxes(-\numberTWOPI,-2)(\numberTWOPI,2) +\POWERfunction{\COSfunction}{3}{\Ffunction} +\pictcolor{blue} +\PlotFunction[50]{\Ffunction}{-\numberTWOPI}{\numberTWOPI} +\end{Picture} +\end{center} +\end{Exemple} +\newpage + +Graph of $g(t)=t\cos t\sin t$. +Note that in this case we have two operations: +First, we define the $f(t)=t \cos t$, multiplying the identity and cosine +functions; then, we multiply by the sine function. +\begin{Exemple} +\begin{center} +\setlength{\unitlength}{0.75cm} + \begin{Picture}(-11,-6)(11,6) +\cartesianaxes(-10,-5)(10,5) +\PRODUCTfunction{\IDENTITYfunction}{\COSfunction}{% + \Ffunction} +\PRODUCTfunction{\Ffunction}{\SINfunction}{\Gfunction} +\pictcolor{red} +\PlotFunction[40]{\Gfunction}{-10}{10} +\end{Picture} +\end{center} +\end{Exemple} + +Graph of $g(t)=\arcsin t$. The \package{calculus} package +not support, for now, the inverse trigonometric functions; but we can plot +these functions (or any other inverse function) +swapping coordinated axes. + +\begin{exemple} +\begin{center} +\setlength{\unitlength}{2cm} +\begin{Picture}(-1.5,-2)(1.5,2) +\makenolabels\makenotics +\cartesianaxes + (-1,-\numberHALFPI)(1,\numberHALFPI) +\printxticslabels{-1}{0.5}{1} +\printyticlabel{-\numberHALFPI}{-\pi/2} +\printyticlabel{-\numberQUARTERPI}{-\pi/4} +\printyticlabel{\numberQUARTERPI}{\pi/4} +\printyticlabel{\numberHALFPI}{\pi/2} +\pictcolor{red} +\symmetrize{\numberQUARTERPI} +\PlotFunction[4]{\SINfunction} + {-\numberHALFPI}{\numberHALFPI} +\end{Picture} +\end{center} +\end{exemple} +\subsubsection{Polynomial functions} +Although polynomial functions can be easily defined as +linear combinations of power functions, +to facilitate our work, the \package{calculus} package predefines +polynomials of +1, 2, and 3 degrees by these commands: +\cs{newlpoly} (new \emph{linear} polynomial), \cs{newqpoly} +(new \emph{quadratic} polynomial), +and \cs{newcpoly} (new \emph{cubic} polynomial): +\begin{description} +\item[\csdef{newlpoly}\{\cs{\TIT{newfunction}}\}\{\TIT a\}\{\TIT b\}] +stores the +$p(t)=\TTT{\TIT{a}}+\TTT{\TIT{b}}t$ +function in the + \cs{\TIT{newfunction}} command. +\item[\csdef{newqpoly}% + \{\cs{\TIT{newfunction}}\}\{\TIT a\}\{\TIT b\}\{\TIT c\}] +stores the +$p(t)=\TTT{\TIT{a}}+\TTT{\TIT{b}}t+\TTT{\TIT{c}}t^2$ +function in the +\cs{\TIT{newfunction}} command. +\item[\csdef{newcpoly}% +\{\cs{\TIT{newfunction}}\}\{\TIT a\}\{\TIT b\}\{\TIT c\}\{\TIT d\}] +stores the +$p(t)=\TTT{\TIT{a}}+\TTT{\TIT{b}}t+\TTT{\TIT{c}}t^2+\TTT{\TIT{d}}t^3$ +function in the +\cs{\TIT{newfunction}} command. +\end{description} +\begin{exemple} +% F(t)=-1+2t + \newlpoly{\poliF}{-1}{2} +% G(t)=-1+2t+t^2 + \newqpoly{\poliG}{-1}{2}{1} +% H(t)=-1+2t+t^2-0,5t^3 + \newcpoly{\poliH}{-1}{2}{1}{-0.5} + +\setlength{\unitlength}{1cm} +\begin{Picture}(-4.5,-5.5)(4.5,5.5) +\cartesianaxes(-4,-5)(4,5) +\pictcolor{blue} +\PlotFunction{\poliF}{-2}{3} +\pictcolor{red} +\PlotFunction{\poliG}{-3.5}{1.5} +\pictcolor{orange} +\PlotFunction[10]{\poliH}{-2}{3.5} +\end{Picture} +\end{exemple} + +\subsubsection{Possible errors} +In many cases you get a fairly accurate graph dividing the domain into several +subintervals. +But an indiscriminate use of this method can produce erroneous results. +For example, if inside a