diff options
author | Karl Berry <karl@freefriends.org> | 2006-01-09 00:44:40 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-01-09 00:44:40 +0000 |
commit | b4fc5f639874db951177ec539299d20908adb654 (patch) | |
tree | 52f08823ca58fffe3db6a9b075635038c567626c /Master/texmf-dist/doc/latex/pdfwin/Bucuresti2003.tex | |
parent | dec3d98ebe442d7ea93efbaa8dd2e2be8149a467 (diff) |
doc 4
git-svn-id: svn://tug.org/texlive/trunk@80 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/pdfwin/Bucuresti2003.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/pdfwin/Bucuresti2003.tex | 1140 |
1 files changed, 1140 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/pdfwin/Bucuresti2003.tex b/Master/texmf-dist/doc/latex/pdfwin/Bucuresti2003.tex new file mode 100644 index 00000000000..52cbe94c775 --- /dev/null +++ b/Master/texmf-dist/doc/latex/pdfwin/Bucuresti2003.tex @@ -0,0 +1,1140 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% Presentation for: +% +% Workshop on Adaptive Filters in Bucure\c{s}ti / Romania +% (March 2003) +% +% (c) Matthias M\"{u}hlich, 03/2003 +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + +% this file must be processed with pdflatex! + + + +\documentclass[english,pdftex]{article} + +\usepackage{babel} %% hyphenation patterns - takes global option english +\usepackage{palatino} %% Palatino fonts +\usepackage{mathptm} %% PostScript Type 1 math fonts +\usepackage{textcomp} %% symbols +\usepackage[paneltoc,sectionbreak]{pdfwin} %% my presentation style file + %% takes global options english + pdftex + + + +% character protruding; disabled for higher compatibility +%\input{normprot.tex} + +% abbreviation for vectors +\input{shortvec.tex} + + + +% SETUP OF PDFWIN PACKAGE +% +% define windows and margins +\SetScreen{width=12cm, height=9cm} +\SetWindow{text}{basex=0.2cm, basey=0.2cm, width=9.4cm,height=8.6cm, +borderthickness=0.4mm} +\SetWindow{panel}{basex=9.8cm, basey=0.2cm, width=2cm, +height=8.6cm, borderthickness=0.4mm} +\SetButtons{width=1.6cm, shadowdepth=0.3mm} +\SetMargins{.5cm}{.5cm}{.5cm}{.5cm} +% +% define panel +\SetLogo{filename=JWGU-Logo.png,width=1.3cm, shadowdepth=.7mm} +\SetScreen{type=wallpaper, filename=marble.png} +\SetPaneltext{\scriptsize\sffamily Filter-Workshop\\Bucure\c{s}ti +2003} +\renewcommand{\DrawNavigationPanel}{ + \ShowPageInfo\par\vfill + \FirstLastButton\par\vfill + \PrevNextButton\par\vfill + \BackForwardButton\par\vfill + \FullScreenButton\par\vfill + \SearchButton\par\vfill + \CloseButton\par\vfill +} + + +% COLORS +% +% windows +\definecolor{titlecolor}{rgb}{.7,.15,.1} +\definecolor{TextBackgroundColor}{rgb}{.7,.8,1.0} +\definecolor{TextBorderColor}{rgb}{0,0,.5} +% +% colors for presentation +\definecolor{StateColor}{rgb}{0,0,.6} +\definecolor{StateFuncColor}{rgb}{.4,0,.3} +\definecolor{StateNoiseColor}{rgb}{.3,.3,.7} +\definecolor{MeasColor}{rgb}{0,.5,0} +\definecolor{MeasFuncColor}{rgb}{.4,.3,0} +\definecolor{MeasNoiseColor}{rgb}{.3,.7,.3} +\definecolor{InputColor}{rgb}{.7,0,0} +% +% colors for environments +\definecolor{CodeTextColor}{rgb}{0,0.3,0} +\definecolor{CodeMathColor}{rgb}{0.1,0.3,0.6} +\definecolor{MyBoxColor1}{rgb}{.8,.5,.1} +\definecolor{MyBoxColor2}{rgb}{.9,.8,.3} +\definecolor{MyBoxiiColor1}{rgb}{.8,.6,.4} +\definecolor{MyBoxiiColor2}{rgb}{.9,.8,.7} +\definecolor{MyCodeBoxColor1}{rgb}{.3,.6,.2} +\definecolor{MyCodeBoxColor2}{rgb}{.8,.9,.7} +% +% misc +\definecolor{dgreen}{rgb}{0,.6,0} + + +% LAYOUT +% +% general layout +\tolerance=2000 +\emergencystretch=5em +\fboxsep=3mm +\setlength{\parskip}{4pt plus 2pt minus 1pt} +\setlength{\parindent}{0pt} +\frenchspacing +% +% define page transition style +\pdfpageattr{/Trans << /S /Dissolve /D 0.3 >>} +% +% replace default font (roman default) by computer modern sans serif; +% Palatino only for panel +% NOTE: brute force, no good style here... +\renewcommand{\rmdefault}{cmss} +% +% redefine vector style (boldface