summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/beamer/examples
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2006-01-09 00:44:40 +0000
committerKarl Berry <karl@freefriends.org>2006-01-09 00:44:40 +0000
commitb4fc5f639874db951177ec539299d20908adb654 (patch)
tree52f08823ca58fffe3db6a9b075635038c567626c /Master/texmf-dist/doc/latex/beamer/examples
parentdec3d98ebe442d7ea93efbaa8dd2e2be8149a467 (diff)
doc 4
git-svn-id: svn://tug.org/texlive/trunk@80 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/beamer/examples')
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpgbin0 -> 6170 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpgbin0 -> 11664 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpgbin0 -> 14237 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpgbin0 -> 5778 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpgbin0 -> 11710 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpgbin0 -> 12175 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpgbin0 -> 2107 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpgbin0 -> 15874 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpgbin0 -> 1736 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpgbin0 -> 5549 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpgbin0 -> 11284 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpgbin0 -> 14479 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdfbin0 -> 901614 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex941
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdfbin0 -> 78957 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex11
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdfbin0 -> 45112 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex10
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex95
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdfbin0 -> 130811 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex130
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdfbin0 -> 74297 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex45
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdfbin0 -> 592869 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex1021
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdfbin0 -> 151641 bytes
-rw-r--r--Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex69
27 files changed, 2322 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg
new file mode 100644
index 00000000000..b459c8fa099
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer-mask.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg
new file mode 100644
index 00000000000..f48e2ae106f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computer.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg
new file mode 100644
index 00000000000..4e691bd2c58
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-computerred.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg
new file mode 100644
index 00000000000..fe82742d707
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4-mask.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg
new file mode 100644
index 00000000000..cea4d4c2177
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg
new file mode 100644
index 00000000000..77be392fa11
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-g4red.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg
new file mode 100644
index 00000000000..56556cfa7d9
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram-mask.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg
new file mode 100644
index 00000000000..a8768667840
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ram.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg
new file mode 100644
index 00000000000..693877d65b7
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo-mask.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg
new file mode 100644
index 00000000000..84d4fd4f228
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-tu-logo.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg
new file mode 100644
index 00000000000..a1ce12cdff0
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo-mask.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg
new file mode 100644
index 00000000000..29dc62f5a9f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamer-ur-logo.jpg
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf
new file mode 100644
index 00000000000..e766318d174
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex
new file mode 100644
index 00000000000..eaa7e9b642c
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample1.tex
@@ -0,0 +1,941 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample1.tex,v 1.47 2004/11/04 15:43:51 tantau Exp $
+
+\documentclass{beamer}
+%\documentclass{article}
+%\usepackage[envcountsect]{beamerarticle}
+
+% Do NOT take this file as a template for your own talks. Use a file
+% in the directory solutions instead. They are much better suited.
+
+% Try the class options [notes], [notes=only], [trans], [handout],
+% [red], [compress], [draft] and see what happens!
+
+% Copyright 2003 by Till Tantau <tantau@users.sourceforge.net>.
+%
+% This program can be redistributed and/or modified under the terms
+% of the LaTeX Project Public License Distributed from CTAN
+% archives in directory macros/latex/base/lppl.txt.
+
+% For a green structure color use:
+%\colorlet{structure}{green!50!black}
+
+\mode<article> % only for the article version
+{
+ \usepackage{fullpage}
+ \usepackage{hyperref}
+}
+
+
+\mode<presentation>
+{
+ \setbeamertemplate{background canvas}[vertical shading][bottom=red!10,top=blue!10]
+
+ \usetheme{Warsaw}
+ \usefonttheme[onlysmall]{structurebold}
+}
+
+%\setbeamercolor{math text}{fg=green!50!black}
+%\setbeamercolor{normal text in math text}{parent=math text}
+
+\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
+\usepackage{amsmath,amssymb}
+\usepackage[latin1]{inputenc}
+\usepackage{colortbl}
+\usepackage[english]{babel}
+
+%\usepackage{lmodern}
+%\usepackage[T1]{fontenc}
+
+\usepackage{times}
+
+\setbeamercovered{dynamic}
+
+%
+% The following defintions are peculiar to this particular
+% presetation. They have nothing to do with the beamer class
+%
+
+\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}}
+
+\newcommand{\Class}[1]{\operatorname{\mathchoice
+ {\text{\normalfont\small #1}}
+ {\text{\normalfont\small #1}}
+ {\text{\normalfont#1}}
+ {\text{\normalfont#1}}}}
+
+\newcommand{\DOF}{\Class{DOF}}
+\newcommand{\NOF}{\Class{NOF}}
+\newcommand{\DOFpoly}{\Class{DOF}_{\operatorname{poly}}}
+\newcommand{\NOFpoly}{\Class{NOF}_{\operatorname{poly}}}
+
+
+\newcommand{\Nat}{\mathbb{N}}
+\newcommand{\Set}[1]{\{#1\}}
+
+\pgfdeclaremask{computer}{beamer-computer-mask}
+\pgfdeclaremask{apple}{beamer-g4-mask}
+\pgfdeclaremask{ram}{beamer-ram-mask}
+
+\pgfdeclareimage[interpolate=true,mask=computer,%
+ width=1.8361cm,height=2cm]{computerimage}{beamer-computer}
+\pgfdeclareimage[interpolate=true,mask=computer,%
+ width=1.8361cm,height=2cm]{computerworkingimage}{beamer-computerred}
+\pgfdeclareimage[interpolate=true,mask=apple,%
+ width=1.625cm,height=2cm]{apple}{beamer-g4}
+\pgfdeclareimage[interpolate=true,mask=apple,%
+ width=1.625cm,height=2cm]{appleworking}{beamer-g4red}
+\pgfdeclareimage[interpolate=true,mask=ram,%
+ width=3.811cm,height=1cm]{ram}{beamer-ram}
+
+\newcommand{\tape}[9]{%
+ \pgfputat{#1}{%
+ \pgfsetlinewidth{0.8pt}%
+ \pgfrect[stroke]{\pgfxy(0,0)}{\pgfxy(4,0.5)}%
+ \pgfsetlinewidth{0.4pt}%
+ \pgfline{\pgfxy(0.5,0)}{\pgfxy(0.5,0.5)}%
+ \pgfline{\pgfxy(1.0,0)}{\pgfxy(1.0,0.5)}%
+ \pgfline{\pgfxy(1.5,0)}{\pgfxy(1.5,0.5)}%
+ \pgfline{\pgfxy(2.0,0)}{\pgfxy(2.0,0.5)}%
+ \pgfline{\pgfxy(2.5,0)}{\pgfxy(2.5,0.5)}%
+ \pgfline{\pgfxy(3.0,0)}{\pgfxy(3.0,0.5)}%
+ \pgfline{\pgfxy(3.5,0)}{\pgfxy(3.5,0.5)}%
+ %
+ \pgfputat{\pgfxy(0.25,0.25)}{\pgfbox[center,center]{#2}}%
+ \pgfputat{\pgfxy(0.75,0.25)}{\pgfbox[center,center]{#3}}%
+ \pgfputat{\pgfxy(1.25,0.25)}{\pgfbox[center,center]{#4}}%
+ \pgfputat{\pgfxy(1.75,0.25)}{\pgfbox[center,center]{#5}}%
+ \pgfputat{\pgfxy(2.25,0.25)}{\pgfbox[center,center]{#6}}%
+ \pgfputat{\pgfxy(2.75,0.25)}{\pgfbox[center,center]{#7}}%
+ \pgfputat{\pgfxy(3.25,0.25)}{\pgfbox[center,center]{#8}}%
+ \pgfputat{\pgfxy(3.75,0.25)}{\pgfbox[center,center]{#9}}%
+ %
+ \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{\structure{tape}}}%
+ }%
+ %
+ \pgfnodecircle{n1}[virtual]{\pgfrelative{#1}{\pgfxy(0.25,0)}}{2pt}%
+ \pgfnodecircle{n2}[virtual]{\pgfrelative{#1}{\pgfxy(0.75,0)}}{2pt}%
+ \pgfnodecircle{n3}[virtual]{\pgfrelative{#1}{\pgfxy(1.25,0)}}{2pt}%
+ \pgfnodecircle{n4}[virtual]{\pgfrelative{#1}{\pgfxy(1.75,0)}}{2pt}%
+ \pgfnodecircle{n5}[virtual]{\pgfrelative{#1}{\pgfxy(2.25,0)}}{2pt}%
+ \pgfnodecircle{n6}[virtual]{\pgfrelative{#1}{\pgfxy(2.75,0)}}{2pt}%
+ \pgfnodecircle{n7}[virtual]{\pgfrelative{#1}{\pgfxy(3.25,0)}}{2pt}%
+ \pgfnodecircle{n8}[virtual]{\pgfrelative{#1}{\pgfxy(3.75,0)}}{2pt}%
+}
+
+\newcommand{\putmachine}[2]{%
+ \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}%
+ \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
+ \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
+}
+\newcommand{\putmachineworking}[2]{%
+ \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}%
+ \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
+ \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
+}
+
+\newcommand{\putmachinea}[2]{%
+ \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{apple}}}%
+ \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
+ \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
+}
+\newcommand{\putmachineworkinga}[2]{%
+ \pgfputat{#1}{\pgfbox[center,center]{\pgfuseimage{appleworking}}}%
+ \pgfputat{\pgfrelative{#1}{\pgfxy(0,-1.4)}}{\pgfbox[center,base]{\structure{#2}}}%
+ \pgfnodecircle{machine}[virtual]{\pgfrelative{#1}{\pgfxy(0,1)}}{2pt}%
+}
+
+\newcommand{\selectpos}[1]{%
+ \pgfsetlinewidth{0.6pt}%
+ \color{structure}%
+ \pgfsetendarrow{\pgfarrowto}%
+ \pgfnodeconncurve{machine}{n#1}{90}{-90}{.5cm}{.5cm}%
+}
+
+%
+% The following info should normally be given in you main file:
+%
+
+\title[Computation with Absolutely No~Space~Overhead]{Computation~with Absolutely~No~Space~Overhead}
+\author[Hemaspaandra, Mukherji, Tantau]{%
+ Lane~Hemaspaandra\inst{1} \and
+ Proshanto~Mukherji\inst{1} \and
+ Till~Tantau\inst{2}}
+\institute[Universities of Rochester and Berlin]{
+ \inst{1}%
+ Department of Computer Science\\
+ University of Rochester
+ \and
+ \inst{2}%
