diff options
author | Karl Berry <karl@freefriends.org> | 2006-07-20 18:47:23 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-07-20 18:47:23 +0000 |
commit | 7a01b2f895cca6398088b5ec490c896dee03d2fd (patch) | |
tree | 51938b8ee0bdb7c1f29d8d114ac15adbe53a6dc1 /Master/texmf-dist/doc/latex/probsoln/1stprncp.tex | |
parent | c1bc79c2f31e5ca9ba713e8cd5582a4b0a7f3fbc (diff) |
probsoln update (3mar06)
git-svn-id: svn://tug.org/texlive/trunk@1885 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/probsoln/1stprncp.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/probsoln/1stprncp.tex | 91 |
1 files changed, 91 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/probsoln/1stprncp.tex b/Master/texmf-dist/doc/latex/probsoln/1stprncp.tex new file mode 100644 index 00000000000..d7ccacdcda3 --- /dev/null +++ b/Master/texmf-dist/doc/latex/probsoln/1stprncp.tex @@ -0,0 +1,91 @@ +%% +%% This is file `1stprncp.tex', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% probsoln.dtx (with options: `1stprncp.tex,package') +%% Copyright (C) 2006 Nicola Talbot, all rights reserved. +%% If you modify this file, you must change its name first. +%% You are NOT ALLOWED to distribute this file alone. You are NOT +%% ALLOWED to take money for the distribution or use of either this +%% file or a changed version, except for a nominal charge for copying +%% etc. +%% \CharacterTable +%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z +%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z +%% Digits \0\1\2\3\4\5\6\7\8\9 +%% Exclamation \! Double quote \" Hash (number) \# +%% Dollar \$ Percent \% Ampersand \& +%% Acute accent \' Left paren \( Right paren \) +%% Asterisk \* Plus \+ Comma \, +%% Minus \- Point \. Solidus \/ +%% Colon \: Semicolon \; Less than \< +%% Equals \= Greater than \> Question mark \? +%% Commercial at \@ Left bracket \[ Backslash \\ +%% Right bracket \] Circumflex \^ Underscore \_ +%% Grave accent \` Left brace \{ Vertical bar \| +%% Right brace \} Tilde \~} + +\newproblem{dfp:xcube}{% +Differentiate $f(x) = x^3$ with respect to $x$ by first principles.}{% +\begin{eqnarray*} +\frac{dy}{dx} & = & \lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x) - f(x)}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{(x+\Delta x)^3-x^3}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{(x+\Delta x)(x^2+2x\Delta x+(\Delta x)^2)-x^3}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{x^3+3x^2\Delta x+3x(\Delta x)^2+(\Delta x)^3-x^3}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{3x^2\Delta x+3x(\Delta x)^2+(\Delta x)^3}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}3x^2+3x\Delta x + (\Delta x)^2\\ + & = & 3x^2 +\end{eqnarray*}} + +\newproblem{dfp:Ioverxsq}{% +Differentiate $\displaystyle f(x) = \frac{1}{x^2}$ with respect to $x$ by first principles.}{% +\begin{eqnarray*} +\frac{df}{dx} & = & \lim_{\Delta x\rightarrow 0}\frac{\frac{1}{(x+\Delta x)^2}-\frac{1}{x^2}}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{\frac{x^2-(x+\Delta x)^2}{x^2(x+\Delta x)^2}}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{x^2-(x^2+2x\Delta x+(\Delta x)^2)}{x^2\Delta x(x+\Delta x)^2}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{-2x\Delta x-(\Delta x)^2}{x^2\Delta x(x+\Delta x)^2}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{-2x-\Delta x}{x^2(x+\Delta x)^2}\\ + & = & \frac{-2x}{x^2x^2}\\ + & = & -\frac{2}{x^3} +\end{eqnarray*}} + +\newproblem{dfp:sqrtx}{% +Differentiate from first principles $f(x) = \surd x$}{% +\begin{eqnarray*} +\frac{df}{dx} & = & \lim_{\Delta x\rightarrow 0}\frac{\sqrt{x+\Delta x}-\surd x}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{(\sqrt{x+\Delta x}-\surd x)(\sqrt{x+\delta x}+\surd x)}{\Delta x(\sqrt{x+\Delta x}+\surd x)}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{x+\Delta x - x}{\Delta x(\sqrt{x+\Delta x}+\surd x)}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\Delta x)}\\ + & = & \lim_{\Delta x\rightarrow 0}\frac{1}{\sqrt{x+\Delta x}+\surd x}\\ + & = & \frac{1}{2\surd x} +\end{eqnarray*}} + +\newproblem{dfp:cons}{% +Differentiate from first principles $f(x) = c$ where $c$ is a constant.}{% +\begin{eqnarray*} +\frac{df}{dx} & = & \lim_{\Delta x\rightarrow 0}\frac{c-c}{\Delta x}\\ + & = & \lim_{\Delta x\rightarrow 0}0\\ + & = & 0 +\end{eqnarray*}} + +\newproblem{dfp:cosx}{% +Given +\begin{eqnarray*} +\lim_{x \rightarrow 0} \frac{\cos x - 1}{x} & = & 0\\ +\lim_{x \rightarrow 0} \frac{\sin x}{x} & = & 1 +\end{eqnarray*} +differentiate from first principles $f(x) = \cos x$.}{% +\begin{eqnarray*} +\frac{df}{dx} & = & \lim_{\Delta x \rightarrow 0}\frac{f(x + \Delta x) - f(x)}{\Delta x}\\ + & = & \lim_{\Delta x \rightarrow 0} \frac{\cos(x + \Delta x) - \cos(x)}{\Delta x}\\ + & = & \lim_{\Delta x \rightarrow 0} \frac{\cos x\cos\Delta x - \sin x\sin\Delta x - \cos x}{\Delta x}\\ + & = & \lim_{\Delta x \rightarrow 0} \frac{\cos x(\cos\Delta x - 1) - \sin x\sin\Delta x}{\Delta x}\\ + & = & \cos x\lim_{\Delta x \rightarrow 0}\frac{\cos\Delta x - 1}{\Delta x} + - \sin x\lim_{\Delta x \rightarrow 0}\frac{\sin\Delta x}{\Delta x}\\ + & = & -1 \qquad\mbox{(using given results)} +\end{eqnarray*}} +\endinput +%% +%% End of file `1stprncp.tex'. |