diff options
author | Karl Berry <karl@freefriends.org> | 2006-01-09 00:44:40 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-01-09 00:44:40 +0000 |
commit | b4fc5f639874db951177ec539299d20908adb654 (patch) | |
tree | 52f08823ca58fffe3db6a9b075635038c567626c /Master/texmf-dist/doc/latex/beamer/examples | |
parent | dec3d98ebe442d7ea93efbaa8dd2e2be8149a467 (diff) |
doc 4
git-svn-id: svn://tug.org/texlive/trunk@80 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/beamer/examples')
27 files changed, 2322 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg Binary files differnew file mode 100644 index 00000000000..b459c8fa099 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg Binary files differnew file mode 100644 index 00000000000..f48e2ae106f --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg Binary files differnew file mode 100644 index 00000000000..4e691bd2c58 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg Binary files differnew file mode 100644 index 00000000000..fe82742d707 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg Binary files differnew file mode 100644 index 00000000000..cea4d4c2177 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg Binary files differnew file mode 100644 index 00000000000..77be392fa11 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg Binary files differnew file mode 100644 index 00000000000..56556cfa7d9 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg Binary files differnew file mode 100644 index 00000000000..a8768667840 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg Binary files differnew file mode 100644 index 00000000000..693877d65b7 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg Binary files differnew file mode 100644 index 00000000000..84d4fd4f228 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg Binary files differnew file mode 100644 index 00000000000..a1ce12cdff0 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg Binary files differnew file mode 100644 index 00000000000..29dc62f5a9f --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf Binary files differnew file mode 100644 index 00000000000..e766318d174 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex new file mode 100644 index 00000000000..eaa7e9b642c --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex @@ -0,0 +1,941 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample1.tex,v 1.47 2004/11/04 15:43:51 tantau Exp $ + +\documentclass{beamer} +%\documentclass{article} +%\usepackage[envcountsect]{beamerarticle} + +% Do NOT take this file as a template for your own talks. Use a file +% in the directory solutions instead. They are much better suited. + +% Try the class options [notes], [notes=only], [trans], [handout], +% [red], [compress], [draft] and see what happens! + +% Copyright 2003 by Till Tantau <tantau@users.sourceforge.net>. +% +% This program can be redistributed and/or modified under the terms +% of the LaTeX Project Public License Distributed from CTAN +% archives in directory macros/latex/base/lppl.txt. + +% For a green structure color use: +%\colorlet{structure}{green!50!black} + +\mode<article> % only for the article version +{ + \usepackage{fullpage} + \usepackage{hyperref} +} + + +\mode<presentation> +{ + \setbeamertemplate{background canvas}[vertical shading][bottom=red!10,top=blue!10] + + \usetheme{Warsaw} + \usefonttheme[onlysmall]{structurebold} +} + +%\setbeamercolor{math text}{fg=green!50!black} +%\setbeamercolor{normal text in math text}{parent=math text} + +\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade} +\usepackage{amsmath,amssymb} +\usepackage[latin1]{inputenc} +\usepackage{colortbl} +\usepackage[english]{babel} + +%\usepackage{lmodern} +%\usepackage[T1]{fontenc} + +\usepackage{times} + +\setbeamercovered{dynamic} + +% +% The following defintions are peculiar to this particular +% presetation. They have nothing to do with the beamer class +% + +\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}} + +\newcommand{\Class}[1]{\operatorname{\mathchoice + {\text{\normalfont\small #1}} + {\text{\normalfont\small #1}} + {\text{\normalfont#1}} + {\text{\normalfont#1}}}} + +\newcommand{\DOF}{\Class{DOF}} +\newcommand{\NOF}{\Class{NOF}} +\newcommand{\DOFpoly}{\Class{DOF}_{\operatorname{poly}}} +\newcommand{\NOFpoly}{\Class{NOF}_{\operatorname{poly}}} + + +\newcommand{\Nat}{\mathbb{N}} +\newcommand{\Set}[1]{\{#1\}} + +\pgfdeclaremask{computer}{beamer-computer-mask} +\pgfdeclaremask{apple}{beamer-g4-mask} +\pgfdeclaremask{ram}{beamer-ram-mask} + +\pgfdeclareimage[interpolate=true,mask=computer,% + width=1.8361cm,height=2cm]{computerimage}{beamer-computer} +\pgfdeclareimage[interpolate=true,mask=computer,% + width=1.8361cm,height=2cm]{computerworkingimage}{beamer-computerred} +\pgfdeclareimage[interpolate=true,mask=apple,% + width=1.625cm,height=2cm]{apple}{beamer-g4} +\pgfdeclareimage[interpolate=true,mask=apple,% + width=1.625cm,height=2cm]{appleworking}{beamer-g4red} +\pgfdeclareimage[interpolate=true,mask=ram,% + width=3.811cm,height=1cm]{ram}{beamer-ram} + +\newcommand{\tape}[9]{% + \pgfputat{#1}{% + \pgfsetlinewidth{0.8pt}% + \pgfrect[stroke]{\pgfxy(0,0)}{\pgfxy(4,0.5)}% + \pgfsetlinewidth{0.4pt}% + \pgfline{\pgfxy(0.5,0)}{\pgfxy(0.5,0.5)}% + \pgfline{\pgfxy(1.0,0)}{\pgfxy(1.0,0.5)}% + \pgfline{\pgfxy(1.5,0)}{\pgfxy(1.5,0.5)}% + \pgfline{\pgfxy(2.0,0)}{\pgfxy(2.0,0.5)}% + \pgfline{\pgfxy(2.5,0)}{\pgfxy(2.5,0.5)}% + \pgfline{\pgfxy(3.0,0)}{\pgfxy(3.0,0.5)}% + \pgfline{\pgfxy(3.5,0)}{\pgfxy(3.5,0.5)}% + % + \pgfputat{\pgfxy(0.25,0.25)}{\pgfbox[center,center]{#2}}% + \pgfputat{\pgfxy(0.75,0.25)}{\pgfbox[center,center]{#3}}% + \pgfputat{\pgfxy(1.25,0.25)}{\pgfbox[center,center]{#4}}% + \pgfputat{\pgfxy(1.75,0.25)}{\pgfbox[center,center]{#5}}% + \pgfputat{\pgfxy(2.25,0.25)}{\pgfbox[center,center]{#6}}% + \pgfputat{\pgfxy(2.75,0.25)}{\pgfbox[center,center]{#7}}% + \pgfputat{\pgfxy(3.25,0.25)}{\pgfbox[center,center]{#8}}% + \pgfputat{\pgfxy(3.75,0.25)}{\pgfbox[center,center]{#9}}% + % + \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{\structure{tape}}}% + }% + % + \pgfnodecircle{n1}[virtual]{\pgfrelative{#1}{\pgfxy(0.25,0)}}{2pt}% + \pgfnodecircle{n2}[virtual]{\pgfrelative{#1}{\pgfxy(0.75,0)}}{2pt}% + \pgfnodecircle{n3}[virtual]{\pgfrelative{#1}{\pgfxy(1.25,0)}}{2pt}% + \pgfnodecircle{n4}[virtual]{\pgfrelative{#1}{\pgfxy(1.75,0)}}{2pt}% + \pgfnodecircle{n5}[virtual]{\pgfrelative{#1}{\pgfxy(2.25,0)}}{2pt}% + \pgfnodecircle{n6}[virtual]{\pgfrelative{#1}{\pgfxy(2.75,0)}}{2pt}% + \pgfnodecircle{n7}[virtual]{\pgfrelative{#1}{\pgfxy(3.25,0)}}{2pt}% + \pgfnodecircle{n8}[virtual]{\pgfrelative{#1}{\pgfxy(3.75,0)}}{2pt}% +} + +\newcommand{\putmachine}[2]{% + \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}% + \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}% + \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}% +} +\newcommand{\putmachineworking}[2]{% + \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}% + \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}% + \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}% +} + +\newcommand{\putmachinea}[2]{% + \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{apple}}}% + \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}% + \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}% +} +\newcommand{\putmachineworkinga}[2]{% + \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{appleworking}}}% + \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}% + \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}% +} + +\newcommand{\selectpos}[1]{% + \pgfsetlinewidth{0.6pt}% + \color{structure}% + \pgfsetendarrow{\pgfarrowto}% + \pgfnodeconncurve{machine}{n#1}{90}{-90}{.5cm}{.5cm}% +} + +% +% The following info should normally be given in you main file: +% + +\title[Computation with Absolutely No~Space~Overhead]{Computation~with Absolutely~No~Space~Overhead} +\author[Hemaspaandra, Mukherji, Tantau]{% + Lane~Hemaspaandra\inst{1} \and + Proshanto~Mukherji\inst{1} \and + Till~Tantau\inst{2}} +\institute[Universities of Rochester and Berlin]{ + \inst{1}% + Department of Computer Science\\ + University of Rochester + \and + \inst{2}% + Fakult鋞 f黵 Elektrotechnik und Informatik\\ + Technical University of Berlin} +\date[DLT 2003]{Developments in Language Theory Conference, 2003} +\subject{Theoretical Computer Science} + +\pgfdeclaremask{tu}{beamer-tu-logo-mask} +\pgfdeclaremask{ur}{beamer-ur-logo-mask} +\pgfdeclareimage[mask=tu,width=0.6cm]{tu-logo}{beamer-tu-logo} +\pgfdeclareimage[mask=ur,width=1cm]{ur-logo}{beamer-ur-logo} + +\logo{\vbox{\hbox to 1cm{\hfil\pgfuseimage{tu-logo}}\vskip0.1cm\hbox{\pgfuseimage{ur-logo}}}} + + +\begin{document} + +\frame{\titlepage} + +\section<presentation>*{Outline} + +\begin{frame} + \frametitle{Outline} + \tableofcontents[part=1,pausesections] +\end{frame} + +\AtBeginSubsection[] +{ + \begin{frame}<beamer> + \frametitle{Outline} + \tableofcontents[current,currentsubsection] + \end{frame} +} + +\part<presentation>{Main Talk} + +\section[Models]{The Model of Overhead-Free Computation} + +\subsection[Standard Model]{The Standard Model of Linear Space} + +\begin{frame} + \frametitle{The Standard Model of Linear Space} + + \begin{columns} + + \column{4.5cm} + \note[item]<1>{Point out that \$ is a marker symbol.