diff options
author | Karl Berry <karl@freefriends.org> | 2006-01-09 00:44:40 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-01-09 00:44:40 +0000 |
commit | b4fc5f639874db951177ec539299d20908adb654 (patch) | |
tree | 52f08823ca58fffe3db6a9b075635038c567626c /Master/texmf-dist/doc/latex/flashcards/samplecards.tex | |
parent | dec3d98ebe442d7ea93efbaa8dd2e2be8149a467 (diff) |
doc 4
git-svn-id: svn://tug.org/texlive/trunk@80 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/flashcards/samplecards.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/flashcards/samplecards.tex | 113 |
1 files changed, 113 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/flashcards/samplecards.tex b/Master/texmf-dist/doc/latex/flashcards/samplecards.tex new file mode 100644 index 00000000000..e1115ca6a0c --- /dev/null +++ b/Master/texmf-dist/doc/latex/flashcards/samplecards.tex @@ -0,0 +1,113 @@ +%% +%% This is file `samplecards.tex', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% flashcards.dtx (with options: `sample') +%% +%% FlashCards LaTeX2e Class for Typesetting Double Sided Cards +%% Copyright (C) 2000 Alexander M. Budge <ambudge@mit.edu> +%% +%% This program is free software; you can redistribute it and/or modify +%% it under the terms of the GNU General Public License as published by +%% the Free Software Foundation; either version 2 of the License, or +%% (at your option) any later version. +%% +%% This program is distributed in the hope that it will be useful, +%% but WITHOUT ANY WARRANTY; without even the implied warranty of +%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +%% GNU General Public License for more details. +%% +%% You should have received a copy of the GNU General Public License +%% along with this program (the file COPYING); if not, write to the +%% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +%% +%% \CharacterTable +%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z +%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z +%% Digits \0\1\2\3\4\5\6\7\8\9 +%% Exclamation \! Double quote \" Hash (number) \# +%% Dollar \$ Percent \% Ampersand \& +%% Acute accent \' Left paren \( Right paren \) +%% Asterisk \* Plus \+ Comma \, +%% Minus \- Point \. Solidus \/ +%% Colon \: Semicolon \; Less than \< +%% Equals \= Greater than \> Question mark \? +%% Commercial at \@ Left bracket \[ Backslash \\ +%% Right bracket \] Circumflex \^ Underscore \_ +%% Grave accent \` Left brace \{ Vertical bar \| +%% Right brace \} Tilde \~} +%% +\NeedsTeXFormat{LaTeX2e}[1996/12/01] +\ProvidesFile{samplecards.tex} +\documentclass[avery5388,grid,frame]{flashcards} + +\cardfrontstyle[\large\slshape]{headings} +\cardbackstyle{empty} + +\begin{document} + +\cardfrontfoot{Functional Analysis} + +\begin{flashcard}[Definition]{Norm on a Linear Space \\ Normed Space} + + A real-valued function $||x||$ defined on a linear space $X$, where + $x \in X$, is said to be a \emph{norm on} $X$ if + + \smallskip + + \begin{description} + \item [Positivity] $||x|| \geq 0$, + \item [Triangle Inequality] $||x+y|| \leq ||x|| + ||y||$, + \item [Homogeneity] $||\alpha x|| = |\alpha| \: ||x||$, + $\alpha$ an arbitrary scalar, + \item [Positive Definiteness] $||x|| = 0$ if and only if $x=0$, + \end{description} + + \smallskip + + where $x$ and $y$ are arbitrary points in $X$. + + \medskip + + A linear/vector space with a norm is called a \emph{normed space}. +\end{flashcard} + +\begin{flashcard}[Definition]{Inner Product} + + Let $X$ be a complex linear space. An \emph{inner product} on $X$ is + a mapping that associates to each pair of vectors $x$, $y$ a scalar, + denoted $(x,y)$, that satisfies the following properties: + + \medskip + + \begin{description} + \item [Additivity] $(x+y,z) = (x,z) + (y,z)$, + \item [Homogeneity] $(\alpha \: x, y) = \alpha (x,y)$, + \item [Symmetry] $(x,y) = \overline{(y,x)}$, + \item [Positive Definiteness] $(x,x) > 0$, when $x\neq0$. + \end{description} +\end{flashcard} + +\begin{flashcard}[Definition]{Linear Transformation/Operator} + + A transformation $L$ of (operator on) a linear space $X$ into a linear + space $Y$, where $X$ and $Y$ have the same scalar field, is said to be + a \emph{linear transformation (operator)} if + + \medskip + + \begin{enumerate} + \item $L(\alpha x) = \alpha L(x), \forall x\in X$ and $\forall$ + scalars $\alpha$, and + \item $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1,x_2 \in X$. + \end{enumerate} + +\end{flashcard} + +\end{document} + +\endinput +%% +%% End of file `samplecards.tex'. |