diff options
author | Karl Berry <karl@freefriends.org> | 2017-11-26 23:25:50 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2017-11-26 23:25:50 +0000 |
commit | 429dc0fa4f8ccda0a0746211f00ad7d5bdbb6d41 (patch) | |
tree | 5ca3cbb4f34fdb9cb8ec472720e3a945bb69513f /Master/texmf-dist/doc/generic | |
parent | 0fd5cd95c65cdfe2194010958ae552b4b1632bb8 (diff) |
pst-fractal (26nov17)
git-svn-id: svn://tug.org/texlive/trunk@45911 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/Changes | 4 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/README | 5 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.bib | 174 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf | bin | 804162 -> 7201737 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex | 296 |
5 files changed, 269 insertions, 210 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-fractal/Changes b/Master/texmf-dist/doc/generic/pst-fractal/Changes index 503e8ee798f..e297cdd6b27 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/Changes +++ b/Master/texmf-dist/doc/generic/pst-fractal/Changes @@ -1,9 +1,13 @@ pst-fractal.pro -------- +0.04 2017-11-26 add sierpinski curve +0.03 2011-02-10 cometic changes 0.02 2010-02-10 fix bug in tx@fern 0.01 2007-04-05 first CTAN version pst-fractal.tex -------- +0.08 2017-11-26 - add sierpinski curve +0.07 2013-06-17 - allow level 0 for sierpinski 0.06 2010-02-10 - add another type of a Sierpinski triangle 0.05 2007-09-25 - allow unbalanced trees with option 0<c<1 - use option c for unballanced trees diff --git a/Master/texmf-dist/doc/generic/pst-fractal/README b/Master/texmf-dist/doc/generic/pst-fractal/README index 60512ee4996..fe1f4a9f4f6 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/README +++ b/Master/texmf-dist/doc/generic/pst-fractal/README @@ -6,7 +6,7 @@ Then do not forget to run texhash to update this tree. For more information see the documentation of your LATEX distribution on installing packages into your local TeX system or read the TeX Frequently Asked Questions: -(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages). +(http://www.tex.ac.uk/FAQ-install-where.html). PSTricks is PostScript Tricks, the documentation cannot be run with pdftex, use the sequence latex->dvips->ps2pdf. @@ -14,3 +14,6 @@ with pdftex, use the sequence latex->dvips->ps2pdf. To gett he documentation of this document you have to run pst2pdf pst-fractal-doc --Iext=.jpg +%% This program can be redistributed and/or modified under the terms +%% of the LaTeX Project Public License Distributed from CTAN archives +%% in directory macros/latex/base/lppl.txt. diff --git a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.bib b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.bib index 8eef82786f7..038d2b36a0a 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.bib +++ b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.bib @@ -1,88 +1,35 @@ -@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } +@STRING{tugboat = {TUGboat} } +@STRING{beiprogramm = {{\TeX}-Beiprogramm} } +@STRING{bretter = {Bretter, die die Welt bedeuten} } +@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } +@STRING{editorial = {Editorial} } +@STRING{fremdebuehne = {Von fremden B{\"u}hnen} } +@STRING{fundus = {Aus dem Fundus} } +@STRING{hinterbuehne = {Hinter der B{\"u}hne} } +@STRING{leserbrief = {Leserbrief(e)} } +@STRING{magazin = {Magazin} } +@STRING{rezension = {Rezensionen} } +@STRING{schonimmer = {Was Sie schon immer {\"u}ber {\TeX} wissen wollten \dots} } +@STRING{theaterkasse = {Von der Theaterkasse} } +@STRING{theatertage = {{\TeX}-Theatertage} } -@Book{PostScript, - Author = {Kollock, Nikolai G.