} + \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm} + \only<1| trans:1>{ + \putmachine{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0} + \selectpos{1}} + \only<2| handout:0| trans:2>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{0} + \selectpos{2}} + \only<3| handout:0| trans:3>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{0} + \selectpos{8}} + \only<4| handout:0| trans:4>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{\$} + \selectpos{7}} + \only<5| handout:0| trans:0>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{\$} + \selectpos{2}} + \only<6| handout:0| trans:0>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{0}{\$} + \selectpos{3}} + \only<7| handout:0| trans:0>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{0}{\$} + \selectpos{7}} + \only<8| handout:0| trans:0>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{\$}{\$} + \selectpos{6}} + \only<9| handout:0| trans:0>{ + \putmachineworking{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{\$}{\$}{\$}{\$}{\$}{\$}{\$} + \selectpos{5}} + \only<10| handout:0| trans:5>{ + \putmachine{\pgfxy(1.75,3)}{Turing machine} + \tape{\pgfxy(0,5)}{\$}{\$}{\$}{\$}{\$}{\$}{\$}{\$} + \selectpos{5}} + \end{pgfpicture} + + \column{6cm} + \begin{block}{Characteristics} + \begin{itemize} + \item + Input fills \alert{fixed-size tape} + \item + Input may be \alert{modified} + \item + Tape alphabet \alert{is larger than}\\ input alphabet + \note[item]<1>{Stress the larger tape alphabet.} + \end{itemize} + \end{block} + \end{columns} +\end{frame} + + +\begin{frame} + \frametitle{Linear Space is a Powerful Model} + + \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm} + \pgfsetlinewidth{0.8pt} + \pgfxyline(-5,0)(5,0) + + \pgfsetlinewidth{0.4pt} + + \pgfheaplabeledcentered{2cm}{2.5cm}{$\Class{CFL}$} + \pgfheaplabeledcentered{3.5cm}{3cm}{\raise10pt\hbox{}$\Class{DLINSPACE}$} + \pgfheaplabeledcentered{5cm}{4cm}{\raise13pt\hbox{}$\Class{NLINSPACE} = \Class{CSL}$} + \pgfheaplabeledcentered{6cm}{5cm}{$\Class{PSPACE}$} + \note[item]{Explain CSL.} + + \pgfsetdash{{3pt}{3pt}}{0pt} + \pgfheaplabeled{\pgfxy(0,3.3)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}% + \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}\!\text{-hard}$}}% + \end{pgfpicture} + \note[item]{Point out the connections to formal language theory.} +\end{frame} + + +\subsection[Our Model]{Our Model of Absolutely No Space Overhead} + +\begin{frame} + \frametitle{Our Model of ``Absolutely No Space Overhead''} + + \transdissolve<7>[duration=0.2] + + \begin{columns} + + \column{4.5cm} + \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm} + \only<1| trans:1>{% + \putmachinea{\pgfxy(1.75,3)}{Turing machine}% + \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}% + \selectpos{1}}% + \only<2| handout:0| trans:2>{% + \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}% + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}% + \selectpos{2}}% + \only<3| handout:0| trans:3>{% + \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}% + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}% + \selectpos{8}}% + \only<4| handout:0| trans:0>{% + \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}% + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}% + \selectpos{7}}% + \only<5| handout:0| trans:0>{% + \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}% + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}% + \selectpos{2}}% + \only<6| handout:0| trans:0>{% + \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}% + \tape{\pgfxy(0,5)}{1}{1}{1}{0}{0}{1}{0}{1}% + \selectpos{3}}% + \only<7| handout:0| trans:4>{% + \putmachinea{\pgfxy(1.75,3)}{Turing machine}% + \pgfputat{\pgfxy(1.75,5.5)}{\pgfbox[center,center]{\pgfuseimage{ram}}}% + \pgfnodecircle{n3}[virtual]{\pgfxy(1.25,5)}{2pt}% + \selectpos{3}}% + \end{pgfpicture} + + \column{6cm} + \begin{overprint} + \onslide<1-6| trans:1-3| handout:1> + \begin{block}{Characteristics} + \begin{itemize} + \item + Input fills \alert{fixed-size tape} + \item + Input may be \alert{modified} + \item + Tape alphabet \alert{equals}\\ + input alphabet + \end{itemize} + \end{block} + \onslide<7-| trans:4| handout:2> + \begin{alertblock}{Intuition} + \begin{itemize} + \item + Tape is used like a\\ RAM module. + \end{itemize} + \end{alertblock} + \end{overprint} + \end{columns} + \note[item]<6>{Point out that no markers are used.} +\end{frame} + + +\begin{frame} + \frametitle{Definition of Overhead-Free Computations} + + \begin{Definition} + A Turing machine is \alert{overhead-free} if + \begin{enumerate} + \item + it has only a single tape, + \item + writes only on input cells, + \item + writes only symbols drawn from the input alphabet. + \end{enumerate} + \end{Definition} +\end{frame} + +\begin{frame} + \frametitle{Overhead-Free Computation Complexity Classes} + + \begin{Definition} + A language $L \subseteq \Sigma^*$ is in + \begin{description} + \item[\alert<1| handout:0| trans:0>{$\DOF$}% + {\note[item]<1>{Joke about German pronunciation}}] + if $L$ is accepted by a deterministic overhead-free machine with + input alphabet~$\Sigma$, + \pause + \item[\alert<2| handout:0| trans:0>{$\DOFpoly$}] + if $L$ is accepted by a deterministic overhead-free machine with + input alphabet~$\Sigma$ in polynomial time. + \pause + \item[\alert<3| handout:0| trans:0>{$\NOF$}] + is the nondeterministic version of $\DOF$, + \note[item]<3>{Stress meaning of D and N.} + \pause + \item[\alert<4| handout:0| trans:0>{$\NOFpoly$}] + is the nondeterministic version of $\DOFpoly$. + \end{description} + \end{Definition} +\end{frame} + +\begin{frame} + \frametitle{Simple Relationships among\\ Overhead-Free Computation Classes} + + \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm} + \pgfsetlinewidth{0.8pt} + \pgfxyline(-5,0)(5,0) + + \pgfsetlinewidth{0.4pt} + + \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$} + \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$} + \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$} + \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$} + + \pgfheaplabeledcentered{6cm}{5cm}{\raise10pt\hbox{}$\Class{NLINSPACE}$} + \end{pgfpicture} +\end{frame} + + +\section[Power of the Model]{The Power of Overhead-Free Computation} + + +\subsection{Palindromes} + +\begin{frame} + \frametitle{Palindromes Can be Accepted in an Overhead-Free Way} + + \begin{columns} + + \column{4.5cm} + \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm} + \only<1| trans:1>{ + \putmachinea{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0} + \selectpos{1}} + \only<2| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0} + \selectpos{2}} + \only<3| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0} + \selectpos{8}} + \only<4| handout:0| trans:2>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1} + \selectpos{7}} + \only<5| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1} + \selectpos{1}} + \only<6| handout:0| trans:3>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{0}{1} + \selectpos{2}} + \only<7| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{0}{1} + \selectpos{8}} + \only<8| handout:0| trans:4>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{1}{0} + \selectpos{7}} + \only<9| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{1}{0} + \selectpos{2}} + \only<10| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{1}{0} + \selectpos{3}} + \only<11| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{1}{0} + \selectpos{7}} + \only<12| handout:0| trans:5>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0} + \selectpos{6}} + \only<13| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0} + \selectpos{3}} + \only<14| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{0}{1}{0}{1}{0}{0} + \selectpos{4}} + \only<15| handout:0| trans:0>{ + \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{0}{1}{0}{1}{0}{0} + \selectpos{6}} + \only<16| handout:0| trans:6>{ + \putmachinea{\pgfxy(1.75,3)}{overhead-free machine} + \tape{\pgfxy(0,5)}{0}{0}{0}{1}{1}{0}{0}{0} + \selectpos{5}} + \end{pgfpicture} + + \column{6cm} + \begin{block}{Algorithm} + \alert<1| handout:0| trans:1>{Phase 1:\\ + Compare first and last bit} + + \quad \alert<2| handout:0| trans:2>{Place left end marker} + + \quad \alert<3| handout:0| trans:2>{Place right end marker} + \vskip1em + + \alert<4| handout:0| trans:3->{Phase 2:\\ + Compare bits next to end markers} + + \quad \alert<5,9,13| handout:0| trans:0>{Find left end marker} + + \quad \alert<6,10,14| handout:0| trans:0>{Advance left end marker} + + \quad \alert<7,11,15| handout:0| trans:0>{Find right end marker} + + \quad \alert<8,12,16| handout:0| trans:0>{Advance right end marker} + + \end{block} + \end{columns} + \note<1>{Use 3 minutes.