diff options
author | Karl Berry <karl@freefriends.org> | 2020-04-12 22:29:45 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2020-04-12 22:29:45 +0000 |
commit | e77e4c0742d53bd2bcfb793731d06abce15b4576 (patch) | |
tree | b9e746f5f0cb5f29d2e269938c4c9609114df126 /Master/texmf-dist/doc/latex/hitszthesis/back/appendix01.tex | |
parent | 0cac019b0397e90c430eb4953ad8eac940118532 (diff) |
hitszthesis (29mar20)
git-svn-id: svn://tug.org/texlive/trunk@54709 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/hitszthesis/back/appendix01.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/hitszthesis/back/appendix01.tex | 185 |
1 files changed, 41 insertions, 144 deletions
diff --git a/Master/texmf-dist/doc/latex/hitszthesis/back/appendix01.tex b/Master/texmf-dist/doc/latex/hitszthesis/back/appendix01.tex index faae6231143..85bec689846 100644 --- a/Master/texmf-dist/doc/latex/hitszthesis/back/appendix01.tex +++ b/Master/texmf-dist/doc/latex/hitszthesis/back/appendix01.tex @@ -1,104 +1,32 @@ % !TEX root = ../main.tex % 附录1 -\chapter{外文资料原文} -\label{cha:engorg} +\chapter{外文资料的调研阅读报告或书面翻译} -\title{The title of the English paper} +\title{英文资料的中文标题} -\textbf{Abstract:} As one of the most widely used techniques in operations -research, \emph{ mathematical programming} is defined as a means of maximizing a -quantity known as \emph{bjective function}, subject to a set of constraints -represented by equations and inequalities. Some known subtopics of mathematical -programming are linear programming, nonlinear programming, multiobjective -programming, goal programming, dynamic programming, and multilevel -programming$^{[1]}$. +{\heiti 摘要:} 本章为外文资料翻译内容。如果有摘要可以直接写上来,这部分好像没有 +明确的规定。 -It is impossible to cover in a single chapter every concept of mathematical -programming. This chapter introduces only the basic concepts and techniques of -mathematical programming such that readers gain an understanding of them -throughout the book$^{[2,3]}$. - - -\section{Single-Objective Programming} -The general form of single-objective programming (SOP) is written -as follows, -\begin{equation}\tag*{(123)} % 如果附录中的公式不想让它出现在公式索引中,那就请 - % 用 \tag*{xxxx} -\left\{\begin{array}{l} -\max \,\,f(x)\\[0.1 cm] -\mbox{subject to:} \\ [0.1 cm] -\qquad g_j(x)\le 0,\quad j=1,2,\cdots,p -\end{array}\right. +\section{单目标规划} +北冥有鱼,其名为鲲。鲲之大,不知其几千里也。化而为鸟,其名为鹏。鹏之背,不知其几 +千里也。怒而飞,其翼若垂天之云。是鸟也,海运则将徙于南冥。南冥者,天池也。 +\begin{equation}\tag*{(123)} + p(y|\mathbf{x}) = \frac{p(\mathbf{x},y)}{p(\mathbf{x})}= +\frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})} \end{equation} -which maximizes a real-valued function $f$ of -$x=(x_1,x_2,\cdots,x_n)$ subject to a set of constraints. -\newtheorem{mpdef}{Definition}[chapter] -\begin{mpdef} -In SOP, we call $x$ a decision vector, and -$x_1,x_2,\cdots,x_n$ decision variables. The function -$f$ is called the objective function. The set -\begin{equation}\tag*{(456)} % 这里同理,其它不再一一指定。 -S=\left\{x\in\Re^n\bigm|g_j(x)\le 0,\,j=1,2,\cdots,p\right\} -\end{equation} -is called the feasible set. An element $x$ in $S$ is called a -feasible solution. -\end{mpdef} +吾生也有涯,而知也无涯。以有涯随无涯,殆已!已而为知者,殆而已矣!为善无近名,为 +恶无近刑,缘督以为经,可以保身,可以全生,可以养亲,可以尽年。 -\newtheorem{mpdefop}[mpdef]{Definition} -\begin{mpdefop} -A feasible solution $x^*$ is called the optimal -solution of SOP if and only if -\begin{equation} -f(x^*)\ge f(x) -\end{equation} -for any feasible solution $x$. -\end{mpdefop} - -One of the outstanding contributions to mathematical programming was known as -the Kuhn-Tucker conditions\ref{eq:ktc}. In order to introduce them, let us give -some definitions. An inequality constraint $g_j(x)\le 0$ is said to be active at -a point $x^*$ if $g_j(x^*)=0$. A point $x^*$ satisfying $g_j(x^*)\le 0$ is said -to be regular if the gradient vectors $\nabla g_j(x)$ of all active constraints -are linearly independent. - -Let $x^*$ be a regular point of the constraints of SOP and assume that all the -functions $f(x)$ and $g_j(x),j=1,2,\cdots,p$ are differentiable. If $x^*$ is a -local optimal solution, then there exist Lagrange multipliers -$\lambda_j,j=1,2,\cdots,p$ such that the following Kuhn-Tucker conditions hold, -\begin{equation} -\label{eq:ktc} -\left\{\begin{array}{l} - \nabla f(x^*)-\sum\limits_{j=1}^p\lambda_j\nabla g_j(x^*)=0\\[0.3cm] - \lambda_jg_j(x^*)=0,\quad j=1,2,\cdots,p\\[0.2cm] - \lambda_j\ge 0,\quad j=1,2,\cdots,p. -\end{array}\right. -\end{equation} -If all the functions $f(x)$ and $g_j(x),j=1,2,\cdots,p$ are convex and -differentiable, and the point $x^*$ satisfies the Kuhn-Tucker conditions -(\ref{eq:ktc}), then it has been proved that the point $x^*$ is a global optimal -solution of SOP. - -\subsection{Linear Programming} -\label{sec:lp} - -If the functions $f(x),g_j(x),j=1,2,\cdots,p$ are all linear, then SOP is called -a {\em linear programming}. - -The feasible set of linear is always convex. A point $x$ is called an extreme -point of convex set $S$ if $x\in S$ and $x$ cannot be expressed as a convex -combination of two points in $S$. It has been shown that the optimal solution to -linear programming corresponds to an extreme point of its feasible set provided -that the feasible set $S$ is bounded. This fact is the basis of the {\em simplex - algorithm} which was developed by Dantzig as a very efficient method for -solving linear programming. +\subsection{线性规划} +庖丁为文惠君解牛,手之所触,肩之所倚,足之所履,膝之所倚,砉然响然,奏刀騞然,莫 +不中音,合于桑林之舞,乃中经首之会。 \begin{table}[ht] \centering \centering - \caption*{Table~1\hskip1em This is an example for manually numbered table, which - would not appear in the list of tables} - \label{tab:badtabular2} + \caption*{表~1\hskip1em 这是手动编号但不出现在索引中的一个表格例子} + \label{tab:badtabular3} \begin{tabular}[c]{|m{1.5cm}|c|c|c|c|c|c|}\hline \multicolumn{2}{|c|}{Network Topology} & \# of nodes & \multicolumn{3}{c|}{\# of clients} & Server \\\hline @@ -112,64 +40,33 @@ solving linear programming. \end{tabular} \end{table} -Roughly speaking, the simplex algorithm examines only the extreme points of the -feasible set, rather than all feasible points. At first, the simplex algorithm -selects an extreme point as the initial point. The successive extreme point is -selected so as to improve the objective function value. The procedure is -repeated until no improvement in objective function value can be made. The last -extreme point is the optimal solution. - -\subsection{Nonlinear Programming} - -If at least one of the functions $f(x),g_j(x),j=1,2,\cdots,p$ is nonlinear, then -SOP is called a {\em nonlinear programming}. - -A large number of classical optimization methods have been developed to treat -special-structural nonlinear programming based on the mathematical theory -concerned with analyzing the structure of problems. +文惠君曰:“嘻,善哉!技盖至此乎?”庖丁释刀对曰:“臣之所好者道也,进乎技矣。始臣之 +解牛之时,所见无非全牛者;三年之后,未尝见全牛也;方今之时,臣以神遇而不以目视, +官知止而神欲行。依乎天理,批大郤,导大窾,因其固然。技经肯綮之未尝,而况大坬乎! +良庖岁更刀,割也;族庖月更刀,折也;今臣之刀十九年矣,所解数千牛矣,而刀刃若新发 +于硎。彼节者有间而刀刃者无厚,以无厚入有间,恢恢乎其于游刃必有余地矣。是以十九年 +而刀刃若新发于硎。