summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2013-01-12 00:02:04 +0000
committerKarl Berry <karl@freefriends.org>2013-01-12 00:02:04 +0000
commitcc53d59f49808d6b80420a89e05e3f39ad96412a (patch)
treef36727477016c8570f3016dd2f2c9f4c3890240b /Master/texmf-dist/doc/generic
parent84897d5d7dcc5750e11a40c7a1f4d2d2f6154bc7 (diff)
minifp (11jan13)
git-svn-id: svn://tug.org/texlive/trunk@28804 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r--Master/texmf-dist/doc/generic/minifp/README102
-rw-r--r--Master/texmf-dist/doc/generic/minifp/minifp.pdfbin0 -> 418427 bytes
-rw-r--r--Master/texmf-dist/doc/generic/minifp/test1.tex480
-rw-r--r--Master/texmf-dist/doc/generic/minifp/test2.tex376
4 files changed, 958 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/minifp/README b/Master/texmf-dist/doc/generic/minifp/README
new file mode 100644
index 00000000000..f6b413bf9ee
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/minifp/README
@@ -0,0 +1,102 @@
+The MiniFP package
+
+Purpose:
+
+ minifp.sty defines macros for calculating with decimal real numbers.
+ It provides 8 decimal digits before and after the decimal point.
+ Minifp also provides a stack-based "assembly" language for writing
+ "programs".
+
+ In its basic form, minifp makes only simple operations available. To
+ get additional operations (sine, cosine, angle, square root, log and
+ exp), the file mfpextra.tex is provided.
+
+ Minifp should work in both latex and plaintex.
+
+ This is version 0.9. It should work reasonably well, barring any bugs,
+ but I expect to spend some time fine-tuning it for version 1.0.
+
+License:
+
+ All files of the minifp distribution (listed below) may be distributed
+ and/or modified under the conditions of the LaTeX Project Public
+ License, either version 1.3c of this license or (at your option) any
+ later version. The latest version of this license is in
+ http://www.latex-project.org/lppl.txt
+ and version 1.3c or later is part of all distributions of LaTeX
+ version 2008/12/01 or later.
+
+ While every effort has been made to make minifp useful, it comes with
+ no warranty, expressed or implied.
+
+Usage:
+
+ You can use minifp as a LaTeX package with
+ \usepackage{minifp}
+ or use it in plain TeX with
+ \input minifp.sty
+
+ You can access the extra commands from mfpextra.tex by issuing the
+ command
+ \MFPloadextra
+ after minifp.sty has been loaded.
+
+Installation:
+
+ To install minifp, obtain minifp.tds.zip from CTAN and unzip it in any
+ TDS-compliant texmf tree.
+
+ Or, in the presence of minifp.dtx, run tex or latex on minifp.ins to
+ unpack the files minifp.sty and mfpextra.tex. Copy those files to some
+ place where both tex and latex can find them. For example, in a TDS
+ compliant system, the directory /tex/generic/minifp/ under one of your
+ TEXMF root directories.
+
+ The documentation is provided in minifp.pdf. Put minifp.pdf (and this
+ README and the files test*.tex, if you wish) wherever documentation of
+ packages is kept. For example, in the directory /doc/generic/minifp/
+ under one of your TEXMF root directories.
+
+ If you wish to regenerate the documentation, run latex (or pdflatex)
+ on minifp.dtx three times and then
+ makeindex -s gind.ist -o minifp.ind minifp.idx
+ and then (pdf)latex again on minifp.dtx.
+
+Manifest:
+
+ These, together with the files minifp.sty and mfpextra.tex (generated
+ by tex-ing minifp.ins), constitute the minifp distribution to which the
+ license applies:
+
+ minifp.dtx Contains minifp.sty and mfpextra.tex
+ minifp.ins The unpacking script: run tex or latex on it.
+ It reads in minifp.dtx and produces the files
+ minifp.sty and mfpextra.tex
+ minifp.pdf Documentation
+ test1.tex A suite of tests, including error messages (plain TeX)
+ test2.tex More tests, including long tests of speed (plain TeX)
+ README This file.
+
+ This distribution, the latest updates, and possibly some past
+ versions, should also be available at my web site:
+ <http://comp.uark.edu/~luecking/tex/>.
+
+History:
+
+ Version 0.9 : maximum possible accuracy achieved for angle, at some
+ cost to speed.
+ Version 0.8 : exp: now more accurate for many cases.
+ Version 0.7 : sqrt: now exact when possible and much more accurate.
+ Version 0.6 : Added angle to mfpextra. Changed package name to minifp.
+ Version 0.5 : Added sqrt, deg, rad to mfpextra.
+ Version 0.4 : Added log, exp, pow to mfpextra.
+ Version 0.3 : Added mfpextra.tex, defines sin and cos.
+ Version 0.2 : Added macros for printing, formatting the results.
+ Version 0.1 : First working set of macros. Package named mfp.sty.