} +\end{frame} + +\begin{frame} + \frametitle{Relationships among Overhead-Free Computation Classes} + + \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm} + \pgfsetlinewidth{0.8pt} + \pgfxyline(-5,0)(5,0) + + \pgfsetlinewidth{0.4pt} + + \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$} + \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$} + \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$} + \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$} + + \pgfputat{\pgfxy(0,0.25)}{\pgfbox[center,base]{\alert{Palindromes}}} + \end{pgfpicture} +\end{frame} + + +\subsection{Linear Languages} + +\begin{frame} + \frametitle{A Review of Linear Grammars} + + \begin{Definition}<1> + A grammar is \alert{linear} if it is context-free and\\ there is + only one nonterminal per right-hand side. + \end{Definition} + + \begin{Example}<1> + $G_1\colon S \to 00S0 \mid 1$ and $G_2\colon S \to 0S10 \mid 0$. + \end{Example} + + \begin{Definition}<2-> + A grammar is \alert{deterministic} if\\ ``there is always only one + rule that can be applied.'' + \note<2>{Just explain intution.} + \end{Definition} + + \begin{Example}<2-> + $G_1\colon S \to 00S0 \mid 1$ is deterministic. + + $G_2\colon S \to 0S10 \mid 0$ is \alert{not} deterministic. + \end{Example} +\end{frame} + + +\begin{frame} + \frametitle{Deterministic Linear Languages\\ Can Be Accepted in an + Overhead-Free Way} + + \begin{Theorem} + Every deterministic linear language is in $\DOFpoly$. + \end{Theorem} +\end{frame} + +\begin{frame}[<+->] + \frametitle{Metalinear Languages\\ Can Be Accepted in an + Overhead-Free Way} + + \begin{Definition} + A language is \alert{metalinear} if it is the concatenation\\ of + linear languages. + \end{Definition} + + \begin{Example} + $\Lang{triple-palindrome} = \Set{uvw \mid \text{$u$, $v$, and $w$ are palindromes}}$. + \end{Example} + + \begin{Theorem} + Every metalinear language is in $\NOFpoly$. + \end{Theorem} +\end{frame} + +\begin{frame} + \frametitle{Relationships among Overhead-Free Computation Classes} + + \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm} + \pgfsetlinewidth{0.8pt} + \pgfxyline(-5,0)(5,0) + + \pgfsetlinewidth{0.4pt} + + \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOFpoly$} + \pgfheaplabeledcentered{4.25cm}{4cm}{$\NOFpoly$} + \pgfheaplabeledcentered{5cm}{5cm}{$\NOF$} + + \color{red}% + \pgfheaplabeledcentered{1.75cm}{2cm}{\raise10pt\hbox{}deterministic} + \pgfheaplabeledcentered{2.5cm}{3.5cm}{metalinear} + + \pgfputat{\pgfxy(0,0.6)}{\pgfbox[center,base]{linear}} + \end{pgfpicture} + \note[item]{Skip next subsection if more than 18 minutes have passed.} +\end{frame} + + +\subsection[Forbidden Subword]{Context-Free Languages with a Forbidden Subword} + +\begin{frame} + \frametitle{Definition of Almost-Overhead-Free Computations} + + \begin{Definition} + A Turing machine is \alert{almost-overhead-free} if + \begin{enumerate}[<+-| alert@+>] + \item it has only a single tape, + \item writes only on input cells, + \item writes only symbols drawn from the input alphabet\\ + plus one special symbol. + \end{enumerate} + \end{Definition} +\end{frame} + +\begin{frame} + \frametitle{Context-Free Languages with a Forbidden Subword\\ Can Be + Accepted in an Overhead-Free Way} + + \begin{Theorem} + Let $L$ be a context-free language with a forbidden word.\\ + Then $L \in \NOFpoly$. + \end{Theorem} + + \begin{overprint} + \onslide<1| handout:0| trans:0| article:0> + \hfill\hyperlinkframestartnext{\beamerskipbutton{Skip proof}} + \onslide<2| handout:1| trans:1> + \begin{proof} + Every context-free language can be accepted by a nondeterministic + almost-overhead-free machine in polynomial time. + \end{proof} + \end{overprint} +\end{frame} + +\begin{frame} + \frametitle{Relationships among Overhead-Free Computation Classes} + + \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm} + \pgfsetlinewidth{0.8pt} + \pgfxyline(-5,0)(5,0) + + \pgfsetlinewidth{0.4pt} + + \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOFpoly$} + \pgfheaplabeledcentered{4.25cm}{4cm}{$\NOFpoly$} + \pgfheaplabeledcentered{5cm}{5cm}{$\NOF$} + + \color{red}% + \pgfheaplabeledcentered{2.5cm}{3.5cm}{CFL with} + + \pgfputat{\pgfxy(0,1.6)}{\pgfbox[center,base]{forbidden subwords}} + \end{pgfpicture} +\end{frame} + + + +\subsection[Complete Languages]{Languages Complete for Polynomial Space} + +\begin{frame}<1>[label=pspacecomplete] + \frametitle{Overhead-Free Languages can be PSPACE-Complete} + + \begin{Theorem} + $\DOF$ contains languages that are complete for + $\Class{PSPACE}$. + \end{Theorem} + + \only<1| article:0| trans:0| handout:0> + { + \vskip1em + + \hyperlink{pspacecomplete<2>}{\beamergotobutton{Proof details}} + } + \only<2> + {% this is only shown in the appendix, where this frame is resumed. + \begin{proof} + \begin{enumerate} + \item + Let $A \in \Class{DLINSPACE}$ be $\Class{PSPACE}$-complete.\\ + Such languages are known to exist. + \item + Let $M$ be a linear space machine that accepts~$A \subseteq + \Set{0,1}^*$ with tape alphabet~$\Gamma$. + \item + Let $h \colon \Gamma \to \Set{0,1}^*$ be an isometric, injective + homomorphism. + \item + Then $h(L)$ is in $\Class{DOF}$ and it is + $\Class{PSPACE}$-complete. \qedhere + \end{enumerate} + \end{proof} + + \only<beamer>{\hfill\hyperlink{pspacecomplete<1>}{\beamerreturnbutton{Return}}} + } +\end{frame} + +\begin{frame} + \frametitle{Relationships among Overhead-Free Computation Classes} + + \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm} + \pgfsetlinewidth{0.8pt} + \pgfxyline(-5,0)(5,0) + + \pgfsetlinewidth{0.4pt} + + \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$} + \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$} + \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$} + \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$} + + \pgfsetdash{{3pt}{3pt}}{0pt} + \pgfheaplabeled{\pgfxy(0,2.9)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}% + \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}\!\text{-hard}$}}% + \end{pgfpicture} +\end{frame} + + +\section[Limitations of the Model]{Limitations of Overhead-Free Computation} + + +\subsection[Strict Inclusion]{Linear Space is Strictly More Powerful} + +\begin{frame} + \frametitle{Some Context-Sensitive Languages\\ + Cannot be Accepted in an Overhead-Free Way} + + \begin{Theorem} + $\DOF \subsetneq \Class{DLINSPACE}$. + \end{Theorem} + + \begin{Theorem} + $\NOF \subsetneq \Class{NLINSPACE}$. + \end{Theorem} + + \vskip1em + The proofs are based on old diagonalisations due to Feldman, Owings, + and Seiferas. +\end{frame} + +\begin{frame} + \frametitle{Relationships among Overhead-Free Computation Classes} + + \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm} + \pgfsetlinewidth{0.8pt} + \pgfxyline(-5,0)(5,0) + + \pgfsetlinewidth{0.4pt} + + \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$} + \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$} + + \pgfheaplabeledcentered{4.3cm}{4.5cm}{\raise8pt\hbox{}$\Class{DLINSPACE}$} + \pgfheaplabeledcentered{6cm}{5cm}{\raise10pt\hbox{}$\Class{NLINSPACE}$} + + \pgfsetdash{{3pt}{3pt}}{0pt} + \pgfheaplabeled{\pgfxy(0,2.9)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}% + \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}$-hard}}% + \end{pgfpicture} +\end{frame} + +\begin{frame} + \frametitle{Candidates for Languages that\\ + Cannot be Accepted in an Overhead-Free Way} + + \begin{overprint} + \onslide<all:1> + \begin{block}{Conjecture} + \strut + $\Lang{double-palindromes} \notin \Class{DOF}$. + \end{block} + + \onslide<all:2> + \begin{alertblock}{Theorem\vphantom{j}} + \strut + $\Lang{double-palindromes} \in \Class{DOF}$. + \end{alertblock} + \end{overprint} + + \begin{block}{Conjecture} + $\Set{ww \mid w\in \Set{0,1}^*} \notin \Class{NOF}$. + \end{block} + + \vskip1em + \uncover<1>{Proving the first conjecture would show $\Class{DOF} \subsetneq + \Class{NOF}$.