}, - Title = {PostScript richtig eingesetzt: vom Konzept zum - praktischen Einsatz}, - Publisher = {IWT}, - Address = {Vaterstetten}, - year = 1989, -} - -@Manual{pstricks, - Title = {PSTricks - {\PS} macros for Generic TeX}, - Author = {Timothy Van Zandt}, - Organization = {}, - Address = {\url{http://www.tug.org/application/PSTricks}}, - Note = {}, - year = 1993, -} - - -@Manual{pdftricks, - Title = {PSTricks Support for pdf}, - Author = {Herbert Voss}, - Organization = {}, - Address = {\url{http://PSTricks.de/pdf/pdfoutput.phtml}}, - Note = {}, - year = 2002, -} - -@Manual{miwi, - Title = {References for \TeX{} and Friends}, - Author = {Michael Wiedmann and Peter Karp}, - Organization = {}, - Address = {\url{http://www.miwie.org/tex-refs/}}, - Note = {}, - year = 2003, -} - - -@Manual{vue3d:2002, - Title = {Vue en 3D}, - Author = {Manuel Luque}, - Organization = {}, - Address = {\url{http://members.aol.com/Mluque5130/vue3d16112002.zip}}, - Note = {}, - year = 2002, -} - -@Article{dtk02.2:jackson.voss:plot-funktionen, - author = {Laura E. Jackson and Herbert Vo{\ss}}, - title = {Die {P}lot-{F}unktionen von {\texttt{pst-plot}}}, - journal = dtk, - year = 2002, - volume = {2/02}, - altvolume = 2, - altnumber = 14, - month = jun, - pages = {27--34}, - annote = bretter, - keywords = {}, - abstract = { Im letzten Heft wurden die mathematischen Funktionen von - \PS~im Zusammenhang mit dem {\LaTeX}-Paket - \texttt{pst-plot} zum Zeichnen von Funktionen beschrieben - und durch Beispiele erl{\"a}utert. In diesem Teil werden - die bislang nur erw{\"a}hnten Plot-Funktionen f{\"u}r - externe Daten behandelt. } -} -@Article{dtk02.1:voss:mathematischen, - author = {Herbert Vo{\ss}}, - title = {Die mathematischen {F}unktionen von {P}ostscript}, +@Article{ dtk02.1:voss:mathematischen, + author = {Herbert Voß}, + title = {Die mathematischen {F}unktionen von {P}ost{S}cript}, journal = dtk, year = 2002, volume = {1/02}, altvolume = 1, altnumber = 14, month = mar, - pages = {40-47}, + pages = {}, annote = bretter, keywords = {}, abstract = { \PS, faktisch genauso alt wie {\TeX}, ist im Verh{\"a}ltnis dazu allgemein noch weniger bekannt, wenn es darum geht zu beurteilen, was es denn nun im eigentlichen - Sinne ist. Au{\ss}erdem wird h{\"a}ufig vergessen, dass + Sinne ist. Außerdem wird h{\"a}ufig vergessen, dass sich mit den \PS-Funktionen viele Dinge erledigen lassen, bei denen sonst auf externe Programme zur{\"u}ckgegriffen wird. Dies wird im Folgenden f{\"u}r die mathematischen @@ -91,29 +38,88 @@ } @Book{tlgc2, - author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Denis Roegel and Herbert Vo{\ss}}, + author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Denis Roegel and Herbert Voß}, title = {The {\LaTeX} {G}raphics {C}ompanion}, publisher = {{Addison-Wesley Publishing Company}}, - edition = second, + edition = 2, year = {2007}, address = {Reading, Mass.} } +@Article{girou:01:, + author = {Denis Girou}, + title = {Pr\'esentation de {PST}ricks}, + journal = {Cahier {GUT}enberg}, + year = 1994, + volume = {16}, + month = apr, + pages = {21-70} +} + +@Article{girou:02:, + author = {{Timothy van} Zandt and Denis Girou}, + title = {Inside {PST}ricks}, + journal = TUGboat, + year = 1994, + volume = {15}, + month = sep, + pages = {239-246} +} + +@Book{PostScript, + Author = {Kollock, Nikolai G.}, + Title = {Post{S}cript richtig eingesetzt: vom {K}onzept zum + praktischen {E}insatz}, + Publisher = {IWT}, + Address = {Vaterstetten}, + year = 1989, +} + +@online{pstricks, + Title = {PSTricks - {\PS} macros for generic {\TeX}}, + Author = {{Timothy van} Zandt}, + Organization = {}, + url = {http://www.tug.org/application/PSTricks}, + year = 1993 +} + @Book{PSTricks2, - author = {Herbert Vo\ss}, + author = {Herbert Voß}, title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX}, - edition = {4.