+
+--
+Dan Luecking <luecking (at) uark (dot) edu>
+Department of Mathematical Sciences
+1 University of Arkansas
+Fayetteville, Arkansas 72701-1201
+U.S.A.
diff --git a/Master/texmf-dist/doc/generic/minifp/minifp.pdf b/Master/texmf-dist/doc/generic/minifp/minifp.pdf
new file mode 100644
index 00000000000..94d43d6488f
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/minifp/minifp.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/minifp/test1.tex b/Master/texmf-dist/doc/generic/minifp/test1.tex
new file mode 100644
index 00000000000..024e5c5a44d
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/minifp/test1.tex
@@ -0,0 +1,480 @@
+\errorcontextlines999\relax
+%\def\MFPextra{}
+X\input minifp.sty\relax X
+X\MFPloadextra X
+
+\def\filbreak{\vskip 12pt plus 100pt\penalty 0 \vskip 0pt plus -100pt\relax}
+\def\meaningless#1>{}
+\def\verbprint#1{%
+\begingroup
+ \toks0=\expandafter{#1}\edef\x{\the\toks0}%
+ \edef\x{\expandafter\meaningless\meaning\x}%
+ \tt "\x"%
+\endgroup}
+{\catcode`\@=11
+ \gdef\y{\Y\\}
+ \gdef\Y{\space\verbprint\MFP@Rstack}% adds its own space
+}
+\def\\{\hfill\break\ignorespaces}
+\def\U{\X}
+\baselineskip 12.1pt plus .2pt minus 2pt
+
+\filbreak
+\startMFPprogram
+{\bf Stack-only operations:}\\
+Stack is empty, test the error message for popping an empty
+stack:\immediate\write16{^^J*** The following tests the error for popping an
+empty stack:^^J}\Rpop\X\y
+Push 0.000 001:\Rpush{0.000 001}\y
+Pop into {\tt\string\X}:\Rpop\X\\
+\indent {\tt \string\X:}\verbprint\X\\
+\indent {\tt stack:}\y
+Push 1.2 then -2.3:\Rpush{1.2}\Rpush{-2.3}\y
+Exchange them:\Rexch\y
+Duplicate the last:\Rdup\Y
+
+\filbreak
+{\bf Unary operations:}\\
+First a new stack with only one value
+$21.34$:\Rpop\X\Rpop\X\Rpop\X\Rpush{21.34}\y
+Unless otherwise noted, the stack will always be restored to this value
+between operations.
+
+\medskip
+\noindent
+Change sign:\Rchs\y
+ \Rpop\X\Rpush{21.34}%
+Absolute value:\Rabs\y
+ \Rpop\X\Rpush{21.34}%
+Integer part:\Rint\y
+ \Rpop\X\Rpush{21.34}%
+Fractional part:\Rfrac\y
+ \Rpop\X\Rpush{21.34}%
+Double:\Rdbl\y
+ \Rpop\X\Rpush{21.34}%
+Halve:\Rhalve\y
+ \Rpop\X\Rpush{21.34}%
+Signum:\Rsgn\y
+ \Rpop\X\Rpush{-21.34}%
+Signum of negative:\Rsgn\y
+ \Rpop\X\Rpush{21.34}%
+Increment:\Rincr\y
+ \Rpop\X\Rpush{21.34}%
+Decrement:\Rdecr\y
+ \Rpop\X\Rpush{21.34}%
+Sine:\Rsin\y
+ \Rpop\X\Rpush{21.34}%
+Cosine:\Rcos\y
+ \Rpop\X\Rpush{21.34}%
+Radians to degrees:\Rdeg\y
+ \Rpop\X\Rpush{21.34}%
+Degrees to radians :\Rrad\y
+ \Rpop\X\Rpush{21.34}%
+Common logarithm:\Rlog\y
+ \Rpop\X\Rpush{21.34}%
+Natural logarithm:\Rln\y
+Put $-1.34$ on the stack:\Rpop\X\Rpush{-1.34}\y
+Exponential:\Rexp\y
+Put $3.3$ on the stack:\Rpop\X\Rpush{3.3}\y
+Exponential:\Rexp\y
+Back to $21.34$:\Rpop\X\Rpush{21.34}\y
+Square:\Rsq\y
+ \Rpop\X\Rpush{21.34}%
+\tracingmacros1
+Inversion:\Rinv\y
+\tracingmacros0
+ \Rpop\X\Rpush{21.34}%
+Floor:\Rfloor\y
+ \Rpop\X\Rpush{21.34}%
+Ceiling:\Rceil\y
+ \Rpop\X\Rpush{21.34}%
+Square root:\Rsqrt\y
+Now put $21.34$ and $12.34$ in that order:\Rpop\X\Rpush{21.34}\Rpush{12.34}\y
+Compare: \Rcmp
+ 21.34 is\IFlt{}{ not} less than 12.34.
+ 21.34 is\IFgt{}{ not} more than 12.34.
+ 21.34 is\IFeq{}{ not} equal to 12.34.\\
+Take difference and check:\Rsub\Rchk\y
+ 21.34-12.34 is\IFneg {}{ not} negative.
+ 21.34-12.34 is\IFpos {}{ not} positive.
+ 21.34-12.34 is\IFzero{}{ not} zero.