} +\end{frame} + + +\section*{Summary} + +\subsection<presentation>*{Summary} + +\begin{frame} + \frametitle<presentation>{Summary} + + \begin{block}{} + \begin{itemize} + \item + Overhead-free computation is a more faithful\\ + \alert{model of fixed-size memory}. + \item + Overhead-free computation is \alert{less powerful} than linear space. + \item + \alert{Many} context-free languages can be accepted\\ + by overhead-free machines. + \item + We conjecture that \alert{all} context-free languages are in + $\NOFpoly$. + \item + Our results can be seen as new results on the power of\\ + \alert{linear bounded automata with fixed alphabet} size. + \end{itemize} + \end{block} + + \note[item]{Point out result concerning all context-free languages.} + \note[item]{Relationship to restart automata.} +\end{frame} + + + +\subsection<presentation>*{Further Reading} + +\begin{frame} + \frametitle<presentation>{For Further Reading} + + \beamertemplatebookbibitems + + \begin{thebibliography}{10} + + \bibitem{sal:b:formal-languages} + A.~Salomaa. + \newblock {\em Formal Languages}. + \newblock Academic Press, 1973. + \pause + + \beamertemplatearticlebibitems + \bibitem{dij:j:smoothsort} + E.~Dijkstra. + \newblock Smoothsort, an alternative for sorting in situ. + \newblock {\em Science of Computer Programming}, 1(3):223--233, + 1982. + \pause + + \bibitem{FeldmanO1973} + E.~Feldman and J.~Owings, Jr. + \newblock A class of universal linear bounded automata. + \newblock {\em Information Sciences}, 6:187--190, 1973. + \pause + + \bibitem{JancarMPV1995} + P.~Jan{\v c}ar, F.~Mr{\'a}z, M.~Pl{\'a}tek, and J.~Vogel. + \newblock Restarting automata. + \newblock {\em FCT Conference 1995}, LNCS 985, pages + 282--292. 1995. + \end{thebibliography} +\end{frame} + + +% +% The following appendix material is not shown in the normal course of +% the presentation +% + +\appendix + +\AtBeginSubsection{} + + +\section{\appendixname} + +\frame{\frametitle{Appendix Outline}\tableofcontents} + + +\subsection{Complete Languages} + +\againframe<beamer| beamer:2>{pspacecomplete} + + +\subsection{Improvements for Context-Free Languages} + +\begin{frame} + \frametitle{Improvements} + + \begin{theorem} + \begin{enumerate} + \item + $\Class{DCFL} \subseteq \DOFpoly$. + \item + $\Class{CFL} \subseteq \NOFpoly$. + \end{enumerate} + \end{theorem} +\end{frame} + + +\subsection{Abbreviations} + +\begin{frame} + \frametitle{Explanation of Different Abbreviations} + + \begin{table} + \rowcolors[]{1}{structure!25!averagebackgroundcolor}{structure!10!averagebackgroundcolor} + \begin{tabular}{ll} + \structure{$\DOF$} & \structure{D}eterministic \structure{O}verhead-\structure{F}ree.\\ + \structure{$\NOF$} & \structure{N}ondeterministic \structure{O}verhead-\structure{F}ree.\\ + \structure{$\DOFpoly$} & \structure{D}eterministic + \structure{O}verhead-\structure{F}ree, \structure{poly}nomial time.\\ + \structure{$\DOFpoly$} & \structure{N}ondeterministic \structure{O}verhead-\structure{F}ree, \structure{poly}nomial time. + \end{tabular} + \caption{Explanation of what different abbreviations mean.} + \end{table} +\end{frame} + +\end{document} + + diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf Binary files differnew file mode 100644 index 00000000000..3d5099be798 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex new file mode 100644 index 00000000000..a94cc306cac --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex @@ -0,0 +1,11 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.article.tex,v 1.4 2004/10/07 20:53:07 tantau Exp $ + +\documentclass[11pt]{article} +\usepackage{beamerarticle} + +\input{beamerexample2.tex} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "beamerexample2.article" +%%% End: diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf Binary files differnew file mode 100644 index 00000000000..2121e2eceae --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex new file mode 100644 index 00000000000..96a868c6da7 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex @@ -0,0 +1,10 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.beamer.tex,v 1.3 2004/10/07 20:53:07 tantau Exp $ + +\documentclass[ignorenonframetext]{beamer} + +\input{beamerexample2.tex} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "beamerexample2.beamer" +%%% End: diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex new file mode 100644 index 00000000000..ffcb103d965 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex @@ -0,0 +1,95 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.tex,v 1.8 2004/10/11 16:10:11 tantau Exp $ + +% This file is included by beamerexample2.article.tex and +% beamerexample2.beamer.tex + +% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>. +% +% This program can be redistributed and/or modified under the terms +% of the LaTeX Project Public License Distributed from CTAN +% archives in directory macros/latex/base/lppl.txt. + +% +% The purpose of this example is to demonstrate the usage of the +% nameslide command +% + +\mode<article> +{ + \usepackage{fullpage} + \usepackage{pgf} + \usepackage{hyperref} + \setjobnamebeamerversion{beamerexample2.beamer} +} + +\mode<presentation> +{ + \usetheme{Dresden} + + \setbeamercovered{transparent} +} + +\usepackage[latin1]{inputenc} +\usepackage[english]{babel} + + +\title{Second Beamer Example} +\author{Till~Tantau} +\subject{Presentation Programs} + +\institute[TU Berlin]{ + Fakult鋞 f黵 Elektrotechnik und Informatik\\ + Technical University of Berlin} + + +\begin{document} + +\frame{\maketitle} + +\section{The first section} + +This is the first section of the article version. In the +presentation, there is a frame containing an overlay. The exact two +slides of this overlay are shown in Figures~\ref{figure-example1} +and~\ref{figure-example2}. + +\begin{figure}[ht] + \begin{center} + \includeslide{exampleframe<1>} + \end{center} + \caption{The first slide. Note the partly covered second item.} + \label{figure-example1} +\end{figure} + +\begin{figure}[ht] + \begin{center} + \includeslide{exampleframe<2>} + \end{center} + \caption{The second slide. Now the second item is also shown.} + \label{figure-example2} +\end{figure} + +We can also include the frame in the article version ``just like +this'': + +\frame[label=exampleframe]{ + \frametitle{This is a frame with two overlays.} + + \begin{itemize} + \item The first item$\dots$ + \pause + \item $\dots$ and the second one. + \end{itemize} +} + +We could have suppressed the frame in the article version by adding +the overlay specification \verb!<presentation>!. + +\end{document} + + + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "beamerexample2.article" +%%% End: diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf Binary files differnew file mode 100644 index 00000000000..abbea370d9c --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex new file mode 100644 index 00000000000..3e79726310d --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex @@ -0,0 +1,130 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample3.tex,v 1.8 2004/10/07 20:53:07 tantau Exp $ + +\documentclass{beamer} + +% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>. +% +% This program can be redistributed and/or modified under the terms +% of the LaTeX Project Public License Distributed from CTAN +% archives in directory macros/latex/base/lppl.txt. + +% +% The purpose of this example is to show how \part can be used to +% organize a lecture. +% + +\usetheme{Warsaw} +\usepackage[english]{babel} +\usepackage[latin1]{inputenc} + +\setbeamercovered{transparent} + + +% +% The following info should normally be given in you main file: +% + + +\title{Beamer Example on Parts} +\author{Till~Tantau} +\institute{ + Fakult鋞 f黵 Elektrotechnik und Informatik\\ + Technical University of Berlin} + + +\begin{document} + + +\frame{\titlepage} + + +\section*{Outlines} + +\subsection{Part I: Review of Previous Lecture} + +\frame{ + \nameslide{outline} + \frametitle{Outline of Part I} + \tableofcontents[pausesections,part=1] +} + + +\subsection{Part II: Today's Lecture} + +\frame{ + \frametitle{Outline of Part II} + \tableofcontents[pausesections,part=2] + \note{At most 1 minute for the outline.