diff options
author | Karl Berry <karl@freefriends.org> | 2019-11-08 21:40:58 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2019-11-08 21:40:58 +0000 |
commit | cee1b7f2580148a33ae6cc0631c56c7e35ce0bff (patch) | |
tree | f1f4b8c3cadb58d72d04bf20dcc136eae4f57a23 /Master/texmf-dist/doc/latex/jnuexam/exam-a.tex | |
parent | 69e924ee6c8d31ad1ad84dfe14dd724fe50553df (diff) |
jnuexam (8nov19)
git-svn-id: svn://tug.org/texlive/trunk@52696 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/jnuexam/exam-a.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/jnuexam/exam-a.tex | 68 |
1 files changed, 35 insertions, 33 deletions
diff --git a/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex b/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex index 44bc600fae0..54b2d1ac404 100644 --- a/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex +++ b/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex @@ -39,10 +39,10 @@ \vfill \begin{problem} -已知二阶行列式 $\text{$\left|\begin{array}{cc} +已知二阶行列式 $\left|\begin{array}{cc} 1 & 2\\ - 3 & x -\end{array}\right|$=0}$,则 $x=$ \fillout{$-6$}. +\end{array}\right|=0$,则 $x=$ \fillout{$-6$}. \end{problem} \vfill @@ -178,10 +178,10 @@ \begin{solution} \everymath{\displaystyle}% -原式$=\int\e^{2x}\,\sec^2 x\dx+2\int\e^{2x}\,\tan x\dx$ \score{2} -\hspace{5em}${}=\int\e^{2x}\,\d(\tan x)+ 2\int\e^{2x}\,\tan x\dx$ \score{4} -\hspace{5em}${}=\e^{2x}\,\tan x - 2\int\e^{2x}\,\tan x\dx+ 2\int\e^{2x}\,\tan x\dx$ \score{6} -\hspace{5em}${}=\e^{2x}\,\tan x + C$ \score{8} +原式 \? $=\int\e^{2x}\,\sec^2 x\dx+2\int\e^{2x}\,\tan x\dx$ \score{2} +\+ $=\int\e^{2x}\,\d(\tan x)+ 2\int\e^{2x}\,\tan x\dx$ \score{4} +\+ $=\e^{2x}\,\tan x - 2\int\e^{2x}\,\tan x\dx+ 2\int\e^{2x}\,\tan x\dx$ \score{6} +\+ $=\e^{2x}\,\tan x + C$ \score{8} \end{solution} \vfill @@ -220,7 +220,7 @@ \bigskip \begin{solution} -$A = \left|\begin{array}{cccc} +$A \? = \left|\begin{array}{cccc} 0 & 1 & 2 & 3\\ 1 & 2 & 3 & 0\\ 2 & 3 & 0 & 1\\ @@ -235,7 +235,7 @@ $A = \left|\begin{array}{cccc} - 1 & - 6 & 1\\ - 6 & - 8 & 2 \end{array}\right|$ \score{4} -\qquad $= -\left|\begin{array}{ccc} +\+ $= -\left|\begin{array}{ccc} 1 & 2 & 3\\ 0 & - 4 & 4\\ 0 & 4 & 20 @@ -255,11 +255,11 @@ x_2 x_3 + 9 x^2_3$ 化为标准形 $f = d_1 y^2_1 + d_2 y^2_2 + d_3 y^2_3$ . \bigskip \begin{solution} -$f = x_1^2 + 2 x_1 x_2 - 6 x_1 x_3 + 2 x_2^2 - 12 x_2 x_3 + 9 x^2_3$ \par -\qquad$= x_1^2 + 2 x_1 (x_2 - 3 