+
+\Rpop\X
+
+\filbreak
+{\bf Binary operations:}\\
+({\it After each operation we restore the original stack.})\\
+Start with empty stack and\\
+push 1.2 then -2.3:\Rpush{1.2}\Rpush{-2.3}\y
+Angle:\Rangle\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
+Add:\Radd\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
+Subtract:\Rsub\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
+Multiply:\Rmul\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
+Divide:\Rdiv\y
+New stack:\Rpop\X\Rpush{2.3}\Rpush{0}\y
+\immediate\write16{^^J*** The following tests the error for dividing by 0:^^J}
+Divide by zero:\Rdiv\y
+Reset stack:\Rpop\X\Rpush{2.3}\Rpush{17}\y
+Raise to a power ($(2.3)^{17}$):\Rpow\y
+Reset stack:\Rpop\X\Rpush{2.3}\Rpush{-17}\y
+Raise to a power ($(2.3)^{-17}$):\Rpow\y
+Back to $1.2$ and $-2.3$:\Rpop\X\Rpush{1.2}\Rpush{-2.3}\y
+Find max:\Rmax\y
+ \Rpop\X\Rpush{1.2}\Rpush{-2.3}%
+Find min:\Rmin\y
+Exporting stack (value above).\\
+Exporting \verbprint\U: \verbprint\X
+\ExportStack
+\Export\X
+% change \X
+\def\X{0}
+\stopMFPprogram
+
+\medskip
+\noindent
+Exported value of \verbprint\U: \verbprint\X\\
+Exported value of stack:\Y
+
+\def\w{\W\\}
+\def\W{ \verbprint\Z}% adds its own space
+
+\filbreak
+{\bf Operand forms}\\
+{\it All results go to {\tt\string\Z}. All operate on {\tt\string\X}
+and/or {\tt\string\Y}}\\
+Define ${\tt X}=1.2$ and ${\tt Y}=-2.3$:\def\X{1.2}\def\Y{-2.3}\\
+\indent {\tt X}:=\verbprint\X\\
+\indent {\tt Y}:=\verbprint\Y
+
+\filbreak
+{\bf Unary operations:}\\
+ Change sign of {\tt X}:\MFPchs\X\Z\w
+ Change sign of {\tt Y}:\MFPchs\Y\Z\w
+ Absolute value of {\tt X}:\MFPabs\X\Z\w
+ Absolute value of {\tt Y}:\MFPabs\Y\Z\w
+ Double value of {\tt X}:\MFPdbl\X\Z\w
+ Double value of {\tt Y}:\MFPdbl\Y\Z\w
+ Half of {\tt X}:\MFPhalve\X\Z\w
+ Half of {\tt Y}:\MFPhalve\Y\Z\w
+ Integer part of {\tt X}:\MFPint\X\Z\w
+ Integer part of {\tt Y}:\MFPint\Y\Z\w
+ Signum of {\tt X}:\MFPsgn\X\Z\w
+ Signum of {\tt Y}:\MFPsgn\Y\Z\w
+ Increment of {\tt X}:\MFPincr\X\Z\w
+ Increment of {\tt Y}:\MFPincr\Y\Z\w
+ Decrement of {\tt X}:\MFPdecr\X\Z\w
+ Decrement of {\tt Y}:\MFPdecr\Y\Z\w
+ Square of {\tt X}:\MFPsq\X\Z\w
+ Square of {\tt Y}:\MFPsq\Y\Z\w
+ Inverse of {\tt X}:\MFPinv\X\Z\w
+ Inverse of {\tt Y}:\MFPinv\Y\Z\w
+ Fractional part of {\tt X}:\MFPfrac\X\Z\w
+ Fractional part of {\tt Y}:\MFPfrac\Y\Z\w
+ Floor of {\tt X}:\MFPfloor\X\Z\w
+ Floor of {\tt Y}:\MFPfloor\Y\Z\w
+ Ceiling of {\tt X}:\MFPceil\X\Z\w
+ Ceiling of {\tt Y}:\MFPceil\Y\Z\w
+ Sine of {\tt 30}:\MFPsin{30}\Z\w
+ Sine of {\tt 420}:\MFPsin{420}\Z\w
+ Cosine of {\tt 60}:\MFPcos{60}\Z\w
+ Cosine of {\tt 390}:\MFPcos{390}\Z\w
+ Common logarithm of {\tt X}:\MFPlog\X\Z\w
+\immediate\write16{^^J*** The following tests the warning for log of a negative
+number:^^J}%
+ Common logarithm of {\tt Y}:\MFPlog\Y\Z\w
+Natural logarithm of {\tt X}:\MFPln\X\Z\w
+\immediate\write16{^^J*** The following tests the warning for ln of a negative
+number:^^J}%
+Natural Logarithm of {\tt Y}:\MFPln\Y\Z\w
+ Exponential of {\tt X}:\MFPexp\X\Z\w
+ Exponential of {\tt Y}:\MFPexp\Y\Z\W
+
+\filbreak
+{\bf Extra tests of sine}\\