} +} + + + +\part{Review of Previous Lecture} + +\frame{\partpage} + + +\section[Previous Lecture]{Summary of the Previous Lecture} + + +\subsection{Topics} + +\frame{ + \frametitle{This frame shows the topics treated in the last + lecture.} + + \begin{itemize} + \item This + \pause + \item and that. + \end{itemize} +} + + +\subsection{Learning Objectives} + +\frame{ + \frametitle{This frame shows the last lecture's learning objectives.} + + \begin{itemize} + \item An objective. + \pause + \item And another one. + \end{itemize} +} + + + +\part{Today's Lecture} + +\frame{\partpage} + + +\section[Models]{The Model of Overhead-Free Computation} + +\frame<beamer>{\tableofcontents[current]} + + +\subsection[Standard Model]{The Standard Model of Linear Space} + +\frame +{ + \frametitle{A frame.} +} + + +\section[Limitations]{Limitations of Overhead-Free Computation} + +\frame<beamer>{\tableofcontents[current]} + + +\subsection[Linear Space]{Linear Space versus Overhead-Free Computation} + +\frame +{ + \frametitle{A frame.} +} + +\end{document} + + diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf Binary files differnew file mode 100644 index 00000000000..75b331a7c4e --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex new file mode 100644 index 00000000000..7864d58473b --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex @@ -0,0 +1,45 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample4.tex,v 1.4 2004/10/07 20:53:07 tantau Exp $ + +\documentclass[cjk]{beamer} + +% Copyright 2003 by Till Tantau <tantau@users.sourceforge.net>. +% +% This program can be redistributed and/or modified under the terms +% of the LaTeX Project Public License Distributed from CTAN +% archives in directory macros/latex/base/lppl.txt. +% +% Many thanks to Huang Yushuo for helping me with this file +% (I don't speak Chinese...) + +\usepackage{CJK} +\usetheme{Warsaw} + +\begin{document} + \begin{CJK}{GB}{kai} + + \title[用 Beamer 制作的幻灯片]{ + Example Presentation Created\\ + with the Beamer Package\\ + (用 Beamer 制作的幻灯片)} + \author{作者 Till Tantau} + \date{\today} + + \frame{\titlepage} + + \section*{Outline} + \frame{\tableofcontents} + + \section{Introduction (简介)} + \subsection{Overview of the Beamer Class (Beamer 类的概要)} + \frame{ + \frametitle{Features of the Beamer Class (Beamer 类的特点)} + + \begin{itemize} + \item<1-> Normal LaTeX class (标准的 LaTeX 类). + \item<2-> Easy overlays (重构简单). + \item<3-> No external programs needed (无需额外的程序). + \end{itemize} + } + \end{CJK} +\end{document} + diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf Binary files differnew file mode 100644 index 00000000000..06d7196ad2e --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex new file mode 100644 index 00000000000..23ef834d70e --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex @@ -0,0 +1,1021 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample5.tex,v 1.22 2004/10/08 14:02:33 tantau Exp $ + +\documentclass[11pt]{beamer} + +\usetheme{Darmstadt} + +\usepackage{times} +\usefonttheme{structurebold} + +\usepackage[english]{babel} +\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps} +\usepackage{amsmath,amssymb} +\usepackage[latin1]{inputenc} + +\setbeamercovered{dynamic} + +\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}} + +\newcommand{\Class}[1]{\operatorname{\mathchoice + {\text{\sf \small #1}} + {\text{\sf \small #1}} + {\text{\sf #1}} + {\text{\sf #1}}}} + +\newcommand{\NumSAT} {\text{\small\#SAT}} +\newcommand{\NumA} {\#_{\!A}} + +\newcommand{\barA} {\,\bar{\!A}} + +\newcommand{\Nat}{\mathbb{N}} +\newcommand{\Set}[1]{\{#1\}} + +\pgfdeclaremask{tu}{beamer-tu-logo-mask} +\pgfdeclaremask{computer}{beamer-computer-mask} +\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerimage}{beamer-computer} +\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerworkingimage}{beamer-computerred} +\pgfdeclareimage[mask=tu,height=.5cm]{logo}{beamer-tu-logo} + +\logo{\pgfuseimage{logo}} + +\title{Weak Cardinality Theorems for First-Order Logic} +\author{Till Tantau} +\institute[Technische Universit\"at Berlin]{% + Fakult鋞 f黵 Elektrotechnik und Informatik\\ + Technische Universit\"at Berlin} +\date{Fundamentals of Computation Theory 2003} + +\colorlet{redshaded}{red!25!bg} +\colorlet{shaded}{black!25!bg} +\colorlet{shadedshaded}{black!10!bg} +\colorlet{blackshaded}{black!40!bg} + +\colorlet{darkred}{red!80!black} +\colorlet{darkblue}{blue!80!black} +\colorlet{darkgreen}{green!80!black} + +\def\radius{0.96cm} +\def\innerradius{0.85cm} + +\def\softness{0.4} +\definecolor{softred}{rgb}{1,\softness,\softness} +\definecolor{softgreen}{rgb}{\softness,1,\softness} +\definecolor{softblue}{rgb}{\softness,\softness,1} + +\definecolor{softrg}{rgb}{1,1,\softness} +\definecolor{softrb}{rgb}{1,\softness,1} +\definecolor{softgb}{rgb}{\softness,1,1} + +\newcommand{\Bandshaded}[2]{ + \color{shadedshaded} + \pgfmoveto{\pgfxy(-0.5,0)} + \pgflineto{\pgfxy(-0.6,0.1)} + \pgflineto{\pgfxy(-0.4,0.2)} + \pgflineto{\pgfxy(-0.6,0.3)} + \pgflineto{\pgfxy(-0.4,0.4)} + \pgflineto{\pgfxy(-0.5,0.5)} + \pgflineto{\pgfxy(4,0.5)} + \pgflineto{\pgfxy(4.1,0.4)} + \pgflineto{\pgfxy(3.9,0.3)} + \pgflineto{\pgfxy(4.1,0.2)} + \pgflineto{\pgfxy(3.9,0.1)} + \pgflineto{\pgfxy(4,0)} + \pgfclosepath + \pgffill + + \color{black} + \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}} + \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}} +} + +\newcommand{\Band}[2]{ + \color{shaded} + \pgfmoveto{\pgfxy(-0.5,0)} + \pgflineto{\pgfxy(-0.6,0.1)} + \pgflineto{\pgfxy(-0.4,0.2)} + \pgflineto{\pgfxy(-0.6,0.3)} + \pgflineto{\pgfxy(-0.4,0.4)} + \pgflineto{\pgfxy(-0.5,0.5)} + \pgflineto{\pgfxy(4,0.5)} + \pgflineto{\pgfxy(4.1,0.4)} + \pgflineto{\pgfxy(3.9,0.3)} + \pgflineto{\pgfxy(4.1,0.2)} + \pgflineto{\pgfxy(3.9,0.1)} + \pgflineto{\pgfxy(4,0)} + \pgfclosepath + \pgffill + + \color{black} + \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}} + \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}} +} + +\newcommand{\BaenderNormal} +{% + \pgfsetlinewidth{0.4pt} + \color{black} + \pgfputat{\pgfxy(0,5)}{\Band{input tapes}{}} + \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}} + \pgfputat{\pgfxy(0,4)}{\Band{}{}} + + \pgfxyline(0,5)(0,5.5) + \pgfxyline(1.2,5)(1.2,5.5) + \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}} + + \pgfxyline(0,4)(0,4.5) + \pgfxyline(1.8,4)(1.8,4.5) + \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}} + \ignorespaces} + +\newcommand{\BaenderZweiNormal} +{% + \pgfsetlinewidth{0.4pt} + \color{black} + \pgfputat{\pgfxy(0,5)}{\Band{Zwei Eingabeb鋘der}{}} + \pgfputat{\pgfxy(0,4.25)}{\Band{}{}} + + \pgfxyline(0,5)(0,5.5) + \pgfxyline(1.2,5)(1.2,5.5) + \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}} + + \pgfxyline(0,4.25)(0,4.75) + \pgfxyline(1.8,4.25)(1.8,4.75) + \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}} + \ignorespaces} + +\newcommand{\BaenderHell} +{% + \pgfsetlinewidth{0.4pt} + \color{black} + \pgfputat{\pgfxy(0,5)}{\Bandshaded{input tapes}{}} + \color{shaded} + \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}} + \pgfputat{\pgfxy(0,4)}{\Bandshaded{}{}} + + \color{blackshaded} + \pgfxyline(0,5)(0,5.5) + \pgfxyline(1.2,5)(1.2,5.5) + \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}} + + \pgfxyline(0,4)(0,4.5) + \pgfxyline(1.8,4)(1.8,4.5) + \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}} + \ignorespaces} + +\newcommand{\BaenderZweiHell} +{% + \pgfsetlinewidth{0.4pt} + \color{black} + \pgfputat{\pgfxy(0,5)}{\Bandshaded{Zwei