+ Fakult鋞 f黵 Elektrotechnik und Informatik\\
+ Technical University of Berlin}
+\date[DLT 2003]{Developments in Language Theory Conference, 2003}
+\subject{Theoretical Computer Science}
+
+\pgfdeclaremask{tu}{beamer-tu-logo-mask}
+\pgfdeclaremask{ur}{beamer-ur-logo-mask}
+\pgfdeclareimage[mask=tu,width=0.6cm]{tu-logo}{beamer-tu-logo}
+\pgfdeclareimage[mask=ur,width=1cm]{ur-logo}{beamer-ur-logo}
+
+\logo{\vbox{\hbox to 1cm{\hfil\pgfuseimage{tu-logo}}\vskip0.1cm\hbox{\pgfuseimage{ur-logo}}}}
+
+
+\begin{document}
+
+\frame{\titlepage}
+
+\section<presentation>*{Outline}
+
+\begin{frame}
+ \frametitle{Outline}
+ \tableofcontents[part=1,pausesections]
+\end{frame}
+
+\AtBeginSubsection[]
+{
+ \begin{frame}<beamer>
+ \frametitle{Outline}
+ \tableofcontents[current,currentsubsection]
+ \end{frame}
+}
+
+\part<presentation>{Main Talk}
+
+\section[Models]{The Model of Overhead-Free Computation}
+
+\subsection[Standard Model]{The Standard Model of Linear Space}
+
+\begin{frame}
+ \frametitle{The Standard Model of Linear Space}
+
+ \begin{columns}
+
+ \column{4.5cm}
+ \note[item]<1>{Point out that \$ is a marker symbol.}
+ \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm}
+ \only<1| trans:1>{
+ \putmachine{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{1}}
+ \only<2| handout:0| trans:2>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{2}}
+ \only<3| handout:0| trans:3>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{8}}
+ \only<4| handout:0| trans:4>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{\$}
+ \selectpos{7}}
+ \only<5| handout:0| trans:0>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{0}{1}{0}{0}{1}{0}{\$}
+ \selectpos{2}}
+ \only<6| handout:0| trans:0>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{0}{\$}
+ \selectpos{3}}
+ \only<7| handout:0| trans:0>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{0}{\$}
+ \selectpos{7}}
+ \only<8| handout:0| trans:0>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{\$}{1}{0}{0}{1}{\$}{\$}
+ \selectpos{6}}
+ \only<9| handout:0| trans:0>{
+ \putmachineworking{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{\$}{\$}{\$}{\$}{\$}{\$}{\$}
+ \selectpos{5}}
+ \only<10| handout:0| trans:5>{
+ \putmachine{\pgfxy(1.75,3)}{Turing machine}
+ \tape{\pgfxy(0,5)}{\$}{\$}{\$}{\$}{\$}{\$}{\$}{\$}
+ \selectpos{5}}
+ \end{pgfpicture}
+
+ \column{6cm}
+ \begin{block}{Characteristics}
+ \begin{itemize}
+ \item
+ Input fills \alert{fixed-size tape}
+ \item
+ Input may be \alert{modified}
+ \item
+ Tape alphabet \alert{is larger than}\\ input alphabet
+ \note[item]<1>{Stress the larger tape alphabet.}
+ \end{itemize}
+ \end{block}
+ \end{columns}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Linear Space is a Powerful Model}
+
+ \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
+ \pgfsetlinewidth{0.8pt}
+ \pgfxyline(-5,0)(5,0)
+
+ \pgfsetlinewidth{0.4pt}
+
+ \pgfheaplabeledcentered{2cm}{2.5cm}{$\Class{CFL}$}
+ \pgfheaplabeledcentered{3.5cm}{3cm}{\raise10pt\hbox{}$\Class{DLINSPACE}$}
+ \pgfheaplabeledcentered{5cm}{4cm}{\raise13pt\hbox{}$\Class{NLINSPACE} = \Class{CSL}$}
+ \pgfheaplabeledcentered{6cm}{5cm}{$\Class{PSPACE}$}
+ \note[item]{Explain CSL.}
+
+ \pgfsetdash{{3pt}{3pt}}{0pt}
+ \pgfheaplabeled{\pgfxy(0,3.3)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}%
+ \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}\!\text{-hard}$}}%
+ \end{pgfpicture}
+ \note[item]{Point out the connections to formal language theory.}
+\end{frame}
+
+
+\subsection[Our Model]{Our Model of Absolutely No Space Overhead}
+
+\begin{frame}
+ \frametitle{Our Model of ``Absolutely No Space Overhead''}
+
+ \transdissolve<7>[duration=0.2]
+
+ \begin{columns}
+
+ \column{4.5cm}
+ \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm}
+ \only<1| trans:1>{%
+ \putmachinea{\pgfxy(1.75,3)}{Turing machine}%
+ \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}%
+ \selectpos{1}}%
+ \only<2| handout:0| trans:2>{%
+ \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}%
+ \selectpos{2}}%
+ \only<3| handout:0| trans:3>{%
+ \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}%
+ \selectpos{8}}%
+ \only<4| handout:0| trans:0>{%
+ \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}%
+ \selectpos{7}}%
+ \only<5| handout:0| trans:0>{%
+ \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}%
+ \selectpos{2}}%
+ \only<6| handout:0| trans:0>{%
+ \putmachineworkinga{\pgfxy(1.75,3)}{Turing machine}%
+ \tape{\pgfxy(0,5)}{1}{1}{1}{0}{0}{1}{0}{1}%
+ \selectpos{3}}%
+ \only<7| handout:0| trans:4>{%
+ \putmachinea{\pgfxy(1.75,3)}{Turing machine}%
+ \pgfputat{\pgfxy(1.75,5.5)}{\pgfbox[center,center]{\pgfuseimage{ram}}}%
+ \pgfnodecircle{n3}[virtual]{\pgfxy(1.25,5)}{2pt}%
+ \selectpos{3}}%
+ \end{pgfpicture}
+
+ \column{6cm}
+ \begin{overprint}
+ \onslide<1-6| trans:1-3| handout:1>
+ \begin{block}{Characteristics}
+ \begin{itemize}
+ \item
+ Input fills \alert{fixed-size tape}
+ \item
+ Input may be \alert{modified}
+ \item
+ Tape alphabet \alert{equals}\\
+ input alphabet
+ \end{itemize}
+ \end{block}
+ \onslide<7-| trans:4| handout:2>
+ \begin{alertblock}{Intuition}
+ \begin{itemize}
+ \item
+ Tape is used like a\\ RAM module.
+ \end{itemize}
+ \end{alertblock}
+ \end{overprint}
+ \end{columns}
+ \note[item]<6>{Point out that no markers are used.}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Definition of Overhead-Free Computations}
+
+ \begin{Definition}
+ A Turing machine is \alert{overhead-free} if
+ \begin{enumerate}
+ \item
+ it has only a single tape,
+ \item
+ writes only on input cells,
+ \item
+ writes only symbols drawn from the input alphabet.
+ \end{enumerate}
+ \end{Definition}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Overhead-Free Computation Complexity Classes}
+
+ \begin{Definition}
+ A language $L \subseteq \Sigma^*$ is in
+ \begin{description}
+ \item[\alert<1| handout:0| trans:0>{$\DOF$}%
+ {\note[item]<1>{Joke about German pronunciation}}]
+ if $L$ is accepted by a deterministic overhead-free machine with
+ input alphabet~$\Sigma$,
+ \pause
+ \item[\alert<2| handout:0| trans:0>{$\DOFpoly$}]
+ if $L$ is accepted by a deterministic overhead-free machine with
+ input alphabet~$\Sigma$ in polynomial time.
+ \pause
+ \item[\alert<3| handout:0| trans:0>{$\NOF$}]
+ is the nondeterministic version of $\DOF$,
+ \note[item]<3>{Stress meaning of D and N.}
+ \pause
+ \item[\alert<4| handout:0| trans:0>{$\NOFpoly$}]
+ is the nondeterministic version of $\DOFpoly$.
+ \end{description}
+ \end{Definition}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Simple Relationships among\\ Overhead-Free Computation Classes}
+
+ \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
+ \pgfsetlinewidth{0.8pt}
+ \pgfxyline(-5,0)(5,0)
+
+ \pgfsetlinewidth{0.4pt}
+
+ \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$}
+ \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
+ \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$}
+ \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
+
+ \pgfheaplabeledcentered{6cm}{5cm}{\raise10pt\hbox{}$\Class{NLINSPACE}$}
+ \end{pgfpicture}
+\end{frame}
+
+
+\section[Power of the Model]{The Power of Overhead-Free Computation}
+
+
+\subsection{Palindromes}
+
+\begin{frame}
+ \frametitle{Palindromes Can be Accepted in an Overhead-Free Way}
+
+ \begin{columns}
+
+ \column{4.5cm}
+ \begin{pgfpicture}{-0.5cm}{1cm}{4cm}{7cm}
+ \only<1| trans:1>{
+ \putmachinea{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{1}}
+ \only<2| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{2}}
+ \only<3| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{8}}
+ \only<4| handout:0| trans:2>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}
+ \selectpos{7}}
+ \only<5| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{1}{0}{1}{0}{0}{1}{0}{1}
+ \selectpos{1}}
+ \only<6| handout:0| trans:3>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{0}{1}
+ \selectpos{2}}
+ \only<7| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{0}{1}
+ \selectpos{8}}
+ \only<8| handout:0| trans:4>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{1}{0}
+ \selectpos{7}}
+ \only<9| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{1}{1}{0}{0}{1}{1}{0}
+ \selectpos{2}}
+ \only<10| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{1}{0}
+ \selectpos{3}}
+ \only<11| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{1}{0}
+ \selectpos{7}}
+ \only<12| handout:0| trans:5>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{6}}
+ \only<13| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{1}{0}{0}{1}{0}{0}
+ \selectpos{3}}
+ \only<14| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{0}{1}{0}{1}{0}{0}
+ \selectpos{4}}
+ \only<15| handout:0| trans:0>{
+ \putmachineworkinga{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{0}{1}{0}{1}{0}{0}
+ \selectpos{6}}
+ \only<16| handout:0| trans:6>{
+ \putmachinea{\pgfxy(1.75,3)}{overhead-free machine}
+ \tape{\pgfxy(0,5)}{0}{0}{0}{1}{1}{0}{0}{0}
+ \selectpos{5}}
+ \end{pgfpicture}
+
+ \column{6cm}
+ \begin{block}{Algorithm}
+ \alert<1| handout:0| trans:1>{Phase 1:\\
+ Compare first and last bit}
+
+ \quad \alert<2| handout:0| trans:2>{Place left end marker}
+
+ \quad \alert<3| handout:0| trans:2>{Place right end marker}
+ \vskip1em
+
+ \alert<4| handout:0| trans:3->{Phase 2:\\
+ Compare bits next to end markers}
+
+ \quad \alert<5,9,13| handout:0| trans:0>{Find left end marker}
+
+ \quad \alert<6,10,14| handout:0| trans:0>{Advance left end marker}
+
+ \quad \alert<7,11,15| handout:0| trans:0>{Find right end marker}
+
+ \quad \alert<8,12,16| handout:0| trans:0>{Advance right end marker}
+
+ \end{block}
+ \end{columns}
+ \note<1>{Use 3 minutes.}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Relationships among Overhead-Free Computation Classes}
+
+ \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm}
+ \pgfsetlinewidth{0.8pt}
+ \pgfxyline(-5,0)(5,0)
+
+ \pgfsetlinewidth{0.4pt}
+
+ \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$}
+ \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
+ \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$}
+ \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
+
+ \pgfputat{\pgfxy(0,0.25)}{\pgfbox[center,base]{\alert{Palindromes}}}
+ \end{pgfpicture}
+\end{frame}
+
+
+\subsection{Linear Languages}
+
+\begin{frame}
+ \frametitle{A Review of Linear Grammars}
+
+ \begin{Definition}<1>
+ A grammar is \alert{linear} if it is context-free and\\ there is
+ only one nonterminal per right-hand side.