+Sine of 1:\MFPsin{1}\Z\w
+Cosine of 1:\MFPcos{1}\Z\w
+Sine of $-2$:\MFPsin{-2}\Z\w
+Cosine of 3:\MFPcos{3}\Z\w
+Sine of $-4$:\MFPsin{-4}\Z\w
+Cosine of 5:\MFPcos{5}\Z\w
+Sine of $-6$:\MFPsin{-6}\Z\w
+Cosine of 7:\MFPcos{7}\Z\w
+Sine of $-8$:\MFPsin{-8}\Z\w
+Cosine of 9:\MFPcos{9}\Z\w
+Sine of $-10$:\MFPsin{-10}\Z\w
+Cosine of 20:\MFPcos{20}\Z\w
+Sine of $-30$:\MFPsin{-30}\Z\w
+Cosine of 40:\MFPcos{40}\Z\w
+Sine of $-50$:\MFPsin{-50}\Z\w
+Cosine of 60:\MFPcos{60}\Z\w
+Sine of $-70$:\MFPsin{-70}\Z\w
+Cosine of 80:\MFPcos{80}\Z\w
+Sine of $-90$:\MFPsin{-90}\Z\w
+Sine of $135$:\MFPsin{135}\Z\w
+Sine of $180$:\MFPsin{180}\Z\w
+Sine of $225$:\MFPsin{225}\Z\w
+Sine of $270$:\MFPsin{270}\Z\w
+Sine of $315$:\MFPsin{315}\Z\W
+
+\medskip
+\noindent
+Angle of $(10,.1)$:\MFPangle{10}{.1}\Z\w
+Angle of $(-11.5,.1)$:\MFPangle{-11.5}{.1}\Z\w
+Angle of $(11.5,-.2)$:\MFPangle{11.5}{-.2}\Z\w
+Angle of $(-11.5,.3)$:\MFPangle{-11.5}{.3}\Z\w
+Angle of $(11.5,-.4)$:\MFPangle{11.5}{-.4}\Z\w
+Angle of $(-11.5,.5)$:\MFPangle{-11.5}{.5}\Z\w
+Angle of $(11.5,-.6)$:\MFPangle{11.5}{-.6}\Z\w
+Angle of $(-11.5,.7)$:\MFPangle{-11.5}{.7}\Z\w
+Angle of $(11.5,-.8)$:\MFPangle{11.5}{-.8}\Z\w
+Angle of $(-11.5,.9)$:\MFPangle{-11.5}{.9}\Z\w
+ Angle of $(11.5,-1)$:\MFPangle{11.5}{-1}\Z\w
+ Angle of $(-11.5,2)$:\MFPangle{-11.5}{2}\Z\w
+ Angle of $(11.5,-3)$:\MFPangle{11.5}{-3}\Z\w
+ Angle of $(-11.5,4)$:\MFPangle{-11.5}{4}\Z\w
+ Angle of $(11.5,-5)$:\MFPangle{11.5}{-5}\Z\w
+ Angle of $(-11.5,6)$:\MFPangle{-11.5}{6}\Z\w
+ Angle of $(11.5,-7)$:\MFPangle{11.5}{-7}\Z\w
+ Angle of $(-11.5,8)$:\MFPangle{-11.5}{8}\Z\w
+ Angle of $(11.5,-9)$:\MFPangle{11.5}{-9}\Z\w
+Angle of $(-11.5,10)$:\MFPangle{-11.5}{10}\Z\w
+Angle of $(11.5,-20)$:\MFPangle{11.5}{-20}\Z\w
+Angle of $(-11.5,30)$:\MFPangle{-11.5}{30}\Z\w
+Angle of $(11.5,-40)$:\MFPangle{11.5}{-40}\Z\w
+Angle of $(-11.5,50)$:\MFPangle{-11.5}{50}\Z\w
+Angle of $(11.5,-60)$:\MFPangle{11.5}{-60}\Z\w
+Angle of $(-11.5,70)$:\MFPangle{-11.5}{70}\Z\w
+Angle of $(11.5,-80)$:\MFPangle{11.5}{-80}\Z\w
+Angle of $(-11.5,90)$:\MFPangle{-11.5}{90}\Z\w
+Angle of $(11.5,-100)$:\MFPangle{11.5}{-100}\Z\w
+Angle of $(0,10)$:\MFPangle{0}{10}\Z\w
+Angle of $(0,-10)$:\MFPangle{0}{-10}\Z\w
+\immediate\write16{^^J*** The following tests the warning for angle of
+(0,0):^^J}
+Angle of $(0,0)$:\MFPangle{0}{0}\Z\W
+
+\noindent
+Testing large arguments:\\
+Angle of $(85 713 000, 99 999 999)$:\MFPangle{8571 3000}{9999 9999}\Z\W
+
+
+\filbreak
+{\bf Extra tests of log}\\
+ Log of $.1$:\MFPlog{.1}\Z\w
+ Log of $.2$:\MFPlog{.2}\Z\w
+ Log of $.3$:\MFPlog{.3}\Z\w
+ Log of $.4$:\MFPlog{.4}\Z\w
+ Log of $.5$:\MFPlog{.5}\Z\w
+ Log of $.6$:\MFPlog{.6}\Z\w
+ Log of $.7$:\MFPlog{.7}\Z\w
+ Log of $.8$:\MFPlog{.8}\Z\w
+ Log of $.9$:\MFPlog{.9}\Z\w
+ Log of $1$:\MFPlog{1}\Z\w
+Log of $1.01$:\MFPlog{1.01}\Z\w
+Log of $1.02$:\MFPlog{1.02}\Z\w
+Log of $1.03$:\MFPlog{1.03}\Z\w
+Log of $1.04$:\MFPlog{1.04}\Z\w
+Log of $1.05$:\MFPlog{1.05}\Z\w
+Log of $1.06$:\MFPlog{1.06}\Z\w
+Log of $1.07$:\MFPlog{1.07}\Z\w
+Log of $1.08$:\MFPlog{1.08}\Z\w
+Log of $1.09$:\MFPlog{1.09}\Z\w
+\immediate\write16{^^J*** The following tests the error for log of 0:^^J}