instead of arrow on top) +\renewcommand{\vec}[1]{\mathbf{#1}} +% +% redefine section numbering: only section (and no subsection or lower) +% gets a number +\setcounter{secnumdepth}{1} + + +% NEW COMMANDS +% +\newcommand{\Realnumbers}{\mathrm{I\!R}} +\newcommand{\Expect}[1]{\mbox{{\sf E}}\left[ #1 \right]} +\newcommand{\Cov}[1]{\mbox{\sf Cov}\left[ #1 \right]} +% +\newcommand{\mybox}[1]{\begin{center}% + \fboxrule=.5mm% + \fcolorbox{MyBoxColor1}{MyBoxColor2}{% + \parbox[c]{.9\textwidth}{#1}}% +\end{center}} +% +\newcommand{\myboxii}[1]{\begin{center}% + \fboxrule=.5mm% + \fcolorbox{MyBoxiiColor1}{MyBoxiiColor2}{% + \parbox[c]{.9\textwidth}{#1}}% +\end{center}} +% +\newcommand{\mycodebox}[1]{\begin{center}% + \fboxrule=.5mm% + \ttfamily\bfseries% + \color{CodeTextColor}% + \fcolorbox{MyCodeBoxColor1}{MyCodeBoxColor2}{% + \parbox[c]{.9\textwidth}{#1}}% +\end{center}} +% +\newcommand{\codemath}[1]{\textcolor{CodeMathColor}{$#1$}} +\newcommand{\codetext}[1]{\textsf{\mdseries\small #1}} + + + +%==================================================================== + + + +\begin{document} + + + +% produce panel TOC entry for title page +\AddPanelTocEntry{Title Page}% + +{\centering {\Huge\bfseries\color{titlecolor} + Particle Filters\rule[-.6ex]{0pt}{5ex}\\ + \LARGE an overview\rule[-.6ex]{0pt}{3ex}\\ +} \vspace*{8mm} +{\Large Matthias M\"{u}hlich}\\[3ex] + \large Institut f{\"u}r Angewandte Physik\\ + J.W.Goethe-Universit{\"a}t Frankfurt\\ + \href{mailto:muehlich@iap.uni-frankfurt.de}{\color{black}muehlich@iap.uni-frankfurt.de}\\ +} + + + + +\newpage + +% replacement title page +{\centering {\Huge\bfseries\color{titlecolor} + Particle Filters\rule[-.6ex]{0pt}{5ex}\\ + \LARGE a tutorial\rule[-.6ex]{0pt}{3ex}\\ +} \vspace*{8mm} +{\Large Matthias M\"{u}hlich}\\[3ex] + \large Institut f{\"u}r Angewandte Physik\\ + J.W.Goethe-Universit{\"a}t Frankfurt\\ + \href{mailto:muehlich@iap.uni-frankfurt.de}{\color{black}muehlich@iap.uni-frankfurt.de}\\ +} + + + + +\section{Introduction} +\label{Intro} + +% change text window style from normal (-> title page) to transparent +% (-> rest of talk); must appear after page break, i.e. section command +% ("sectionbreak" option for pdfwin produces page break at each \section +% command) +\SetWindow{text}{type=transparent, borderthickness=0.5mm} + + +An increasing number of researchers is using a family of +techniques and algorithms called +\begin{itemize} +\itemsep=-1mm + \item \textit{condensation algorithms} + \item \textit{bootstrap filtering} + \item \textit{particle filters} + \item \textit{interacting particle approximations} + \item \textit{sequential Monte Carlo methods} + \item \textit{SIS, SIR, ASIR, RPF, \dots} +\end{itemize} +Time scale: last 10 years [e.g. Isard \& Blake 1996; Kitagawa +1996; Gordon, Salmond \& Smith 1993] +% +\mybox{The question of this talk is: What is behind all that?} + + + +\newpage +\subsection{General Classification of %On-line +Filter Strategies} + +Gaussian models: +\begin{itemize} + \item Kalman filter + \item extended Kalman filter + \item linear-update filter / linear regression filter /\\ + statistical linearization filter + \begin{itemize} + \item unscented filter + \item central difference filter + \item divided difference filter + \end{itemize} + \item assumed density filter / moment matching +\end{itemize} + +\newpage +Mixture of Gaussian models: +\begin{itemize} + \item assumed density filter / pseudo-Bayes + \item Gaussian-sum filter +\end{itemize} + +\bigskip +Nonparametric models: +\begin{itemize} + \item \textcolor{red}{\bfseries particle filter class} + \item histogram filter +\end{itemize} + + +\newpage +\subsection{Some Basic Remarks} + +\begin{itemize} + \item various applications: computer vision (i.e. tracking), + control theory, econometrics (stock markets, monetary flow, interest + rates), \dots + \item we deal with discrete time systems only + \item