+ \end{Definition}
+
+ \begin{Example}<1>
+ $G_1\colon S \to 00S0 \mid 1$ and $G_2\colon S \to 0S10 \mid 0$.
+ \end{Example}
+
+ \begin{Definition}<2->
+ A grammar is \alert{deterministic} if\\ ``there is always only one
+ rule that can be applied.''
+ \note<2>{Just explain intution.}
+ \end{Definition}
+
+ \begin{Example}<2->
+ $G_1\colon S \to 00S0 \mid 1$ is deterministic.
+
+ $G_2\colon S \to 0S10 \mid 0$ is \alert{not} deterministic.
+ \end{Example}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Deterministic Linear Languages\\ Can Be Accepted in an
+ Overhead-Free Way}
+
+ \begin{Theorem}
+ Every deterministic linear language is in $\DOFpoly$.
+ \end{Theorem}
+\end{frame}
+
+\begin{frame}[<+->]
+ \frametitle{Metalinear Languages\\ Can Be Accepted in an
+ Overhead-Free Way}
+
+ \begin{Definition}
+ A language is \alert{metalinear} if it is the concatenation\\ of
+ linear languages.
+ \end{Definition}
+
+ \begin{Example}
+ $\Lang{triple-palindrome} = \Set{uvw \mid \text{$u$, $v$, and $w$ are palindromes}}$.
+ \end{Example}
+
+ \begin{Theorem}
+ Every metalinear language is in $\NOFpoly$.
+ \end{Theorem}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Relationships among Overhead-Free Computation Classes}
+
+ \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm}
+ \pgfsetlinewidth{0.8pt}
+ \pgfxyline(-5,0)(5,0)
+
+ \pgfsetlinewidth{0.4pt}
+
+ \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOFpoly$}
+ \pgfheaplabeledcentered{4.25cm}{4cm}{$\NOFpoly$}
+ \pgfheaplabeledcentered{5cm}{5cm}{$\NOF$}
+
+ \color{red}%
+ \pgfheaplabeledcentered{1.75cm}{2cm}{\raise10pt\hbox{}deterministic}
+ \pgfheaplabeledcentered{2.5cm}{3.5cm}{metalinear}
+
+ \pgfputat{\pgfxy(0,0.6)}{\pgfbox[center,base]{linear}}
+ \end{pgfpicture}
+ \note[item]{Skip next subsection if more than 18 minutes have passed.}
+\end{frame}
+
+
+\subsection[Forbidden Subword]{Context-Free Languages with a Forbidden Subword}
+
+\begin{frame}
+ \frametitle{Definition of Almost-Overhead-Free Computations}
+
+ \begin{Definition}
+ A Turing machine is \alert{almost-overhead-free} if
+ \begin{enumerate}[<+-| alert@+>]
+ \item it has only a single tape,
+ \item writes only on input cells,
+ \item writes only symbols drawn from the input alphabet\\
+ plus one special symbol.
+ \end{enumerate}
+ \end{Definition}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Context-Free Languages with a Forbidden Subword\\ Can Be
+ Accepted in an Overhead-Free Way}
+
+ \begin{Theorem}
+ Let $L$ be a context-free language with a forbidden word.\\
+ Then $L \in \NOFpoly$.
+ \end{Theorem}
+
+ \begin{overprint}
+ \onslide<1| handout:0| trans:0| article:0>
+ \hfill\hyperlinkframestartnext{\beamerskipbutton{Skip proof}}
+ \onslide<2| handout:1| trans:1>
+ \begin{proof}
+ Every context-free language can be accepted by a nondeterministic
+ almost-overhead-free machine in polynomial time.
+ \end{proof}
+ \end{overprint}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Relationships among Overhead-Free Computation Classes}
+
+ \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5cm}
+ \pgfsetlinewidth{0.8pt}
+ \pgfxyline(-5,0)(5,0)
+
+ \pgfsetlinewidth{0.4pt}
+
+ \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOFpoly$}
+ \pgfheaplabeledcentered{4.25cm}{4cm}{$\NOFpoly$}
+ \pgfheaplabeledcentered{5cm}{5cm}{$\NOF$}
+
+ \color{red}%
+ \pgfheaplabeledcentered{2.5cm}{3.5cm}{CFL with}
+
+ \pgfputat{\pgfxy(0,1.6)}{\pgfbox[center,base]{forbidden subwords}}
+ \end{pgfpicture}
+\end{frame}
+
+
+
+\subsection[Complete Languages]{Languages Complete for Polynomial Space}
+
+\begin{frame}<1>[label=pspacecomplete]
+ \frametitle{Overhead-Free Languages can be PSPACE-Complete}
+
+ \begin{Theorem}
+ $\DOF$ contains languages that are complete for
+ $\Class{PSPACE}$.
+ \end{Theorem}
+
+ \only<1| article:0| trans:0| handout:0>
+ {
+ \vskip1em
+
+ \hyperlink{pspacecomplete<2>}{\beamergotobutton{Proof details}}
+ }
+ \only<2>
+ {% this is only shown in the appendix, where this frame is resumed.
+ \begin{proof}
+ \begin{enumerate}
+ \item
+ Let $A \in \Class{DLINSPACE}$ be $\Class{PSPACE}$-complete.\\
+ Such languages are known to exist.
+ \item
+ Let $M$ be a linear space machine that accepts~$A \subseteq
+ \Set{0,1}^*$ with tape alphabet~$\Gamma$.
+ \item
+ Let $h \colon \Gamma \to \Set{0,1}^*$ be an isometric, injective
+ homomorphism.
+ \item
+ Then $h(L)$ is in $\Class{DOF}$ and it is
+ $\Class{PSPACE}$-complete. \qedhere
+ \end{enumerate}
+ \end{proof}
+
+ \only<beamer>{\hfill\hyperlink{pspacecomplete<1>}{\beamerreturnbutton{Return}}}
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{Relationships among Overhead-Free Computation Classes}
+
+ \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
+ \pgfsetlinewidth{0.8pt}
+ \pgfxyline(-5,0)(5,0)
+
+ \pgfsetlinewidth{0.4pt}
+
+ \pgfheaplabeledcentered{1.75cm}{2cm}{$\DOFpoly$}
+ \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
+ \pgfheaplabeledcentered{2.5cm}{3.5cm}{$\NOFpoly$}
+ \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
+
+ \pgfsetdash{{3pt}{3pt}}{0pt}
+ \pgfheaplabeled{\pgfxy(0,2.9)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}%
+ \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}\!\text{-hard}$}}%
+ \end{pgfpicture}
+\end{frame}
+
+
+\section[Limitations of the Model]{Limitations of Overhead-Free Computation}
+
+
+\subsection[Strict Inclusion]{Linear Space is Strictly More Powerful}
+
+\begin{frame}
+ \frametitle{Some Context-Sensitive Languages\\
+ Cannot be Accepted in an Overhead-Free Way}
+
+ \begin{Theorem}
+ $\DOF \subsetneq \Class{DLINSPACE}$.
+ \end{Theorem}
+
+ \begin{Theorem}
+ $\NOF \subsetneq \Class{NLINSPACE}$.
+ \end{Theorem}
+
+ \vskip1em
+ The proofs are based on old diagonalisations due to Feldman, Owings,
+ and Seiferas.
+\end{frame}
+
+\begin{frame}
+ \frametitle{Relationships among Overhead-Free Computation Classes}
+
+ \begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{6cm}
+ \pgfsetlinewidth{0.8pt}
+ \pgfxyline(-5,0)(5,0)
+
+ \pgfsetlinewidth{0.4pt}
+
+ \pgfheaplabeledcentered{3.5cm}{3cm}{$\DOF$}
+ \pgfheaplabeledcentered{5cm}{4cm}{$\NOF$}
+
+ \pgfheaplabeledcentered{4.3cm}{4.5cm}{\raise8pt\hbox{}$\Class{DLINSPACE}$}
+ \pgfheaplabeledcentered{6cm}{5cm}{\raise10pt\hbox{}$\Class{NLINSPACE}$}
+
+ \pgfsetdash{{3pt}{3pt}}{0pt}
+ \pgfheaplabeled{\pgfxy(0,2.9)}{\pgfxy(-5,6)}{\pgfxy(5,6)}{}%
+ \pgfputat{\pgfxy(-4.6,5.75)}{\pgfbox[left,base]{$\Class{PSPACE}$-hard}}%
+ \end{pgfpicture}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Candidates for Languages that\\
+ Cannot be Accepted in an Overhead-Free Way}
+
+ \begin{overprint}
+ \onslide<all:1>
+ \begin{block}{Conjecture}
+ \strut
+ $\Lang{double-palindromes} \notin \Class{DOF}$.
+ \end{block}
+
+ \onslide<all:2>
+ \begin{alertblock}{Theorem\vphantom{j}}
+ \strut
+ $\Lang{double-palindromes} \in \Class{DOF}$.
+ \end{alertblock}
+ \end{overprint}
+
+ \begin{block}{Conjecture}
+ $\Set{ww \mid w\in \Set{0,1}^*} \notin \Class{NOF}$.
+ \end{block}
+
+ \vskip1em
+ \uncover<1>{Proving the first conjecture would show $\Class{DOF} \subsetneq
+ \Class{NOF}$.}
+\end{frame}
+
+
+\section*{Summary}
+
+\subsection<presentation>*{Summary}
+
+\begin{frame}
+ \frametitle<presentation>{Summary}
+
+ \begin{block}{}
+ \begin{itemize}
+ \item
+ Overhead-free computation is a more faithful\\
+ \alert{model of fixed-size memory}.
+ \item
+ Overhead-free computation is \alert{less powerful} than linear space.
+ \item
+ \alert{Many} context-free languages can be accepted\\
+ by overhead-free machines.
+ \item
+ We conjecture that \alert{all} context-free languages are in
+ $\NOFpoly$.
+ \item
+ Our results can be seen as new results on the power of\\
+ \alert{linear bounded automata with fixed alphabet} size.
+ \end{itemize}
+ \end{block}
+
+ \note[item]{Point out result concerning all context-free languages.}
+ \note[item]{Relationship to restart automata.}
+\end{frame}
+
+
+
+\subsection<presentation>*{Further Reading}
+
+\begin{frame}
+ \frametitle<presentation>{For Further Reading}
+
+ \beamertemplatebookbibitems
+
+ \begin{thebibliography}{10}
+
+ \bibitem{sal:b:formal-languages}
+ A.~Salomaa.
+ \newblock {\em Formal Languages}.
+ \newblock Academic Press, 1973.
+ \pause
+
+ \beamertemplatearticlebibitems
+ \bibitem{dij:j:smoothsort}
+ E.~Dijkstra.
+ \newblock Smoothsort, an alternative for sorting in situ.
+ \newblock {\em Science of Computer Programming}, 1(3):223--233,
+ 1982.
