diff options
author | Karl Berry <karl@freefriends.org> | 2007-10-14 22:27:34 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2007-10-14 22:27:34 +0000 |
commit | 0db9a3f13f348ac473d128927fd1959dfc837c1f (patch) | |
tree | 0c41e62ebd1295a19461c570de6f59d4d2637b31 /Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex | |
parent | 6e5c0acada6a9c582fe33af8763348a18eb2a0f6 (diff) |
moved amsrefs files
git-svn-id: svn://tug.org/texlive/trunk@5190 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex | 111 |
1 files changed, 0 insertions, 111 deletions
diff --git a/Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex b/Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex deleted file mode 100644 index a40c04d88ea..00000000000 --- a/Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex +++ /dev/null @@ -1,111 +0,0 @@ -%&pdfelatex -%% This is intended to be a working example of using the amsrefs -%% backrefs option in conjunction with hyperref. It works for me using -%% pdflatex [mjd,2002-01-03]. Cf testbib.tex in the hyperref distrib. -%% -%% This is pdfTeX, Version 3.14159-14h-released-20010417 (Web2C 7.3.3.1) -%% (format=pdflatex 2001.12.21) -%% Package: hyperref 2000/01/22 v6.69c Hypertext links for LaTeX - -\documentclass{article} -\usepackage{times} -\usepackage[colorlinks,citecolor=red,pagebackref,hypertexnames=false]{hyperref} -\usepackage[backrefs]{amsrefs} - -\newtheorem{thm}{Theorem}[section] - -\providecommand{\MR}{} - -\begin{document} -\title{Testing amsrefs with the hyperref package} -\author{MJD} -\maketitle - - The following examples are derived from - \emph{Homology manifold bordism} by Heather Johnston and Andrew - Ranicki (Trans.\ Amer.\ Math.\ Soc.\ \textbf{352} no 11 (2000), PII: S - 0002-9947(00)02630-1). - -\setcounter{section}{3} -\section{Homology manifold bordism} - -The results of Johnston \cite{Jo} on homology -manifolds are extended here. It is not -possible to investigate transversality by -geometric methods---as in \cite{Jo} we employ -bordism and surgery instead. - -%Kirby and Siebenmann \cite{KS} (III,\S 1), -The proof of transversality is indirect, -relying heavily on surgery theory\mdash see -Kirby and Siebenmann \cite{KS}*{III, \S 1}, -Marin \cite{M} and Quinn \cite{Q3}. We shall -use the formulation in terms of topological -block bundles of Rourke and Sanderson -\cite{RS}. - -$Q$ is a codimension $q$ subspace by Theorem -4.9 of Rourke and Sanderson \cite{RS}. -(Hughes, Taylor and Williams \cite{HTW} -obtained a topological regular neighborhood -theorem for arbitrary submanifolds \dots.) - -%Wall \cite{Wa} (Chapter 11) obtained a -Wall \cite{Wa}*{Chapter 11} obtained a -codimension $q$ splitting obstruction \dots. - -\dots\ following the work of Cohen \cite{Co} -on $PL$ manifold transversality. - -In this case each inverse image is -automatically a $PL$ submanifold of -codimension $\sigma$ (Cohen \cite{Co}), so -there is no need to use $s$-cobordisms. - -%Quinn (\cite{Q2}, 1.1) proved that \dots -Quinn \cite{Q2}*{1.1} proved that \dots - -\begin{thm}[The additive structure of - homology manifold bordism, Johnston - \cite{Jo}] -\dots -\end{thm} - -For $m\geq 5$ the Novikov-Wall surgery theory -for topological manifolds gives an exact -sequence (Wall \cite{Wa}*{Chapter 10}. - -The surgery theory of topological manifolds -was extended to homology manifolds in Quinn -\cites{Q1,Q2} and Bryant, Ferry, Mio -and Weinberger \cite{BFMW}. - -The 4-periodic obstruction is equivalent to -an $m$-dimensional homology manifold, by -\cite{BFMW}. - -Thus, the surgery exact sequence of -\cite{BFMW} does not follow Wall \cite{Wa} in -relating homology manifold structures and -normal invariants. - -\dots\ the canonical $TOP$ reduction -(\cite{FP}) of the Spivak normal fibration of -$M$ \dots - -\begin{thm}[Johnston \cite{Jo}] -\dots -\end{thm} - -Actually \cite{Jo}*{(5.2)} is for $m\geq 7$, -but we can improve to $m\geq 6$ by a slight -variation of the proof as described below. - -(This type of surgery on a Poincar\'e space -is in the tradition of Lowell Jones -\cite{Jn}.) - -\bibliographystyle{amsxport} -\bibliography{jr} - -\end{document} |