虽然,每至于族,吾见其难为,怵然为戒,视为止,行为迟,动刀甚微, +謋然已解,如土委地。提刀而立,为之而四顾,为之踌躇满志,善刀而藏之。” -Now we consider a nonlinear programming which is confronted solely with -maximizing a real-valued function with domain $\Re^n$. Whether derivatives are -available or not, the usual strategy is first to select a point in $\Re^n$ which -is thought to be the most likely place where the maximum exists. If there is no -information available on which to base such a selection, a point is chosen at -random. From this first point an attempt is made to construct a sequence of -points, each of which yields an improved objective function value over its -predecessor. The next point to be added to the sequence is chosen by analyzing -the behavior of the function at the previous points. This construction continues -until some termination criterion is met. Methods based upon this strategy are -called {\em ascent methods}, which can be classified as {\em direct methods}, -{\em gradient methods}, and {\em Hessian methods} according to the information -about the behavior of objective function $f$. Direct methods require only that -the function can be evaluated at each point. Gradient methods require the -evaluation of first derivatives of $f$. Hessian methods require the evaluation -of second derivatives. In fact, there is no superior method for all -problems. The efficiency of a method is very much dependent upon the objective -function. +文惠君曰:“善哉!吾闻庖丁之言,得养生焉。” -\subsection{Integer Programming} -{\em Integer programming} is a special mathematical programming in which all of -the variables are assumed to be only integer values. When there are not only -integer variables but also conventional continuous variables, we call it {\em - mixed integer programming}. If all the variables are assumed either 0 or 1, -then the problem is termed a {\em zero-one programming}. Although integer -programming can be solved by an {\em exhaustive enumeration} theoretically, it -is impractical to solve realistically sized integer programming problems. The -most successful algorithm so far found to solve integer programming is called -the {\em branch-and-bound enumeration} developed by Balas (1965) and Dakin -(1965). The other technique to integer programming is the {\em cutting plane - method} developed by Gomory (1959). +\subsection{非线性规划} +孔子与柳下季为友,柳下季之弟名曰盗跖。盗跖从卒九千人,横行天下,侵暴诸侯。穴室枢 +户,驱人牛马,取人妇女。贪得忘亲,不顾父母兄弟,不祭先祖。所过之邑,大国守城,小 +国入保,万民苦之。孔子谓柳下季曰:“夫为人父者,必能诏其子;为人兄者,必能教其弟。 +若父不能诏其子,兄不能教其弟,则无贵父子兄弟之亲矣。今先生,世之才士也,弟为盗 +跖,为天下害,而弗能教也,丘窃为先生羞之。丘请为先生往说之。” -\hfill\textit{Uncertain Programming\/}\quad(\textsl{BaoDing Liu, 2006.2}) +柳下季曰:“先生言为人父者必能诏其子,为人兄者必能教其弟,若子不听父之诏,弟不受 +兄之教,虽今先生之辩,将奈之何哉?且跖之为人也,心如涌泉,意如飘风,强足以距敌, +辩足以饰非。顺其心则喜,逆其心则怒,易辱人以言。先生必无往。” -\section*{References} -\noindent{\itshape NOTE: These references are only for demonstration. They are - not real citations in the original text.} +孔子不听,颜回为驭,子贡为右,往见盗跖。 -\begin{translationbib} -\item Donald E. Knuth. The \TeX book. Addison-Wesley, 1984. ISBN: 0-201-13448-9 -\item Paul W. Abrahams, Karl Berry and Kathryn A. Hargreaves. \TeX\ for the - Impatient. Addison-Wesley, 1990. ISBN: 0-201-51375-7 -\item David Salomon. The advanced \TeX book. New York : Springer, 1995. ISBN:0-387-94556-3 -\end{translationbib} +\subsection{整数规划} +盗跖乃方休卒徒大山之阳,脍人肝而餔之。孔子下车而前,见谒者曰:“鲁人孔丘,闻将军 +高义,敬再拜谒者。”谒者入通。盗跖闻之大怒,目如明星,发上指冠,曰:“此夫鲁国之 +巧伪人孔丘非邪?为我告之:尔作言造语,妄称文、武,冠枝木之冠,带死牛之胁,多辞缪 +说,不耕而食,不织而衣,摇唇鼓舌,擅生是非,以迷天下之主,使天下学士不反其本,妄 +作孝弟,而侥幸于封侯富贵者也。子之罪大极重,疾走归!不然,我将以子肝益昼餔之膳。”
\ No newline at end of file |