Eingabeb鋘der}{}}% + \color{blackshaded} + \pgfputat{\pgfxy(0,4.25)}{\Bandshaded{}{}} + \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}} + \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}% + + \pgfxyline(0,5)(0,5.5) + \pgfxyline(1.2,5)(1.2,5.5) + + \pgfxyline(0,4.25)(0,4.75) + \pgfxyline(1.8,4.25)(1.8,4.75) + \ignorespaces} + +\newcommand{\Slot}[1]{% + \begin{pgftranslate}{\pgfpoint{#1}{0pt}}% + \pgfsetlinewidth{0.6pt}% + \color{structure}% + \pgfmoveto{\pgfxy(-0.1,5.5)}% + \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}% + \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}% + \pgflineto{\pgfxy(0.1,4.0)}% + \pgfbezier{\pgfxy(0.1,3.95)}{\pgfxy(0.05,3.9)}{\pgfxy(0,3.9)}% + \pgfbezier{\pgfxy(-0.05,3.9)}{\pgfxy(-0.1,3.95)}{\pgfxy(-0.1,4.0)}% + \pgfclosepath% + \pgfstroke% + \end{pgftranslate}\ignorespaces} + +\newcommand{\SlotZwei}[1]{% + \begin{pgftranslate}{\pgfpoint{#1}{0pt}}% + \pgfsetlinewidth{0.6pt}% + \color{structure}% + \pgfmoveto{\pgfxy(-0.1,5.5)}% + \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}% + \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}% + \pgflineto{\pgfxy(0.1,4.25)}% + \pgfbezier{\pgfxy(0.1,4.25)}{\pgfxy(0.05,4.15)}{\pgfxy(0,4.15)}% + \pgfbezier{\pgfxy(-0.05,4.15)}{\pgfxy(-0.1,4.2)}{\pgfxy(-0.1,4.25)}% + \pgfclosepath% + \pgfstroke% + \end{pgftranslate}\ignorespaces} + +\newcommand{\ClipSlot}[1]{% + \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4cm}}}{\pgfxy(0.2,1.5)}\ignorespaces} + +\newcommand{\ClipSlotZwei}[1]{% + \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4.25cm}}}{\pgfxy(0.2,1.25)}\ignorespaces} + + +\AtBeginSection[]{\frame{\frametitle{Outline}\tableofcontents[current]}} + +\begin{document} + +\frame{\titlepage} + +%\section*{Outline} +\part{Main Part} +\frame{\frametitle{Outline}\tableofcontents[part=1]} + +\section{History} + +\subsection{Enumerability in Recursion and Automata Theory} + +\frame +{ + \frametitle{Motivation of Enumerability} + + \begin{block}{Problem} + Many functions are not computable or not efficiently computable. + \end{block} + \vskip-1em + \begin{overprint} + \onslide<1-2> + \begin{example} + \begin{overprint} + \onslide<1> + \vskip0.5em + \begin{itemize} + \item + $\NumSAT$:\\ + How many satisfying assignments does a formula have? + \end{itemize} + + \onslide<2> + \vskip0.5em + For difficult languages~$A$: + \begin{itemize} + \item + Cardinality function $\NumA^n$:\\ + \alert{How many} input words are in~$A$? + \item + Characteristic function $\chi_A^n$:\\ + \alert{Which} input words are in~$A$? + \end{itemize} + \begin{pgfpicture}{-9cm}{0.75cm}{-9cm}{2cm} + + \pgfnodebox{words}[virtual]{\pgfxy(0,3.5)}{$(w_1, \alert{w_2}, + w_3, w_4, \alert{w_5})$}{2pt}{5pt} + + \color{red} + \pgfputat{\pgfxy(0.75,4.5)}{\pgfbox[center,base]{in $A$}} + \pgfxyline(0.75,4.4)(-0.6,3.7) + \pgfxyline(0.75,4.4)(1.2,3.7) + \color{black} + + \pgfnodebox{number}[virtual]{\pgfxy(-1,1)}{2}{2pt}{2pt} + \pgfnodebox{string}[virtual]{\pgfxy(1,1)}{0\alert{1}00\alert{1}}{2pt}{2pt} + + \pgfsetstartarrow{\pgfarrowbar} + \pgfsetendarrow{\pgfarrowto} + + \pgfnodeconnline{words}{string}%{-60}{120}{1cm}{1cm} + \pgfnodeconnline{words}{number}%{-120}{60}{1cm}{1cm} + + \pgfputat{\pgfxy(-0.9,2.3)}{\pgfbox[center,base]{$\NumA^5$}} + \pgfputat{\pgfxy(0.9,2.3)}{\pgfbox[center,base]{$\chi_A^5$}} + \end{pgfpicture} + \end{overprint} + \end{example} + + \onslide<3> + \begin{block}{Solutions} + Difficult functions can be + \begin{itemize} + \item + computed using probabilistic algorithms, + \item + computed efficiently on average, + \item + approximated, or + \item<alert@1-> + enumerated. + \end{itemize} + \end{block} + \end{overprint} +} + +\frame +{ + \frametitle{Enumerators Output Sets of Possible Function Values} + \begin{columns} + \begin{column}{4.5cm} + \begin{pgfpicture}{-0.5cm}{0cm}{4cm}{6cm} + + \pgfputat{\pgfxy(0,0.5)}{\Band{}{output tape}} + + \BaenderHell + + \color{black} + + \only<1-4,6->{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}} + \only<5>{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}} + + \begin{pgfscope} + \only<1>{\ClipSlot{0cm}} + \only<2>{\ClipSlot{0.6cm}} + \only<3>{\ClipSlot{1.2cm}} + \only<4->{\ClipSlot{1.8cm}} + \BaenderNormal + \end{pgfscope} + + \only<1>{\Slot{0cm}} + \only<2>{\Slot{0.6cm}} + \only<3>{\Slot{1.2cm}} + \only<4->{\Slot{1.8cm}} + + \only<6->{ + \pgfxyline(0,0.5)(0,1) + \pgfxyline(1,0.5)(1,1) + \pgfputat{\pgfxy(0.5,0.75)}{\pgfbox[center,center]{$u_1$}}} + \only<7->{ + \pgfxyline(2,0.5)(2,1) + \pgfputat{\pgfxy(1.5,0.75)}{\pgfbox[center,center]{\alert<9>{$u_2$}}}} + \only<8->{ + \pgfxyline(3,0.5)(3,1) + \pgfputat{\pgfxy(2.5,0.75)}{\pgfbox[center,center]{$u_3$}}} + + \pgfsetlinewidth{0.6pt} + \color{structure} + \pgfsetendarrow{\pgfarrowto} + + \pgfsetlinewidth{0.6pt} + \color{structure} + \pgfsetendarrow{\pgfarrowto} + \only<-5>{\pgfxycurve(1.75,1.5)(1.75,1)(0,1.5)(0,1.05)} + \only<6>{\pgfxycurve(1.75,1.5)(1.75,1)(1,1.5)(1,1.05)} + \only<7>{\pgfxycurve(1.75,1.5)(1.75,1)(2,1.5)(2,1.05)} + \only<8->{\pgfxycurve(1.75,1.5)(1.75,1)(3,1.5)(3,1.05)} + + \only<1>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0,3.5)(0,3.85)} + \only<2>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0.6,3.5)(0.6,3.85)} + \only<3>{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.2,3.5)(1.2,3.85)} + \only<4->{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.8,3.5)(1.8,3.85)} + \end{pgfpicture} + \end{column} + \begin{column}{6.5cm} + \begin{definition}[1987, 1989, 1994, 2001] + An \alert{$m$-enumerator} for a function~$f$ + \begin{enumerate} + \item<alert@1-4> + reads $n$ input words $w_1$, \dots, $w_n$, + \item<alert@5> + does a computation, + \item<alert@6-8> + outputs at most $m$ values, + \item<alert@9> + one of which is $f(w_1,\dots,w_n)$. + \end{enumerate} + \end{definition} + \end{column} + \end{columns} +} + +\subsection{Known Weak Cardinality Theorem} + +\frame +{ + \frametitle{How Well Can the Cardinality Function Be Enumerated?} + + \begin{block}{Observation} + For fixed~$n$, the cardinality function $\NumA^n$ + \begin{itemize} + \item + can be \alert{$1$}-enumerated by Turing machines only for \alert{recursive}~$A$,~but\hskip-0.5cm\hbox{} + \item + can be \alert{$(n+1)$}-enumerated for \alert{every} language~$A$. + \end{itemize} + \end{block} + + \begin{alertblock}{Question}<2-> + What about $2$-, $3$-, $4$-, \dots, $n$-enumerability? + \end{alertblock} +} + +\newtheorem{card}{Cardinality Theorem}[theorem] +\newtheorem{weakcard}{Weak Cardinality Theorems}[theorem] + +\frame +{ + \frametitle{How Well Can the Cardinality Function\\ Be Enumerated + by Turing Machines?} + + \begin{card}[Kummer, 1992] + If $\NumA^n$ is $n$-enumerable by a Turing machine, then $A$ is + recursive. + \end{card} + + \begin{weakcard}[\uncover<2->{\alert<1-2>{1987},} \uncover<3->{\alert<3>{1989},} + \uncover<4->{\alert<4>{1992}}]<2-> + \begin{enumerate} + \item<2-| alert@2> + If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$ is + recursive. + \item<3-| alert@3> + If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$ is + recursive. + \item<4-| alert@4> + If $\NumA^n$ is $n$-enumerable by a Turing machine that never + enumerates both $0$ and~$n$, then $A$ is recursive. + \end{enumerate} + \end{weakcard} +} + + +\frame +{ + \frametitle{How Well Can the Cardinality Function\\ Be Enumerated + by Finite Automata?} + + \begin{alertblock}{Conjecture} + If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is + \alert{regular}. + \end{alertblock} + + \begin{weakcard}[2001, 2002] + \begin{enumerate} + \item + If $\chi_A^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is + \alert{regular}. + \item + If $\NumA^2$ is $2$-enumerable by a \alert{finite automaton}, then $A$ is + \alert{regular}. + \item + If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton} that never + enumerates both $0$ and~$n$, then $A$ is \alert{regular}. + \end{enumerate} + \end{weakcard} +} + + +\subsection{Why Do Cardinality Theorems Hold Only for Certain Models?} + +\frame +{ + \frametitle{Cardinality Theorems Do Not Hold for All Models} + + \begin{pgfpicture}{-2.5cm}{0.3cm}{0.5cm}{6.5cm} + \pgfsetlinewidth{0.6pt} + + \pgfsetendarrow{\pgfarrowto} + \pgfxyline(0,0.5)(0,6.5) + \pgfclearendarrow + + \pgfputat{\pgfxy(-0.2,5.75)}{\pgfbox[right,base]{Turing machines}} + + \only<2>{ + \pgfputat{\pgfxy(-0.2,3.75)}{\pgfbox[right,base]{\alert{resource-bounded}}} + \pgfputat{\pgfxy(-0.2,3.25)}{\pgfbox[right,base]{\alert{machines}}} + \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt} + \pgfputat{\pgfxy(0.4,3.5)}{\pgfbox[left,base]{Weak cardinality + theorems do \alert{not} hold.}}} + + \pgfputat{\pgfxy(-0.2,1.5)}{\pgfbox[right,base]{finite}} + \pgfputat{\pgfxy(-0.2,1)}{\pgfbox[right,base]{automata}} + + \pgfcircle[fill]{\pgfxy(0,5.85)}{2pt} + \pgfcircle[fill]{\pgfxy(0,1.35)}{2pt} + + \pgfputat{\pgfxy(0.4,5.75)}{\pgfbox[left,base]{Weak cardinality + theorems hold.