no out-of-sequence measurements + \item we are mainly interested in estimating the state at time + $k$ from measurements up to time $k'=k$ (opposite: smoothing + ($k'>k$) and prediction ($k'<k$); furthermore $k'$ need not be + fixed\dots) + \item no restrictions to linear processes or Gaussian noise! +\end{itemize} + + +\inithighlight{\subsection*{Overview of this Talk} +\begin{center} +\begin{itemize} +\item + {\color{color1} The Dynamic System Model} +\item + {\color{color2} Bayesian Filter Approach} +\item + {\color{color3} Optimal and Suboptimal Solutions} +\item + {\color{color4} The Particle Filter} +\item + {\color{color5} Experiments and Summary} +\end{itemize} +\end{center} +\vspace{4mm} } + + +\highlightnext +\pagenumbering{incremental} + +-- states of a system and state transition equation + +-- measurement equation + + +\highlightnext + +-- estimation of the state + +-- probabilistic modelling + +-- Bayesian filter + + +\highlightnext + +-- filtered pdf can be written down easily, but it is not always +tractable ($\rightarrow$ ugly integrals \dots) + +-- conditions under which optimal solutions exist: Kalman filter +and grid-based filter + +-- what can be done in other cases: suboptimal approaches + + +\highlightnext + +-- standard particle filter + +-- various improved versions + + +\highlightnext + +-- some experimental data and conclusion + + + +\newpage +\pagenumbering{restore} + + +\section{Dynamic System} + +A dynamic system can be modelled with two equations: + +\subsection{State Transition or Evolution Equation} + \[ + {\color{StateColor}\vx_k} = {\color{StateFuncColor}f_k}({\color{StateColor}\vx_{k-1}}, + {\color{InputColor}\vu_{k-1}},{\color{StateNoiseColor}\vv_{k-1}}) + \] + +${\color{StateFuncColor}f}(\cdot,\cdot,\cdot)$: +{\color{StateFuncColor}evolution +function} (possible non-linear) \\ +${\color{StateColor}\vx_k}, {\color{StateColor}\vx_{k-1}} \in +\Realnumbers^{n_x}$: +current and previous {\color{StateColor}state} \\ +${\color{StateNoiseColor}\vv_{k-1}} \in \Realnumbers^{n_v}$: +{\color{StateNoiseColor}state noise} +(usually \emph{not} Gaussian)\\ +${\color{InputColor}\vu_{k-1}} \in +\Realnumbers^{n_u}$: known {\color{InputColor}input} + +\bigskip +Note: state only depends on previous state, i.e. first order +Markov process + + + + +\newpage +\subsection{Measurement Equation} + \[ + {\color{MeasColor}\vz_k} = {\color{MeasFuncColor}h_k}({\color{StateColor}\vx_k}, + {\color{InputColor}\vu_k},{\color{MeasNoiseColor}\vn_k}) + \] + +${\color{MeasFuncColor}h}(\cdot,\cdot,\cdot)$: +{\color{MeasFuncColor}measurement +function} (possible non-linear) \\ +${\color{MeasColor}\vz_k} \in +\Realnumbers^{n_z}$: {\color{MeasColor}measurement} \\ +${\color{StateColor}\vx_k} \in +\Realnumbers^{n_x}$: {\color{StateColor}state} \\ +${\color{MeasNoiseColor}\vn_k} \in \Realnumbers^{n_n}$: +{\color{MeasNoiseColor}measurement noise} +(usually \emph{not} Gaussian)\\ +${\color{InputColor}\vu_k} \in +\Realnumbers^{n_u}$: known {\color{InputColor}input} + +\bigskip +(dimensionality of {\color{StateColor}state}, +{\color{MeasColor}measurement}, {\color{InputColor}input}, +{\color{StateNoiseColor}state noise}, and +{\color{MeasNoiseColor}measurement noise} can all be different!) + + + + +\newpage +\pagenumbering{incremental} +\includegraphics[width=.99\textwidth]{BucSystem1} + + +\newpage +\includegraphics[width=.99\textwidth]{BucSystem2} + + +\newpage +\includegraphics[width=.99\textwidth]{BucSystem3} + + +\newpage +\includegraphics[width=.99\textwidth]{BucSystem4} + + +\newpage +\includegraphics[width=.99\textwidth]{BucSystem5} + + +\newpage +\includegraphics[width=.99\textwidth]{BucSystem6} + +Assumptions: + +The observations are conditionally independent given the state: +$p(\vz_k|\vx_k)$. + +Hidden Markov Model (HMM):\\ +$p(\vx_0)$ given and $p(\vx_k|\vx_{k-1})$ defines state transition probability for $k \ge 1$. + + +\newpage +\pagenumbering{restore} + + + + +\section{Bayesian Filters} + + +\subsection{Estimating the Posterior} + +Bayesian approach: We attempt to construct the posterior pdf of +the state given all measurements. + +$\Rightarrow$ can be termed a complete solution to the estimation +problem because all available information is used; from the pdf, +an optimal estimate can theoretically be found for any criterion. + +in detail: We seek estimates of $\vx_k$ based on all available +measurements up to time $k$ (abbreviated as $\vz_{1:k}$) by +constructing the posterior $p(\vx_k|\vz_{1:k})$. + +Assumption: initial state pdf (prior) $p(\vx_0)$ is given + + + +\newpage +\subsection{The Use of Knowing the Posterior} + +Let $f_k : \Realnumbers^{(k+1)\times n_x} \to \Realnumbers$ be any +arbitrary (integrable) function that can depend +\begin{itemize} + \item on all components of the state $\vx$ + \item on the whole trajectory in state-space +\end{itemize} + +Examples: This function can be an estimator for the current state +or for future observations. + +Then we can compute its expectation using +\[ + \Expect{f_k(\vx_{0:k})} = \int f(\vx_{0:k}) + p(\vx_{0:k}|\vz_{1:k}) d\vx_{0:k} +\] + +MMSE estimate of state: $\hat{\vx} = \Expect{\vx_k}$. Other +estimates that can be computed: median, modes, confidence +intervals, kurtosis, \dots + + + +\newpage +\subsection{Recursive Filters} + +recursive filters (i.e. sequential update of previous estimate) +$\leftrightarrow$ batch processing (computation with all data in +one step) + +not only faster: allow on-line processing of data (lower storage +costs, rapid adaption to changing signals characteristics) + +essentially consist of two steps: + \begin{description} + \item[prediction step:] $p(\vx_{k-1}|\vz_{1:k-1}) \to + p(\vx_{k}|\vz_{1:k-1})$ \\ + (usually deforms / translates / spreads state pdf due to noise) + \item[update step:] $p(\vx_{k}|\vz_{1:k-1}),\vz_k \to p(\vx_{k}|\vz_{1:k})$\\ + (combines likelihood of current measurement with predicted state; + usually concentrates state pdf) + \end{description} + + +\newpage +\subsection{General Prediction-Update Framework} + +Assume that pdf $p(\vx_{k-1}|\vz_{1:k-1})$ is available at time +$k-1$. + +Prediction step: (using Chapman-Kolmogoroff equation) +\begin{equation} + \label{eq:predict} + p(\vx_k|\vz_{1:k-1}) = \int + p(\vx_k|\vx_{k-1}) p(\vx_{k-1}|\vz_{1:k-1}) d\vx_{k-1} +\end{equation} +This is the prior of the state $\vx_k$ at time $k$ \emph{without +knowledge of the measurement $\vz_k$}, i.e. the probability +\emph{given only previous measurements}. + +Update step: (compute posterior pdf from +predicted prior pdf and new measurement) +\begin{equation} + \label{eq:update} + p(\vx_k|\vz_{1:k}) = \frac{p(\vz_k|\vx_k)p(\vx_k|\vz_{1:k-1})}{p(\vz_{k}|\vz_{1:k-1})} +\end{equation} + + + + + +\newpage +\pagenumbering{incremental} + +\def\temp{Let us prove formula (\ref{eq:update}) (just in order to train calculations +with joint and conditional probabilities\dots)} +\temp +\begin{eqnarray*} + && \hspace*{75mm} \\[-5mm] + && \textcolor{blue}{p(\vx_k|\vz_{1:k})} \\ + &&= \frac{\textcolor{blue}{p(\vz_{1:k}|\vx_k)p(\vx_k)}}{\textcolor{blue}{p(\vz_{1:k})}} +\end{eqnarray*} +(Bayes rule) + + +\newpage +\temp +\begin{eqnarray*} + && \hspace*{75mm} \\[-5mm] + && p(\vx_k|\vz_{1:k}) \\ + &&= \frac{\textcolor{blue}{p(\vz_{1:k}|\vx_k)}p(\vx_k)}{\textcolor{dgreen}{p(\vz_{1:k})}} \\ + &&= \frac{\textcolor{blue}{p(\vz_{k},\vz_{1:k-1}|\vx_k)}p(\vx_k)}{\textcolor{dgreen}{p(\vz_{k},\vz_{1:k-1})}} +\end{eqnarray*} +(separate $p(\vz_{1:k})$ into $p(\vz_k,\vz_{1:k-1})$) + + +\newpage +\temp +\begin{eqnarray*} + && \hspace*{75mm} \\[-5mm] + && p(\vx_k|\vz_{1:k}) \\ + &&= \frac{p(\vz_{1:k}|\vx_k)p(\vx_k)}{p(\vz_{1:k})} \\ + &&= \frac{\textcolor{blue}{p(\vz_{k},\vz_{1:k-1}|\vx_k)}p(\vx_k)}{\textcolor{dgreen}{p(\vz_{k},\vz_{1:k-1})}} \\ + &&= \frac{\textcolor{blue}{p(\vz_{k}|\vz_{1:k-1},\vx_k)p(\vz_{1:k-1}|\vx_k)} + p(\vx_k)}{\textcolor{dgreen}{p(\vz_{k}|\vz_{1:k-1})p(\vz_{1:k-1})}} +\end{eqnarray*} +(factorize joint probability: $p(a,b|c) = p(a|b,c)\cdot p(b|c)$ +and $p(a,b) = p(a|b)\cdot p(b)$) + + +\newpage +\temp +\begin{eqnarray*} + && \hspace*{75mm} \\[-5mm] + && p(\vx_k|\vz_{1:k}) \\ + &&= \frac{p(\vz_{1:k}|\vx_k)p(\vx_k)}{p(\vz_{1:k})} \\ + &&= \frac{p(\vz_{k},\vz_{1:k-1}|\vx_k)p(\vx_k)}{p(\vz_{k},\vz_{1:k-1})} \\ + &&= \frac{p(\vz_{k}|\vz_{1:k-1},\vx_k)\textcolor{blue}{p(\vz_{1:k-1}|\vx_k)} + p(\vx_k)}{p(\vz_{k}|\vz_{1:k-1})p(\vz_{1:(k-1}))} \\ + &&= \frac{p(\vz_{k}|\vz_{1:k-1},\vx_k)\textcolor{blue}{p(\vx_k|\vz_{1:k-1})p(\vz_{1:k-1})} + p(\vx_k)}{p(\vz_{k}|\vz_{1:k-1})p(\vz_{1:k-1})\textcolor{blue}{p(\vx_k)}} +\end{eqnarray*} +(Bayes rule) + + +\newpage +\temp +\begin{eqnarray*} + && \hspace*{75mm} \\[-5mm] + && p(\vx_k|\vz_{1:k}) \\ + &&= \frac{p(\vz_{1:k}|\vx_k)p(\vx_k)}{p(\vz_{1:k})} \\ + &&= \frac{p(\vz_{k},\vz_{1:k-1}|\vx_k)p(\vx_k)}{p(\vz_{k},\vz_{1:k-1})} \\ + &&= \frac{p(\vz_{k}|\vz_{1:k-1},\vx_k)p(\vz_{1:k-1}|\vx_k) + p(\vx_k)}{p(\vz_{k}|\vz_{1:k-1})p(\vz_{1:(k-1}))} \\ + &&= \frac{\textcolor{blue}{p(\vz_{k}|\vz_{1:k-1},\vx_k)}p(\vx_k|\vz_{1:k-1})\textcolor{dgreen}{p(\vz_{1:k-1}) + p(\vx_k)}}{p(\vz_{k}|\vz_{1:k-1})\textcolor{dgreen}{p(\vz_{1:k-1})p(\vx_k)}} \\ + &&= \frac{\textcolor{blue}{p(\vz_k|\vx_k)}p(\vx_k|\vz_{1:k-1})}{p(\vz_{k}|\vz_{1:k-1})} +\end{eqnarray*} +(independence of observations; cancelling out terms) + + + +\newpage +\pagenumbering{restore} + +\subsection{The Structure of the Update Equation} + +\begin{eqnarray*} + p(\vx_k|\vz_{1:k}) &=& \frac{p(\vz_k|\vx_k)\cdot p(\vx_k|\vz_{1:k-1})}{p(\vz_{k}|\vz_{1:k-1})} + \\[1.5ex] + \mbox{posterior} &=& \frac{\mbox{likelihood}\cdot\mbox{prior}}{\mbox{evidence}} +\end{eqnarray*} + +prior: given by prediction equation + +likelihood: given by observation model + +evidence: the normalizing constant in the denominator +\[ + p(\vz_{k}|\vz_{1:k-1}) = \int p(\vz_k|\vx_k)p(\vx_k|\vz_{1:k-1}) d\vx_k +\] + + + + +\newpage + +This theoretically allows an optimal Bayesian solution (in the +sense of computing the posterior pdf). + +\mybox{Problem: only a conceptual solution; integrals are not +tractable.} + +But: in some restricted cases, an optimal solution is possible. +Two optimal solutions (under restrictive assumptions): +\begin{itemize} + \item (standard) Kalman filter + \item grid-based filter +\end{itemize} + + + +\section{Kalman Filter} + +\subsection{Introduction} + +Assumptions: +\begin{itemize} + \item posterior at time $k-1$, i.e. $p(\vx_{k-1}|\vz_{k-1})$, is Gaussian + \item dynamic system characterized by + \begin{eqnarray*} + &{\color{StateColor}\vx_k} = {\color{StateFuncColor}\MF_k}{\color{StateColor}\vx_{k-1}} + + + {\color{StateFuncColor}\MG_k}{\color{StateNoiseColor}\vv_{k-1}}& + \\ + &{\color{MeasColor}\vz_k} = {\color{MeasFuncColor}\MH_k}{\color{StateColor}\vx_k} + + + {\color{MeasFuncColor}\MJ_k}{\color{MeasNoiseColor}\vn_k}& + \end{eqnarray*} + \item both noise vectors Gaussian (covariance matrices are $\MQ_{k-1}$ and $\MR_k$) +\end{itemize} +Then new posterior $p(\vx_{k}|\vz_{k})$ is Gaussian, too, and can +be computed using simple linear equations. + +optimal solution, but \emph{highly restrictive} assumptions must hold + + +%\newpage +\subsection{Prediction Equation} + +At time $k-1$: $p(\vx_{k-1}|\vz_{1:k-1}) = {\cal N}(\vm_{k-1|k-1}, \MP_{k-1|k-1})$ + +Inserting into (\ref{eq:predict}) yields +\[ + p(\vx_k|\vz_{1:k-1}) = {\cal N}(\vm_{k|k-1}, \MP_{k|k-1}) +\] +with +\[ + \vm_{k|k-1} = \MF_k\vm_{k-1|k-1} +\] +and +\[ + \MP_{k|k-1} = \MG_{k}\MQ_{k-1}\MG_{k}^T + \MF_k\MP_{k-1|k-1}\MF_k^T +\] + + + +\newpage +\subsection{Update Equation} + +Inserting into (\ref{eq:update}) yields +\[ + p(\vx_k|\vz_{1:k}) = {\cal N}(\vm_{k|k}, \MP_{k|k}) +\] +with +\[ + \vm_{k|k} = \vm_{k|k-1} + \MK_k (\vz_k - \underbrace{\MH_k\vm_{k|k-1}}_{\mbox{\small