subinterval there is +a discontinuity or a point where the function is not differentiable. +Look at the following example. +\medskip + +\begin{exemple} +\SUBTRACTfunction{\SQUAREfunction}{\ONEfunction} + {\Ffunction} +\QUOTIENTfunction{\IDENTITYfunction}{\Ffunction} + {\Gfunction} + +\setlength{\unitlength}{0.5cm} + +\begin{Picture}(-8,-6)(8,6) +\def\xunitdivisions{2} +\def\yunitdivisions{2} +\renewcommand{\axeslabelsize}{\scriptsize} +\cartesianaxes(-7,-5)(7,5) +\Put(3,3){% + $\boxed{\displaystyle g(t)=\frac{t}{t^ 2-1}}$} +\pictcolor{red} +\PlotFunction[10]{\Gfunction}{-7}{7} +\end{Picture} +\end{exemple} + +Where is the problem? +Our function is $g(t)=t/(t^2-1)$; +this function has a pair of vertical asymptotes +at $t=\pm1$ (the two zeros of denominator). + +We made 10 subdivisions of the $[-7,7]$ interval. +Do, we compute the function in points $-7+(14/10)k=-7+(7/5)k$, +$0\leq k\leq10$, ie, +\[ + -7\quad -\frac{28}{5}\quad -\frac{21}{5}\quad -\frac{14}{5}\quad + -\frac{7}{5}\quad 0\quad \frac{7}{5}\quad \frac{14}{5}\quad + \frac{21}{5}\quad \frac{28}{5}\quad 7 +\] + +Singularities are between $-7/5$ and $0$, and between $0$ and $7/5$, +So, the graph is not correct in these intervals. +\medskip + +To avoid this problem, we will +draw the function in three intervals, excluding the points where it is +undefined: +\medskip +\begin{exemple} +\SUBTRACTfunction{\SQUAREfunction}{\ONEfunction} + {\Ffunction} +\QUOTIENTfunction{\IDENTITYfunction}{\Ffunction} + {\Gfunction} +\renewcommand{\axeslabelsize}{\scriptsize} +\setlength{\unitlength}{0.5cm} +\begin{Picture}(-8,-6)(8,6) +\def\xunitdivisions{2} +\def\yunitdivisions{2} +\cartesianaxes(-7,-5)(7,5) +\pictcolor{red} +\PlotFunction[5]{\Gfunction}{-7}{-1.105} +\PlotFunction[5]{\Gfunction}{-0.905}{0} +\PlotFunction[5]{\Gfunction}{0}{0.905} +\PlotFunction[5]{\Gfunction}{1.105}{7} +\end{Picture} +\end{exemple} + +(To determine the ends of the ranges of variation +$\pm1.105$ and $\pm0.905$, we solved the equation +$g(t)=5$, to ensure that asymtotic branches are interrupted +at the border of the drawing area). + +\subsubsection{Accurate graphs} +In general, to obtain fairly reliable results we must make + a careful analysis of the behavior of the function, +determining the points where it is undefined or not differentiable, + the intervals where it is increasing, its extreme values, +points where graph cuts the coordinate axes and, in general, + all points where the behavior of +function is significant. +From this information, we can chose the appropriate +drawing intervals. +A careful choice of the partition +subintervals in the domain ensures us +that the graph accurately reflects the behavior of the function. + +We will see a couple of examples. +First, we draw the sine function in $[-\pi,\pi]$. +This function ant its derivative have no discontinuities, +but it is convenient to choose a number of partitions +being multiple of $4$, to carefully draw +function at the +$k\pi/2$ points. +In fact, a good choice are 24 subdivisions, +to ensure also the well known values of this function +for angles +multiple of $\pi/6$ and $\pi/4$. +\begin{Exemple} +\setlength{\unitlength}{2cm}% + +\highestlabel{\normalfont\normalsize$3\pi/2$} +\begin{center} +\begin{Picture}(-3.5,-1.5)(3.5,1.5) +{\referencesystem(0,0)(\numberHALFPI,0)(0,1) +\makenolabels +\cartesianaxes(-2.2,-1.2)(2.2,1.2)} +\printylabels{-1}{1}{1} +\printxlabel{-\numberPI}{-\pi} +\printxlabel{-\numberHALFPI}{-\pi/2} +\printxlabel{\numberHALFPI}{\pi/2} +\printxlabel{\numberPI}{\pi} +\pictcolor{red} + \PlotFunction[24]{\SINfunction}{-\numberPI}{\numberPI} +\renewcommand{\axeslabelcolor}{red} +\printxlabel{\numberSIXTHPI}{\pi/6} +\printylabel{0.5}{1/2} +\Polyline(\numberSIXTHPI,0)(\numberSIXTHPI,0.5)(0,0.5) +\end{Picture} +\end{center} +\end{Exemple} + +Our second example is more complex. Let's graph the function +\[ +f(t)=(t^3/3-t^2/2-2t+3)/3 +\] + +This function has three roots, at +$t=3/2$ and $t=\pm\sqrt{6}$. +Its derivative, $f'(t)=(t^2-t-2)/3$, equals zero at +$t=-1$ and $t=2$, where the function has, respectively, +a relative maximum and a relative minimum. + The second derivative, $f''(t)=(2t-1)/3$, + is zero at $t=1/2$, which is an inflexion point. +Interesting points are, then, the following: +\[ + -\sqrt{6},-1,0,1/2,3/2,2,\sqrt{6} +\] + +We will plot this function in the + $[-3,4]$ interval (because it includes all these points), + but we divide it as +\[ + [-3,-\sqrt{6}]\cup + [-\sqrt{6},-1]\cup + [-1,0]\cup + [0,1/2]\cup + [1/2,3/2]\cup + [3/2,2]\cup + [2,\sqrt{6}]\cup + [\sqrt{6},4] +\] +\begin{Exemple} +\SQRT{6}{\SQRTSIX} +\newcpoly{\functionf}{1}{-0.66667}{-0.16667}{0.11111} +\setlength{\unitlength}{2cm} +\begin{center} + \begin{Picture}(-3.5,-2.5)(4.5,3.5) +\renewcommand{\xunitdivisions}{10} +\renewcommand{\yunitdivisions}{10} +\cartesiangrid(-3,-2)(4,3) +\pictcolor{red} +\PlotFunction{\functionf}{-3}{-\SQRTSIX} +\PlotFunction[4]{\functionf}{-\SQRTSIX}{-1} +\PlotFunction[4]{\functionf}{-1}{0} +\PlotFunction[4]{\functionf}{0}{0.5} +\PlotFunction[4]{\functionf}{0.5}{1.5} +\PlotFunction[4]{\functionf}{1.5}{2} +\PlotFunction[4]{\functionf}{2}{\SQRTSIX} +\PlotFunction{\functionf}{\SQRTSIX}{4} +\functionf{-1}{\tempf}{\tempDf} +\xLINE(-1,0)(-1,\tempf) +\functionf{2}{\tempf}{\tempDf} +\xLINE(2,0)(2,\tempf) +\functionf{0.5}{\tempf}{\tempDf} +\xLINE(0.5,0)(0.5,\tempf) +\end{Picture} +\end{center} +\end{Exemple} + +\subsection{Polar coordinates curves} +To draw a curve defined in polar form as $\rho =f(t)$, we must +declare it as a polar curve, using the \csdef{POLARfunction} +declaration: writing +\begin{Verbatim}[commandchars=\|\[\]] +\POLARfunction{\|TIT[functionname]}{\|TIT[polarfunction]} +\end{Verbatim} +we declare the new polar curve \cs{\TIT{polarfunction}} +$\rho=\cs{\TIT{functionname}}(t)$. +For example, the \emph{cardioide} curve, $\rho=1+\cos t$, +can be defined in the following way: +\begin{Verbatim} +\SUMfunction{\ONEfunction}{\COSfunction}{\ffunction} % (y=1 + cos t) +\POLARfunction{\ffunction}{\cardioide} +\end{Verbatim} + +Curves defined in such a way can be plotted using the +\csdef{PlotParametricFunction} command, +which syntax is analogous to that of \cs{PlotFunction}. + +\begin{exemple} +% Cardioide: r = 1+cos t +\SUMfunction{\ONEfunction}{\COSfunction} + {\ffunction} +\POLARfunction{\ffunction}{\cardioide} +\begin{center} +\def\runitdivisions{2} +\setlength{\unitlength}{1.5cm} +\begin{Picture}(-2.5,-2.5)(2.5,2.5) +\polargrid{2}{24} +\pictcolor{blue}\linethickness{1pt} + \PlotParametricFunction[20]{% + \cardioide}{0}{\numberTWOPI} +\end{Picture} +$\rho=1+\cos\phi$ +\end{center} +\end{exemple} + +\begin{exemple} +% Eight petal rose: r = cos(4t) +\SCALEVARIABLEfunction{4}{\COSfunction} + {\ffunction} +\POLARfunction{\ffunction}{\rose} +\begin{center} +\def\runitdivisions{3} +\MULTIPLY{2}{\numberTWOPI}{\numberFOURPI} +\setlength{\unitlength}{2.5cm} + +\begin{Picture}(-1.5,-1.5)(1.5,1.5) +\polargrid{1}{16} +\pictcolor{red}\linethickness{1pt} +\PlotParametricFunction[16]\rose{0}{\numberTWOPI} +\end{Picture} +$\rho=\cos 4\phi$ +\end{center} +\end{exemple} + +\begin{exemple} +% Archimedean spiral: r=0,5t +\SCALEfunction{0.5}{\IDENTITYfunction}{\ffunction} +\POLARfunction{\ffunction}{\archimedes} + +\MULTIPLY{2}{\numberTWOPI}{\numberFOURPI} +\setlength{\unitlength}{0.5cm} +\begin{center} +\begin{Picture}(-7,-7)(7,7) +\pictcolor{red} +\PlotParametricFunction[16]{% + \archimedes}{0}{\numberFOURPI} +\end{Picture} +$2\rho=\phi$ +\end{center} +\end{exemple} + +\begin{exemple} +\SCALEVARIABLEfunction{3.2}{\SINfunction}{\ffunction} +\SCALEfunction{0.2}{\ffunction}{\gfunction} +\SUMfunction{\ONEfunction}{\gfunction}{\myfunction} +\POLARfunction{\myfunction}{\Rfunction} +\MULTIPLY{10}{\numberPI}{\numberTENPI} +\setlength{\unitlength}{3cm} +\linethickness{2pt} +\begin{center} +\begin{Picture}(-1.2,-1.2)(1.2,1.2) +\pictcolor{orange} +\PlotParametricFunction[120]\Rfunction{0}{\numberTENPI} +\end{Picture} +$\rho=1+2\sin 3.2\phi$ +\end{center} +\end{exemple} +\subsection{Parametrically defined curves}\label{subsec:param} +Polar curves are a particular case of parametrically defined curves, +$x=f(t), y=g(t)$. These curves are declared by the + \csdef{PARAMETRICfunction} command: +\begin{Verbatim}[commandchars=\|\[\],commentchar=\%] +\PARAMETRICfunction{\|TIT[Xfunction]}{\|TIT[Yfunction]}% +{\|TIT[parametricfunction]} +\end{Verbatim} + +Once we have defined it, +to draw this curve, we use the \csdef{PlotParametricFunction} as described +above. +\begin{Exemple} +\POWERfunction{\IDENTITYfunction}{5}{\xfunction} +\PARAMETRICfunction{\xfunction}{\CUBEfunction}{\myparfunction} +\centering +\setlength{\unitlength}{0.75cm} +\begin{Picture}(-11,-6)(11,6) +\cartesiangrid(-10,-5)(10,5) +\pictcolor{blue} +\PlotParametricFunction[10]{\myparfunction}{-1.5849}{0} +\PlotParametricFunction[10]{\myparfunction}{0}{1.5849} +\Put[E](10,4){$\begin{matrix}x=t^5\\y=t^3\end{matrix}$} +\end{Picture} +\end{Exemple} +\begin{exemple} +% A Lissanjous curve: x=sin 3t, y=sin 4t +\SCALEVARIABLEfunction{3}{\SINfunction}{\ffunction} +\SCALEVARIABLEfunction{4}{\SINfunction}{\gfunction} +\PARAMETRICfunction{\ffunction}{\gfunction}{\myfunction} +\MULTIPLY{10}{\numberPI}{\numberTENPI} +\setlength{\unitlength}{3cm} +\linethickness{2pt} +\begin{center} +\begin{Picture}(-1.2,-1.2)(1.2,1.2) +\pictcolor{red} +\PlotParametricFunction[24]\myfunction{0}{\numberTWOPI} +\end{Picture} + +$x=\sin 3t,\ y=\sin 4t$ +\end{center} +\end{exemple} + +Here, we should also take into account the characteristics of the curve +in order to choose appropriate intervals for +the parameter (typically, the points where the function is not defined, +singularities, cuts with axes, +points where some of the derivatives $x',x'',\ldots$ or $y',y''\ldots$) is +zero\ldots +In the following example, to represent the curve $x=t^2-1$, $y=t^3-t$, +we see that $x$ or $y$ equals zero when $t$ is +$0$, $1$ or $-1$; the first derivatives $x'=2t$, $y'=3t^2-1$, +in $t=0$ and $t=\pm\sqrt3/3$, and second derivative of $y$ in $t=0$. +Thus, we choose an interval containing these values of $t$, such $[-2.2]$, +and this partition of it: +\[ + [-2,2]=[-2,-1]\cup[-1,-\sqrt3/3]\cup[-\sqrt3/3,0]\cup[0,\sqrt3/3]\cup[\sqrt3/3,1]\cup[1,2] +\] + +This same curve was depicted with a single instruction +\cs{PlotParametricFunction} dividing +the interval $[-2.2]$ into five subintervals. +Note that the obtained picture is almost identical, but the fact that +partition not includes zero +conceals the fact that the vertical tangent occurs at the point + $(-1,0)$. +So, one of the most significant features of the curve is not correctly +displayed. +\begin{Exemple} +\SUBTRACTfunction{\SQUAREfunction}{\ONEfunction}{\Xpart} +\SUBTRACTfunction{\CUBEfunction}{\IDENTITYfunction}{\Ypart} +\PARAMETRICfunction{\Xpart}{\Ypart}{\myparfunction} +\centering +\setlength{\unitlength}{1cm} +\begin{Picture}(-3.5,-6.5)(3.5,6.5) +\cartesiangrid(-3,-6)(3,6) +\pictcolor{blue} +\PlotParametricFunction\myparfunction{-2}{-1} +\PlotParametricFunction\myparfunction{-1}{-0.57735} +\PlotParametricFunction\myparfunction{-0.57735}{0} +\PlotParametricFunction\myparfunction{0}{0.57735} +\PlotParametricFunction\myparfunction{0.57735}{1} +\PlotParametricFunction\myparfunction{1}{2} +\Put[E](3,6){$\begin{matrix}x=t^2-1\\y=t^3-t\end{matrix}$} +\end{Picture} +\qquad +\begin{Picture}(-3.5,-6.5)(3.5,6.5) +\cartesiangrid(-3,-6)(3,6) +\pictcolor{orange} +\PlotParametricFunction[5]\myparfunction{-2}{2} +\Put[E](3,6){$\begin{matrix}x=t^2-1\\y=t^3-t\end{matrix}$} +\end{Picture} +\end{Exemple} +\subsubsection{The curve of the front page} +To conclude this section we will study in detail the example +of the front page of this manual. +This example shows the power, +while the simplicity of the package \package{xpicture}. + +It is the transcendent curve named \emph{butterfly}, +\begin{gather*} + x=\sin t \left(\mathrm e^{\cos t} - 2 \cos 4t + + \sin^5\left(\frac t{12}\right)\right) \\ + y=\cos t \left(\mathrm e^{\cos t} - 2 \cos 4t + + \sin^5\left(\frac t{12}\right)\right) +\end{gather*} + +We analyze step by step the code we used: +\begin{itemize} +\item First, we calculated some numbers we'll use later: +\begin{inparaenum}[(a)] +\item $1/12$, that appears in the definition of functions $x$ and $y$; +\item $12\times2\pi$, to plot the curve in $[0,24\pi]$ (twelve laps); and +\item$12\times64$, the number of subdivisions we will use +(64 subintervals for each lap). +\VerbatimInput[numbers=left,firstline=3,lastline=5]{xpicture1.tex} +\end{inparaenum} +\item In the next block we do the important work: +the curve is defined step by step. + +\begin{compactitem} +\item Define the function $A(t)=\mathrm e^{\cos t}$ +\VerbatimInput[numbers=left,firstline=7,lastline=7]{xpicture1.tex} +\item Define $B(t)=\cos 4t$ +\VerbatimInput[numbers=left,firstline=8,lastline=8]{xpicture1.tex} +\item Define $c(t)=\sin t/12$ +\VerbatimInput[numbers=left,firstline=9,lastline=9]{xpicture1.tex} +\item Define $C(t)=\sin^5 t/12$ +\VerbatimInput[numbers=left,firstline=10,lastline=10]{xpicture1.tex} +\item Define $AB(t)=\mathrm e^{\cos t}-2\cos 4t$ +\VerbatimInput[numbers=left,firstline=11,lastline=11]{xpicture1.tex} +\item Define $ABC(t)=\mathrm e^{\cos t}-2\cos 4t+\sin^5 t/12$ +\VerbatimInput[numbers=left,firstline=12,lastline=12]{xpicture1.tex} +\item Define the $x$ and $y$ functions +\VerbatimInput[numbers=left,firstline=13,lastline=16]{xpicture1.tex} +\item And, finally, we declare the parametric curve: +\VerbatimInput[numbers=left,firstline=17,lastline=17]{xpicture1.tex} +\end{compactitem} + +\item Now, the picture composition is trivial +(note the use of constants +\cs{divisions} and \cs{phione} we previously calculated): +\VerbatimInput[numbers=left,firstline=19,lastline=21]{xpicture1.tex} +\end{itemize} + +\subsection{Drawing curves from a table of values} +All instructions to draw curves described here use the +\csdef{qCurve} command, which draws quadratic B\'ezier curves: +\begin{Verbatim}[commandchars=\|\[\],commentchar=\%] +\qCurve(|TIT[x0],|TIT[y0])(|TIT[u0],|TIT[v0])(|TIT[x1],|TIT[y1])(|TIT[u1],% +|TIT[v1]) +\end{Verbatim} +draw a smooth curve between the points $(\TTT{\TIT{x0}},\TTT{\TIT{y0}})$ +and $(\TTT{\TIT{x1}},\TTT{\TIT{y1}})$, with tangent vectors +$(\TTT{\TIT{u0}},\TTT{\TIT{v0}})$ and $(\TTT{\TIT{u1}},\TTT{\TIT{v1}})$, +respectively. +\begin{exemple} +\setlength{\unitlength}{1cm} +\begin{Picture}(-0.5,-0.5)(5.5,5.5) +\cartesianaxes(0,0)(5,5) +\pictcolor{blue} +\qCurve(1,2)(1,2)(4,3)(-1,1) +\pictcolor{gray} +\Put(1,2){\xtrivVECTOR(0,0)(1,2)} +\Put(4,3){\xtrivVECTOR(0,0)(-1,1)} +\Polyline(1,0)(1,2)(0,2) +\Polyline(4,0)(4,3)(0,3) +\end{Picture} +\end{exemple} + +The \csdef{PlotQuadraticCurve} command generalizes \cs{qCurve} +to an arbitrary number of points. +\begin{exemple} +\setlength{\unitlength}{1cm} +\begin{Picture}(-0.5,-0.5)(5.5,3.5) +\cartesianaxes(0,0)(5,3) +\pictcolor{blue} +\PlotQuadraticCurve(0,0)(1,0)% + (1,1)(1,2)% + (3,2)(-1,1)% + (5,2)(0,-1) +\end{Picture} +\end{exemple} +This command supports two alternative syntaxes: +\begin{enumerate}[(a)] +\item +\begin{Verbatim}[commandchars=\|\[\],commentchar=\%] +\PlotQuadraticCurve(|TIT[x0],|TIT[y0])(|TIT[u0],|TIT[v0])(|TIT[x1],|TIT[y1])% +(|TIT[u1],|TIT[v1])...(|TIT[xn],|TIT[yn])(|TIT[un],|TIT[vn]) +\end{Verbatim} +draws a curve through the points +$(\TTT{\TIT{x0}},\TTT{\TIT{y0}})$, + $(\TTT{\TIT{x1}},\TTT{\TIT{y1}})$\ldots + $(\TTT{\TIT{xn}},\TTT{\TIT{yn}})$ +with tangent vectors +$(\TTT{\TIT{u0}},\TTT{\TIT{v0}})$, $(\TTT{\TIT{u1}},\TTT{\TIT{v1}})$\dots +$(\TTT{\TIT{un}},\TTT{\TIT{vn}})$.% +\footnote{This command draws a +quadratic curve between each pair of adjacent points. + +The \cs{Curve} command, introduced by the +\package{curve2e} package, does a similar job, +but using cubic approximations, instead of quadratic.} + +\begin{exemple} +\setlength{\unitlength}{2cm} +\begin{center} +\begin{Picture}(1,1)(-1,-1) +\pictcolor{red} +\PlotQuadraticCurve(1,0)(1,0)(0,1)(0,1)% + (-1,0)(-1,0)(0,-1)(0,-1)% + (1,0)(1,0) +\pictcolor{blue} +\referencesystem(0,0)% + (\numberCOSXLV,\numberCOSXLV)% + (-\numberCOSXLV,\numberCOSXLV) +\PlotQuadraticCurve(1,0)(1,0)(0,1)(0,1)% + (-1,0)(-1,0)(0,-1)(0,-1)% + (1,0)(1,0) +\end{Picture} +\end{center} +\end{exemple} +\item +\begin{Verbatim}[commandchars=\|\[\],commentchar=\%] +\PlotQuadraticCurve(|TIT[x0],|TIT[y0]){|TIT[angle0]}(|TIT[x1],|TIT[y1])% +{|TIT[angle1]}...