+Log of $0$:\MFPlog{0}\Z\W
+
+\filbreak
+{\bf Extra tests of exp}\\
+ Exp of $.00009990$:\MFPexp{.00009990}\Z
+\w
+ Exp of $.00009999$:\MFPexp{.00009999}\Z\w
+ Exp of $.0001$:\MFPexp{.0001}\Z\w
+ Exp of $.0002$:\MFPexp{.0002}\Z\w
+ Exp of $.0003$:\MFPexp{.0003}\Z\w
+ Exp of $.0004$:\MFPexp{.0004}\Z\w
+ Exp of $.0005$:\MFPexp{.0005}\Z\w
+ Exp of $.0006$:\MFPexp{.0006}\Z\w
+ Exp of $.0007$:\MFPexp{.0007}\Z\w
+ Exp of $.0008$:\MFPexp{.0008}\Z\w
+ Exp of $.0009$:\MFPexp{.0009}\Z\w
+ Exp of $.001$:\MFPexp{.001}\Z\w
+ Exp of $.002$:\MFPexp{.002}\Z\w
+ Exp of $.003$:\MFPexp{.003}\Z\w
+ Exp of $.004$:\MFPexp{.004}\Z\w
+ Exp of $.005$:\MFPexp{.005}\Z\w
+ Exp of $.006$:\MFPexp{.006}\Z\w
+ Exp of $.007$:\MFPexp{.007}\Z\w
+ Exp of $.008$:\MFPexp{.008}\Z\w
+ Exp of $.009$:\MFPexp{.009}\Z\w
+ Exp of $.01$:\MFPexp{.01}\Z\w
+ Exp of $.02$:\MFPexp{.02}\Z\w
+ Exp of $.03$:\MFPexp{.03}\Z\w
+ Exp of $.04$:\MFPexp{.04}\Z\w
+ Exp of $.05$:\MFPexp{.05}\Z\w
+ Exp of $.06$:\MFPexp{.06}\Z\w
+ Exp of $.07$:\MFPexp{.07}\Z\w
+ Exp of $.08$:\MFPexp{.08}\Z\w
+ Exp of $.09$:\MFPexp{.09}\Z\w
+ Exp of $.1$:\MFPexp{.1}\Z\w
+ Exp of $.2$:\MFPexp{.2}\Z\w
+ Exp of $.3$:\MFPexp{.3}\Z\w
+ Exp of $.4$:\MFPexp{.4}\Z\w
+ Exp of $.5$:\MFPexp{.5}\Z\w
+ Exp of $.6$:\MFPexp{.6}\Z\w
+ Exp of $.7$:\MFPexp{.7}\Z\w
+ Exp of $.8$:\MFPexp{.8}\Z\w
+ Exp of $.9$:\MFPexp{.9}\Z\w
+ Exp of $1$:\MFPexp{1}\Z\w
+ Exp of $2$:\MFPexp{2}\Z\w
+ Exp of $3$:\MFPexp{3}\Z\w
+ Exp of $4$:\MFPexp{4}\Z\w
+ Exp of $5$:\MFPexp{5}\Z\w
+ Exp of $6$:\MFPexp{6}\Z\w
+ Exp of $7$:\MFPexp{7}\Z\w
+ Exp of $8$:\MFPexp{8}\Z\w
+ Exp of $9$:\MFPexp{9}\Z\w
+ Exp of $10$:\MFPexp{10}\Z\w
+ Exp of $-8.3254$:\MFPexp{-8.3254}\Z\w
+ Exp of $18.42068073$:\MFPexp{18.42068073}\Z\w
+ Exp of $18.42068074$:\MFPexp{18.42068074}\Z\w
+\immediate\write16{^^J*** The following tests the error for a power too
+large:^^J}
+ Exp of $18.42068075$:\MFPexp{18.42068075}\Z\W
+
+\filbreak
+{\bf Extra tests of pow}\\
+ $-10$ power of $3$:\MFPpow{3}{-10}\Z\w
+ $-9$ power of $3$:\MFPpow{3}{-9}\Z\w
+ $-8$ power of $3$:\MFPpow{3}{-8}\Z\w
+ $-7$ power of $3$:\MFPpow{3}{-7}\Z\w
+ $-6$ power of $3$:\MFPpow{3}{-6}\Z\w
+ $-5$ power of $3$:\MFPpow{3}{-5}\Z\w
+ $-4$ power of $3$:\MFPpow{3}{-4}\Z\w
+ $-3$ power of $3$:\MFPpow{3}{-3}\Z\w
+ $-2$ power of $3$:\MFPpow{3}{-2}\Z\w
+ $-1$ power of $3$:\MFPpow{3}{-1}\Z\w
+ $0$ power of $3$:\MFPpow{3}{0}\Z\w
+ $1$ power of $3$:\MFPpow{3}{1}\Z\w
+ $2$ power of $3$:\MFPpow{3}{2}\Z\w
+ $3$ power of $3$:\MFPpow{3}{3}\Z\w
+ $4$ power of $3$:\MFPpow{3}{4}\Z\w
+ $5$ power of $3$:\MFPpow{3}{5}\Z\w
+ $6$ power of $3$:\MFPpow{3}{6}\Z\w
+ $7$ power of $3$:\MFPpow{3}{7}\Z\w
+ $8$ power of $3$:\MFPpow{3}{8}\Z\w
+ $9$ power of $3$:\MFPpow{3}{9}\Z\w
+ $10$ power of $3$:\MFPpow{3}{10}\Z\w
+\immediate\write16{^^J*** The following tests the error for a power too
+large:^^J}
+ $10$ power of $9$:\MFPpow{9}{10}\Z\w
+\immediate\write16{^^J*** The following also tests the error for a power too
+large:^^J}
+ $10$ power of $-9$:\MFPpow{-9}{10}\Z\w
+\immediate\write16{^^J*** The following also tests the error for a power too
+large:^^J}
+ $11$ power of $-9$:\MFPpow{-9}{11}\Z\w