estimated }\hat{\vz}_k}) +\] +and +\[ + \MP_{k|k} = \MP_{k|k-1} - \MK_k\MH_k\MP_{k|k-1} +\] +Kalman Gain: +\[ + \MK_k = \MP_{k|k-1}\MH_k^T(\underbrace{\MH_k\MP_{k|k-1}\MH_k^T + \MJ_k\MR_k\MJ_k^T}_{\mbox{$\Cov{\hat{\vz}_k}$}})^{-1} +\] + + + + + + +\section{Grid-Based Filter} + + +\subsection{Introduction} + +Assumptions: +\begin{itemize} + \item state space is discrete + \item number of different states ($N_s$) is limited \\ + {\footnotesize (Note: implicitly includes discreteness)} +\end{itemize} + +Suppose at time $k-1$ we have states $\vx^i$ with +$i=1,\ldots,N_s$. Conditional probability of these states: +\[ + Pr(\vx_{k-1} = \vx^i|\vz_{1:k-1}) = w_{k-1|k-1}^i +\] +Then the (old) posterior at time $k-1$ is given by: +\[ + p(\vx_{k-1}|\vz_{1:k-1}) = \sum_{i=1}^{N_s} w_{k-1|k-1}^i \; \delta(\vx_{k-1}-\vx^i) +\] + +\newpage + +\subsection{Results (Summary)} + +Both the (new) prior and the (new) posterior have the same +structure: a sum of weighted Dirac peaks: + +\[ + p(\vx_{k}|\vz_{1:k-1}) = \sum_{i=1}^{N_s} w_{k|k-1}^i \; \delta(\vx_{k-1}-\vx^i) +\] +\[ + p(\vx_{k}|\vz_{1:k}) = \sum_{i=1}^{N_s} w_{k|k}^i \; \delta(\vx_{k-1}-\vx^i) +\] + +Note: extension to different sets of states for each time step +\[ + \{\vx^i\}: i=1,\ldots,N_s \quad\longrightarrow\quad \{\vx^i_k\}: i=1,\ldots,N_{s,k} +\] +with time-varying index $k$ is easily possible; the `allowed' +states need not be constant. + + + +\newpage +\subsection{Prediction Equation (in Detail)} + +Inserting into (\ref{eq:predict}) yields +\begin{eqnarray*} + p(\vx_k|\vz_{1:k-1}) + &=& \sum_{i=1}^{N_s} \sum_{j=1}^{N_s} w_{k-1|k-1}^j + p(\vx^i|\vx^j) \delta(\vx_{k-1}-\vx^i)\\ + &=& \sum_{i=1}^{N_s} w_{k|k-1}^i \delta(\vx_{k-1}-\vx^i) +\end{eqnarray*} +where $w_{k|k-1}^i = \sum_{j=1}^{N_s} w_{k-1|k-1}^j +p(\vx^i|\vx^j)$ + +\bigskip +\mybox{(new) prior weights = old posterior weights,\\ +reweighted using state transition probabilities} + + + + +\newpage +\subsection{Update Equation (in Detail)} + +Inserting into (\ref{eq:update}) yields +\[ + p(\vx_k|\vz_{1:k}) = \sum_i^{N_s} w_{k|k}^i \delta(\vx_{k-1}-\vx^i) +\] +where $w_{k|k}^i = \frac{w_{k|k-1}^i +p(\vz_{k}|\vx^i)}{\sum_j^{N_s} w_{k|k-1}^j +p(\vz_{k}|\vx^j)}$. + +Note: denominator only needed for normalization + +\bigskip +\mybox{posterior weights = prior weights, reweighted using +likelihoods} + + + + + +\section{Particle Filter} + + +\subsection{Suboptimal Approximations} + +If we want to preserve Kalman filter principle\dots +\begin{itemize} + \item Extended Kalman Filter (EKF) + \item Unscented Kalman Filter (UKF) +\end{itemize} +...we get better results, \mybox{BUT: \emph{we cannot get rid off +Gaussian approximations}} + +\newpage + +EKF / UKF: \mybox{All these approaches fail if we have +\begin{itemize} + \item bimodal / multimodal pdfs + \item heavily skewed pdfs +\end{itemize} +} + +We need a more general scheme to tackle these problems. + + +\newpage +\subsection{Particle Filter -- General Concept} + +Many different names (do you remember the +\href{#section.1}{introduction}?) but the general concept is +rather simple: + +\mybox{PARTICLE FILTER: + +If we cannot solve the integrals required for a Bayesian recursive +filter analytically \dots we represent the posterior probabilities +by a set of randomly chosen weighted samples.} + +Note: ``randomly chosen'' $\equiv$ ``Monte Carlo'' \\ +(we are playing roulette / throwing the dice) + +Increasing number of samples $\Rightarrow$ (almost sure) +convergence to true pdf + + + +\newpage +\subsection{Sequential Importance Sampling (SIS)} + +SIS is the basic framework for most particle filter algorithms. +Let +\begin{eqnarray*} + \{\vx_{0:k}^i\} &:& \mbox{set of support points + (samples, particles)} \\ + && i = 1,\ldots,N_s \\ + && \mbox{(whole trajectory for each particle!)