x_3) + (x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3 $ \par -\qquad$= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3$ \score{3} -\qquad$= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 2 x_2 \cdot 3 x_3 + (3 x_3)^2 - 9x_3^2$ \par -\qquad$= (x_1 + x_2 - 3 x_3)^2 + (x_2 - 3 x_3)^2 - 9 x_3^2$ \score{6} +$f \? = x_1^2 + 2 x_1 x_2 - 6 x_1 x_3 + 2 x_2^2 - 12 x_2 x_3 + 9 x^2_3$ \par + \+ $= x_1^2 + 2 x_1 (x_2 - 3 x_3) + (x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3 $ \par + \+ $= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3$ \score{3} + \+ $= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 2 x_2 \cdot 3 x_3 + (3 x_3)^2 - 9x_3^2$ \par + \+ $= (x_1 + x_2 - 3 x_3)^2 + (x_2 - 3 x_3)^2 - 9 x_3^2$ \score{6} 令$y_1 = x_1 + x_2 - 3 x_3, y_2 = x_2 - 3 x_3, y_3 = x_3$, \newline 则$f = y_1^2 + y_2^2 - 9y_3^2$为标准形.\score{8} \end{solution} @@ -270,19 +270,19 @@ $f = x_1^2 + 2 x_1 x_2 - 6 x_1 x_3 + 2 x_2^2 - 12 x_2 x_3 + 9 x^2_3$ \par \begin{problem} 设每发炮弹命中飞机的概率是0.2且相互独立,现在发射100发炮弹.\par -\step 用切贝谢夫不等式估计命中数目$\xi$在10发到30发之间的概率.\par -\step 用中心极限定理估计命中数目$\xi$在10发到30发之间的概率. +(1) 用切贝谢夫不等式估计命中数目$\xi$在10发到30发之间的概率.\par +(2) 用中心极限定理估计命中数目$\xi$在10发到30发之间的概率. \end{problem} \bigskip \begin{solution} $E\xi = n p = 100 \cdot 0.2 = 20, D\xi = n p q = 100 \cdot 0.2 \cdot 0.8 = 16$. \score{2} -\step $P (10 < \xi < 30) = P (| \xi - E \xi | < 10) \ge 1 - \frac{D\xi}{10^2} +(1) $P (10 < \xi < 30) = P (|\xi - E\xi| < 10) \ge 1 - \frac{D\xi}{10^2} = 1 - \frac{16}{100} = 0.84$. \score{4} -\step $P (10 < \xi < 30) \approx \Phi_0 \left( \frac{30 - 20}{\sqrt{16}}\right) - - \Phi_0 \left( \frac{10 - 20}{\sqrt{16}} \right)$ \score{6} -\qquad $= 2 \Phi_0 (2.5) - 1 = 2 \cdot 0.9938 - 1 =0.9876$ \score{8} +(2) $P (10 < \xi < 30) \? \approx \Phi_0\left(\frac{30 - 20}{\sqrt{16}}\right) + - \Phi_0\left(\frac{10 - 20}{\sqrt{16}}\right)$ \score{6} + \+ $= 2 \Phi_0(2.5) - 1 = 2 \cdot 0.9938 - 1 =0.9876$ \score{8} \end{solution} \vfill @@ -295,11 +295,11 @@ $E\xi = n p = 100 \cdot 0.2 = 20, D\xi = n p q = 100 \cdot 0.2 \cdot 0.8 = 16$. \bigskip \begin{solution} -\step 待检假设 $H_0 : \mu = 3140$. \score{1} -\step 选取统计量 $T = \frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$. \score{3} -\step 查表得到 $t_{\alpha} = t_{\alpha} (n - 1) = t_{0.01} (15) =2.947$. \score{5} -\step 计算统计值 $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} =\frac{3160-3140}{100/4} = 0.8$.