(|TIT[xn],|TIT[yn]){|TIT[anglen]} +\end{Verbatim} +draws a curve through the points +$(\TTT{\TIT{x0}},\TTT{\TIT{y0}})$, + $(\TTT{\TIT{x1}},\TTT{\TIT{y1}})$\ldots + $(\TTT{\TIT{xn}},\TTT{\TIT{yn}})$ +the inclination angles of which, with respect to the $x$ axis, +are \TTT{\TIT{angle0}}, \TTT{\TIT{angle1}}\dots, + \TTT{\TIT{angle0}} (always measured in degrees). +\begin{exemple} +\setlength{\unitlength}{2cm} +\begin{center} +\begin{Picture}(1,1)(-1,-1) +\pictcolor{red} +\PlotQuadraticCurve(1,0){0}(0,1){90} + (-1,0){180}(0,-1){270} + (1,0){360} +\pictcolor{blue} +\referencesystem(0,0)% + (\numberCOSXLV,\numberCOSXLV)% + (-\numberCOSXLV,\numberCOSXLV) +\PlotQuadraticCurve(1,0){0}(0,1){90} + (-1,0){180}(0,-1){270} + (1,0){360} +\end{Picture} +\end{center} +\end{exemple} +\end{enumerate} +With the \cs{PlotQuadraticCurve} command you can approximate any smooth curve +passing through a list of points when you know the tangent vectors. +A particular case, particularly interesting (at least in a calculus course) +is the drawing of the graph a function of real variable knowing a table of +values of the function and its derivative. +To facilitate this work \package{xpicture} +includes the \csdef{PlotxyDyData} command: +\begin{Verbatim}[commandchars=\|\[\],commentchar=\%] +\PlotxyDyData(|TIT[x0],|TIT[y0],|TIT[Dy0])(|TIT[x1],|TIT[y1],|TIT[Dy1])...% +(|TIT[xn],|TIT[yn],|TIT[Dyn]) +\end{Verbatim} +plots the graph of a function $y=f(x)$ passing through points +$(\TTT{\TIT{x0}},\TTT{\TIT{y0}})$, +$(\TTT{\TIT{x1}},\TTT{\TIT{y1}})$\ldots +$(\TTT{\TIT{xn}},\TTT{\TIT{yn}})$ +with derivatives $\TTT{\TIT{Dy0}}$, $\TTT{\TIT{Dy1}}$\ldots +$\TTT{\TIT{Dyn}}$. +\begin{exemple} +\setlength{\unitlength}{1cm} +\begin{Picture}(-1,-1)(5.5,5.5) +\cartesianaxes(0,0)(5,5) +\pictcolor{blue} +\PlotxyDyData(0,0,2)(1,1,0)(2,2,3) + (3,4,0)(5,1,-2) +\pictcolor{gray} +\Put(0,0){\xtrivVECTOR(0,0)(1,2)} +\Put(1,1){\xtrivVECTOR(0,0)(1,0)} +\Put(2,2){\xtrivVECTOR(0,0)(1,3)} +\Put(3,4){\xtrivVECTOR(0,0)(1,0)} +\Put(5,1){\xtrivVECTOR(0,0)(1,-2)} +\end{Picture} +\end{exemple} +\section{Package options and configuration file} +This package is loaded as usual, using the instruction +\cs{usepackage\{\TIT{list of options}\}\{xpicture\}}. +Then, packages \packagedef{pict2e}, \packagedef{curve2e}, \packagedef{xcolor}, +\packagedef{calculator}, and \packagedef{calculus} are automatically loaded. +This package is compatible with any system that supports +\packagedef{xcolor} and \packagedef{pict2e} packages. + +The only specific option for this package is \optiondef{draft}, +which disables all the instructions defined in this package, +replacing each picture set in a \environ{Picture} environment +by a parallelogram circumscribed by a white rectangle (the box that shows +the area reserved for the picture).\footnote{This option is equivalent to +a global use of +the \texttt{\textbackslash draftPictures} declaration.