} \\ + w_{k}^i &:& \mbox{associated weights, normalized to $\sum_i w_k^i = 1$} +\end{eqnarray*} +Then: +\[ + p(\vx_k|\vz_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta(\vx_{0:k} - \vx^i_{0:k}) +\] +(discrete weighted approximation to the true posterior) + + +\newpage +\subsection*{SIS (continued)} + +Usually we cannot draw samples $\vx_k^i$ from $p(\cdot)$ directly. +Assume we sample directly from a (different) \emph{importance +function} $q(\cdot)$. Our approximation is still correct (up to +normalization) if +\[ + w_k^i \propto \frac{p(\vx^i_{0:k}|\vz_{1:k})}{q(\vx^i_{0:k}|\vz_{1:k})} +\] +\mybox{The trick: we can choose $q(\cdot)$ freely!} + +If the importance function is chosen to factorize such that +\[ + q(\vx_{0:k}|\vz_{1:k}) = q(\vx_{k}|\vx_{0:k-1},\vz_{1:k})\;q(\vx_{0:k-1}|\vz_{1:k-1}) +\] +then one can augment old particles $\vx^i_{0:k-1}$ by $\vx_k \sim +q(\vx_{k}|\vx_{0:k-1},\vz_{1:k})$ to get new particles +$\vx^i_{0:k}$. + + +\newpage +\subsection*{SIS (continued)} + +Weight update (after some lengthy computations\dots): +\begin{equation} + \label{eq:WeightUpdate} + w_k^i = w^i_{k-1} + \frac{p(\vz_k|\vx^i_k)\,p(\vx^i_{k}|\vx^i_{k-1})}{q(\vx^i_{k}|\vx^i_{0:k-1},\vz_{1:k})} +\end{equation} +Furthermore, if $q(\vx_{k}|\vx_{0:k-1},\vz_{1:k}) = +q(\vx_{k}|\vx_{k-1},\vz_{1:k})$\\ +(only dependent on \emph{last} state and observations): +\[ + p(\vx|\vz_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \,\delta(\vx_k - + \vx_k^i) +\] +(and we need not preserve trajectories $\vx^i_{0:k-1}$ and history +of observations $\vz_{1:k-1}$) + + +\newpage +\subsection{SIS Algorithm -- Pseudo Code} + +\mycodebox{ + [\codemath{\{\vx^i_k,w^i_k\}_{i=1}^{N_s}}] = SIS(\codemath{\{\vx^i_{k-1},w^i_{k-1}\}_{i=1}^{N_s}}, + \codemath{\vz_k}) \\ + \hspace*{7mm} FOR \codemath{i} = \codemath{1} : \codemath{N_s} \\ + \hspace*{14mm} \codetext{draw} \codemath{\vx_k^i \sim q(\vx_{k}|\vx^i_{k-1},\vz_{k})} \\ + \hspace*{14mm} \codetext{update weights according to (\ref{eq:WeightUpdate})} \\ + \hspace*{7mm} END FOR \\ + \hspace*{7mm} \codetext{normalize weights to} \codemath{\sum_{i=1}^{N_s} w_k^i = 1} +} + + + +\newpage +\subsection{PROBLEM: Degeneracy Problem} + +Problem with SIS approach: after a few iterations, most particles +have negligible weight (the weight is concentrated on a few +particles only) + +Counter measures: +\begin{itemize} + \item brute force: many, many samples $N_s$ + \item good choice of importance density + \item resampling +\end{itemize} + +Note: amount of degeneracy can be estimated based on variance of +weights [Liu 1996]. + + + +\newpage +\subsection{Optimal Impotance Density:} + +It can be shown that the optimal importance density is given by +\[ + q(\vx_k|\vx_{k-1},\vz_k)_{opt} = p(\vx_k|\vx_{k-1},\vz_k) +\] +Then +\[ + w^i_k = w^i_{k-1} \int p(\vz_k|\vx'_k) p(\vx'_k|\vx^i_{k-1}) + d\vx'_k +\] +Two major drawbacks: usually neither sampling from $q_opt$ nor +solving the integral in $w^i_k$ is possible\dots (but in some +special cases, it works) + +Other alternative which is often convenient: \\ +$q(\cdot) = p(\vx_k|\vx_{k-1})$ (prior). Easy to implement, but does not take +measurements into account. + + + +\newpage +\subsection{Resampling Approaches} + +Basic idea of resampling: + \mybox{Whenever degeneracy rises above threshold: replace old set of samples + (+ weights) with new set of samples (+ weights), such that sample density + better reflects posterior pdf.