}} + \pgfputat{\pgfxy(0.4,1.25)}{\pgfbox[left,base]{Weak cardinality + theorems hold.}} + \end{pgfpicture} +} + +\frame +{ + \frametitle{Why?} + + \begin{block}{First Explanation}<1> + The weak cardinality theorems hold both for recursion and automata + theory \alert{by coincidence}. + \end{block} + + \begin{block}{Second Explanation}<1-2> + The weak cardinality theorems hold both for + recursion and automata theory, \alert{because they are + instantiations of\\ single, unifying theorems}. + \end{block} + + \vskip1em + \visible<2->{ + The second explanation is correct.\\ + The theorems can (almost) be unified using first-order logic. + } +} + + + +\section[Unification by Logic]{Unification by First-Order Logic} + +\subsection{Elementary Definitions} + +\frame +{ + \frametitle{What Are Elementary Definitions?} + + \begin{definition} + A relation~$R$ is \alert{elementarily definable in a + logical structure~$\mathcal S$} if + \begin{enumerate} + \item + there exists a first-order formula~$\phi$, + \item + that is true exactly for the elements of~$R$. + \end{enumerate} + \end{definition} + + \begin{example} + The set of even numbers is elementarily definable in $(\Nat, +)$ + via the formula $\phi(x) \equiv \exists z \centerdot z+z=x$. + \end{example} + + \begin{example} + The set of powers of 2 is not elementarily definable in $(\Nat, +)$. + \end{example} +} + + +\frame +{ + \frametitle{Characterisation of Classes by Elementary Definitions} + + \begin{theorem}[B\"uchi, 1960] + There exists a logical structure~$(\Nat, +, \mathrm e_2)$ + such that a set $A \subseteq \Nat$ is\\ \alert{regular} iff it is + \alert{elementarily definable in~$(\Nat, +, \mathrm e_2)$}. + \end{theorem} + + \begin{theorem} + There exists a logical structure~$\mathcal R$ such that a set $A + \subseteq \Nat$ is \alert{recursively enumerable} iff it is \alert{positively + elementarily definable in~$\mathcal R$}.\hskip-0.5cm\hbox{} + \end{theorem} +} + + + +\frame +{ + \frametitle{Characterisation of Classes by Elementary Definitions} + + \begin{pgfpicture}{-5.4cm}{0.3cm}{5.4cm}{6.5cm} + \pgfsetlinewidth{0.6pt} + + \pgfsetendarrow{\pgfarrowto} + \pgfxyline(0,0.3)(0,6.5) + \pgfclearendarrow + + \only<2->{ + \pgfputat{\pgfxy(-0.3,0.5)}{\pgfbox[right,base]{Presburger arithmetic}} + \pgfcircle[fill]{\pgfxy(0,0.6)}{2pt} + \pgfputat{\pgfxy(0.3,0.5)}{\pgfbox[left,base]{$(\Nat, +)$}} + } + \pgfputat{\pgfxy(-0.3,1.5)}{\pgfbox[right,base]{regular sets}} + \pgfcircle[fill]{\pgfxy(0,1.6)}{2pt} + \pgfputat{\pgfxy(0.3,1.5)}{\pgfbox[left,base]{$(\Nat, +, \mathrm e_2)$}} + + \pgfputat{\pgfxy(-0.3,2.5)}{\pgfbox[right,base]{\alert{resource-bounded classes}}} + \pgfcircle[fill]{\pgfxy(0,2.6)}{2pt} + \pgfputat{\pgfxy(0.3,2.5)}{\pgfbox[left,base]{\alert{none}}} + + \pgfputat{\pgfxy(-0.3,3.5)}{\pgfbox[right,base]{recursively enumerable sets}} + \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt} + \pgfputat{\pgfxy(0.3,3.5)}{\pgfbox[left,base]{positively in $\mathcal R$}} + + \only<2->{ + \pgfputat{\pgfxy(-0.3,4.5)}{\pgfbox[right,base]{arithmetic hierarchy}} + \pgfcircle[fill]{\pgfxy(0,4.6)}{2pt} + \pgfputat{\pgfxy(0.3,4.5)}{\pgfbox[left,base]{$(\Nat, +, \cdot)$}} + + \pgfputat{\pgfxy(-0.3,5.5)}{\pgfbox[right,base]{ordinal number arithmetic}} + \pgfcircle[fill]{\pgfxy(0,5.6)}{2pt} + \pgfputat{\pgfxy(0.3,5.5)}{\pgfbox[left,base]{$(\mathrm{On}, +, \cdot)$}}} + \end{pgfpicture} +} + + +\subsection{Enumerability for First-Order Logic} + +\frame +{ + \frametitle{Elementary Enumerability is a Generalisation of\\ Elementary Definability} + + \begin{columns} + \begin{column}{3.25cm} + \begin{pgfpicture}{-0.25cm}{0cm}{3cm}{4cm} + + \color{shaded} + \pgfmoveto{\pgfxy(0,1.3)} + \pgfcurveto{\pgfxy(0.5,2.3)}{\pgfxy(2,1.5)}{\pgfxy(2.5,2.3)} + \pgflineto{\pgfxy(2.5,1.7)} + \pgfcurveto{\pgfxy(2,0.7)}{\pgfxy(1,1.7)}{\pgfxy(0,0.5)} + \pgfclosepath + \pgffill + + \pgfsetlinewidth{0.8pt} + \color{black} + \pgfmoveto{\pgfxy(0,1)} + \pgflineto{\pgfxy(0.25,1.15)} + \pgflineto{\pgfxy(0.5,1.5)} + \pgflineto{\pgfxy(1,1.7)} + \pgflineto{\pgfxy(1.5,1.5)} + \pgflineto{\pgfxy(2,1.4)} + \pgflineto{\pgfxy(2.25,1.5)} + \pgflineto{\pgfxy(2.5,2)} + \pgfstroke + + \pgfsetlinewidth{0.4pt} + \pgfsetendarrow{\pgfarrowto} + \pgfxyline(0,0)(2.5,0) + \pgfxyline(0,0)(0,3) + \pgfputat{\pgfxy(0.5,1.9)}{\pgfbox[center,base]{$R$}} + \pgfputat{\pgfxy(2.6,0)}{\pgfbox[left,center]{$x$}} + \pgfputat{\pgfxy(0,3.2)}{\pgfbox[center,base]{$f(x)$}} + \pgfputat{\pgfxy(2.55,2)}{\pgfbox[left,center]{$f$}} + \end{pgfpicture} + \end{column} + \begin{column}{7.5cm} + \begin{definition} + A function~$f$ is\\ + \alert{elementarily $m$-enumerable in a structure~$\mathcal S$} if + \begin{enumerate} + \item + its graph is contained in an\\ + \alert{elementarily definable} relation~$R$, + \item + which is \alert{$m$-bounded}, i.\kern1pt e., for each~$x$ + there are at most~$m$ different~$y$ with $(x,y) \in R$. + \end{enumerate} + \end{definition} + \end{column} + \end{columns} +} + +\frame +{ + \frametitle{The Original Notions of Enumerability are Instantiations} + + \begin{theorem} + A function is $m$-enumerable by a \alert{finite automaton} iff\\ + it is elementarily $m$-enumerable in \alert{$(\Nat, +, \mathrm e_2)$}. + \end{theorem} + + \begin{theorem} + A function is $m$-enumerable by a \alert{Turing machine} iff\\ + it is positively elementarily $m$-enumerable in \alert{$\mathcal R$}. + \end{theorem} +} + +%\subsection{Cross Product Theorem for First-Order Logic} + +\subsection{Weak Cardinality Theorems for First-Order Logic} + +\frame +{ + \frametitle{The First Weak Cardinality Theorem} + + \begin{theorem} + Let $\mathcal S$ be a logical structure with universe~$U$ and let + $A \subseteq U$. If + + \begin{enumerate} + \item + $\mathcal S$ is well-orderable and + \item + \alert{$\chi_A^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$, + \end{enumerate} + + then \alert{$A$ is elementarily definable} in~$\mathcal S$. + \end{theorem} + \begin{overprint} + \onslide<2> + \begin{corollary} + If $\chi_A^n$ is $n$-enumerable by a finite automaton, then + $A$ is regular. + \end{corollary} + + \onslide<3> + \begin{corollary}[with more effort] + If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$ + is recursive. + \end{corollary} + \end{overprint} +} + +\frame +{ + \frametitle{The Second Weak Cardinality Theorem} + + \begin{theorem} + Let $\mathcal S$ be a logical structure with universe~$U$ and let + $A \subseteq U$. If + + \begin{enumerate} + \item + $\mathcal S$ is well-orderable, + \item + every finite relation on~$U$ is elementarily definable + in~$\mathcal S$, and + \item + \alert{$\NumA^2$} is elementarily \alert{$2$}-enumerable in~$\mathcal S$, + \end{enumerate} + + then \alert{$A$ is elementarily definable} in~$\mathcal S$. + \end{theorem} +% \begin{overlayarea}{\textwidth}{2cm} +% \only<2>{ +% \begin{corollary} +% If $\NumA^2$ is $2$-enumerable by a finite automaton, then +% $A$ is regular. +% \end{corollary}}% +% \only<3>{ +% \begin{block}{Corollary} +% If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$ +% is recursive in the halting problem. +% \end{block} +% } +% \end{overlayarea} +} + +\frame +{ + \frametitle{The Third Weak Cardinality Theorem} + + \begin{theorem} + Let $\mathcal S$ be a logical structure with universe~$U$ and let + $A \subseteq U$. If + + \begin{enumerate} + \item + $\mathcal S$ is well-orderable, + \item + every finite relation on~$U$ is elementarily definable + in~$\mathcal S$, and + \item + \alert{$\NumA^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$ via a + relation that \alert{never `enumerates' both $0$ and~$n$}, + \end{enumerate} + + then \alert{$A$ is elementarily definable} in~$\mathcal S$. + \end{theorem} +% \begin{overlayarea}{\textwidth}{2cm} +% \only<2>{ +% \begin{corollary} +% If $\NumA^n$ is $n$-enumerable by a finite automaton that +% never enumerates both $0$ and~$n$, then $A$ is regular. +% \end{corollary}}% +% \only<3>{ +% \begin{block}{Corollary} +% If $\NumA^n$ is $n$-enumerable by a Turing machine that never +% enumerates both $0$ and~$n$, then $A$ is recursive in the +% halting problem. +% \end{block} +% } +% \end{overlayarea} +} + + + +\frame +{ + \frametitle{Relationships Between Cardinality Theorems (CT)} + + \begin{pgfpicture}{0cm}{0cm}{10cm}{5cm} + \only<2>{% + \color{alert} + \pgfnodebox{autX}[virtual]{\pgfxy(2.2,4)}{CT}{2pt}{2pt} + \color{black}}% + \pgfnodebox{autA}[virtual]{\pgfxy(1,3)}{1st Weak CT}{2pt}{2pt} + \pgfnodebox{autB}[virtual]{\pgfxy(1,2)}{2nd