diff options
author | Karl Berry <karl@freefriends.org> | 2010-09-13 16:15:05 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2010-09-13 16:15:05 +0000 |
commit | 90bc556dd49baf83dc41781e00119ca70f0007fb (patch) | |
tree | 511e5da7bdb4982acd70ab92f5f58535888724f4 /Master/texmf-dist/doc/latex/jamtimes/mathsample.tex | |
parent | 4354e2062c923de50efdc82483f13f59dc20d7a4 (diff) |
jamtimes 1.8 (29jul10)
git-svn-id: svn://tug.org/texlive/trunk@19697 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/jamtimes/mathsample.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/jamtimes/mathsample.tex | 953 |
1 files changed, 953 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/jamtimes/mathsample.tex b/Master/texmf-dist/doc/latex/jamtimes/mathsample.tex new file mode 100644 index 00000000000..2c63fae0a12 --- /dev/null +++ b/Master/texmf-dist/doc/latex/jamtimes/mathsample.tex @@ -0,0 +1,953 @@ +\documentclass{article} +\usepackage{ifpdf} +\ifpdf\pdfmapfile{+jtm.map}\fi +%\usepackage[T1]{fontenc} +\usepackage{jamtimes} +\usepackage{lipsum,textcomp,amsmath,url,amsfonts,longtable} +\DeclareMathSymbol{\dit}{\mathord}{letters}{`d} +\DeclareMathSymbol{\dup}{\mathord}{operators}{`d} +\def\test#1{#1} + +\def\testnums{% + \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7 + \test 8 \test 9 } +\def\testupperi{% + \test A \test B \test C \test D \test E \test F \test G \test H + \test I \test J \test K \test L \test M } +\def\testupperii{% + \test N \test O \test P \test Q \test R \test S \test T \test U + \test V \test W \test X \test Y \test Z } +\def\testupper{% + \testupperi\testupperii} + +\def\testloweri{% + \test a \test b \test c \test d \test e \test f \test g \test h + \test i \test j \test k \test l \test m } +\def\testlowerii{% + \test n \test o \test p \test q \test r \test s \test t \test u + \test v \test w \test x \test y \test z + \test\imath \test\jmath } +\def\testlower{% + \testloweri\testlowerii} + +\def\testupgreeki{% + \test A \test B \test\Gamma \test\Delta \test E \test Z \test H + \test\Theta \test I \test K \test\Lambda \test M } +\def\testupgreekii{% + \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T + \test\Upsilon \test\Phi \test X \test\Psi \test\Omega +} +\def\testupgreek{% + \testupgreeki\testupgreekii} + +\def\testlowgreeki{% + \test\alpha \test\beta \test\gamma \test\delta \test\epsilon + \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda + \test\mu } +\def\testlowgreekii{% + \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau + \test\upsilon \test\phi \test\chi \test\psi \test\omega } +\def\testlowgreekiii{% + \test\varepsilon \test\vartheta \test\varpi \test\varrho + \test\varsigma \test\varphi \test\ell \test\wp} +\def\testlowgreek{% + \testlowgreeki\testlowgreekii\testlowgreekiii} +\begin{document} + +\section{Sebastian's math test} + + + +The default math mode font is $Math\ Italic$. This should not be +confused with ordinary \emph{Text Italic} -- notice the different spacing\,! +\verb|\mathbf| produces bold roman letters: $ \mathbf{abcABC} $. +If you wish to embolden complete formulas, +use the \verb|\boldmath| command \emph{before} going into math mode. +This changes the default math fonts to