+\immediate\write16{^^J*** The following tests the error for a negative power of
+0:^^J}
+ $-10$ power of $0$:\MFPpow{0}{-10}\Z\w
+\immediate\write16{^^J*** The following also tests the error for a power too
+large:^^J}
+ $-10$ power of $0.1$:\MFPpow{0.1}{-10}\Z\W
+
+\filbreak
+{\bf Extra tests of sqrt}\\
+\immediate\write16{^^J*** The following tests the error for a square root of a
+negative:^^J}
+ Square root of $-1$:\MFPsqrt{-1}\Z\w
+ Square root of $0$:\MFPsqrt{0}\Z\w
+ Square root of $.0001$:\MFPsqrt{.0001}\Z\w
+ Square root of $.002$:\MFPsqrt{.002}\Z\w
+ Square root of $.03$:\MFPsqrt{.03}\Z\w
+ Square root of $.4$:\MFPsqrt{.4}\Z\w
+ Square root of $.5$:\MFPsqrt{.5}\Z\w
+ Square root of $.6$:\MFPsqrt{.6}\Z\w
+ Square root of $.7$:\MFPsqrt{.7}\Z\w
+ Square root of $.8$:\MFPsqrt{.8}\Z\w
+ Square root of $.9$:\MFPsqrt{.9}\Z\w
+ Square root of $1$:\MFPsqrt{1}\Z\w
+ Square root of $2$:\MFPsqrt{2}\Z\w
+ Square root of $3$:\MFPsqrt{3}\Z\w
+ Square root of $4$:\MFPsqrt{4}\Z\w
+ Square root of $5$:\MFPsqrt{5}\Z\w
+ Square root of $6$:\MFPsqrt{6}\Z\w
+ Square root of $7$:\MFPsqrt{7}\Z\w
+ Square root of $8$:\MFPsqrt{8}\Z\w
+ Square root of $9$:\MFPsqrt{9}\Z\w
+ Square root of $10$:\MFPsqrt{10}\Z\w
+ Square root of $1524157.65279684$ (should be exact):\MFPsqrt{1524157.65279684}\Z\w
+Square root of $99999998.00000001$ (should be exact):\MFPsqrt{99999998.00000001}\Z\w
+ Square root of $9999.99$:\MFPsqrt{9999.99}\Z\w
+ Square root of $9999.999 999$:\MFPsqrt{9999.999999}\Z\W
+
+\filbreak
+{\bf Binary operations:}\\
+Add $X+Y$:\MFPadd\X\Y\Z\w
+Add $\infty+\infty$:\MFPadd{99999999.99999999}{99999999.99999999}\Z\w
+Subtract $X-Y$:\MFPsub\X\Y\Z\w
+Subtract $Y-X$:\MFPsub\Y\X\Z\w
+Subtract $X-X$:\MFPsub\X\X\Z\w
+Subtract $Y-Y$:\MFPsub\Y\Y\Z\w
+Multiply:\MFPmul\X\Y\Z\w
+Multiply $10^4\times10^4$:\MFPmul{10000}{10000}\Z\w
+Divide $X/Y$:\MFPdiv\X\Y\Z\w
+Divide $Y/X$:\MFPdiv\Y\X\Z\w
+Max:\MFPmax\X\Y\Z\w
+Min:\MFPmin\X\Y\Z\w
+Angle $(X,Y)$:\MFPangle\X\Y\Z\w
+Angle $(Y,X)$:\MFPangle\Y\X\Z\w
+Power $X^5$:\MFPpow\X{5}\Z\w
+Power $X^{-5}$:\MFPpow\X{-5}\Z\w
+Power $Y^{5}$:\MFPpow\Y{5}\Z\w
+Power $Y^{-5}$:\MFPpow\Y{-5}\Z\w
+Compare: \MFPcmp\X\Y
+ \X\ is\IFlt{}{ not} less than \Y.
+ \X\ is\IFgt{}{ not} more than \Y.
+ \X\ is\IFeq{}{ not} equal to \Y.\\
+Take difference and check:\MFPsub\X\Y\Z\w
+ $\X-\Y$ is\IFneg{}{ not} negative.
+ $\X-\Y$ is\IFpos{}{ not} positive.
+ $\X-\Y$ is\IFzero{}{ not} zero.
+
+\filbreak
+{\bf Print-related formating}
+
+\def\T{333.00000000}
+\def\S{1357.12345678}
+
+\noindent This is original: $T ={}${\tt"\T"}\\
+Truncate to 4 digits right of decimal:\MFPtruncate{4}\T\Z\w
+Truncate to the decimal:\MFPtruncate{0}\T\Z\w
+Truncate to 2 digits left of decimal:\MFPtruncate{-2}\T\Z\w
+Strip trailing zeros:\MFPstrip\T\Z\w
+Strip trailing zeros (star form):\MFPstrip*\T\Z\W
+
+\noindent Original: $S = {}${\tt"\S"}\\
+Round to 3 decimals:\MFPround{3}\S\Z\w
+Round to 5 decimals:\MFPround{5}\S\Z\w
+Round to 0 decimals:\MFPround{0}\S\Z\w
+Round to 100s:\MFPround{-2}\S\Z\W
+
+\def\T{-333.00000000}
+\def\S{-1357.12345678}
+
+\filbreak
+\noindent All that again with negative numbers.