Weak CT}{2pt}{2pt} + \pgfnodebox{autC}[virtual]{\pgfxy(1,1)}{3rd Weak CT}{2pt}{2pt} + + \only<2>{% + \color{alert} + \pgfnodebox{logX}[virtual]{\pgfxy(6.2,4.5)}{CT}{2pt}{2pt}% + \color{black}}% + \pgfnodebox{logA}[virtual]{\pgfxy(5,3.5)}{1st Weak CT}{2pt}{2pt} + \pgfnodebox{logB}[virtual]{\pgfxy(5,2.5)}{2nd Weak CT}{2pt}{2pt} + \pgfnodebox{logC}[virtual]{\pgfxy(5,1.5)}{3rd Weak CT}{2pt}{2pt} + + \pgfnodebox{recX}[virtual]{\pgfxy(10.2,4)}{CT}{2pt}{2pt} + \pgfnodebox{recA}[virtual]{\pgfxy(9,3)}{1st Weak CT}{2pt}{2pt} + \pgfnodebox{recB}[virtual]{\pgfxy(9,2)}{2nd Weak CT}{2pt}{2pt} + \pgfnodebox{recC}[virtual]{\pgfxy(9,1)}{3rd Weak CT}{2pt}{2pt} + + \pgfputat{\pgfxy(1,4.5)}{\pgfbox[center,base]{\structure{automata theory}}} + \pgfputat{\pgfxy(5,5)}{\pgfbox[center,base]{\structure{first-order logic}}} + \pgfputat{\pgfxy(9,4.5)}{\pgfbox[center,base]{\structure{recursion + theory}}} + + {% + \color{structure}% + \pgfxyline(3,0)(3,5) + \pgfxyline(7,0)(7,5) + }% + \pgfsetendarrow{\pgfarrowto} + \pgfnodeconnline{logA}{autA} + \pgfnodeconnline{logA}{recA} + \pgfnodeconnline{logB}{autB} + \pgfnodeconnline{logC}{autC} + + \pgfnodeconncurve{recX}{recA}{-60}{5}{10pt}{10pt} + \pgfnodeconncurve{recX}{recB}{-55}{5}{10pt}{20pt} + \pgfnodeconncurve{recX}{recC}{-50}{5}{10pt}{30pt} + + \only<2>{% + \alert{ + \pgfnodeconnline{logX}{autX} + \pgfnodeconncurve{logX}{logA}{-60}{0}{10pt}{10pt} + \pgfnodeconncurve{logX}{logB}{-55}{0}{10pt}{20pt} + \pgfnodeconncurve{logX}{logC}{-50}{0}{10pt}{30pt} + \pgfnodeconncurve{autX}{autA}{-60}{11}{10pt}{10pt} + \pgfnodeconncurve{autX}{autB}{-55}{11}{10pt}{20pt} + \pgfnodeconncurve{autX}{autC}{-50}{11}{10pt}{30pt} + } + } + + \pgfsetdash{{3pt}{3pt}}{0pt} + \pgfnodeconnline{logB}{recB} + \pgfnodeconnline{logC}{recC} + + \only<2>{% + \alert{\pgfnodeconnline{logX}{recX}}} + \end{pgfpicture} +} + + +\section{Applications} + +\subsection{A Separability Result for First-Order Logic} + +%\frame +%{ +% \begin{columns} +% \begin{column}{2.4cm} +% \begin{pgfpicture}{-1.2cm}{-1.2cm}{1cm}{1cm} +% \color{shaded} +% \pgfrect[fill]{\pgfxy(-1.4,-1)}{\pgfxy(2.8,2)} + +% \color{white} +% \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.5cm} +% \pgfcircle[fill]{\pgfxy(0.6,0)}{0.5cm} +% \only<2->{% +% \color{softred} +% \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.6cm}}% +% % +% \color{black} +% \pgfcircle[stroke]{\pgfxy(-0.6,0)}{0.5cm} +% \pgfcircle[stroke]{\pgfxy(0.6,0)}{0.5cm} + +% \pgfputat{\pgfxy(-0.6,0)}{\pgfbox[center,center]{$A^{(n)}$}} +% \pgfputat{\pgfxy(0.6,0)}{\pgfbox[center,center]{$\barA{}^{(n)}$}} +% \end{pgfpicture} +% \end{column} +% \begin{column}{8cm} +% \begin{block}{Notation} +% Let $A^{(n)}$ contain all $n$ tuples of\\ +% distinct elements of~$A$. +% \end{block} + +% \begin{block}{Theorem} +% Let $\mathcal S$ be a well-orderable logical structure in which +% all finite relations are elementarily definable.\\[0.5em] +% If $A^{(n)}$ and $\barA{}^{(n)}$ are \alert<2>{elementarily separable} +% in~$\mathcal S$, then~so~are~$A$~and~$\barA$. +% \end{block} + +% \uncover<3>{ +% \begin{alertblock}{Note} +% The theorem is no longer true if $\barA$ is replaced by an +% arbitrary set~$B$. +% \end{alertblock} +% } +% \end{column} +% \end{columns} +%} + + +\frame +{ + \begin{columns} + \begin{column}{4cm} + \begin{pgfpicture}{-2cm}{-1.75cm}{2cm}{2.25cm} + \color{shaded} + \pgfrect[fill]{\pgfxy(-2,-1.75)}{\pgfxy(4,4)} + %\pgfcircle[fill]{\pgforigin}{2cm} + + \only<1>{% + \color{white}% + \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\innerradius} + \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\innerradius} + \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\innerradius}}% + \only<2->{% + \color{softred} + \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\radius} + \color{softgreen} + \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius} + \color{softblue} + \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}}% + % + \only<2->{% + \begin{pgftranslate}{\pgfpolar{90}{1cm}} + \pgfzerocircle{\radius} + \pgfclip + + \begin{pgftranslate}{\pgfpolar{-90}{1cm}} + \color{softrb} + \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius} + \color{softrg} + \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius} + \end{pgftranslate} + \end{pgftranslate} + + \begin{pgftranslate}{\pgfpolar{210}{1cm}} + \pgfzerocircle{\radius} + \pgfclip + + \begin{pgftranslate}{\pgfpolar{30}{1cm}} + \color{softgb} + \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius} + \end{pgftranslate} + \end{pgftranslate}}% + % + \color{black} + \pgfcircle[stroke]{\pgfpolar{90}{1cm}}{\innerradius} + \pgfcircle[stroke]{\pgfpolar{210}{1cm}}{\innerradius} + \pgfcircle[stroke]{\pgfpolar{330}{1cm}}{\innerradius} + + \pgfputat{\pgfrelative{\pgfpolar{90}{1cm}}% + {\pgfpoint{0pt}{-.5ex}}}% + {\pgfbox[center,base]{$A\times \barA$}} + \pgfputat{\pgfrelative{\pgfpolar{210}{1cm}}% + {\pgfpoint{0pt}{-.5ex}}}% + {\pgfbox[center,base]{$A\times A$}} + \pgfputat{\pgfrelative{\pgfpolar{330}{1cm}}% + {\pgfpoint{0pt}{-.5ex}}}% + {\pgfbox[center,base]{$\barA\times \barA$}} + + \end{pgfpicture} + \end{column} + \begin{column}{6.8cm} + \begin{theorem} + Let $\mathcal S$ be a well-orderable logical structure in which + all finite relations are elementarily definable.\\[0.5em] + If there exist elementarily definable supersets of + {\color<2>{darkgreen}$A \times A$}, + {\color<2>{darkred}$A \times \barA$}, and + {\color<2>{darkblue}$\barA \times \barA$} whose + intersection is empty,\\ + then $A$ is elementarily definable in~$\mathcal S$. + \end{theorem} + \begin{alertblock}{Note}<3> + The theorem is no longer true\\ + if we add $\barA \times A$ to the list. + \end{alertblock}% + \end{column} + \end{columns} +} + + +\section*{Summary} + +\frame +{ + \frametitle{Summary} + + \begin{block}{Summary} + \begin{itemize} + \item + The weak cardinality theorems for first-order logic \alert{unify}\\ + the weak cardinality theorems of automata and recursion theory. + \item + The logical approach yields + weak cardinality theorems for\\ \alert{other computational models}. + \item + Cardinality theorems are \alert{separability theorems} in disguise. + \end{itemize} + \end{block}{} + + \begin{block}{Open Problems} + \begin{itemize} + \item + Does a cardinality theorem for first-order logic hold? + \item + What about non-well-orderable structures like $(\mathbb R, +, + \cdot)$? + \end{itemize} + \end{block} +} + +\end{document} + + diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf Binary files differnew file mode 100644 index 00000000000..93a25983497 --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex new file mode 100644 index 00000000000..f77a6a1af4e --- /dev/null +++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex @@ -0,0 +1,69 @@ +% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample6.tex,v 1.5 2004/10/07 20:53:07 tantau Exp $ + +\documentclass[serif]{beamer} + +% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>. +% +% This program can be redistributed and/or modified under the terms +% of the LaTeX Project Public License Distributed from CTAN +% archives in directory macros/latex/base/lppl.txt. + +% +% The purpose of this example is to show how \part can be used to +% organize a lecture. +% + +\usepackage{times} +\usepackage[latin1]{inputenc} + +\title{Beamer Animation Example} +\author{Till~Tantau} +\institute{ + Fakult鋞 f黵 Elektrotechnik und Informatik\\ + Technical University of Berlin} + + +\begin{document} + +% View this in acroread with "loop after last page option" in full screen mode. + +\newcount\opaqueness +\frame[plain]{ + \itshape + \animate<1-30> + \Large + + \only<1-10>{ + \animatevalue<1-10>{\opaqueness}{100}{10} + \begin{colormixin}{\the\opaqueness!averagebackgroundcolor} + \begin{centering} + \Huge Urfaust\par + \end{centering} + \end{colormixin} + } + + \only<11-20>{ + \animatevalue<11-20>{\opaqueness}{100}{10} + \begin{colormixin}{\the\opaqueness!averagebackgroundcolor} + \begin{verse} + Hab nun, ach! die Philosophey,\\ + Medizin und Juristerey \\ + Und leider auch die Theologie\\ + Durchaus studirt mit heisser M黨. + \end{verse} + \end{colormixin} + } + + \only<21-30>{ + \animatevalue<21-30>{\opaqueness}{100}{10} + \begin{colormixin}{\the\opaqueness!averagebackgroundcolor} + \begin{verse} + Da steh ich nun, ich armer Tohr,\\ + Und binn so klug als wie zuvor. + \end{verse} + \end{colormixin}} +} + +\end{document} + + |