}, + edition = {7}, publisher = {DANTE -- Lehmanns}, - year = {2007}, - address = {Heidelberg/Hamburg} + year = {2016}, + publisher = {Heidelberg and Berlin} } -@Book{voss:math, - author = {Herbert Vo\ss}, - title = {\LaTeX\ in {M}athematik und {N}aturwissenschaften}, - publisher = {{Franzis-Verlag}}, - year = {2006}, - address = {Poing} +@Book{PSTricks2-UIT, + author = {Herbert Voß}, + title = {PSTricks -- Graphics for \TeX\ and \LaTeX}, + publisher = {UIT}, + year = {2011}, + address = {Cambridge} } +@Book{LaTeXRef-UIT, + author = {Herbert Voß}, + title = {{\LaTeX} quick reference}, + publisher = {UIT}, + year = {2012}, + address = {Cambridge} +} + +@online{wolfram, + author = {Eric Weisstein}, + title = {Wolfram MathWorld}, + publisher = {{Wolfram}}, + year = {2007}, + url = {http://mathworld.wolfram.com} +} + +@ctan{pst-tools, + author = {Herbert Voß}, + title = {\texttt{pst-tools} -- Helper functions}, + year = {2012}, + url = {/graphics/pstricks/contrib/pst-tools} +} diff --git a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf Binary files differindex 801bcfdb6f8..c9909824bbb 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf +++ b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex index a78d68ada00..8bcd020028c 100644 --- a/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-fractal/pst-fractal-doc.tex @@ -1,12 +1,16 @@ -%% $Id: pst-func-doc.tex 273 2010-01-26 18:28:55Z herbert $ +%% $Id: pst-fractal-doc.tex 658 2017-11-26 16:55:41Z herbert $ \documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false, smallheadings, headexclude,footexclude,oneside]{pst-doc} \usepackage[utf8]{inputenc} -\usepackage{pst-fractal,pst-exa} +\usepackage{pst-fractal} \let\pstFV\fileversion -\renewcommand\bgImage{\includegraphics[scale=1.5]{images/pst-fractal-doc-tmp-1.pdf}} +\renewcommand\bgImage{\includegraphics[scale=1.5]{images/pst-fractal-doc-tmp-1}} \def\PSLenv{\Lenv{pspicture}} +\usepackage{animate} +%\usepackage{auto-pst-pdf} + +\addbibresource{\jobname.bib} \lstset{language=PSTricks,basicstyle=\footnotesize\ttfamily} % \begin{document} @@ -57,28 +61,97 @@ arguments it is one of the two possible versions: In difference to \Lcs{psfractal} it doesn't reserve any space, this is the reason why it should be part of a \PSLenv{} environment. -\begin{PSTexample}[pos=l] +\begin{LTXexample}[pos=l] \begin{pspicture}(5,5) \psSier(0,0)(2,5)(5,0) \end{pspicture} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample}[pos=l] -\begin{pspicture}(5,5) +\begin{LTXexample}[pos=t] +\multido{\iA=1+1}{6}{% +\begin{pspicture}(2,1.7) \psSier[linecolor=blue!70, - fillcolor=red!40](0,0){5cm}{4} + fillcolor=red!40](0,0){2cm}{\iA} +\end{pspicture} } +\end{LTXexample} + + +\section{Sierpinski curve} + +There are four special optional arguments for the Siepinski curve: +\begin{itemize} + \item \texttt{[n=4]} : number of iterations + \item \texttt{[N=all]} : number of placed points (only of interest for an animation) + \item \texttt{[dotcolor=red]} : in difference to linecolor for standard PSTricks + \item \texttt{[showpoints=false]} : show calculated points +\end{itemize} + +\begin{LTXexample}[pos=t] +\begin{pspicture}(-4,-4)(4,4) +\psframe*[linecolor=cyan](-4,-4)(4,4) +\psSier[unit=0.25,n=4,fillstyle=solid,fillcolor=yellow,linecolor=blue] +\psgrid[subgriddiv=0,gridcolor=blue,griddots=5,gridlabels=0pt,unit=0.5](-8,-8)(8,8) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[pos=t] +\begin{pspicture}[showgrid](-4,-4)(4,4) +\psset{unit=0.25} +% n=4 => Nmax=4^(n+1)=1024 +% ici on marque la moitie des points +\psSier[n=4,N=512] +\end{pspicture} +\end{LTXexample} + + + +\begin{LTXexample}[pos=t] +\begin{pspicture}(-4,-4)(4,4) +\psframe*[linecolor=-yellow](-4,-4)(4,4) +\psSier[n=5,unit=0.125,fillstyle=solid,fillcolor=-cyan,linecolor=-blue] \end{pspicture} -\end{PSTexample} +\end{LTXexample} + + + +\iffalse +\begin{animateinline}[controls,% palindrome, + begin={\begin{pspicture}(-4,-4)(4,4)}, + end={\end{pspicture}}]{5}% 5 image/s +\multiframe{256}{i=1+1}{% + \psframe*[linecolor=yellow!20](-4,-4)(4,4) + \psgrid[subgriddiv=0,gridcolor=blue,griddots=5,gridlabels=0pt,unit=0.5](-8,-8)(8,8) +% n=3 => Nmax=4^(n+1)=256 points + \psSier[linecolor=blue,linewidth=0.05,n=3,showpoints,dotsize=0.1,N=\i,unit=0.5]} +\end{animateinline} + + +\begin{verbatim} +\begin{animateinline}[controls,% palindrome, + begin={\begin{pspicture}(-4,-4)(4,4)}, + end={\end{pspicture}}]{5}% 5 image/s +\multiframe{256}{i=1+1}{% +\psframe*[linecolor=yellow!20](-4,-4)(4,4) +\psgrid[subgriddiv=0,gridcolor=blue,griddots=5,gridlabels=0pt,unit=0.5](-8,-8)(8,8) +% n=3 => Nmax=4^(n+1)=256 points +\psSierpinskyCurve[linecolor=blue,linewidth=0.05,n=3,showpoints,dotsize=0.1,N=\i,unit=0.5]} +\end{animateinline} +\end{verbatim} + +\fi \section{Julia and Mandelbrot sets} The syntax of the \Lcs{psfractal} macro is simple - +% \begin{BDef} \Lcs{psfractal}\OptArgs\coord0\coord1 \end{BDef} + + All Arguments are optional, \Lcs{psfractal} is the same as \Lcs{psfractal}\verb+(-1,-1)(1,1)+. The Julia and Mandelbrot sets are a graphical representation of the following sequence $x$ is the real and $y$ the imaginary part of the complex number $z$. $C(x,y)$ is a complex constant @@ -97,15 +170,17 @@ z_0 &= (x_0;y_0) \end{align} $(x_0;y_0)$ is the starting value. -\begin{PSTexample}[pos=l] -\pspicture(-1,-1)(1,1)\psfractal\endpspicture -\end{PSTexample} +\psset{unit=1cm,opacity=0} + + + +\begin{LTXexample}[pos=l] +\psfractal +\end{LTXexample} -\begin{PSTexample}[pos=l] -\pspicture(-2,-2)(2,2) +\begin{LTXexample}[pos=l] \psfractal[xWidth=4cm,yWidth=4cm, baseColor=white, dIter=20](-2,-2)(2,2) -\endpspicture -\end{PSTexample} +\end{LTXexample} \subsection{Mandelbrot sets} @@ -120,20 +195,16 @@ C(x,y) &= (x_0;y_0) $(x_0;y_0)$ is the starting value. -\begin{PSTexample}[pos=l] -\pspicture(-1,-1)(1,1) +\begin{LTXexample}[pos=l] \psfractal[type=Mandel] -\endpspicture -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample}[pos=l] -\pspicture(-2,-2)(2,2) +\begin{LTXexample}[pos=l] \psfractal[type=Mandel, xWidth=6cm, yWidth=4.8cm, baseColor=white, dIter=10](-2,-1.2)(1,1.2) -\endpspicture -\end{PSTexample} +\end{LTXexample} \subsection{The options} @@ -142,44 +213,36 @@ $(x_0;y_0)$ is the starting value. \Lkeyword{txpe} can be of \Lkeyval{Julia} (default) or \Lkeyval{Mandel}. -\begin{PSTexample}[pos=l] -\pspicture(-1,-1)(3,1) +\begin{LTXexample}[pos=l] \psfractal \psfractal[type=Mandel] -\endpspicture -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{baseColor}} The color for the convergent part is set by \Lkeyword{baseColor}. -\begin{PSTexample} -\begin{postscript} +\begin{LTXexample} \psfractal[xWidth=4cm,yWidth=4cm,dIter=30](-2,-2)(2,2) \psfractal[xWidth=4cm,yWidth=4cm,baseColor=yellow,dIter=30](-2,-2)(2,2) -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{xWidth} and \texttt{yWidth}} \Lkeyword{xWidth} and \Lkeyword{yWidth} define the physical width of the fractal. -\begin{PSTexample} -\begin{postscript} +\begin{LTXexample} \psfractal[type=Mandel,xWidth=12.8cm,yWidth=10.8cm,dIter=5](-2.5,-1.3)(0.7,1.3) -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{cx} and \texttt{cy}}\xLkeyword{cx}\xLkeyword{cy} Define the starting value for the complex constant number $C$. -\begin{PSTexample} -\begin{postscript} +\begin{LTXexample} \psset{xWidth=5cm,yWidth=5cm} \psfractal[dIter=2](-2,-2)(2,2) \psfractal[dIter=2,cx=-1.3,cy=0](-2,-2)(2,2) -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{dIter}} @@ -187,25 +250,21 @@ The color is set by \Index{wavelength} to RGB conversion of the iteration number \Lkeyword{dIter} is the step, predefined by 1. The wavelength is given by the value of \Lps{iter} added by 400. -\begin{PSTexample} -\begin{postscript} +\begin{LTXexample} \psset{xWidth=5cm,yWidth=5cm} \psfractal[dIter=30](-2,-2)(2,2) \psfractal[dIter=10,cx=-1.3,cy=0](-2,-2)(2,2) -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{maxIter}} \Lkeyword{maxIter} is the number of the maximum iteration until it leaves the loop. It is predefined by 255, but internally multiplied by \Lkeyword{dIter}. -\begin{PSTexample} -\begin{postscript} +\begin{LTXexample} \psset{xWidth=5cm,yWidth=5cm} \psfractal[maxIter=50,dIter=3](-2,-2)(2,2) \psfractal[maxIter=30,cx=-1.3,cy=0](-2,-2)(2,2) -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{maxRadius}} If the square of distance of $z_n$ to the origin of the complex coordinate system @@ -213,25 +272,23 @@ is greater as \Lkeyword{maxRadius} then the algorithm leaves the loop and sets the point. \Lkeyword{maxRadius} should always be the square of the "`real"' value, it is preset by 100. -\begin{PSTexample} -\begin{postscript} +\begin{LTXexample} \psset{xWidth=5cm,yWidth=5cm} \psfractal[maxRadius=30,dIter=10](-2,-2)(2,2) \psfractal[maxRadius=30,dIter=30,cx=-1.3,cy=0](-2,-2)(2,2) -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{plotpoints}}\xLkeyword{plotpoints} This option is only valid for the Sierpinski triangle and preset by 2000. -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}(5,5) \psSier(0,0)(2.5,5)(5,0) \end{pspicture} \begin{pspicture}(5,5) \psSier[plotpoints=10000](0,0)(2.5,5)(5,0) \end{pspicture} -\end{PSTexample} +\end{LTXexample} @@ -250,63 +307,57 @@ The coordinates of the center are optional, if they are missing, then $(0,0)$ is assumed. -\begin{PSTexample}[pos=l] -\begin{postscript} -\psframebox{\begin{pspicture}(-3,-3)(3,3) +\begin{LTXexample}[pos=l] +\psframebox{% +\begin{pspicture}(-3,-3)(3,3) \psPhyllotaxis \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample}[pos=l] -\begin{postscript} -\psframebox{\begin{pspicture}(-3,-3)(4,4) +\begin{LTXexample}[pos=l] +\psframebox{% +\begin{pspicture}(-3,-3)(4,4) \psPhyllotaxis(1,1) \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{angle}}\xLkeyword{angle} -\begin{PSTexample}[pos=l] -\begin{postscript} -\psframebox{\begin{pspicture}(-2.5,-2.5)(2.5,2.5) +\begin{LTXexample}[pos=l] +\psframebox{% +\begin{pspicture}(-2.5,-2.5)(2.5,2.5) \psPhyllotaxis[angle=99] \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{c}}\xLkeyword{c} This is the length of one element in the unit pt. -\begin{PSTexample} -\begin{postscript} -\psframebox{\begin{pspicture}(8,8) +\begin{LTXexample} +\psframebox{% +\begin{pspicture}(8,8) \psPhyllotaxis[c=7](4,4) \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} -\begin{postscript} -\psframebox{\begin{pspicture}(-3,-3)(3,3) +\begin{LTXexample} +\psframebox{% +\begin{pspicture}(-3,-3)(3,3) \psPhyllotaxis[c=4,angle=111] \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} \subsection{\texttt{maxIter}}\xLkeyword{maxIter} This is the number for the iterations. -\begin{PSTexample} -\begin{postscript} -\psframebox{\begin{pspicture}(-3,-3)(3,3) +\begin{LTXexample} +\psframebox{% +\begin{pspicture}(-3,-3)(3,3) \psPhyllotaxis[c=6,angle=111,maxIter=100] \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} @@ -319,29 +370,26 @@ This is the number for the iterations. The coordinates of the starting point are optional, if they are missing, then $(0,0)$ is assumed. The default \Lkeyword{scale} is