diff options
author | Karl Berry <karl@freefriends.org> | 2013-02-01 23:59:33 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2013-02-01 23:59:33 +0000 |
commit | a70d6f1377ea01eeaff566f72280cb46ea5d7384 (patch) | |
tree | af0146af88e266455f770af56b2e5c66269144df /Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex | |
parent | 017f337f3d69a9d9c9d70b904a7a0a09f3b4331e (diff) |
amsrefs 2.12 (29jan13)
git-svn-id: svn://tug.org/texlive/trunk@29007 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex | 143 |
1 files changed, 0 insertions, 143 deletions
diff --git a/Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex b/Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex deleted file mode 100644 index d0b50a72848..00000000000 --- a/Master/texmf-dist/doc/latex/amsrefs/cite-xh.tex +++ /dev/null @@ -1,143 +0,0 @@ -%% filename: cite-xh.tex -%% version: 1.00 -%% date: 2004/06/30 -%% -%% American Mathematical Society -%% Technical Support -%% Publications Technical Group -%% 201 Charles Street -%% Providence, RI 02904 -%% USA -%% tel: (401) 455-4080 -%% (800) 321-4267 (USA and Canada only) -%% fax: (401) 331-3842 -%% email: tech-support@ams.org -%% -%% Copyright 2004, 2010 American Mathematical Society. -%% -%% This work may be distributed and/or modified under the -%% conditions of the LaTeX Project Public License, either version 1.3c -%% of this license or (at your option) any later version. -%% The latest version of this license is in -%% http://www.latex-project.org/lppl.txt -%% and version 1.3c or later is part of all distributions of LaTeX -%% version 2005/12/01 or later. -%% -%% This work has the LPPL maintenance status `maintained'. -%% -%% The Current Maintainer of this work is the American Mathematical -%% Society. -%% -%% ==================================================================== - -%&pdfelatex -%% This is intended to be a working example of using the amsrefs -%% backrefs option in conjunction with hyperref. It works for me using -%% pdflatex [mjd,2002-01-03]. Cf testbib.tex in the hyperref distrib. -%% -%% This is pdfTeX, Version 3.14159-14h-released-20010417 (Web2C 7.3.3.1) -%% (format=pdflatex 2001.12.21) -%% Package: hyperref 2000/01/22 v6.69c Hypertext links for LaTeX - -\documentclass{article} -\usepackage{times} -\usepackage[colorlinks,citecolor=red,pagebackref,hypertexnames=false]{hyperref} -\usepackage[backrefs]{amsrefs} - -\newtheorem{thm}{Theorem}[section] - -\providecommand{\MR}{} - -\begin{document} -\title{Testing amsrefs with the hyperref package} -\author{MJD} -\maketitle - - The following examples are derived from - \emph{Homology manifold bordism} by Heather Johnston and Andrew - Ranicki (Trans.\ Amer.\ Math.\ Soc.\ \textbf{352} no 11 (2000), PII: S - 0002-9947(00)02630-1). - -\setcounter{section}{3} -\section{Homology manifold bordism} - -The results of Johnston \cite{Jo} on homology -manifolds are extended here. It is not -possible to investigate transversality by -geometric methods---as in \cite{Jo} we employ -bordism and surgery instead. - -%Kirby and Siebenmann \cite{KS} (III,\S 1), -The proof of transversality is indirect, -relying heavily on surgery theory\mdash see -Kirby and Siebenmann \cite{KS}*{III, \S 1}, -Marin \cite{M} and Quinn \cite{Q3}. We shall -use the formulation in terms of topological -block bundles of Rourke and Sanderson -\cite{RS}. - -$Q$ is a codimension $q$ subspace by Theorem -4.9 of Rourke and Sanderson \cite{RS}. -(Hughes, Taylor and Williams \cite{HTW} -obtained a topological regular neighborhood -theorem for arbitrary submanifolds \dots.) - -%Wall \cite{Wa} (Chapter 11) obtained a -Wall \cite{Wa}*{Chapter 11} obtained a -codimension $q$ splitting obstruction \dots. - -\dots\ following the work of Cohen \cite{Co} -on $PL$ manifold transversality. - -In this case each inverse image is -automatically a $PL$ submanifold of -codimension $\sigma$ (Cohen \cite{Co}), so -there is no need to use $s$-cobordisms. - -%Quinn (\cite{Q2}, 1.1) proved that \dots -Quinn \cite{Q2}*{1.1} proved that \dots - -\begin{thm}[The additive structure of - homology manifold bordism, Johnston - \cite{Jo}] -\dots -\end{thm} - -For $m\geq 5$ the Novikov-Wall surgery theory -for topological manifolds gives an exact -sequence (Wall \cite{Wa}*{Chapter 10}. - -The surgery theory of topological manifolds -was extended to homology manifolds in Quinn -\cites{Q1,Q2} and Bryant, Ferry, Mio -and Weinberger \cite{BFMW}. - -The 4-periodic obstruction is equivalent to -an $m$-dimensional homology manifold, by -\cite{BFMW}. - -Thus, the surgery exact sequence of -\cite{BFMW} does not follow Wall \cite{Wa} in -relating homology manifold structures and -normal invariants. - -\dots\ the canonical $TOP$ reduction -(\cite{FP}) of the Spivak normal fibration of -$M$ \dots - -\begin{thm}[Johnston \cite{Jo}] -\dots -\end{thm} - -Actually \cite{Jo}*{(5.2)} is for $m\geq 7$, -but we can improve to $m\geq 6$ by a slight -variation of the proof as described below. - -(This type of surgery on a Poincar\'e space -is in the tradition of Lowell Jones -\cite{Jn}.) - -\bibliographystyle{amsxport} -\bibliography{jr} - -\end{document} |