diff options
author | Karl Berry <karl@freefriends.org> | 2018-11-21 21:59:30 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2018-11-21 21:59:30 +0000 |
commit | 228e5563a08cef3526d4f4a9b744ce328d243797 (patch) | |
tree | d59ba53751f7b2d4c569fa2cc30d8868e7cdda38 /Master/texmf-dist/doc/latex/jnuexam/exam-a.tex | |
parent | 9e976587f069902490e28823c0fb71edfb087d0f (diff) |
jnuexam (21nov18)
git-svn-id: svn://tug.org/texlive/trunk@49212 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/jnuexam/exam-a.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/jnuexam/exam-a.tex | 376 |
1 files changed, 146 insertions, 230 deletions
diff --git a/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex b/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex index 98ff78f9e60..44bc600fae0 100644 --- a/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex +++ b/Master/texmf-dist/doc/latex/jnuexam/exam-a.tex @@ -4,15 +4,12 @@ %\answerfalse %不显示答案 -\setlength\arraycolsep{4pt} -\newcommand{\cov}{\operatorname{cov}} - \begin{document} \renewcommand{\niandu}{2017--2018} \renewcommand{\xueqi}{2} \renewcommand{\kecheng}{大学数学} -\renewcommand{\zhuanye}{理工~4~学分} % 可以为空白 +\renewcommand{\zhuanye}{理工四学分} % 可以为空白 \renewcommand{\jiaoshi}{张三,李四,王五} % 教师姓名 \renewcommand{\shijian}{2018~年~06~月~28~日} \renewcommand{\bixiu}{1} % 1 为必修,0 为选修 @@ -23,184 +20,193 @@ \makehead % 生成试卷表头 -\makepart{填空题}{共~8~小题,每小题~2~分,共~16~分} - -\newpageb % B卷分页点 - -\begin{problem} -已知二阶行列式 $\text{$\left|\begin{array}{cc} - 1 & 2\\ - - 3 & x -\end{array}\right|$=0}$,则 $x=$ \fillout{$-6$}。 -\end{problem} - -\vfill +\makepart{填空题}{共~6~小题,每小题~3~分,共~18~分} -\begin{problem} -五阶行列式的一共有 \fillout{$120$} 项。 -\end{problem} +\answertable[3em]{6}{3} % 生成答题栏:行高3em,总共6题,每行3题 -\vfill +\newpageb % B卷分页点 \begin{problem} -向量组 $\alpha_1=(1,1,0), \alpha_2=(0,1,1), \alpha_3=(1,0,1)$, -则将向量 $\beta=(4, 5, 3)$ 表示为 $\alpha_1, \alpha_2, \alpha_3$ -的线性组合为 $\beta=$ \fillout{$3\alpha_1+2\alpha_2+\alpha_3$}。 +设常数$k>0$,函数$f(x)=\ln x-\dfrac{x}{\e}+k$在$(0,+\infty)$内零点的个数为 \fillout{$2$}. \end{problem} \vfill \begin{problem} -已知$P(A)=0.3$, $P(B|A)=0.4$, $P(B|\bar{A})=0.5$, 则$P(B)=$ \fillout{$0.47$}。 +设$\va=(2,1,2)$,$\vb=(4,-1,10)$,$\vc=\vb-\lambda\va$,且$\va\bot\vc$,则$\lambda=$ \fillout{$3$}. \end{problem} \vfill \begin{problem} -已知连续型$\xi$的密度函数为$\varphi(x)=\left\{ -\begin{array}{ll} - k \cos x, & - \frac{\pi}{2} < x < \frac{\pi}{2}\\ - 0, & \text{其它} -\end{array}\right.$, -则$k=$ \fillout{$\frac{1}{2}$}。 +已知二阶行列式 $\text{$\left|\begin{array}{cc} + 1 & 2\\ + - 3 & x +\end{array}\right|$=0}$,则 $x=$ \fillout{$-6$}. \end{problem} \vfill \begin{problem} -已知随机变量$\xi$的期望和方差各为$E\xi=3, D\xi=2$, 则$E\xi^2=$ \fillout{$11$}。 +向量组 $\alpha_1=(1,1,0), \alpha_2=(0,1,1), \alpha_3=(1,0,1)$, +则将向量 $\beta=(4, 5, 3)$ 表示为 $\alpha_1, \alpha_2, \alpha_3$ +的线性组合为 $\beta=$ \fillout{$3\alpha_1+2\alpha_2+\alpha_3$}. \end{problem} \vfill \begin{problem} -电子管寿命$\xi$满足平均寿命为$1000$小时的指数分布,则它的寿命小于$2000$小时概率为 \fillout{$1-e^{-2}$}。 +已知随机变量$\xi$的期望和方差各为$E\xi=3, D\xi=2$, 则$E\xi^2=$ \fillout{$11$}. \end{problem} \vfill \begin{problem} -已知$\xi$和$\eta$相互独立且$\xi\sim N(1,4), \eta\sim N(2,5)$,则$\xi-2\eta\sim$ \fillout{$N(-3,24)$}。 +已知$\xi$和$\eta$相互独立且$\xi\sim N(1,4), \eta\sim N(2,5)$,则$\xi-2\eta\sim$ \fillout{$N(-3,24)$}. \end{problem} \vfill \newpagea % A卷分页点 -\makepart{单选题}{共~8~小题,每小题~2~分,共~16~分} +\makepart{单选题}{共~6~小题,每小题~3~分,共~18~分} + +\answertable{6}{6} % 生成答题栏:默认行高,总共8题,每行8题 \newpageb % B卷分页点 \begin{problem} -下列各排列哪个是偶排列 \pickout{D} -\quaritem{$3712456$} -\quaritem{$36715284$} -\quaritem{$654321$} -\quaritem{$41253$} +在下列等式中,正确的结果是\pickout{C} +\begin{abcd} +\item $\int f'(x)\dx=f(x)$ +\item $\int \d f(x)=f(x)$ +\item $\frac{\d}{\dx}\big(\int f(x)\dx\big)=f(x)$ +\item $\d\big(\int f(x)\dx\big)=f(x)$ +\end{abcd} \end{problem} -\vfill +\bigskip \begin{problem} -若三阶行列式 $\left|\begin{array}{ccc} - a_1 & a_2 & a_3\\ - 2 b_1 - a_1 & 2 b_2 - a_2 & 2 b_3 - a_3\\ - c_1 & c_2 & c_3 -\end{array}\right| = 2$,则 $\left|\begin{array}{ccc} - a_1 & a_2 & a_3\\ - b_1 & b_2 & b_3\\ - c_1 & c_2 & c_3 -\end{array}\right|=$ \pickout{A} -\quaritem{$1$} -\quaritem{$-1$} -\quaritem{$2$} -\quaritem{$-2$} +假设$F(x)$是连续函数$f(x)$的一个原函数,则必有\pickout{A} +\begin{abcd} +\item $F(x)$是偶函数 $\Leftrightarrow$ $f(x)$是奇函数 +\item $F(x)$是奇函数 $\Leftrightarrow$ $f(x)$是偶函数 +\item $F(x)$是周期函数 $\Leftrightarrow$ $f(x)$是周期函数 +\item $F(x)$是单调函数 $\Leftrightarrow$ $f(x)$是单调函数 +\end{abcd} \end{problem} -\vfill +\bigskip \begin{problem} -已知矩阵 $A = \left(\begin{array}{ccc} +设矩阵 $A = \left(\begin{array}{ccc} 1 & 1 & 0\\ 1 & x & 0\\ 0 & 0 & 1 \end{array}\right)$ 其中两个特征值为 $\lambda_1 = 1$ 和 $\lambda_2 = 2$,则 $x=$ \pickout{B} -\quaritem{$2$} -\quaritem{$1$} -\quaritem{$0$} -\quaritem{$-1$} +\begin{abcd} +\item $2$ +\item $1$ +\item $0$ +\item $-1$ +\end{abcd} \end{problem} -\vfill +\bigskip \begin{problem} 二次型 $f = 4 x_1^2 - 2 x_1 x_2 + 6 x_2^2$ 对应的矩阵等于 \pickout{C} -\quaritem{$\left(\begin{array}{cc} +\begin{abcd} +\item $\left(\begin{array}{cc} 4 & - 2\\ - 2 & 6 -\end{array}\right)$} -\quaritem{$\left(\begin{array}{cc} +\end{array}\right)$ +\item $\left(\begin{array}{cc} 2 & - 2\\ - 2 & 3 -\end{array}\right)$} -\quaritem{$\left(\begin{array}{cc} +\end{array}\right)$ +\item $\left(\begin{array}{cc} 4 & - 1\\ - 1 & 6 -\end{array}\right)$} -\quaritem{$\left(\begin{array}{cc} +\end{array}\right)$ +\item $\left(\begin{array}{cc} 2 & - 1\\ - 1 & 3 -\end{array}\right)$} +\end{array}\right)$ +\end{abcd} \end{problem} -\vfill +\bigskip \begin{problem} -对任何一个本校男学生,以$A$表示他是大一学生,$B$表示他是大二学生,则事件$A$和$B$是\pickout{B} -\halfitem{对立事件} -\halfitem{互斥事件} -\halfitem{既是对立事件又是互斥事件} -\halfitem{不是对立事件也不是互斥事件} +下列说法\CJKunderline{不正确}的是\pickout{B} +\begin{abcd} +\item 大数定律说明了大量相互独立且同分布的随机变量的均值的稳定性 +\item 大数定律说明大量相互独立且同分布的随机变量的均值近似于正态分布 +\item 中心极限定理说明了大量相互独立且同分布的随机变量的和的稳定性 +\item 中心极限定理说明大量相互独立且同分布的随机变量的和近似于正态分布 +\end{abcd} \end{problem} -\vfill +\bigskip \begin{problem} -下列说法\CJKunderline{不正确}的是\pickout{B} -\fullitem{大数定律说明了大量相互独立且同分布的随机变量的均值的稳定性} -\fullitem{大数定律说明大量相互独立且同分布的随机变量的均值近似于正态分布} -\fullitem{中心极限定理说明了大量相互独立且同分布的随机变量的和的稳定性} -\fullitem{中心极限定理说明大量相互独立且同分布的随机变量的和近似于正态分布} +对总体$X$和样本$(X_1,\cdots,X_n)$的说法哪个是\CJKunderline{不正确}的\pickout{D} +\begin{abcd} +\item 总体是随机变量 +\item 样本是$n$元随机变量 +\item $X_1, \cdots, X_n$相互独立 +\item $X_1 = X_2 =\cdots = X_n$ +\end{abcd} \end{problem} -\vfill +\bigskip + +\newpagea % A卷分页点 + +\makepart{计算题}{共~6~小题,每小题~8~分,共~48~分} + +\newpageb % B卷分页点 \begin{problem} -在数理统计中,对总体$X$和样本$(X_1,\cdots,X_n)$的说法哪个是\CJKunderline{不正确}的\pickout{D} -\halfitem{总体是随机变量} -\halfitem{样本是$n$元随机变量} -\halfitem{$X_1, \cdots, X_n$相互独立} -\halfitem{$X_1 = X_2 =\cdots = X_n$} +求不定积分$\displaystyle\int\e^{2x}\,(\tan x+1)^2\dx$。 \end{problem} +\bigskip + +\begin{solution} +\everymath{\displaystyle}% +原式$=\int\e^{2x}\,\sec^2 x\dx+2\int\e^{2x}\,\tan x\dx$ \score{2} +\hspace{5em}${}=\int\e^{2x}\,\d(\tan x)+ 2\int\e^{2x}\,\tan x\dx$ \score{4} +\hspace{5em}${}=\e^{2x}\,\tan x - 2\int\e^{2x}\,\tan x\dx+ 2\int\e^{2x}\,\tan x\dx$ \score{6} +\hspace{5em}${}=\e^{2x}\,\tan x + C$ \score{8} +\end{solution} + \vfill \begin{problem} -样本平均数$\bar{X}$\CJKunderline{未必是}总体期望值$\mu$的\pickout{A} -\quaritem{最大似然估计} -\quaritem{有效估计} -\quaritem{一致估计} -\quaritem{无偏估计} +求过点$A(1,2,-1), B(2,3,0),C(3,3,2)$ 的三角形$\triangle ABC$ 的面积和它们确定的平面方程. \end{problem} -\vfill +\bigskip -\newpagea % A卷分页点 +\begin{solution} +由题设$\overrightarrow{AB}=(1,1,1),\overrightarrow{AC}=(2,1,3)$, \score{2} +故$\overrightarrow{AB}\times \overrightarrow{AC}=\begin{vmatrix} +\vec{i}&\vec{j} &\vec{k}\\ +1&1&1\\ +2&1&3\\ +\end{vmatrix}=(2,-1,-1)$, \score{4} +三角形$\triangle ABC$ 的面积为$S_{\triangle ABC}=\dfrac{1}{2}\big|\overrightarrow{AB}\times +\overrightarrow{AC}\big|=\dfrac{1}{2}\sqrt{6}.$ \score{6} +所求平面的方程为$2(x-2)-(y-3)-z=0$, 即$2x-y-z-1=0$ \score{8} +\end{solution} -\makepart{计算题}{共~6~小题,每小题~8~分,共~48~分} +\vfill -\newpageb % B卷分页点 +\newpage % A,B卷共同分页点 \begin{problem} 计算四阶行列式 $A = \left|\begin{array}{cccc} @@ -208,7 +214,7 @@ 1 & 2 & 3 & 0\\ 2 & 3 & 0 & 1\\ 3 & 0 & 1 & 2 -\end{array}\right|$ 的值。 +\end{array}\right|$ 的值. \end{problem} \bigskip @@ -228,205 +234,115 @@ $A = \left|\begin{array}{cccc} 1 & 2 & 3\\ - 1 & - 6 & 1\\ - 6 & - 8 & 2 - \end{array}\right|$ \dotfill 4分\par -\qquad\qquad $= -\left|\begin{array}{ccc} + \end{array}\right|$ \score{4} +\qquad $= -\left|\begin{array}{ccc} 1 & 2 & 3\\ 0 & - 4 & 4\\ 0 & 4 & 20 \end{array}\right| = - \left|\begin{array}{cc} - 4 & 4\\ 4 & 20 - \end{array}\right| = -(-4\cdot20-4\cdot4) = 96$ \dotfill 8分 + \end{array}\right| = -(-4\cdot20-4\cdot4) = 96$ \score{8} \end{solution} \vfill \begin{problem} 用配方法将二次型 $f = x_1^2 + 2 x_1 x_2 - 6 x_1 x_3 + 2 x_2^2 - 12 -x_2 x_3 + 9 x^2_3$ 化为标准形 $f = d_1 y^2_1 + d_2 y^2_2 + d_3 y^2_3$ 。 +x_2 x_3 + 9 x^2_3$ 化为标准形 $f = d_1 y^2_1 + d_2 y^2_2 + d_3 y^2_3$ . \end{problem} \bigskip \begin{solution} $f = x_1^2 + 2 x_1 x_2 - 6 x_1 x_3 + 2 x_2^2 - 12 x_2 x_3 + 9 x^2_3$ \par -\qquad\qquad$= x_1^2 + 2 x_1 (x_2 - 3 x_3) + (x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3 $ \par -\qquad\qquad$= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3$ \dotfill 3分 \par -\qquad\qquad$= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 2 x_2 \cdot 3 x_3 + (3 x_3)^2 - 9x_3^2$ \par -\qquad\qquad$= (x_1 + x_2 - 3 x_3)^2 + (x_2 - 3 x_3)^2 - 9 x_3^2$ \dotfill 6分\par +\qquad$= x_1^2 + 2 x_1 (x_2 - 3 x_3) + (x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3 $ \par +\qquad$= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3$ \score{3} +\qquad$= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 2 x_2 \cdot 3 x_3 + (3 x_3)^2 - 9x_3^2$ \par +\qquad$= (x_1 + x_2 - 3 x_3)^2 + (x_2 - 3 x_3)^2 - 9 x_3^2$ \score{6} 令$y_1 = x_1 + x_2 - 3 x_3, y_2 = x_2 - 3 x_3, y_3 = x_3$, \newline -则$f = y_1^2 + y_2^2 - 9y_3^2$为标准形。\dotfill 8分 +则$f = y_1^2 + y_2^2 - 9y_3^2$为标准形.\score{8} \end{solution} \vfill -\newpage +\newpage % A,B卷共同分页点 \begin{problem} -设二元随机变量$(\xi, \eta)$的联合分布表为 -\begin{tabular}{|l|l|l|l|} - \hline - $\xi \backslash \eta$ & -1 & 0 & 1\\ - \hline - 0 & 0 & 1/3 & 0\\ - \hline - 1 & 1/3 & 0 & 1/3\\ - \hline -\end{tabular}。\par -(1) 求关于$\xi$和$\eta$的边缘分布。\par -(2) 判断$\xi$和$\eta$的独立性。\par -(3) 判断$\xi$和$\eta$的相关性。 +设每发炮弹命中飞机的概率是0.2且相互独立,现在发射100发炮弹.\par +\step 用切贝谢夫不等式估计命中数目$\xi$在10发到30发之间的概率.\par +\step 用中心极限定理估计命中数目$\xi$在10发到30发之间的概率. \end{problem} \bigskip \begin{solution} -(1) 边缘分布为 \begin{tabular}{|l|l|l|} - \hline - $\xi$ & 0 & 1\\ - \hline - $P$ & 1/3 & 2/3\\ - \hline -\end{tabular}, \ \begin{tabular}{|l|l|l|l|} - \hline - $\eta$ & -1 & 0 & 1\\ - \hline - $P$ & 1/3 & 1/3 & 1/3\\ - \hline -\end{tabular}. \dotfill 2分 \par -(2) 由$P(\xi = 0, \eta = 0) = \frac{1}{3} \neq \frac{1}{9} = P(\xi = 0) P(\eta = 0)$, -知$\xi$和$\eta$不独立. \dotfill 4分 \par -(3) 由联合分布表求得$\xi \eta$的分布为 \begin{tabular}{|l|l|l|l|} - \hline - $\xi \eta$ & -1 & 0 & 1\\ - \hline - $P$ & 1/3 & 1/3 & 1/3\\ - \hline -\end{tabular}.\dotfill 6分\par -因此有 $\cov(\xi, \eta) = E(\xi\eta) - E\xi E\eta = 0 -\frac{2}{3} \cdot 0 = 0$, -因此$\xi$和$\eta$不相关. \dotfill 8分 +$E\xi = n p = 100 \cdot 0.2 = 20, D\xi = n p q = 100 \cdot 0.2 \cdot 0.8 = 16$. \score{2} +\step $P (10 < \xi < 30) = P (| \xi - E \xi | < 10) \ge 1 - \frac{D\xi}{10^2} + = 1 - \frac{16}{100} = 0.84$. \score{4} +\step $P (10 < \xi < 30) \approx \Phi_0 \left( \frac{30 - 20}{\sqrt{16}}\right) + - \Phi_0 \left( \frac{10 - 20}{\sqrt{16}} \right)$ \score{6} +\qquad $= 2 \Phi_0 (2.5) - 1 = 2 \cdot 0.9938 - 1 =0.9876$ \score{8} \end{solution} \vfill \begin{problem} -设随机变量$\xi \sim N (1, 4)$,求$P (- 1 < \xi < 5)$。 +从正态总体$N(\mu,\sigma^2)$中抽出样本容量为16的样本,算得其平均数为3160,标准差为100. +试检验假设$H_0:\mu=3140$是否成立($\alpha = 0.01$). \end{problem} \bigskip \begin{solution} -$P(-1<\xi<5) = \Phi_0\left(\frac{5-1}{2}\right) - \Phi_0\left(\frac{-1-1}{2}\right)$ \dotfill 2分 \par -\qquad $= \Phi_0 (2) - \Phi_0 (- 1)$ \dotfill 4分 \par -\qquad $= \Phi_0 (2) + \Phi_0 (1) - 1$ \dotfill 6分 \par -\qquad $= 0.9773 + 0.8413 - 1 = 0.8186$ \dotfill 8分 +\step 待检假设 $H_0 : \mu = 3140$. \score{1} +\step 选取统计量 $T = \frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$. \score{3} +\step 查表得到 $t_{\alpha} = t_{\alpha} (n - 1) = t_{0.01} (15) =2.947$. \score{5} +\step 计算统计值 $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} =\frac{3160-3140}{100/4} = 0.8$.\score{7} +\step 由于 $| t | < t_{\alpha}$, 故接受 $H_0$, 即假设成立. \score{8} \end{solution} \vfill -\newpage % A,B卷共同分页点 +\newpagea % A卷分页点 + +\makepart{证明题}{共~2~小题,每小题~8~分,共~16~分} \begin{problem} -设每发炮弹命中飞机的概率是0.2且相互独立,现在发射100发炮弹。\par -(1) 用切贝谢夫不等式估计命中数目$\xi$在10发到30发之间的概率。\par -(2) 用中心极限定理估计命中数目$\xi$在10发到30发之间的概率。 +设数列$\{x_n\}$满足$x_1=\sqrt2$,$x_{n+1}=\sqrt{2+x_n}$.证明数列收敛,并求出极限. \end{problem} \bigskip \begin{solution} -$E\xi = n p = 100 \cdot 0.2 = 20, D\xi = n p q = 100 \cdot 0.2 \cdot 0.8 = 16$. \dotfill 2分 \par -(1) $P (10 < \xi < 30) = P (| \xi - E \xi | < 10) \geq 1 - \frac{D\xi}{10^2} - = 1 - \frac{16}{100} = 0.84$. \dotfill 4分 \par -(2) $P (10 < \xi < 30) \approx \Phi_0 \left( \frac{30 - 20}{\sqrt{16}}\right) - - \Phi_0 \left( \frac{10 - 20}{\sqrt{16}} \right)$ \dotfill 6分\par -\qquad $= 2 \Phi_0 (2.5) - 1 = 2 \cdot 0.9938 - 1 =0.9876$ \dotfill 8分 +\step 事实上,由于$x_1<2$,且$x_k<2$时 +$$x_{k+1}=\sqrt{2+x_k}<\sqrt{2+2}=2,$$ +由数学归纳法知对所有$n$都有$x_n<2$,即数列有上界. +又由于 +$$\frac{x_{n+1}}{x_n}=\sqrt{\frac{2}{x_n^2}+\frac{1}{x_n}}>\sqrt{\frac{2}{2^2}+\frac{1}{2}}=1,$$ +所以数列单调增加.由极限存在准则II,数列必定收敛.\score{4} +\step 设数列的极限为$A$,对递推公式两边同时取极限得到 +$$A=\sqrt{2+A}.$$ +解得$A=2$,即数列$\{x_n\}$的极限为$2$.\score{8} \end{solution} \vfill \begin{problem} -从正态总体$N(\mu,\sigma^2)$中抽出样本容量为16的样本,算得其平均数为3160,标准差为100。 -试检验假设$H_0:\mu=3140$是否成立($\alpha = 0.01$)。 +设事件$A$和$B$相互独立,证明$A$和$\bar{B}$相互独立. \end{problem} \bigskip \begin{solution} -(1) 待检假设 $H_0 : \mu = 3140$. \dotfill 1分\par -(2) 选取统计量 $T = \frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$. \dotfill 3分 \par -(3) 查表得到 $t_{\alpha} = t_{\alpha} (n - 1) = t_{0.01} (15) =2.947$. \dotfill 5分 \par -(4) 计算统计值 $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} =\frac{3160-3140}{100/4} = 0.8$.\dotfill 7分 \par -(5) 由于 $| t | < t_{\alpha}$, 故接受 $H_0$, 即假设成立. \dotfill 8分 +$P (A \cdot \bar{B}) = P (A - B) = P (A - A B)$ \score{2} +\qquad $= P (A) - P (A B) = P (A) - P (A) P (B)$ \score{4} +\qquad $= P (A) (1 - P (B)) = P (A) P (\bar{B})$ \score{6} +所以$A$和$\bar{B}$相互独立.\score{8} \end{solution} \vfill -\newpagea % A卷分页点 - -\makepart{证明题}{共~2~小题,每小题~10~分,共~20~分} - -\begin{problem} -不使用矩阵可相似对角化的判别定理,直接用矩阵的运算和性质证明下面的矩阵$A -=\left(\begin{array}{cc} - 1 & 1\\ - 0 & 1 -\end{array}\right)$不能相似对角化,即不存在可逆矩阵$P$和对角阵$\Lambda$使得$P^{-1}AP=\Lambda$。 -\end{problem} - -\bigskip - -\begin{proof} -假设有$P = \left(\begin{array}{cc} - a & b\\ - c & d -\end{array}\right)$使得$P^{-1}AP = \Lambda$,即$AP=P\Lambda$。\dotfill 2分\par -则有 $$\left(\begin{array}{cc} - a + c & b + d\\ - c & d -\end{array}\right) = \left(\begin{array}{cc} - 1 & 1\\ - 0 & 1 -\end{array}\right) \left(\begin{array}{cc} - a & b\\ - c & d -\end{array}\right) = \left(\begin{array}{cc} - a & b\\ - c & d -\end{array}\right) \left(\begin{array}{cc} - \lambda_1 & \\ - & \lambda_2 -\end{array}\right) = \left(\begin{array}{cc} - a \lambda_1 & b \lambda_2\\ - c \lambda_1 & d \lambda_2 -\end{array}\right)$$ 因此有 $\left\{ \begin{array}{llll} - a + c & = & a \lambda_1 & (1)\\ - b + d & = & b \lambda_2 & (2)\\ - c & = & c \lambda_1 & (3)\\ - d & = & d \lambda_2 & (4) -\end{array} \right.$ \dotfill 6分\par -由第1个和第3个方程消去$\lambda_1$,可以得到 $c^2 = 0$ 即 $c=0$; -由第2个和第4个方程消去$\lambda_2$,可以得到 $d^2 = 0$ 即 $d=0$。 -因此矩阵$P$不可逆,矛盾。\dotfill 10分 -\end{proof} - -\vfill - -\begin{problem} -设事件$A$和$B$相互独立,证明$A$和$\bar{B}$相互独立。 -\end{problem} - -\bigskip - -\begin{proof} -$P (A \cdot \bar{B}) = P (A - B) = P (A - A B)$ \dotfill 3分 \par -\qquad $= P (A) - P (A B) = P (A) - P (A) P (B)$ \dotfill 6分 \par -\qquad $= P (A) (1 - P (B)) = P (A) P (\bar{B})$ \dotfill 9分 \par -所以$A$和$\bar{B}$相互独立。\dotfill 10分 -\end{proof} - -\vfill - \makedata{一些可能用到的数据} %附录数据 \begin{tabu}{*{4}{X[l,$]}} |