set to 10. -\begin{PSTexample} -\begin{postscript} -\psframebox{\begin{pspicture}(-1,0)(1,4) +\begin{LTXexample} +\psframebox{% +\begin{pspicture}(-1,0)(1,4) \psFern \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} -\begin{postscript} -\psframebox{\begin{pspicture}(-1,0)(2,5) +\begin{LTXexample} +\psframebox{% +\begin{pspicture}(-1,0)(2,5) \psFern(1,1) \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} -\begin{postscript} -\psframebox{\begin{pspicture}(-3,0)(3,11) +\begin{LTXexample} +\psframebox{% +\begin{pspicture}(-3,0)(3,11) \psFern[scale=30,maxIter=100000,linecolor=green] \end{pspicture}} -\end{postscript} -\end{PSTexample} +\end{LTXexample} \section{Koch flake} @@ -355,21 +403,21 @@ is assumed. The origin is the lower left point of the flake, marked as red or black point in the following example: -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}[showgrid=true](-2.4,-0.4)(5,5) \psKochflake[scale=10] \psdot[linecolor=red,dotstyle=*](0,0) \end{pspicture} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}(-0.4,-0.4)(12,4) \psset{fillcolor=lime,fillstyle=solid} \multido{\iA=0+1,\iB=0+2}{6}{% \psKochflake[angle=-30,scale=3,maxIter=\iA](\iB,2.5)\psdot*(\iB,2.5) \psKochflake[scale=3,maxIter=\iA](\iB,0)\psdot*(\iB,0)} \end{pspicture} -\end{PSTexample} +\end{LTXexample} Optional arguments are \Lkeyword{scale}, \Lkeyword{maxIter} (iteration depth) and \Lkeyword{angle} for the first rotation angle. @@ -384,18 +432,18 @@ for the first rotation angle. The coordinates of the starting point are optional, if they are missing, then $(0,0)$ is assumed. The origin is the center of the circle: -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}[showgrid=true](-4,-4)(4,4) \psAppolonius[Radius=4cm] \end{pspicture} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}(-5,-5)(5,5) \psAppolonius[Radius=5cm,Color] \end{pspicture} -\end{PSTexample} +\end{LTXexample} \section{Trees} @@ -423,33 +471,33 @@ and the depth by \Lkeyword{maxIter}. Valid optional arguments are \end{center} \bigskip -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}[showgrid=true](-3,0)(3,4) \psPTree \psdot*(0,0) \end{pspicture} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}[showgrid=true](-6,0)(6,7) \psPTree[xWidth=1.75cm,Color=true] \psdot*[linecolor=white](0,0) \end{pspicture} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}(-7,-1)(6,8) \psPTree[xWidth=1.75cm,c=0.35] \end{pspicture} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}(-5,-1)(7,8) \psPTree[xWidth=1.75cm,Color=true,c=0.65] \end{pspicture} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}[showgrid=true](-1,0)(1,3) \psFArrow{0.5} \end{pspicture} @@ -461,10 +509,10 @@ and the depth by \Lkeyword{maxIter}. Valid optional arguments are \begin{pspicture*}[showgrid=true](-3,0)(3,3.5) \psFArrow[linewidth=3pt]{0.65} \end{pspicture*} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}(-1,0)(1,3) \psFArrow[Color]{0.5} \end{pspicture} @@ -476,10 +524,10 @@ and the depth by \Lkeyword{maxIter}. Valid optional arguments are \begin{pspicture*}(-3,0)(3,3.5) \psFArrow[Color]{0.65} \end{pspicture*} -\end{PSTexample} +\end{LTXexample} -\begin{PSTexample} +\begin{LTXexample} \begin{pspicture}(-3,-3)(2,3) \psFArrow[Color]{0.6} \psFArrow[angle=90,Color]{0.6} @@ -489,17 +537,15 @@ and the depth by \Lkeyword{maxIter}. Valid optional arguments are \psFArrow[Color]{0.7} \psFArrow[angle=90,Color]{0.7} \end{pspicture*} -\end{PSTexample} +\end{LTXexample} \section{List of all optional arguments for \texttt{pst-fractal}} \xkvview{family=pst-fractal,columns={key,type,default}} \bgroup -\raggedright \nocite{*} -\bibliographystyle{plain} -\bibliography{pst-fractal-doc} +\printbibliography \egroup \printindex |