+
+\medskip
+\noindent This is original: $T ={}${\tt"\T"}\\
+Truncate to 4 digits right of decimal:\MFPtruncate{4}\T\Z\w
+Truncate to the decimal:\MFPtruncate{0}\T\Z\w
+Truncate to 2 digits left of decimal:\MFPtruncate{-2}\T\Z\w
+Strip trailing zeros:\MFPstrip\T\Z\w
+Strip trailing zeros (star form):\MFPstrip*\T\Z\W
+
+\noindent Original: $S = {}${\tt"\S"}\\
+Round to 3 decimals:\MFPround{3}\S\Z\w
+Round to 5 decimals:\MFPround{5}\S\Z\w
+Round to 0 decimals:\MFPround{0}\S\Z\w
+Round to 100s:\MFPround{-2}\S\Z\W
+
+\end{document}
diff --git a/Master/texmf-dist/doc/generic/minifp/test2.tex b/Master/texmf-dist/doc/generic/minifp/test2.tex
new file mode 100644
index 00000000000..8cd7ab278c5
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/minifp/test2.tex
@@ -0,0 +1,376 @@
+\errorcontextlines999\relax
+X\input minifp.sty\relax X\MFPloadextra X
+\def\empty{}
+
+\def\frac#1#2{{#1\over#2}}
+\def\cs#1{{\tt \char`\\#1}}
+\def\mybreak{\vskip 0pt plus 100pt\penalty 0 \vskip 0pt plus -100pt\relax}
+\def\\{\hfil\break\ignorespaces}
+\def\y{Rpop\Z\Z\\}
+\def\Y{Rpop\Z\Z}
+\everymath{\displaystyle}
+
+{\bf Stack-only operations:}\\
+Example of a program. Computes the solution of $ax^2 + bx + c = 0$ using
+the quadratic formula. If the result is complex, it detects this.
+Coefficients stored in \cs{A}, \cs{B} and \cs{C}. First case: $4x^2 +
+5y^2 - 1= 0$. Solutions are $x = -\frac{5}{8} \pm \frac{1}{8}\sqrt{41}$
+
+\def\A{4}\def\B{5}\def\C{-1}
+
+X\startMFPprogram % stack
+\Rpush\B\Rdup\Rsq % B(B^2)
+\Rpush\A\Rpush\C\Rmul\Rdbl\Rdbl % B(B^2)(4AC)
+\Rsub % B(B^2-4AC)
+\IFneg{\def\I{i}\Rchs}{\def\I{}}% % B(|B^2-4AC|)
+\Rsqrt\Rpush\A\Rdbl\Rdiv % B(sqrt(|B^2-4AC|)/2A)
+\Rpop\Ypart % B
+\Rpush\A\Rdbl\Rdiv\Rchs % (-B/2A)
+\Rpop\Xpart %
+%\expandafter\show\csname MFP@Rstack\endcsname
+\Rpush\Xpart\Rpush\Ypart\Radd\Rpop\Broot
+\Rpush\Xpart\Rpush\Ypart\Rsub\Rpop\Sroot
+\Export\Xpart
+\Export\Ypart
+\Export\Broot
+\Export\Sroot
+\Export\I
+\stopMFPprogram X
+
+\indent Solution: $x = \Xpart \pm \I\Ypart = \Broot$ and $\Sroot$.
+
+Second case $2x^2 - 2x + 3 = 0$. Solutions are $x = \frac{1}{2} \pm
+\frac{i}{2}\sqrt{5}$.
+
+\def\A{2}\def\B{-2}\def\C{3}
+
+X\startMFPprogram % stack
+\Rpush\B\Rdup\Rsq % B(B^2)
+\Rpush\A\Rpush\C\Rmul\Rdbl\Rdbl % B(B^2)(4AC)
+\Rsub % B(B^2-4AC)
+\IFneg{\def\I{i}\Rchs}{\def\I{}}% % B(|B^2-4AC|)
+\Rsqrt\Rpush\A\Rdbl\Rdiv % B(sqrt(|B^2-4AC|)/2A)
+\Rpop\Ypart % B
+\Rpush\A\Rdbl\Rdiv\Rchs % (-B/2A)
+\Rpop\Xpart %
+\Export\Xpart
+\Export\Ypart
+\Export\I
+\stopMFPprogram X
+
+%\expandafter\show\csname MFP@Rstack\endcsname
+\indent Solution: $x = \Xpart \pm \I\Ypart$.
+
+Now try square roots (should be exactly 1234.5678 and 1524):
+X\startMFPprogram % stack
+\Rpush{1524157.65279684}\Rsqrt\Rpop\X
+\Rpush{1524}\Rsq\Rsqrt\Rpop\Y
+\Export\X
+\Export\Y
+\stopMFPprogram X \X { and }\Y.
+
+
+Below we test for speed and to check for any space characters
+accidentally produced. You should see only a few xX pairs with hopefully
+no spaces in between them. As curently set up, these tests perform about
+34000 numerical operations. It all takes about 31 seconds on a
+moderately old (2 years?) Windows 7 running plain tex from
+TeX~Live~2012.
+
+This operation count does not distinguish between basic operations like
+addition and multiplication, and those operations from mfpextra that are
+probably each equivalent to a dozen or more multiplications. Counting
+each such operation with the an estimated multiplicity, the tests
+probably perform 400 thousand or more basic operations.