+ \pause
+
+ \bibitem{FeldmanO1973}
+ E.~Feldman and J.~Owings, Jr.
+ \newblock A class of universal linear bounded automata.
+ \newblock {\em Information Sciences}, 6:187--190, 1973.
+ \pause
+
+ \bibitem{JancarMPV1995}
+ P.~Jan{\v c}ar, F.~Mr{\'a}z, M.~Pl{\'a}tek, and J.~Vogel.
+ \newblock Restarting automata.
+ \newblock {\em FCT Conference 1995}, LNCS 985, pages
+ 282--292. 1995.
+ \end{thebibliography}
+\end{frame}
+
+
+%
+% The following appendix material is not shown in the normal course of
+% the presentation
+%
+
+\appendix
+
+\AtBeginSubsection{}
+
+
+\section{\appendixname}
+
+\frame{\frametitle{Appendix Outline}\tableofcontents}
+
+
+\subsection{Complete Languages}
+
+\againframe<beamer| beamer:2>{pspacecomplete}
+
+
+\subsection{Improvements for Context-Free Languages}
+
+\begin{frame}
+ \frametitle{Improvements}
+
+ \begin{theorem}
+ \begin{enumerate}
+ \item
+ $\Class{DCFL} \subseteq \DOFpoly$.
+ \item
+ $\Class{CFL} \subseteq \NOFpoly$.
+ \end{enumerate}
+ \end{theorem}
+\end{frame}
+
+
+\subsection{Abbreviations}
+
+\begin{frame}
+ \frametitle{Explanation of Different Abbreviations}
+
+ \begin{table}
+ \rowcolors[]{1}{structure!25!averagebackgroundcolor}{structure!10!averagebackgroundcolor}
+ \begin{tabular}{ll}
+ \structure{$\DOF$} & \structure{D}eterministic \structure{O}verhead-\structure{F}ree.\\
+ \structure{$\NOF$} & \structure{N}ondeterministic \structure{O}verhead-\structure{F}ree.\\
+ \structure{$\DOFpoly$} & \structure{D}eterministic
+ \structure{O}verhead-\structure{F}ree, \structure{poly}nomial time.\\
+ \structure{$\DOFpoly$} & \structure{N}ondeterministic \structure{O}verhead-\structure{F}ree, \structure{poly}nomial time.
+ \end{tabular}
+ \caption{Explanation of what different abbreviations mean.}
+ \end{table}
+\end{frame}
+
+\end{document}
+
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf
new file mode 100644
index 00000000000..3d5099be798
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex
new file mode 100644
index 00000000000..a94cc306cac
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.article.tex
@@ -0,0 +1,11 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.article.tex,v 1.4 2004/10/07 20:53:07 tantau Exp $
+
+\documentclass[11pt]{article}
+\usepackage{beamerarticle}
+
+\input{beamerexample2.tex}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "beamerexample2.article"
+%%% End:
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf
new file mode 100644
index 00000000000..2121e2eceae
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex
new file mode 100644
index 00000000000..96a868c6da7
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.beamer.tex
@@ -0,0 +1,10 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.beamer.tex,v 1.3 2004/10/07 20:53:07 tantau Exp $
+
+\documentclass[ignorenonframetext]{beamer}
+
+\input{beamerexample2.tex}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "beamerexample2.beamer"
+%%% End:
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex
new file mode 100644
index 00000000000..ffcb103d965
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample2.tex
@@ -0,0 +1,95 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample2.tex,v 1.8 2004/10/11 16:10:11 tantau Exp $
+
+% This file is included by beamerexample2.article.tex and
+% beamerexample2.beamer.tex
+
+% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>.
+%
+% This program can be redistributed and/or modified under the terms
+% of the LaTeX Project Public License Distributed from CTAN
+% archives in directory macros/latex/base/lppl.txt.
+
+%
+% The purpose of this example is to demonstrate the usage of the
+% nameslide command
+%
+
+\mode<article>
+{
+ \usepackage{fullpage}
+ \usepackage{pgf}
+ \usepackage{hyperref}
+ \setjobnamebeamerversion{beamerexample2.beamer}
+}
+
+\mode<presentation>
+{
+ \usetheme{Dresden}
+
+ \setbeamercovered{transparent}
+}
+
+\usepackage[latin1]{inputenc}
+\usepackage[english]{babel}
+
+
+\title{Second Beamer Example}
+\author{Till~Tantau}
+\subject{Presentation Programs}
+
+\institute[TU Berlin]{
+ Fakult鋞 f黵 Elektrotechnik und Informatik\\
+ Technical University of Berlin}
+
+
+\begin{document}
+
+\frame{\maketitle}
+
+\section{The first section}
+
+This is the first section of the article version. In the
+presentation, there is a frame containing an overlay. The exact two
+slides of this overlay are shown in Figures~\ref{figure-example1}
+and~\ref{figure-example2}.
+
+\begin{figure}[ht]
+ \begin{center}
+ \includeslide{exampleframe<1>}
+ \end{center}
+ \caption{The first slide. Note the partly covered second item.}
+ \label{figure-example1}
+\end{figure}
+
+\begin{figure}[ht]
+ \begin{center}
+ \includeslide{exampleframe<2>}
+ \end{center}
+ \caption{The second slide. Now the second item is also shown.}
+ \label{figure-example2}
+\end{figure}
+
+We can also include the frame in the article version ``just like
+this'':
+
+\frame[label=exampleframe]{
+ \frametitle{This is a frame with two overlays.}
+
+ \begin{itemize}
+ \item The first item$\dots$
+ \pause
+ \item $\dots$ and the second one.
+ \end{itemize}
+}
+
+We could have suppressed the frame in the article version by adding
+the overlay specification \verb!<presentation>!.
+
+\end{document}
+
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "beamerexample2.article"
+%%% End:
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf
new file mode 100644
index 00000000000..abbea370d9c
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex
new file mode 100644
index 00000000000..3e79726310d
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample3.tex
@@ -0,0 +1,130 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample3.tex,v 1.8 2004/10/07 20:53:07 tantau Exp $
+
+\documentclass{beamer}
+
+% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>.
+%
+% This program can be redistributed and/or modified under the terms
+% of the LaTeX Project Public License Distributed from CTAN
+% archives in directory macros/latex/base/lppl.txt.
+
+%
+% The purpose of this example is to show how \part can be used to
+% organize a lecture.
+%
+
+\usetheme{Warsaw}
+\usepackage[english]{babel}
+\usepackage[latin1]{inputenc}
+
+\setbeamercovered{transparent}
+
+
+%
+% The following info should normally be given in you main file:
+%
+
+
+\title{Beamer Example on Parts}
+\author{Till~Tantau}
+\institute{
+ Fakult鋞 f黵 Elektrotechnik und Informatik\\
+ Technical University of Berlin}
+
+
+\begin{document}
+
+
+\frame{\titlepage}
+
+
+\section*{Outlines}
+
+\subsection{Part I: Review of Previous Lecture}
+
+\frame{
+ \nameslide{outline}
+ \frametitle{Outline of Part I}
+ \tableofcontents[pausesections,part=1]
+}
+
+
+\subsection{Part II: Today's Lecture}
+
+\frame{
+ \frametitle{Outline of Part II}
+ \tableofcontents[pausesections,part=2]
+ \note{At most 1 minute for the outline.}
+}
+
+
+
+\part{Review of Previous Lecture}
+
+\frame{\partpage}
+
+
+\section[Previous Lecture]{Summary of the Previous Lecture}
+
+
+\subsection{Topics}
+
+\frame{
+ \frametitle{This frame shows the topics treated in the last
+ lecture.}
+
+ \begin{itemize}
+ \item This
+ \pause
+ \item and that.
+ \end{itemize}
+}
+
+
+\subsection{Learning Objectives}
+
+\frame{
+ \frametitle{This frame shows the last lecture's learning objectives.}
+
+ \begin{itemize}
+ \item An objective.
+ \pause
+ \item And another one.
+ \end{itemize}
+}
+
+
+
+\part{Today's Lecture}
+
+\frame{\partpage}
+
+
+\section[Models]{The Model of Overhead-Free Computation}
+
+\frame<beamer>{\tableofcontents[current]}
+
+
+\subsection[Standard Model]{The Standard Model of Linear Space}
+
+\frame
+{
+ \frametitle{A frame.}
+}
+
+
+\section[Limitations]{Limitations of Overhead-Free Computation}
+
+\frame<beamer>{\tableofcontents[current]}
+
+
+\subsection[Linear Space]{Linear Space versus Overhead-Free Computation}
+
+\frame
+{
+ \frametitle{A frame.}
+}
+
+\end{document}
+
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf
new file mode 100644
index 00000000000..75b331a7c4e
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex
new file mode 100644
index 00000000000..7864d58473b
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample4.tex
@@ -0,0 +1,45 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample4.tex,v 1.4 2004/10/07 20:53:07 tantau Exp $
+
+\documentclass[cjk]{beamer}
+
+% Copyright 2003 by Till Tantau <tantau@users.sourceforge.net>.
+%
+% This program can be redistributed and/or modified under the terms
+% of the LaTeX Project Public License Distributed from CTAN
+% archives in directory macros/latex/base/lppl.txt.
+%
+% Many thanks to Huang Yushuo for helping me with this file
+% (I don't speak Chinese...)
+
+\usepackage{CJK}
+\usetheme{Warsaw}
+
+\begin{document}
+ \begin{CJK}{GB}{kai}
+
+ \title[用 Beamer 制作的幻灯片]{
+ Example Presentation Created\\
+ with the Beamer Package\\
+ (用 Beamer 制作的幻灯片)}
+ \author{作者 Till Tantau}
+ \date{\today}
+
+ \frame{\titlepage}
+
+ \section*{Outline}
+ \frame{\tableofcontents}
+
+ \section{Introduction (简介)}
+ \subsection{Overview of the Beamer Class (Beamer 类的概要)}
+ \frame{
+ \frametitle{Features of the Beamer Class (Beamer 类的特点)}
+
+ \begin{itemize}
+ \item<1-> Normal LaTeX class (标准的 LaTeX 类).
+ \item<2-> Easy overlays (重构简单).
+ \item<3-> No external programs needed (无需额外的程序).