bold. + +\begin{tabular}{ll} +\texttt{normal} & $ x = 2\pi \Rightarrow x \simeq 6.28 $\\ +\texttt{mathbf} & $\mathbf{x} = 2\pi \Rightarrow \mathbf{x} \simeq 6.28 $\\ +\texttt{boldmath} & {\boldmath $x = \mathbf{2}\pi \Rightarrow x + \simeq{\mathbf{6.28}} $}\\ +\end{tabular} +\smallskip + +Greek is available in upper and lower case: +$\alpha,\beta \dots \Omega$, and there are special +symbols such as $ \hbar$ (compare to $h$). +Digits in formulas $1, 2, 3\dots$ may differ from those in text: 4, 5, +6\dots + +There is Sans Serif alphabet $\mathsf{abcdeABCD}$ selected by +\verb|\mathsf| and Typewriter math $\mathtt{abcdeABCD}$ selected by +\verb|\mathtt|. + +There is a calligraphic alphabet \verb|\mathcal| for upper case letters +$ \mathcal{ABCDE}\dots $, and there are letters for number sets: $\mathbb{A\dots Z} $, +which are produced using \verb|\mathbb|. There are Fraktur letters +$\mathfrak{abcdeABCDE}$ produced using \verb|\mathfrak| + +\begin{equation} + \sigma(t)=\frac{1}{\sqrt{2\pi}} + \int^t_0 e^{-x^2/2} dx +\end{equation} + +\begin{equation} + \prod_{j\geq 0} + \left(\sum_{k\geq 0}a_{jk} z^k\right) += \sum_{k\geq 0} z^n + \left( \sum_{{k_0,k_1,\ldots\geq 0} + \atop{k_0+k_1+\ldots=n} } + a{_0k_0}a_{1k_1}\ldots \right) +\end{equation} + +\begin{equation} +\pi(n) = \sum_{m=2}^{n} + \left\lfloor \left(\sum_{k=1}^{m-1} + \lfloor(m/k)/\lceil m/k\rceil + \rfloor \right)^{-1} + \right\rfloor +\end{equation} + +\begin{equation} +\{\underbrace{% + \overbrace{\mathstrut a,\ldots,a}^{k\ a's}, + \overbrace{\mathstrut b,\ldots,b}^{l\ b's}} + _{k+l\ \mathrm{elements}} \} +\end{equation} + +\[ +\mbox{W}^+\ +\begin{array}{l} +\nearrow\raise5pt\hbox{$\mu^+ + \nu_{\mu}$}\\ +\rightarrow \pi^+ +\pi^0 \\[5pt] +\rightarrow \kappa^+ +\pi^0 \\ +\searrow\lower5pt\hbox{$\mathrm{e}^+ + +\nu_{\scriptstyle\mathrm{e}}$} +\end{array} +\] + +\[ +\frac{\pm +\left|\begin{array}{ccc} +x_1-x_2 & y_1-y_2 & z_1-z_2 \\ +l_1 & m_1 & n_1 \\ +l_2 & m_2 & n_2 +\end{array}\right|}{ +\sqrt{\left|\begin{array}{cc}l_1&m_1\\ +l_2&m_2\end{array}\right|^2 ++ \left|\begin{array}{cc}m_1&n_1\\ +n_1&l_1\end{array}\right|^2 ++ \left|\begin{array}{cc}m_2&n_2\\ +n_2&l_2\end{array}\right|^2}} +\] + + + + +\section{Math Tests} +\label{sec:mthtests} + + + +Math test are taken from\cite{Schmidt04:PSNFSS9.2}. + +\parindent 0pt +%\mathindent 1em + + +\subsection{Math Alphabets} + +Math Italic (\texttt{\string\mathnormal}) +\def\test#1{\mathnormal{#1},} +\begin{eqnarray*} +% && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ + && {\testupgreek}\\ + && {\testlowgreek} +\end{eqnarray*}% + +Math Roman (\texttt{\string\mathrm}) +\def\test#1{\mathrm{#1},} +\begin{eqnarray*} + && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ + && {\testupgreek}\\ + && {\testlowgreek} +\end{eqnarray*}% + +%Math Italic Bold +%\def\test#1{\mathbm{#1},} +%\begin{eqnarray*} +% && {\testnums}\\ +% && {\testupper}\\ +% && {\testlower}\\ +% && {\testupgreek}\\ +% && {\testlowgreek} +%\end{eqnarray*}% + +Math Bold (\texttt{\string\mathbf}) +\def\test#1{\mathbf{#1},} +\begin{eqnarray*} + && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ +% && {\testupgreek} +\end{eqnarray*}% + +Math Sans Serif (\texttt{\string\mathsf}) +\def\test#1{\mathsf{#1},} +\begin{eqnarray*} + && {\testnums}\\ + && {\testupper}\\ + && {\testlower}\\ +% && {\testupgreek} +\end{eqnarray*}% + + + +Caligraphic (\texttt{\string\mathcal}) +\def\test#1{\mathcal{#1},} +\begin{eqnarray*} + && {\testupper} +\end{eqnarray*}% + +%Script (\texttt{\string\mathscr}) +%\def\test#1{\mathscr{#1},} +%\begin{eqnarray*} +% && {\testupper} +%\end{eqnarray*}% + +Fraktur (\texttt{\string\mathfrak}) +\def\test#1{\mathfrak{#1},} +\begin{eqnarray*} + && {\testupper}\\ + && {\testlower} +\end{eqnarray*}% + +Blackboard Bold (\texttt{\string\mathbb}) +\def\test#1{\mathbb{#1},} +\begin{eqnarray*} + && {\testupper} +\end{eqnarray*}% + + +\clearpage +\subsection{Character Sidebearings} + +\def\test#1{|#1|+} +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{|\mathrm{#1}|+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{|\mathbm{#1}|+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*}% +%% +%\def\test#1{|\mathbf{#1}|+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*}% +% +\def\test#1{|\mathcal{#1}|+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Superscript positioning} + +\def\test#1{#1^{2}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{\mathrm{#1}^{2}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{\mathbm{#1}^{2}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*}% +% +%\def\test#1{\mathbf{#1}^{2}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*} +% +\def\test#1{\mathcal{#1}^{2}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Subscript positioning} + +\def\test#1{\mathnormal{#1}_{i}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{\mathrm{#1}_{i}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{\mathbm{#1}_{i}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*} +%% +%\def\test#1{\mathbf{#1}_{i}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*}% +% +\def\test#1{\mathcal{#1}_{i}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Accent positioning} + +\def\test#1{\hat{#1}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*}% +% +\def\test#1{\hat{\mathrm{#1}}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +\end{eqnarray*}% +% +%\def\test#1{\hat{\mathbm{#1}}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii}\\ +% && {\testlowgreeki}\\ +% && {\testlowgreekii}\\ +% && {\testlowgreekiii} +%\end{eqnarray*}% +%% +%\def\test#1{\hat{\mathbf{#1}}+}% +%\begin{eqnarray*} +% && {\testupperi}\\ +% && {\testupperii}\\ +% && {\testloweri}\\ +% && {\testlowerii}\\ +% && {\testupgreeki}\\ +% && {\testupgreekii} +%\end{eqnarray*} +% +\def\test#1{\hat{\mathcal{#1}}+}% +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii} +\end{eqnarray*}% + + +\clearpage +\subsection{Differentials} + +\begin{eqnarray*} +\gdef\test#1{\dit #1+}% + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii}\\ +\gdef\test#1{\dit \mathrm{#1}+}% + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +\begin{eqnarray*} +\gdef\test#1{\dup #1+}% + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii}\\ +\gdef\test#1{\dup \mathrm{#1}+}% + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% +% +\begin{eqnarray*} +\gdef\test#1{\partial #1+}% + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii}\\ +\gdef\test#1{\partial \mathrm{#1}+}% + && {\testupgreeki}\\ + && {\testupgreekii} +\end{eqnarray*}% + + +\clearpage +\subsection{Slash kerning} + +\def\test#1{1/#1+} +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*} + +\def\test#1{#1/2+} +\begin{eqnarray*} + && {\testupperi}\\ + && {\testupperii}\\ + && {\testloweri}\\ + && {\testlowerii}\\ + && {\testupgreeki}\\ + && {\testupgreekii}\\ + && {\testlowgreeki}\\ + && {\testlowgreekii}\\ + && {\testlowgreekiii} +\end{eqnarray*} + + +\clearpage +\subsection{Big operators} + +\def\testop#1{#1_{i=1}^{n} x^{n} \quad} +\begin{displaymath} + \testop\sum + \testop\prod + \testop\coprod + \testop\int + \testop\oint +\end{displaymath} +\begin{displaymath} + \testop\bigotimes + \testop\bigoplus + \testop\bigodot + \testop\bigwedge + \testop\bigvee + \testop\biguplus + \testop\bigcup + \testop\bigcap + \testop\bigsqcup +% \testop\bigsqcap +\end{displaymath} + + +\subsection{Radicals} + +\begin{displaymath} + \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad + \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad + \sqrt{\left(\frac{\cos x}{2}\right)} \qquad + \sqrt{\left(\frac{\sin x}{2}\right)} +\end{displaymath} + +\begingroup +\delimitershortfall-1pt +\begin{displaymath} + \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}} +\end{displaymath} +\endgroup % \delimitershortfall + + +\subsection{Over- and underbraces} + +\begin{displaymath} + \overbrace{x} \quad + \overbrace{x+y} \quad + \overbrace{x^{2}+y^{2}} \quad + \overbrace{x_{i}^{2}+y_{j}^{2}} \quad + \underbrace{x} \quad + \underbrace{x+y} \quad + \underbrace{x_{i}+y_{j}} \quad + \underbrace{x_{i}^{2}+y_{j}^{2}} \quad +\end{displaymath} + + +\subsection{Normal and wide accents} + +\begin{displaymath} + \dot{x} \quad + \ddot{x} \quad + \vec{x} \quad + \bar{x} \quad + \overline{x} \quad + \overline{xx} \quad + \tilde{x} \quad + \widetilde{x} \quad + \widetilde{xx} \quad + \widetilde{xxx} \quad + \hat{x} \quad + \widehat{x} \quad + \widehat{xx} \quad + \widehat{xxx} \quad +\end{displaymath} + + +\subsection{Long arrows} + +\begin{displaymath} + \leftarrow \mathrel{-} \rightarrow \quad + \leftrightarrow \quad + \longleftarrow \quad + \longrightarrow \quad + \longleftrightarrow \quad + \Leftarrow = \Rightarrow \quad + \Leftrightarrow \quad + \Longleftarrow \quad + \Longrightarrow \quad + \Longleftrightarrow \quad +\end{displaymath} + + +\subsection{Left and right delimters} + +\def\testdelim#1#2{ - #1 f #2 - } +\begin{displaymath} + \testdelim() + \testdelim[] + \testdelim\lfloor\rfloor + \testdelim\lceil\rceil + \testdelim\langle\rangle + \testdelim\{\} +\end{displaymath} + +\def\testdelim#1#2{ - \left#1 f \right#2 - } +\begin{displaymath} + \testdelim() + \testdelim[] + \testdelim\lfloor\rfloor + \testdelim\lceil\rceil + \testdelim\langle\rangle + \testdelim\{\} +% \testdelim\lgroup\rgroup +% \testdelim\lmoustache\rmoustache +\end{displaymath} +\begin{displaymath} + \testdelim)( + \testdelim][ + \testdelim// + \testdelim\backslash\backslash + \testdelim/\backslash + \testdelim\backslash/ +\end{displaymath} + + +\clearpage +\subsection{Big-g-g delimters} + +\def\testdelim#1#2{% + - \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1 - + \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -} + +\begingroup +\delimitershortfall-1pt +\begin{displaymath} + \testdelim\lfloor\rfloor + \qquad + \testdelim() +\end{displaymath} +\begin{displaymath} + \testdelim\lceil\rceil + \qquad + \testdelim\{\} +\end{displaymath} +\begin{displaymath} + \testdelim[] + \qquad + \testdelim\lgroup\rgroup +\end{displaymath} +\begin{displaymath} + \testdelim\langle\rangle + \qquad + \testdelim\lmoustache\rmoustache +\end{displaymath} +\begin{displaymath} + \testdelim\uparrow\downarrow \quad + \testdelim\Uparrow\Downarrow \quad +\end{displaymath} +\endgroup % \delimitershortfall + +\subsection{Symbols} +\label{sec:symbols} + +This is from~\cite{Eijkhout07:TeXbyTopic} + +\begin{longtable}{lllll} +Symbol & Control Sequence & mathcode & Family & Hex Position \\ +$\partial$&partial& "0140&1&40\\ +$\flat$&flat& "015B&1&5B\\ +$\natural$&natural& "015C&1&5C\\ +$\sharp$&sharp& "015D&1&5D\\ +$\ell$&ell& "0160&1&60\\ +$\imath$&imath& "017B&1&7B\\ +$\jmath$&jmath& "017C&1&7C\\ +$\wp$&wp& "017D&1&7D\\ +$\prime$&prime& "0230&2&30\\ +$\infty$&infty& "0231&2&31\\ +$\triangle$&triangle& "0234&2&34\\ +$\forall$&forall& "0238&2&38\\ +$\exists$&exists& "0239&2&39\\ +$\neg$&neg& "023A&2&3A\\ +$\emptyset$&emptyset& "023B&2&3B\\ +$\Re$&Re& "023C&2&3C\\ +$\Im$&Im& "023D&2&3D\\ +$\top$&top& "023E&2&3E\\ +$\bot$&bot& "023F&2&3F\\ +$\aleph$&aleph& "0240&2&40\\ +$\nabla$&nabla& "0272&2&72\\ +$\clubsuit$&clubsuit& "027C&2&7C\\ +$\diamondsuit$&diamondsuit& "027D&2&7D\\ +$\heartsuit$&heartsuit& "027E&2&7E\\ +$\spadesuit$&spadesuit& "027F&2&7F\\ +$\smallint \displaystyle\smallint$& + smallint& "1273&2&73\cr +$\bigsqcup \displaystyle\bigsqcup$& + bigsqcup& "1346&3&46\cr +$\ointop \displaystyle\ointop$& + ointop& "1348&3&48\cr +$\bigodot \displaystyle\bigodot$& + bigodot& "134A&3&4A\cr +$\bigoplus \displaystyle\bigoplus$& + bigoplus& "134C&3&4C\cr +$\bigotimes \displaystyle\bigotimes$& + bigotimes& "134E&3&4E\cr +$\sum \displaystyle\sum$& + sum& "1350&3&50\cr +$\prod \displaystyle\prod$& + prod& "1351&3&51\cr +$\intop \displaystyle\intop$& + intop& "1352&3&52\cr +$\bigcup \displaystyle\bigcup$& + bigcup& "1353&3&53\cr +$\bigcap \displaystyle\bigcap$& + bigcap& "1354&3&54\cr +$\biguplus \displaystyle\biguplus$& + biguplus& "1355&3&55\cr +$\bigwedge \displaystyle\bigwedge$& + bigwedge& "1356&3&56\cr +$\bigvee \displaystyle\bigvee$& + bigvee& "1357&3&57\cr +$\coprod \displaystyle\coprod$& + coprod& "1360&3&60\cr +$\triangleright$&triangleright& "212E&1&2E\cr +$\triangleleft$&triangleleft& "212F&1&2F\cr +$\star$&star& "213F&1&3F\cr +$\cdot$&cdot& "2201&2&01\cr +$\times$×& "2202&2&02\cr +$\ast$&ast& "2203&2&03\cr +$\div$&div& "2204&2&04\cr +$\diamond$&diamond& "2205&2&05\cr +$\pm$&pm& "2206&2&06\cr +$\mp$&mp& "2207&2&07\cr +$\oplus$&oplus& "2208&2&08\cr +$\ominus$&ominus& "2209&2&09\cr +$\otimes$&otimes& "220A&2&0A\cr +$\oslash$ø& "220B&2&0B\cr +$\odot$&odot& "220C&2&0C\cr +$\bigcirc$&bigcirc& "220D&2&0D\cr +$\circ$&circ& "220E&2&0E\cr +$\bullet$&bullet& "220F&2&0F\cr +$\bigtriangleup$&bigtriangleup& "2234&2&34\cr +$\bigtriangledown$&bigtriangledown& "2235&2&35\cr +$\cup$&cup& "225B&2&5B\cr +$\cap$&cap& "225C&2&5C\cr +$\uplus$&uplus& "225D&2&5D\cr +$\wedge$&wedge& "225E&2&5E\cr +$\vee$&vee& "225F&2&5F\cr +$\setminus$&setminus& "226E&2&6E\cr +$\wr$&wr& "226F&2&6F\cr +$\amalg$&amalg& "2271&2&71\cr +$\sqcup$&sqcup& "2274&2&74\cr +$\sqcap$&sqcap& "2275&2&75\cr +$\dagger$&dagger& "2279&2&79\cr +$\ddagger$&ddagger& "227A&2&7A\cr +$\leftharpoonup$&leftharpoonup& "3128&1&28\cr +$\leftharpoondown$&leftharpoondown& "3129&1&29\cr +$\rightharpoonup$&rightharpoonup& "312A&1&2A\cr +$\rightharpoondown$&rightharpoondown& "312B&1&2B\cr +$\smile$&smile& "315E&1&5E\cr +$\frown$&frown& "315F&1&5F\cr +$\asymp$&asymp& "3210&2&10\cr +$\equiv$&equiv& "3211&2&11\cr +$\subseteq$&subseteq& "3212&2&12\cr +$\supseteq$&supseteq& "3213&2&13\cr +$\leq$&leq& "3214&2&14\cr +$\geq$&geq& "3215&2&15\cr +$\preceq$&preceq& "3216&2&16\cr +$\succeq$&succeq& "3217&2&17\cr +$\sim$&sim& "3218&2&18\cr +$\approx$&approx& "3219&2&19\cr +$\subset$&subset& "321A&2&1A\cr +$\supset$&supset& "321B&2&1B\cr +$\ll$&ll& "321C&2&1C\cr +$\gg$&gg& "321D&2&1D\cr +$\prec$&prec& "321E&2&1E\cr +$\succ$&succ& "321F&2&1F\cr +$\leftarrow$&leftarrow& "3220&2&20\cr +$\rightarrow$&rightarrow& "3221&2&21\cr +$\leftrightarrow$&leftrightarrow& "3224&2&24\cr +$\nearrow$&nearrow& "3225&2&25\cr +$\searrow$&searrow& "3226&2&26\cr +$\simeq$&simeq& "3227&2&27\cr +$\Leftarrow$&Leftarrow& "3228&2&28\cr +$\Rightarrow$&Rightarrow& "3229&2&29\cr +$\Leftrightarrow$&Leftrightarrow& "322C&2&2C\cr +$\nwarrow$&nwarrow& "322D&2&2D\cr +$\swarrow$&swarrow& "322E&2&2E\cr +$\propto$&propto& "322F&2&2F\cr +$\in$&in& "3232&2&32\cr +$\ni$&ni& "3233&2&33\cr +$\not$¬& "3236&2&36\cr +$\mapstochar$&mapstochar& "3237&2&37\cr +$\perp$&perp& "323F&2&3F\cr +$\vdash$&vdash& "3260&2&60\cr +$\dashv$&dashv& "3261&2&61\cr +$\mid$&mid& "326A&2&6A\cr +$\parallel$¶llel& "326B&2&6B\cr +$\sqsubseteq$&sqsubseteq& "3276&2&76\cr +$\sqsupseteq$&sqsupseteq& "3277&2&77\cr +\end{longtable} + + +\subsection{Miscellanneous formulae} + +Taken from~\cite{Downes04:amsart} + +\label{sec:misc} +\begin{displaymath} + \hbar\nu=E +\end{displaymath} + +Let $\mathbf{A}=(a_{ij})$ be the adjacency matrix of graph $G$. The +corresponding Kirchhoff matrix $\mathbf{K}=(k_{ij})$ is obtained from +$\mathbf{A}$ by replacing in $-\mathbf{A}$ each diagonal entry by the +degree of its corresponding vertex; i.e., the $i$th diagonal entry is +identified with the degree of the $i$th vertex. It is well known that +\begin{equation} +\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$}, +\quad i=1,\dots,n +\end{equation} +where $\mathbf{K}(i|i)$ is the $i$th principal submatrix of +$\mathbf{K}$. + +\newcommand{\abs}[1]{\left\lvert#1\right\rvert} +\newcommand{\wh}{\widehat} +Let $C_{i(j)}$ be the set of graphs obtained from $G$ by attaching edge +$(v_iv_j)$ to each spanning tree of $G$. Denote by $C_i=\bigcup_j +C_{i(j)}$. It is obvious that the collection of Hamiltonian cycles is a +subset of $C_i$. Note that the cardinality of $C_i$ is $k_{ii}\det +\mathbf{K}(i|i)$. Let $\wh X=\{\hat x_1,\dots,\hat x_n\}$. Define multiplication for the elements of $\wh X$ by +\begin{equation}\label{multdef} +\hat x_i\hat x_j=\hat x_j\hat x_i,\quad \hat x^2_i=0,\quad +i,j=1,\dots,n. +\end{equation} +Let $\hat k_{ij}=k_{ij}\hat x_j$ and $\hat k_{ij}=-\sum_{j\not=i} \hat +k_{ij}$. Then the number of Hamiltonian cycles $H_c$ is given by the +relation +\begin{equation}\label{H-cycles} +\biggl(\prod^n_{\,j=1}\hat x_j\biggr)H_c=\frac{1}{2}\hat k_{ij}\det +\wh{\mathbf{K}}(i|i),\qquad i=1,\dots,n. +\end{equation} +The task here is to express \eqref{H-cycles} +in a form free of any $\hat x_i$, +$i=1,\dots,n$. The result also leads to the resolution of enumeration of +Hamiltonian paths in a graph. + +It is well known that the enumeration of Hamiltonian cycles and paths +in a complete graph $K_n$ and in a complete bipartite graph +$K_{n_1n_2}$ can only be found from \textit{first combinatorial + principles}. One wonders if there exists a formula which can be used +very efficiently to produce $K_n$ and $K_{n_1n_2}$. Recently, using +Lagrangian methods, Goulden and Jackson have shown that $H_c$ can be +expressed in terms of the determinant and permanent of the adjacency +matrix. However, the formula of Goulden and +Jackson determines neither $K_n$ nor $K_{n_1n_2}$ effectively. In this +paper, using an algebraic method, we parametrize the adjacency matrix. +The resulting formula also involves the determinant and permanent, but +it can easily be applied to $K_n$ and $K_{n_1n_2}$. In addition, we +eliminate the permanent from $H_c$ and show that $H_c$ can be +represented by a determinantal function of multivariables, each +variable with domain $\{0,1\}$. Furthermore, we show that $H_c$ can be +written by number of spanning trees of subgraphs. Finally, we apply +the formulas to a complete multigraph $K_{n_1\dots n_p}$. + +The conditions $a_{ij}=a_{ji}$, $i,j=1,\dots,n$, are not required in +this paper. All formulas can be extended to a digraph simply by +multiplying $H_c$ by 2. + +The boundedness, property of $\Phi_ 0$, then yields +\[\int_{\mathcal{D}}\abs{\overline\partial u}^2e^{\alpha\abs{z}^2}\geq c_6\alpha +\int_{\mathcal{D}}\abs{u}^2e^{\alpha\abs{z}^2} ++c_7\delta^{-2}\int_ A\abs{u}^2e^{\alpha\abs{z}^2}.\] + +Let $B(X)$ be the set of blocks of $\Lambda_{X}$ +and let $b(X) = \abs{B(X)}$. If $\phi \in Q_{X}$ then +$\phi$ is constant on the blocks of $\Lambda_{X}$. +\begin{equation}\label{far-d} + P_{X} = \{ \phi \in M \mid \Lambda_{\phi} = \Lambda_{X} \}, +\qquad +Q_{X} = \{\phi \in M \mid \Lambda_{\phi} \geq \Lambda_{X} \}. +\end{equation} +If $\Lambda_{\phi} \geq \Lambda_{X}$ then +$\Lambda_{\phi} = \Lambda_{Y}$ for some $Y \geq X$ so that +\[ Q_{X} = \bigcup_{Y \geq X} P_{Y}. \] +Thus by M\"obius inversion +\[ \abs{P_{Y}}= \sum_{X\geq Y} \mu (Y,X)\abs{Q_{X}}.\] +Thus there is a bijection from $Q_{X}$ to $W^{B(X)}$. +In particular $\abs{Q_{X}} = w^{b(X)}$. + + +\renewcommand{\arraystretch}{2.2} +\[W(\Phi)= \begin{Vmatrix} +\dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\ +\dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}& +\dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\ +\hdotsfor{5}\\ +\dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}& +\dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots& +\dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}& +\dfrac{\varphi}{(\varphi_n,\varepsilon_n)} +\end{Vmatrix}\] + + + +\bibliography{jamtimes} +\bibliographystyle{unsrt} + + + +\end{document} |