\score{7} -\step 由于 $| t | < t_{\alpha}$, 故接受 $H_0$, 即假设成立. \score{8} +(1) 待检假设 $H_0 : \mu = 3140$. \score{1} +(2) 选取统计量 $T = \frac{\widebar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$. \score{3} +(3) 查表得到 $t_{\alpha} = t_{\alpha} (n - 1) = t_{0.01} (15) =2.947$. \score{5} +(4) 计算统计值 $t = \frac{\widebar{x} - \mu_0}{s/\sqrt{n}} =\frac{3160-3140}{100/4} = 0.8$.\score{7} +(5) 由于 $| t | < t_{\alpha}$, 故接受 $H_0$, 即假设成立. \score{8} \end{solution} \vfill @@ -308,6 +308,8 @@ $E\xi = n p = 100 \cdot 0.2 = 20, D\xi = n p q = 100 \cdot 0.2 \cdot 0.8 = 16$. \makepart{证明题}{共~2~小题,每小题~8~分,共~16~分} +\renewcommand{\solutionname}{证} % 将“解”字改为“证”字 + \begin{problem} 设数列$\{x_n\}$满足$x_1=\sqrt2$,$x_{n+1}=\sqrt{2+x_n}$.证明数列收敛,并求出极限. \end{problem} @@ -315,13 +317,13 @@ $E\xi = n p = 100 \cdot 0.2 = 20, D\xi = n p q = 100 \cdot 0.2 \cdot 0.8 = 16$. \bigskip \begin{solution} -\step 事实上,由于$x_1<2$,且$x_k<2$时 +(1) 事实上,由于$x_1<2$,且$x_k<2$时 $$x_{k+1}=\sqrt{2+x_k}<\sqrt{2+2}=2,$$ 由数学归纳法知对所有$n$都有$x_n<2$,即数列有上界. 又由于 $$\frac{x_{n+1}}{x_n}=\sqrt{\frac{2}{x_n^2}+\frac{1}{x_n}}>\sqrt{\frac{2}{2^2}+\frac{1}{2}}=1,$$ 所以数列单调增加.由极限存在准则II,数列必定收敛.\score{4} -\step 设数列的极限为$A$,对递推公式两边同时取极限得到 +(2) 设数列的极限为$A$,对递推公式两边同时取极限得到 $$A=\sqrt{2+A}.$$ 解得$A=2$,即数列$\{x_n\}$的极限为$2$.\score{8} \end{solution} @@ -329,29 +331,29 @@ $$A=\sqrt{2+A}.$$ \vfill \begin{problem} -设事件$A$和$B$相互独立,证明$A$和$\bar{B}$相互独立. +设事件$A$和$B$相互独立,证明$A$和$\widebar{B}$相互独立. \end{problem} \bigskip \begin{solution} -$P (A \cdot \bar{B}) = P (A - B) = P (A - A B)$ \score{2} -\qquad $= P (A) - P (A B) = P (A) - P (A) P (B)$ \score{4} -\qquad $= P (A) (1 - P (B)) = P (A) P (\bar{B})$ \score{6} -所以$A$和$\bar{B}$相互独立.\score{8} +\? $P (A \cdot \widebar{B}) = P (A - B) = P (A - A B)$ \score{2} +\< $= P (A) - P (A B) = P (A) - P (A) P (B)$ \score{4} +\< $= P (A) (1 - P (B)) = P (A) P (\widebar{B})$ \score{6} +所以$A$和$\widebar{B}$相互独立.\score{8} \end{solution} \vfill \makedata{一些可能用到的数据} %附录数据 -\begin{tabu}{*{4}{X[l,$]}} +\begin{tabularx}{\linewidth}{*{4}{>{$}X<{$}}} \hline \Phi_0(0.5)=0.6915 & \Phi_0(1)=0.8413 & \Phi_0(2)=0.9773 & \Phi_0(2.5)=0.9938 \\ t_{0.01}(8)=3.355 & t_{0.01}(9)=3.250 & t_{0.01}(15)=2.947 & t_{0.01}(16)=2.921 \\ \chi_{0.005}^2(8)=22.0 & \chi_{0.005}^2(9)=23.6 & \chi_{0.005}^2(15)=32.8 & \chi_{0.005}^2(16)=34.3 \\ \chi_{0.995}^2(8)=1.34 & \chi_{0.995}^2(9)=1.73 & \chi_{0.995}^2(15)=4.60 & \chi_{0.995}^2(16)=5.14 \\ \hline -\end{tabu} +\end{tabularx} \end{document} |