+ \end{itemize}
+ }
+ \end{CJK}
+\end{document}
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf
new file mode 100644
index 00000000000..06d7196ad2e
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex
new file mode 100644
index 00000000000..23ef834d70e
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample5.tex
@@ -0,0 +1,1021 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample5.tex,v 1.22 2004/10/08 14:02:33 tantau Exp $
+
+\documentclass[11pt]{beamer}
+
+\usetheme{Darmstadt}
+
+\usepackage{times}
+\usefonttheme{structurebold}
+
+\usepackage[english]{babel}
+\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps}
+\usepackage{amsmath,amssymb}
+\usepackage[latin1]{inputenc}
+
+\setbeamercovered{dynamic}
+
+\newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}}
+
+\newcommand{\Class}[1]{\operatorname{\mathchoice
+ {\text{\sf \small #1}}
+ {\text{\sf \small #1}}
+ {\text{\sf #1}}
+ {\text{\sf #1}}}}
+
+\newcommand{\NumSAT} {\text{\small\#SAT}}
+\newcommand{\NumA} {\#_{\!A}}
+
+\newcommand{\barA} {\,\bar{\!A}}
+
+\newcommand{\Nat}{\mathbb{N}}
+\newcommand{\Set}[1]{\{#1\}}
+
+\pgfdeclaremask{tu}{beamer-tu-logo-mask}
+\pgfdeclaremask{computer}{beamer-computer-mask}
+\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerimage}{beamer-computer}
+\pgfdeclareimage[interpolate=true,mask=computer,height=2cm]{computerworkingimage}{beamer-computerred}
+\pgfdeclareimage[mask=tu,height=.5cm]{logo}{beamer-tu-logo}
+
+\logo{\pgfuseimage{logo}}
+
+\title{Weak Cardinality Theorems for First-Order Logic}
+\author{Till Tantau}
+\institute[Technische Universit\"at Berlin]{%
+ Fakult鋞 f黵 Elektrotechnik und Informatik\\
+ Technische Universit\"at Berlin}
+\date{Fundamentals of Computation Theory 2003}
+
+\colorlet{redshaded}{red!25!bg}
+\colorlet{shaded}{black!25!bg}
+\colorlet{shadedshaded}{black!10!bg}
+\colorlet{blackshaded}{black!40!bg}
+
+\colorlet{darkred}{red!80!black}
+\colorlet{darkblue}{blue!80!black}
+\colorlet{darkgreen}{green!80!black}
+
+\def\radius{0.96cm}
+\def\innerradius{0.85cm}
+
+\def\softness{0.4}
+\definecolor{softred}{rgb}{1,\softness,\softness}
+\definecolor{softgreen}{rgb}{\softness,1,\softness}
+\definecolor{softblue}{rgb}{\softness,\softness,1}
+
+\definecolor{softrg}{rgb}{1,1,\softness}
+\definecolor{softrb}{rgb}{1,\softness,1}
+\definecolor{softgb}{rgb}{\softness,1,1}
+
+\newcommand{\Bandshaded}[2]{
+ \color{shadedshaded}
+ \pgfmoveto{\pgfxy(-0.5,0)}
+ \pgflineto{\pgfxy(-0.6,0.1)}
+ \pgflineto{\pgfxy(-0.4,0.2)}
+ \pgflineto{\pgfxy(-0.6,0.3)}
+ \pgflineto{\pgfxy(-0.4,0.4)}
+ \pgflineto{\pgfxy(-0.5,0.5)}
+ \pgflineto{\pgfxy(4,0.5)}
+ \pgflineto{\pgfxy(4.1,0.4)}
+ \pgflineto{\pgfxy(3.9,0.3)}
+ \pgflineto{\pgfxy(4.1,0.2)}
+ \pgflineto{\pgfxy(3.9,0.1)}
+ \pgflineto{\pgfxy(4,0)}
+ \pgfclosepath
+ \pgffill
+
+ \color{black}
+ \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
+ \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
+}
+
+\newcommand{\Band}[2]{
+ \color{shaded}
+ \pgfmoveto{\pgfxy(-0.5,0)}
+ \pgflineto{\pgfxy(-0.6,0.1)}
+ \pgflineto{\pgfxy(-0.4,0.2)}
+ \pgflineto{\pgfxy(-0.6,0.3)}
+ \pgflineto{\pgfxy(-0.4,0.4)}
+ \pgflineto{\pgfxy(-0.5,0.5)}
+ \pgflineto{\pgfxy(4,0.5)}
+ \pgflineto{\pgfxy(4.1,0.4)}
+ \pgflineto{\pgfxy(3.9,0.3)}
+ \pgflineto{\pgfxy(4.1,0.2)}
+ \pgflineto{\pgfxy(3.9,0.1)}
+ \pgflineto{\pgfxy(4,0)}
+ \pgfclosepath
+ \pgffill
+
+ \color{black}
+ \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}}
+ \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}}
+}
+
+\newcommand{\BaenderNormal}
+{%
+ \pgfsetlinewidth{0.4pt}
+ \color{black}
+ \pgfputat{\pgfxy(0,5)}{\Band{input tapes}{}}
+ \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
+ \pgfputat{\pgfxy(0,4)}{\Band{}{}}
+
+ \pgfxyline(0,5)(0,5.5)
+ \pgfxyline(1.2,5)(1.2,5.5)
+ \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
+
+ \pgfxyline(0,4)(0,4.5)
+ \pgfxyline(1.8,4)(1.8,4.5)
+ \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
+ \ignorespaces}
+
+\newcommand{\BaenderZweiNormal}
+{%
+ \pgfsetlinewidth{0.4pt}
+ \color{black}
+ \pgfputat{\pgfxy(0,5)}{\Band{Zwei Eingabeb鋘der}{}}
+ \pgfputat{\pgfxy(0,4.25)}{\Band{}{}}
+
+ \pgfxyline(0,5)(0,5.5)
+ \pgfxyline(1.2,5)(1.2,5.5)
+ \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}
+
+ \pgfxyline(0,4.25)(0,4.75)
+ \pgfxyline(1.8,4.25)(1.8,4.75)
+ \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
+ \ignorespaces}
+
+\newcommand{\BaenderHell}
+{%
+ \pgfsetlinewidth{0.4pt}
+ \color{black}
+ \pgfputat{\pgfxy(0,5)}{\Bandshaded{input tapes}{}}
+ \color{shaded}
+ \pgfputat{\pgfxy(0.35,4.6)}{\pgfbox[center,base]{$\vdots$}}
+ \pgfputat{\pgfxy(0,4)}{\Bandshaded{}{}}
+
+ \color{blackshaded}
+ \pgfxyline(0,5)(0,5.5)
+ \pgfxyline(1.2,5)(1.2,5.5)
+ \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$w_1$}}
+
+ \pgfxyline(0,4)(0,4.5)
+ \pgfxyline(1.8,4)(1.8,4.5)
+ \pgfputat{\pgfxy(0.25,4.25)}{\pgfbox[left,center]{$w_n$}}
+ \ignorespaces}
+
+\newcommand{\BaenderZweiHell}
+{%
+ \pgfsetlinewidth{0.4pt}
+ \color{black}
+ \pgfputat{\pgfxy(0,5)}{\Bandshaded{Zwei Eingabeb鋘der}{}}%
+ \color{blackshaded}
+ \pgfputat{\pgfxy(0,4.25)}{\Bandshaded{}{}}
+ \pgfputat{\pgfxy(0.25,4.5)}{\pgfbox[left,center]{$v$}}
+ \pgfputat{\pgfxy(0.25,5.25)}{\pgfbox[left,center]{$u$}}%
+
+ \pgfxyline(0,5)(0,5.5)
+ \pgfxyline(1.2,5)(1.2,5.5)
+
+ \pgfxyline(0,4.25)(0,4.75)
+ \pgfxyline(1.8,4.25)(1.8,4.75)
+ \ignorespaces}
+
+\newcommand{\Slot}[1]{%
+ \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
+ \pgfsetlinewidth{0.6pt}%
+ \color{structure}%
+ \pgfmoveto{\pgfxy(-0.1,5.5)}%
+ \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
+ \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
+ \pgflineto{\pgfxy(0.1,4.0)}%
+ \pgfbezier{\pgfxy(0.1,3.95)}{\pgfxy(0.05,3.9)}{\pgfxy(0,3.9)}%
+ \pgfbezier{\pgfxy(-0.05,3.9)}{\pgfxy(-0.1,3.95)}{\pgfxy(-0.1,4.0)}%
+ \pgfclosepath%
+ \pgfstroke%
+ \end{pgftranslate}\ignorespaces}
+
+\newcommand{\SlotZwei}[1]{%
+ \begin{pgftranslate}{\pgfpoint{#1}{0pt}}%
+ \pgfsetlinewidth{0.6pt}%
+ \color{structure}%
+ \pgfmoveto{\pgfxy(-0.1,5.5)}%
+ \pgfbezier{\pgfxy(-0.1,5.55)}{\pgfxy(-0.05,5.6)}{\pgfxy(0,5.6)}%
+ \pgfbezier{\pgfxy(0.05,5.6)}{\pgfxy(0.1,5.55)}{\pgfxy(0.1,5.5)}%
+ \pgflineto{\pgfxy(0.1,4.25)}%
+ \pgfbezier{\pgfxy(0.1,4.25)}{\pgfxy(0.05,4.15)}{\pgfxy(0,4.15)}%
+ \pgfbezier{\pgfxy(-0.05,4.15)}{\pgfxy(-0.1,4.2)}{\pgfxy(-0.1,4.25)}%
+ \pgfclosepath%
+ \pgfstroke%
+ \end{pgftranslate}\ignorespaces}
+
+\newcommand{\ClipSlot}[1]{%
+ \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4cm}}}{\pgfxy(0.2,1.5)}\ignorespaces}
+
+\newcommand{\ClipSlotZwei}[1]{%
+ \pgfrect[clip]{\pgfrelative{\pgfxy(-0.1,0)}{\pgfpoint{#1}{4.25cm}}}{\pgfxy(0.2,1.25)}\ignorespaces}
+
+
+\AtBeginSection[]{\frame{\frametitle{Outline}\tableofcontents[current]}}
+
+\begin{document}
+
+\frame{\titlepage}
+
+%\section*{Outline}
+\part{Main Part}
+\frame{\frametitle{Outline}\tableofcontents[part=1]}
+
+\section{History}
+
+\subsection{Enumerability in Recursion and Automata Theory}
+
+\frame
+{
+ \frametitle{Motivation of Enumerability}
+
+ \begin{block}{Problem}
+ Many functions are not computable or not efficiently computable.
+ \end{block}
+ \vskip-1em
+ \begin{overprint}
+ \onslide<1-2>
+ \begin{example}
+ \begin{overprint}
+ \onslide<1>
+ \vskip0.5em
+ \begin{itemize}
+ \item
+ $\NumSAT$:\\
+ How many satisfying assignments does a formula have?
+ \end{itemize}
+
+ \onslide<2>
+ \vskip0.5em
+ For difficult languages~$A$:
+ \begin{itemize}
+ \item
+ Cardinality function $\NumA^n$:\\
+ \alert{How many} input words are in~$A$?
+ \item
+ Characteristic function $\chi_A^n$:\\
+ \alert{Which} input words are in~$A$?