} + +This eliminates particles with low weight and chooses more +particles in more probable regions. + +Complexity: possible in $O(N_s)$ operations + + +\newpage +The resampling principle: + +\begin{center} +\includegraphics[width=0.8\linewidth]{BucResampling} +\end{center} + +(graphics taken from Van der Merwe et al.) + + + +\newpage +\subsection{General Particle Filter -- Pseudo Code} + +\mycodebox{ + [\codemath{\{\vx^i_k,w^i_k\}_{i=1}^{N_s}}] = PF(\codemath{\{\vx^i_{k-1},w^i_{k-1}\}_{i=1}^{N_s}}, + \codemath{\vz_k}) \\ + \hspace*{7mm} FOR \codemath{i} = \codemath{1} : \codemath{N_s} \\ + \hspace*{14mm} \codetext{draw} \codemath{\vx_k^i \sim q(\vx_{k}|\vx^i_{k-1},\vz_{k})} \\ + \hspace*{14mm} \codetext{update weights according to (\ref{eq:WeightUpdate})} \\ + \hspace*{7mm} END FOR \\ + \hspace*{7mm} \codetext{normalize weights to} \codemath{\sum_{i=1}^{N_s} w_k^i = 1}\\ + \hspace*{7mm} IF \codetext{degeneracy too high} \\ + \hspace*{14mm} \codetext{resample} \codemath{\{\vx^i_k,w^i_k\}_{i=1}^{N_s}} \\ + \hspace*{7mm} END IF +} + + + + +\newpage +\subsection{PROBLEM: Loss of Diversity} + +No degeneracy problem but new problem arises: +% +\mybox{Particles with high weight are selected more and more +often, others die out slowly + +$\Rightarrow$ \emph{loss of diversity} or \emph{sample +impoverishment}} + +For small process noise, all particles can collapse into a single +point within a few iterations. + +Other problem: resampling limits the ability to parallelize +algorithm. + + + +\newpage +\subsection{Other Particle Filter Variants} + + +Methods to counteract loss of diversity and degeneracy problem: +\begin{itemize} + \item resample-move algorithm + \item regularization + \item Rao-Blackwellisation + \item multiple Monte-Carlo +\end{itemize} + +Other particle filter variants found in the literature: +\begin{itemize} + \item sampling importance resampling (SIR) + \item auxiliary sampling importance resampling (ASIR) + \item regularized particle filter (RPF) + \item \dots +\end{itemize} + + + + +\section{Experiments} + +see videos... + + + +\section{Summary} + +First of all: what I did \emph{not} talk about\dots +\begin{itemize} + \item speed of convergence + \item number of samples needed + \item complexity issues / tricks for speed-up of algorithms + \item advanced particle filter variants in detail +\end{itemize} + + +$\Rightarrow$ refer to the literature if you want to know more + + + +\newpage +Advantages of particle filters (PFs): +\begin{itemize} + \item can deal with non-linearities + \item can deal with non-Gaussian noise + \item can be implemented in $O(N_s)$ + \item mostly parallelizable + \item easy to implement + \item in contrast to HMM filters (state-space discretized to $N$ fixed + states) : PFs focus adaptively on probable regions of state-space +\end{itemize} + + + +\newpage +{\bfseries\Large Thesis:} + +\myboxii{If you want to solve a filtering problem, then particle +filters are the best filters you can use, much better than e.g. +Kalman filters.} + +\textcolor{dgreen}{\bfseries Right} or \textcolor{red}{\bfseries wrong}? + + +\newpage + +\textcolor{red}{\bfseries WRONG}! + +Particle filters include a random element; they only convergence +to the true posterior pdf (almost surely) if $N_s \to \infty$. + +Therefore: \emph{If the assumptions for Kalman filters or +grid-based filters are valid, no PF can outperform them!} + +Additionally: depending on the dynamic model, Gaussian sum +filters, unscented Kalman filters or extended Kalman filters may +produce satisfactory results at lower computational cost. + +(But you should at least try a PF; it is usually better than other +suboptimal methods!) + + + + +\newpage +PF approaches proved their usefulness in a variety of +applications. + +But: +\begin{itemize} + \item choice of importance function $q(\cdot)$ is crucial in PF + design + \item large sample number $N_s$ increases computational effort + \item potential problems: \emph{degeneracy} and \emph{loss of diversity} +\end{itemize} + +\mybox{If these points are taken into account, then particle +filters are an extremely powerful tool for filtering / +estimation.} + +(``black box usage'' vs ``know what you're doing!'') + + + + + +\newpage +\vspace*{2cm} + + +{\Huge Thank you!} + +\vspace{1.3cm} + +\begin{raggedleft} + \footnotesize + This presentation was made with \LaTeX.\\ + (try to write Bucure\c{s}ti in Powerpoint\dots)\\ +\end{raggedleft} + + + +\end{document} |