} +This option is very useful throughout the production +of the document, +since the composition of the drawings slows considerably +the compilation time. + +All other options are passed directly to packages +\packagedef{pict2e}, \packagedef{curve2e}, and \packagedef{xcolor}. +The most interesting option (from package \package{pict2e}) +is \optiondef{pstarrows}; +if used, arrowheads in vectors are drawn in PSTricks style (instead of the +standard \LaTeX{} style). +Do not use the \optiondef{hide} or \optiondef{original} +options (from package \package{pict2e}). + +You can include your preferred values for configurable \package{xpicture} +parameters +(like axes or labels style, radians or degrees measure for angles, +radians or degrees labels in polar grids, et cetera) +using the file \texttt{xpicture.cfg}\ttindex{xpicture.cfg}, because, +if exists, this local configuration file is loaded. +If you want to use it, copy the file +\texttt{xpicture.cfgxmpl}\ttindex{xpicture.cfgxmpl} +(which is distributed along with package \package{xpicture}), +call your copy as \texttt{xpicture.cfg} and put it in your local +\texttt{texmf} tree. +Initially, this file contains the default values for all parameters, but +you edit it to modify everything agreed. +\section{Compatibility with related packages} +As mentioned earlier, this package loads packages +\packagedef{pict2e}, \packagedef{curve2e}, \packagedef{xcolor}, +\packagedef{calculator}, and \packagedef{calculus}. Every command defined in +these packages works fine within a \environ{Picture} environment. The only +restriction to take in account is that colors must be selected with the +\cs{pictcolor} command, because commands \cs{color} and \cs{textcolor} +may cause the appearance of unwanted spaces. Picture commands defined +in \packagedef{pict2e} and \packagedef{curve2e} can be freely used +(had in mind, however, that in this case coordinates +are interpreted as standard), +and you can use all the techniques for defining and manipulating colors +from \packagedef{color} and \packagedef{xcolor} packages. + +Although guidelines for defining and operating with functions +explained in subsections~\ref{subsec:real}--\ref{subsec:param} +may be enough to compose a lot of graphics, +in order to take full advantage of this package you must known +packages \packagedef{calculator} and \packagedef{calculus} +with certain depth. Package \package{calculator} +will set you free of many tedious calculations. +\medskip + +On the other hand, \package{xpicture} is widely compatible with other packages +related to the graphics inclusion, composition or modification. +This fact gives us a lot of flexibility when using them together. + +For example, a picture drawn by \package{xpicture} can include external images +loaded with packages \packagedef{graphics}/\packagedef{graphicx}, +and you can also manipulate the whole picture with the aid of these packages. +In a similar way, \texttt{pgf/tikz}\ttindex{pgf}\ttindex{tikz} +pictures can be included inside a +\package{xpicture} draw. If you use \LaTeX{} and \TTT{dvips} to compile your +document, you can combine \package{xpicture} with \packagedef{pstricks}. + +\printindex +\end{document} diff --git a/Master/texmf-dist/doc/latex/xpicture/xpicture.pdf b/Master/texmf-dist/doc/latex/xpicture/xpicture.pdf Binary files differnew file mode 100644 index 00000000000..eee47e12be5 --- /dev/null +++ b/Master/texmf-dist/doc/latex/xpicture/xpicture.pdf |