+ \end{itemize}
+ \begin{pgfpicture}{-9cm}{0.75cm}{-9cm}{2cm}
+
+ \pgfnodebox{words}[virtual]{\pgfxy(0,3.5)}{$(w_1, \alert{w_2},
+ w_3, w_4, \alert{w_5})$}{2pt}{5pt}
+
+ \color{red}
+ \pgfputat{\pgfxy(0.75,4.5)}{\pgfbox[center,base]{in $A$}}
+ \pgfxyline(0.75,4.4)(-0.6,3.7)
+ \pgfxyline(0.75,4.4)(1.2,3.7)
+ \color{black}
+
+ \pgfnodebox{number}[virtual]{\pgfxy(-1,1)}{2}{2pt}{2pt}
+ \pgfnodebox{string}[virtual]{\pgfxy(1,1)}{0\alert{1}00\alert{1}}{2pt}{2pt}
+
+ \pgfsetstartarrow{\pgfarrowbar}
+ \pgfsetendarrow{\pgfarrowto}
+
+ \pgfnodeconnline{words}{string}%{-60}{120}{1cm}{1cm}
+ \pgfnodeconnline{words}{number}%{-120}{60}{1cm}{1cm}
+
+ \pgfputat{\pgfxy(-0.9,2.3)}{\pgfbox[center,base]{$\NumA^5$}}
+ \pgfputat{\pgfxy(0.9,2.3)}{\pgfbox[center,base]{$\chi_A^5$}}
+ \end{pgfpicture}
+ \end{overprint}
+ \end{example}
+
+ \onslide<3>
+ \begin{block}{Solutions}
+ Difficult functions can be
+ \begin{itemize}
+ \item
+ computed using probabilistic algorithms,
+ \item
+ computed efficiently on average,
+ \item
+ approximated, or
+ \item<alert@1->
+ enumerated.
+ \end{itemize}
+ \end{block}
+ \end{overprint}
+}
+
+\frame
+{
+ \frametitle{Enumerators Output Sets of Possible Function Values}
+ \begin{columns}
+ \begin{column}{4.5cm}
+ \begin{pgfpicture}{-0.5cm}{0cm}{4cm}{6cm}
+
+ \pgfputat{\pgfxy(0,0.5)}{\Band{}{output tape}}
+
+ \BaenderHell
+
+ \color{black}
+
+ \only<1-4,6->{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerimage}}}}
+ \only<5>{\pgfputat{\pgfxy(1.75,2.5)}{\pgfbox[center,center]{\pgfuseimage{computerworkingimage}}}}
+
+ \begin{pgfscope}
+ \only<1>{\ClipSlot{0cm}}
+ \only<2>{\ClipSlot{0.6cm}}
+ \only<3>{\ClipSlot{1.2cm}}
+ \only<4->{\ClipSlot{1.8cm}}
+ \BaenderNormal
+ \end{pgfscope}
+
+ \only<1>{\Slot{0cm}}
+ \only<2>{\Slot{0.6cm}}
+ \only<3>{\Slot{1.2cm}}
+ \only<4->{\Slot{1.8cm}}
+
+ \only<6->{
+ \pgfxyline(0,0.5)(0,1)
+ \pgfxyline(1,0.5)(1,1)
+ \pgfputat{\pgfxy(0.5,0.75)}{\pgfbox[center,center]{$u_1$}}}
+ \only<7->{
+ \pgfxyline(2,0.5)(2,1)
+ \pgfputat{\pgfxy(1.5,0.75)}{\pgfbox[center,center]{\alert<9>{$u_2$}}}}
+ \only<8->{
+ \pgfxyline(3,0.5)(3,1)
+ \pgfputat{\pgfxy(2.5,0.75)}{\pgfbox[center,center]{$u_3$}}}
+
+ \pgfsetlinewidth{0.6pt}
+ \color{structure}
+ \pgfsetendarrow{\pgfarrowto}
+
+ \pgfsetlinewidth{0.6pt}
+ \color{structure}
+ \pgfsetendarrow{\pgfarrowto}
+ \only<-5>{\pgfxycurve(1.75,1.5)(1.75,1)(0,1.5)(0,1.05)}
+ \only<6>{\pgfxycurve(1.75,1.5)(1.75,1)(1,1.5)(1,1.05)}
+ \only<7>{\pgfxycurve(1.75,1.5)(1.75,1)(2,1.5)(2,1.05)}
+ \only<8->{\pgfxycurve(1.75,1.5)(1.75,1)(3,1.5)(3,1.05)}
+
+ \only<1>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0,3.5)(0,3.85)}
+ \only<2>{\pgfxycurve(1.75,3.5)(1.75,3.75)(0.6,3.5)(0.6,3.85)}
+ \only<3>{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.2,3.5)(1.2,3.85)}
+ \only<4->{\pgfxycurve(1.75,3.5)(1.75,3.75)(1.8,3.5)(1.8,3.85)}
+ \end{pgfpicture}
+ \end{column}
+ \begin{column}{6.5cm}
+ \begin{definition}[1987, 1989, 1994, 2001]
+ An \alert{$m$-enumerator} for a function~$f$
+ \begin{enumerate}
+ \item<alert@1-4>
+ reads $n$ input words $w_1$, \dots, $w_n$,
+ \item<alert@5>
+ does a computation,
+ \item<alert@6-8>
+ outputs at most $m$ values,
+ \item<alert@9>
+ one of which is $f(w_1,\dots,w_n)$.
+ \end{enumerate}
+ \end{definition}
+ \end{column}
+ \end{columns}
+}
+
+\subsection{Known Weak Cardinality Theorem}
+
+\frame
+{
+ \frametitle{How Well Can the Cardinality Function Be Enumerated?}
+
+ \begin{block}{Observation}
+ For fixed~$n$, the cardinality function $\NumA^n$
+ \begin{itemize}
+ \item
+ can be \alert{$1$}-enumerated by Turing machines only for \alert{recursive}~$A$,~but\hskip-0.5cm\hbox{}
+ \item
+ can be \alert{$(n+1)$}-enumerated for \alert{every} language~$A$.
+ \end{itemize}
+ \end{block}
+
+ \begin{alertblock}{Question}<2->
+ What about $2$-, $3$-, $4$-, \dots, $n$-enumerability?
+ \end{alertblock}
+}
+
+\newtheorem{card}{Cardinality Theorem}[theorem]
+\newtheorem{weakcard}{Weak Cardinality Theorems}[theorem]
+
+\frame
+{
+ \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
+ by Turing Machines?}
+
+ \begin{card}[Kummer, 1992]
+ If $\NumA^n$ is $n$-enumerable by a Turing machine, then $A$ is
+ recursive.
+ \end{card}
+
+ \begin{weakcard}[\uncover<2->{\alert<1-2>{1987},} \uncover<3->{\alert<3>{1989},}
+ \uncover<4->{\alert<4>{1992}}]<2->
+ \begin{enumerate}
+ \item<2-| alert@2>
+ If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$ is
+ recursive.
+ \item<3-| alert@3>
+ If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$ is
+ recursive.
+ \item<4-| alert@4>
+ If $\NumA^n$ is $n$-enumerable by a Turing machine that never
+ enumerates both $0$ and~$n$, then $A$ is recursive.
+ \end{enumerate}
+ \end{weakcard}
+}
+
+
+\frame
+{
+ \frametitle{How Well Can the Cardinality Function\\ Be Enumerated
+ by Finite Automata?}
+
+ \begin{alertblock}{Conjecture}
+ If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
+ \alert{regular}.
+ \end{alertblock}
+
+ \begin{weakcard}[2001, 2002]
+ \begin{enumerate}
+ \item
+ If $\chi_A^n$ is $n$-enumerable by a \alert{finite automaton}, then $A$ is
+ \alert{regular}.
+ \item
+ If $\NumA^2$ is $2$-enumerable by a \alert{finite automaton}, then $A$ is
+ \alert{regular}.
+ \item
+ If $\NumA^n$ is $n$-enumerable by a \alert{finite automaton} that never
+ enumerates both $0$ and~$n$, then $A$ is \alert{regular}.
+ \end{enumerate}
+ \end{weakcard}
+}
+
+
+\subsection{Why Do Cardinality Theorems Hold Only for Certain Models?}
+
+\frame
+{
+ \frametitle{Cardinality Theorems Do Not Hold for All Models}
+
+ \begin{pgfpicture}{-2.5cm}{0.3cm}{0.5cm}{6.5cm}
+ \pgfsetlinewidth{0.6pt}
+
+ \pgfsetendarrow{\pgfarrowto}
+ \pgfxyline(0,0.5)(0,6.5)
+ \pgfclearendarrow
+
+ \pgfputat{\pgfxy(-0.2,5.75)}{\pgfbox[right,base]{Turing machines}}
+
+ \only<2>{
+ \pgfputat{\pgfxy(-0.2,3.75)}{\pgfbox[right,base]{\alert{resource-bounded}}}
+ \pgfputat{\pgfxy(-0.2,3.25)}{\pgfbox[right,base]{\alert{machines}}}
+ \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
+ \pgfputat{\pgfxy(0.4,3.5)}{\pgfbox[left,base]{Weak cardinality
+ theorems do \alert{not} hold.}}}
+
+ \pgfputat{\pgfxy(-0.2,1.5)}{\pgfbox[right,base]{finite}}
+ \pgfputat{\pgfxy(-0.2,1)}{\pgfbox[right,base]{automata}}
+
+ \pgfcircle[fill]{\pgfxy(0,5.85)}{2pt}
+ \pgfcircle[fill]{\pgfxy(0,1.35)}{2pt}
+
+ \pgfputat{\pgfxy(0.4,5.75)}{\pgfbox[left,base]{Weak cardinality
+ theorems hold.}}
+ \pgfputat{\pgfxy(0.4,1.25)}{\pgfbox[left,base]{Weak cardinality
+ theorems hold.}}
+ \end{pgfpicture}
+}
+
+\frame
+{
+ \frametitle{Why?}
+
+ \begin{block}{First Explanation}<1>
+ The weak cardinality theorems hold both for recursion and automata
+ theory \alert{by coincidence}.
+ \end{block}
+
+ \begin{block}{Second Explanation}<1-2>
+ The weak cardinality theorems hold both for
+ recursion and automata theory, \alert{because they are
+ instantiations of\\ single, unifying theorems}.
+ \end{block}
+
+ \vskip1em
+ \visible<2->{
+ The second explanation is correct.\\
+ The theorems can (almost) be unified using first-order logic.
+ }
+}
+
+
+
+\section[Unification by Logic]{Unification by First-Order Logic}
+
+\subsection{Elementary Definitions}
+
+\frame
+{
+ \frametitle{What Are Elementary Definitions?}
+
+ \begin{definition}
+ A relation~$R$ is \alert{elementarily definable in a
+ logical structure~$\mathcal S$} if
+ \begin{enumerate}
+ \item
+ there exists a first-order formula~$\phi$,
+ \item
+ that is true exactly for the elements of~$R$.
+ \end{enumerate}
+ \end{definition}
+
+ \begin{example}
+ The set of even numbers is elementarily definable in $(\Nat, +)$
+ via the formula $\phi(x) \equiv \exists z \centerdot z+z=x$.
+ \end{example}
+
+ \begin{example}
+ The set of powers of 2 is not elementarily definable in $(\Nat, +)$.
+ \end{example}
+}
+
+
+\frame
+{
+ \frametitle{Characterisation of Classes by Elementary Definitions}
+
+ \begin{theorem}[B\"uchi, 1960]
+ There exists a logical structure~$(\Nat, +, \mathrm e_2)$
+ such that a set $A \subseteq \Nat$ is\\ \alert{regular} iff it is
+ \alert{elementarily definable in~$(\Nat, +, \mathrm e_2)$}.
+ \end{theorem}
+
+ \begin{theorem}
+ There exists a logical structure~$\mathcal R$ such that a set $A
+ \subseteq \Nat$ is \alert{recursively enumerable} iff it is \alert{positively
+ elementarily definable in~$\mathcal R$}.\hskip-0.5cm\hbox{}
+ \end{theorem}
+}
+
+
+
+\frame
+{
+ \frametitle{Characterisation of Classes by Elementary Definitions}
+
+ \begin{pgfpicture}{-5.4cm}{0.3cm}{5.4cm}{6.5cm}
+ \pgfsetlinewidth{0.6pt}
+
+ \pgfsetendarrow{\pgfarrowto}
+ \pgfxyline(0,0.3)(0,6.5)
+ \pgfclearendarrow
+
+ \only<2->{
+ \pgfputat{\pgfxy(-0.3,0.5)}{\pgfbox[right,base]{Presburger arithmetic}}
+ \pgfcircle[fill]{\pgfxy(0,0.6)}{2pt}
+ \pgfputat{\pgfxy(0.3,0.5)}{\pgfbox[left,base]{$(\Nat, +)$}}
+ }
+ \pgfputat{\pgfxy(-0.3,1.5)}{\pgfbox[right,base]{regular sets}}
+ \pgfcircle[fill]{\pgfxy(0,1.6)}{2pt}
+ \pgfputat{\pgfxy(0.3,1.5)}{\pgfbox[left,base]{$(\Nat, +, \mathrm e_2)$}}
+
+ \pgfputat{\pgfxy(-0.3,2.5)}{\pgfbox[right,base]{\alert{resource-bounded classes}}}
+ \pgfcircle[fill]{\pgfxy(0,2.6)}{2pt}
+ \pgfputat{\pgfxy(0.3,2.5)}{\pgfbox[left,base]{\alert{none}}}
+
+ \pgfputat{\pgfxy(-0.3,3.5)}{\pgfbox[right,base]{recursively enumerable sets}}
+ \pgfcircle[fill]{\pgfxy(0,3.6)}{2pt}
+ \pgfputat{\pgfxy(0.3,3.5)}{\pgfbox[left,base]{positively in $\mathcal R$}}
+
+ \only<2->{
+ \pgfputat{\pgfxy(-0.3,4.5)}{\pgfbox[right,base]{arithmetic hierarchy}}
+ \pgfcircle[fill]{\pgfxy(0,4.6)}{2pt}
+ \pgfputat{\pgfxy(0.3,4.5)}{\pgfbox[left,base]{$(\Nat, +, \cdot)$}}
+
+ \pgfputat{\pgfxy(-0.3,5.5)}{\pgfbox[right,base]{ordinal number arithmetic}}
+ \pgfcircle[fill]{\pgfxy(0,5.6)}{2pt}
+ \pgfputat{\pgfxy(0.3,5.5)}{\pgfbox[left,base]{$(\mathrm{On}, +, \cdot)$}}}
+ \end{pgfpicture}
+}
+
+
+\subsection{Enumerability for First-Order Logic}
+
+\frame
+{
+ \frametitle{Elementary Enumerability is a Generalisation of\\ Elementary Definability}
+
+ \begin{columns}
+ \begin{column}{3.25cm}
+ \begin{pgfpicture}{-0.25cm}{0cm}{3cm}{4cm}
+
+ \color{shaded}
+ \pgfmoveto{\pgfxy(0,1.3)}
+ \pgfcurveto{\pgfxy(0.5,2.3)}{\pgfxy(2,1.5)}{\pgfxy(2.5,2.3)}
+ \pgflineto{\pgfxy(2.5,1.7)}
+ \pgfcurveto{\pgfxy(2,0.7)}{\pgfxy(1,1.7)}{\pgfxy(0,0.5)}
+ \pgfclosepath
+ \pgffill
+
+ \pgfsetlinewidth{0.8pt}
+ \color{black}
+ \pgfmoveto{\pgfxy(0,1)}
+ \pgflineto{\pgfxy(0.25,1.15)}
+ \pgflineto{\pgfxy(0.5,1.5)}
+ \pgflineto{\pgfxy(1,1.7)}
+ \pgflineto{\pgfxy(1.5,1.5)}
+ \pgflineto{\pgfxy(2,1.4)}
+ \pgflineto{\pgfxy(2.25,1.5)}
+ \pgflineto{\pgfxy(2.5,2)}
+ \pgfstroke
+
+ \pgfsetlinewidth{0.4pt}
+ \pgfsetendarrow{\pgfarrowto}
+ \pgfxyline(0,0)(2.5,0)
+ \pgfxyline(0,0)(0,3)
+ \pgfputat{\pgfxy(0.5,1.9)}{\pgfbox[center,base]{$R$}}
+ \pgfputat{\pgfxy(2.6,0)}{\pgfbox[left,center]{$x$}}
+ \pgfputat{\pgfxy(0,3.2)}{\pgfbox[center,base]{$f(x)$}}
+ \pgfputat{\pgfxy(2.55,2)}{\pgfbox[left,center]{$f$}}
+ \end{pgfpicture}
+ \end{column}
+ \begin{column}{7.5cm}
+ \begin{definition}
+ A function~$f$ is\\
+ \alert{elementarily $m$-enumerable in a structure~$\mathcal S$} if
+ \begin{enumerate}
+ \item
+ its graph is contained in an\\
+ \alert{elementarily definable} relation~$R$,
+ \item
+ which is \alert{$m$-bounded}, i.\kern1pt e., for each~$x$
+ there are at most~$m$ different~$y$ with $(x,y) \in R$.
+ \end{enumerate}
+ \end{definition}
+ \end{column}
+ \end{columns}
+}
+
+\frame
+{
+ \frametitle{The Original Notions of Enumerability are Instantiations}
+
+ \begin{theorem}
+ A function is $m$-enumerable by a \alert{finite automaton} iff\\
+ it is elementarily $m$-enumerable in \alert{$(\Nat, +, \mathrm e_2)$}.
+ \end{theorem}
+
+ \begin{theorem}
+ A function is $m$-enumerable by a \alert{Turing machine} iff\\
+ it is positively elementarily $m$-enumerable in \alert{$\mathcal R$}.
+ \end{theorem}
+}
+
+%\subsection{Cross Product Theorem for First-Order Logic}
+
+\subsection{Weak Cardinality Theorems for First-Order Logic}
+
+\frame
+{
+ \frametitle{The First Weak Cardinality Theorem}
+
+ \begin{theorem}
+ Let $\mathcal S$ be a logical structure with universe~$U$ and let
+ $A \subseteq U$. If
+
+ \begin{enumerate}
+ \item
+ $\mathcal S$ is well-orderable and
+ \item
+ \alert{$\chi_A^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$,
+ \end{enumerate}
+
+ then \alert{$A$ is elementarily definable} in~$\mathcal S$.
+ \end{theorem}
+ \begin{overprint}
+ \onslide<2>
+ \begin{corollary}
+ If $\chi_A^n$ is $n$-enumerable by a finite automaton, then
+ $A$ is regular.
+ \end{corollary}
+
+ \onslide<3>
+ \begin{corollary}[with more effort]
+ If $\chi_A^n$ is $n$-enumerable by a Turing machine, then $A$
+ is recursive.
+ \end{corollary}
+ \end{overprint}
+}
+
+\frame
+{
+ \frametitle{The Second Weak Cardinality Theorem}
+
+ \begin{theorem}
+ Let $\mathcal S$ be a logical structure with universe~$U$ and let
+ $A \subseteq U$. If
+
+ \begin{enumerate}
+ \item
+ $\mathcal S$ is well-orderable,
+ \item
+ every finite relation on~$U$ is elementarily definable
+ in~$\mathcal S$, and
+ \item
+ \alert{$\NumA^2$} is elementarily \alert{$2$}-enumerable in~$\mathcal S$,
+ \end{enumerate}
+
+ then \alert{$A$ is elementarily definable} in~$\mathcal S$.
+ \end{theorem}
+% \begin{overlayarea}{\textwidth}{2cm}
+% \only<2>{
+% \begin{corollary}
+% If $\NumA^2$ is $2$-enumerable by a finite automaton, then
+% $A$ is regular.
+% \end{corollary}}%
+% \only<3>{
+% \begin{block}{Corollary}
+% If $\NumA^2$ is $2$-enumerable by a Turing machine, then $A$
+% is recursive in the halting problem.
+% \end{block}
+% }
+% \end{overlayarea}
+}
+
+\frame
+{
+ \frametitle{The Third Weak Cardinality Theorem}
+
+ \begin{theorem}
+ Let $\mathcal S$ be a logical structure with universe~$U$ and let
+ $A \subseteq U$. If
+
+ \begin{enumerate}
+ \item
+ $\mathcal S$ is well-orderable,
+ \item
+ every finite relation on~$U$ is elementarily definable
+ in~$\mathcal S$, and
+ \item
+ \alert{$\NumA^n$} is elementarily \alert{$n$}-enumerable in~$\mathcal S$ via a
+ relation that \alert{never `enumerates' both $0$ and~$n$},
+ \end{enumerate}
+
+ then \alert{$A$ is elementarily definable} in~$\mathcal S$.
+ \end{theorem}
+% \begin{overlayarea}{\textwidth}{2cm}
+% \only<2>{
+% \begin{corollary}
+% If $\NumA^n$ is $n$-enumerable by a finite automaton that
+% never enumerates both $0$ and~$n$, then $A$ is regular.
+% \end{corollary}}%
+% \only<3>{
+% \begin{block}{Corollary}
+% If $\NumA^n$ is $n$-enumerable by a Turing machine that never
+% enumerates both $0$ and~$n$, then $A$ is recursive in the
+% halting problem.
+% \end{block}
+% }
+% \end{overlayarea}
+}
+
+
+
+\frame
+{
+ \frametitle{Relationships Between Cardinality Theorems (CT)}
+
+ \begin{pgfpicture}{0cm}{0cm}{10cm}{5cm}
+ \only<2>{%
+ \color{alert}
+ \pgfnodebox{autX}[virtual]{\pgfxy(2.2,4)}{CT}{2pt}{2pt}
+ \color{black}}%
+ \pgfnodebox{autA}[virtual]{\pgfxy(1,3)}{1st Weak CT}{2pt}{2pt}
+ \pgfnodebox{autB}[virtual]{\pgfxy(1,2)}{2nd Weak CT}{2pt}{2pt}
+ \pgfnodebox{autC}[virtual]{\pgfxy(1,1)}{3rd Weak CT}{2pt}{2pt}
+
+ \only<2>{%
+ \color{alert}
+ \pgfnodebox{logX}[virtual]{\pgfxy(6.2,4.5)}{CT}{2pt}{2pt}%
+ \color{black}}%
+ \pgfnodebox{logA}[virtual]{\pgfxy(5,3.5)}{1st Weak CT}{2pt}{2pt}
+ \pgfnodebox{logB}[virtual]{\pgfxy(5,2.5)}{2nd Weak CT}{2pt}{2pt}
+ \pgfnodebox{logC}[virtual]{\pgfxy(5,1.5)}{3rd Weak CT}{2pt}{2pt}
+
+ \pgfnodebox{recX}[virtual]{\pgfxy(10.2,4)}{CT}{2pt}{2pt}
+ \pgfnodebox{recA}[virtual]{\pgfxy(9,3)}{1st Weak CT}{2pt}{2pt}
+ \pgfnodebox{recB}[virtual]{\pgfxy(9,2)}{2nd Weak CT}{2pt}{2pt}
+ \pgfnodebox{recC}[virtual]{\pgfxy(9,1)}{3rd Weak CT}{2pt}{2pt}
+
+ \pgfputat{\pgfxy(1,4.5)}{\pgfbox[center,base]{\structure{automata theory}}}
+ \pgfputat{\pgfxy(5,5)}{\pgfbox[center,base]{\structure{first-order logic}}}
+ \pgfputat{\pgfxy(9,4.5)}{\pgfbox[center,base]{\structure{recursion
+ theory}}}
+
+ {%
+ \color{structure}%
+ \pgfxyline(3,0)(3,5)
+ \pgfxyline(7,0)(7,5)
+ }%
+ \pgfsetendarrow{\pgfarrowto}
+ \pgfnodeconnline{logA}{autA}
+ \pgfnodeconnline{logA}{recA}
+ \pgfnodeconnline{logB}{autB}
+ \pgfnodeconnline{logC}{autC}
+
+ \pgfnodeconncurve{recX}{recA}{-60}{5}{10pt}{10pt}
+ \pgfnodeconncurve{recX}{recB}{-55}{5}{10pt}{20pt}
+ \pgfnodeconncurve{recX}{recC}{-50}{5}{10pt}{30pt}
+
+ \only<2>{%
+ \alert{
+ \pgfnodeconnline{logX}{autX}
+ \pgfnodeconncurve{logX}{logA}{-60}{0}{10pt}{10pt}
+ \pgfnodeconncurve{logX}{logB}{-55}{0}{10pt}{20pt}
+ \pgfnodeconncurve{logX}{logC}{-50}{0}{10pt}{30pt}
+ \pgfnodeconncurve{autX}{autA}{-60}{11}{10pt}{10pt}
+ \pgfnodeconncurve{autX}{autB}{-55}{11}{10pt}{20pt}
+ \pgfnodeconncurve{autX}{autC}{-50}{11}{10pt}{30pt}
+ }
+ }
+
+ \pgfsetdash{{3pt}{3pt}}{0pt}
+ \pgfnodeconnline{logB}{recB}
+ \pgfnodeconnline{logC}{recC}
+
+ \only<2>{%
+ \alert{\pgfnodeconnline{logX}{recX}}}
+ \end{pgfpicture}
+}
+
+
+\section{Applications}
+
+\subsection{A Separability Result for First-Order Logic}
+
+%\frame
+%{
+% \begin{columns}
+% \begin{column}{2.4cm}
+% \begin{pgfpicture}{-1.2cm}{-1.2cm}{1cm}{1cm}
+% \color{shaded}
+% \pgfrect[fill]{\pgfxy(-1.4,-1)}{\pgfxy(2.8,2)}
+
+% \color{white}
+% \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.5cm}
+% \pgfcircle[fill]{\pgfxy(0.6,0)}{0.5cm}
+% \only<2->{%
+% \color{softred}
+% \pgfcircle[fill]{\pgfxy(-0.6,0)}{0.6cm}}%
+% %
+% \color{black}
+% \pgfcircle[stroke]{\pgfxy(-0.6,0)}{0.5cm}
+% \pgfcircle[stroke]{\pgfxy(0.6,0)}{0.5cm}
+
+% \pgfputat{\pgfxy(-0.6,0)}{\pgfbox[center,center]{$A^{(n)}$}}
+% \pgfputat{\pgfxy(0.6,0)}{\pgfbox[center,center]{$\barA{}^{(n)}$}}
+% \end{pgfpicture}
+% \end{column}
+% \begin{column}{8cm}
+% \begin{block}{Notation}
+% Let $A^{(n)}$ contain all $n$ tuples of\\
+% distinct elements of~$A$.
+% \end{block}
+
+% \begin{block}{Theorem}
+% Let $\mathcal S$ be a well-orderable logical structure in which
+% all finite relations are elementarily definable.\\[0.5em]
+% If $A^{(n)}$ and $\barA{}^{(n)}$ are \alert<2>{elementarily separable}
+% in~$\mathcal S$, then~so~are~$A$~and~$\barA$.
+% \end{block}
+
+% \uncover<3>{
+% \begin{alertblock}{Note}
+% The theorem is no longer true if $\barA$ is replaced by an
+% arbitrary set~$B$.
+% \end{alertblock}
+% }
+% \end{column}
+% \end{columns}
+%}
+
+
+\frame
+{
+ \begin{columns}
+ \begin{column}{4cm}
+ \begin{pgfpicture}{-2cm}{-1.75cm}{2cm}{2.25cm}
+ \color{shaded}
+ \pgfrect[fill]{\pgfxy(-2,-1.75)}{\pgfxy(4,4)}
+ %\pgfcircle[fill]{\pgforigin}{2cm}
+
+ \only<1>{%
+ \color{white}%
+ \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\innerradius}
+ \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\innerradius}
+ \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\innerradius}}%
+ \only<2->{%
+ \color{softred}
+ \pgfcircle[fill]{\pgfpolar{90}{1cm}}{\radius}
+ \color{softgreen}
+ \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
+ \color{softblue}
+ \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}}%
+ %
+ \only<2->{%
+ \begin{pgftranslate}{\pgfpolar{90}{1cm}}
+ \pgfzerocircle{\radius}
+ \pgfclip
+
+ \begin{pgftranslate}{\pgfpolar{-90}{1cm}}
+ \color{softrb}
+ \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
+ \color{softrg}
+ \pgfcircle[fill]{\pgfpolar{210}{1cm}}{\radius}
+ \end{pgftranslate}
+ \end{pgftranslate}
+
+ \begin{pgftranslate}{\pgfpolar{210}{1cm}}
+ \pgfzerocircle{\radius}
+ \pgfclip
+
+ \begin{pgftranslate}{\pgfpolar{30}{1cm}}
+ \color{softgb}
+ \pgfcircle[fill]{\pgfpolar{330}{1cm}}{\radius}
+ \end{pgftranslate}
+ \end{pgftranslate}}%
+ %
+ \color{black}
+ \pgfcircle[stroke]{\pgfpolar{90}{1cm}}{\innerradius}
+ \pgfcircle[stroke]{\pgfpolar{210}{1cm}}{\innerradius}
+ \pgfcircle[stroke]{\pgfpolar{330}{1cm}}{\innerradius}
+
+ \pgfputat{\pgfrelative{\pgfpolar{90}{1cm}}%
+ {\pgfpoint{0pt}{-.5ex}}}%
+ {\pgfbox[center,base]{$A\times \barA$}}
+ \pgfputat{\pgfrelative{\pgfpolar{210}{1cm}}%
+ {\pgfpoint{0pt}{-.5ex}}}%
+ {\pgfbox[center,base]{$A\times A$}}
+ \pgfputat{\pgfrelative{\pgfpolar{330}{1cm}}%
+ {\pgfpoint{0pt}{-.5ex}}}%
+ {\pgfbox[center,base]{$\barA\times \barA$}}
+
+ \end{pgfpicture}
+ \end{column}
+ \begin{column}{6.8cm}
+ \begin{theorem}
+ Let $\mathcal S$ be a well-orderable logical structure in which
+ all finite relations are elementarily definable.\\[0.5em]
+ If there exist elementarily definable supersets of
+ {\color<2>{darkgreen}$A \times A$},
+ {\color<2>{darkred}$A \times \barA$}, and
+ {\color<2>{darkblue}$\barA \times \barA$} whose
+ intersection is empty,\\
+ then $A$ is elementarily definable in~$\mathcal S$.
+ \end{theorem}
+ \begin{alertblock}{Note}<3>
+ The theorem is no longer true\\
+ if we add $\barA \times A$ to the list.
+ \end{alertblock}%
+ \end{column}
+ \end{columns}
+}
+
+
+\section*{Summary}
+
+\frame
+{
+ \frametitle{Summary}
+
+ \begin{block}{Summary}
+ \begin{itemize}
+ \item
+ The weak cardinality theorems for first-order logic \alert{unify}\\
+ the weak cardinality theorems of automata and recursion theory.
+ \item
+ The logical approach yields
+ weak cardinality theorems for\\ \alert{other computational models}.
+ \item
+ Cardinality theorems are \alert{separability theorems} in disguise.
+ \end{itemize}
+ \end{block}{}
+
+ \begin{block}{Open Problems}
+ \begin{itemize}
+ \item
+ Does a cardinality theorem for first-order logic hold?
+ \item
+ What about non-well-orderable structures like $(\mathbb R, +,
+ \cdot)$?
+ \end{itemize}
+ \end{block}
+}
+
+\end{document}
+
+
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf
new file mode 100644
index 00000000000..93a25983497
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex
new file mode 100644
index 00000000000..f77a6a1af4e
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/examples/beamerexample6.tex
@@ -0,0 +1,69 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/examples/beamerexample6.tex,v 1.5 2004/10/07 20:53:07 tantau Exp $
+
+\documentclass[serif]{beamer}
+
+% Copyright 2003 by Till Tantau <tantau@cs.tu-berlin.de>.
+%
+% This program can be redistributed and/or modified under the terms
+% of the LaTeX Project Public License Distributed from CTAN
+% archives in directory macros/latex/base/lppl.txt.
+
+%
+% The purpose of this example is to show how \part can be used to
+% organize a lecture.
+%
+
+\usepackage{times}
+\usepackage[latin1]{inputenc}
+
+\title{Beamer Animation Example}
+\author{Till~Tantau}
+\institute{
+ Fakult鋞 f黵 Elektrotechnik und Informatik\\
+ Technical University of Berlin}
+
+
+\begin{document}
+
+% View this in acroread with "loop after last page option" in full screen mode.
+
+\newcount\opaqueness
+\frame[plain]{
+ \itshape
+ \animate<1-30>
+ \Large
+
+ \only<1-10>{
+ \animatevalue<1-10>{\opaqueness}{100}{10}
+ \begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
+ \begin{centering}
+ \Huge Urfaust\par
+ \end{centering}
+ \end{colormixin}
+ }
+
+ \only<11-20>{
+ \animatevalue<11-20>{\opaqueness}{100}{10}
+ \begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
+ \begin{verse}
+ Hab nun, ach! die Philosophey,\\
+ Medizin und Juristerey \\
+ Und leider auch die Theologie\\
+ Durchaus studirt mit heisser M黨.
+ \end{verse}
+ \end{colormixin}
+ }
+
+ \only<21-30>{
+ \animatevalue<21-30>{\opaqueness}{100}{10}
+ \begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
+ \begin{verse}
+ Da steh ich nun, ich armer Tohr,\\
+ Und binn so klug als wie zuvor.
+ \end{verse}
+ \end{colormixin}}
+}
+
+\end{document}
+
+