+
+Of the basic operations, multiplication is (by measurement) 4 times as
+lengthy as addition, and division is about twice as lengthy as
+multiplication. Actual times depend on the machine, but the ratios remain
+pretty much the same. Here is a summary of timings on my fastest
+machine; each operation is run 500 times in a loop:
+
+\medskip
+
+\indent\vtop{\halign{\hfil$#$&\quad$#\,$sec\cr
+\noalign{\hrule\smallskip}
+2.54321+22432.87654321 &0.015\cr
+2.54321\times22432.87654321 &0.06\cr
+22432.87654321/2.54321 &0.14\cr
+\sqrt{23456789.54321} &0.20\cr
+1.00001234^{8000} &0.73\cr
+\exp(2.54321) &0.41\cr
+\sin(2.54321) &0.45\cr
+\log(2.54321) &0.53\cr
+\mathop{\fam0 angle}(254.321,100) &1.17\cr
+\noalign{\smallskip\hrule}
+}}
+
+\medskip
+
+Originally, all the tests combined took 21 seconds on a 4-year-old
+Windows XP under TeX Live 2011. But since then I have changed angle and
+power computations so that they are considerably more accurate, but with
+a possible reduction in speed. Of course, some of the speed loss may be
+due to the operating system.
+
+On a Windows 7 machine, 64-bit, laptop, it takes 32 seconds to process
+this file. On another Win7, machine, 32-bit, desktop, it takes 10
+seconds.
+
+The difference could be explained partially by the fact that the second
+machine is newer and partially by the fact that TeX is a 32-bit program,
+and therefore a better match to the operating system of the second
+system.
+
+\def\testi{% stack forms
+\startMFPprogram
+\Rpush{0.000 001}\Rpop\X
+\Rpush{1.2}\Rpush{-2.3}\Rexch\Rdup
+\Rpop\X\Rpop\X
+\Rpop\X\Rpush{21.34}\Rchs
+\Rpop\X\Rpush{21.34}\Rabs
+\Rpop\X\Rpush{21.34}\Rchs
+\Rpop\X\Rpush{21.34}\Rint
+\Rpop\X\Rpush{21.34}\Rfrac
+\Rpop\X\Rpush{21.34}\Rdbl
+\Rpop\X\Rpush{21.34}\Rhalve
+\Rpop\X\Rpush{21.34}\Rsgn
+\Rpop\X\Rpush{21.34}\Rsin
+\Rpop\X\Rpush{21.34}\Rcos
+\Rpop\X\Rpush{21.34}\Rdeg
+\Rpop\X\Rpush{21.34}\Rrad
+\Rpop\X\Rpush{21.34}\Rlog
+\Rpop\X\Rpush{21.34}\Rln
+\Rpop\X\Rpush{-1.34}\Rexp
+\Rpop\X\Rpush{3.3}\Rexp
+\Rpop\X\Rpush{21.34}\Rsq
+\Rpop\X\Rpush{21.34}\Rinv
+\Rpop\X\Rpush{21.34}\Rfloor
+\Rpop\X\Rpush{21.34}\Rceil
+\Rpop\X\Rpush{21.34}\Rsqrt
+\Rpop\X\Rpush{21.34}\Rpush{12.34}\Rcmp
+\IFlt{}{}\IFgt{}{}\IFeq{}{}\Rsub
+\IFneg{}{}\IFpos{}{}\IFzero{}{}\Rpop\X
+\Rpush{1.2}\Rpush{-2.3}\Radd
+\Rpop\X\Rpush{1.2}\Rpush{-2.3}\Rsub
+\Rpop\X\Rpush{1.2}\Rpush{-2.3}\Rmul
+\Rpop\X\Rpush{1.2}\Rpush{-2.3}\Rdiv
+\Rpop\X\Rpush{2.3}\Rpush{17}\Rpow
+\Rpop\X\Rpush{2.3}\Rpush{-17}\Rpow
+\Rpop\X\Rpush{1.2}\Rpush{-2.3}\Rmax
+\Rpop\X\Rpush{1.2}\Rpush{-2.3}\Rmin
+\stopMFPprogram}
+
+\def\testii{% unary operand forms, including
+\MFPchs\X\Z % extra tests of sin, log, exp and pow
+\MFPchs\Y\Z
+\MFPabs\X\Z
+\MFPabs\Y\Z
+\MFPdbl\X\Z
+\MFPdbl\Y\Z
+\MFPhalve\X\Z
+\MFPhalve\Y\Z
+\MFPint\X\Z
+\MFPint\Y\Z
+\MFPsgn\X\Z
+\MFPsgn\Y\Z
+\MFPsq\X\Z
+\MFPsq\Y\Z
+\MFPinv\X\Z
+\MFPinv\Y\Z
+\MFPfrac\X\Z
+\MFPfrac\Y\Z
+\MFPfloor\X\Z
+\MFPfloor\Y\Z
+\MFPceil\X\Z
+\MFPceil\Y\Z
+\MFPsin{30}\Z
+\MFPsin{420}\Z
+\MFPcos{60}\Z
+\MFPcos{390}\Z
+\MFPlog\X\Z
+\MFPln\X\Z
+\MFPexp\X\Z
+\MFPexp\Y\Z
+\MFPsin{1}\Z
+\MFPsin{2}\Z
+\MFPsin{3}\Z
+\MFPsin{4}\Z
+\MFPsin{5}\Z
+\MFPsin{6}\Z
+\MFPsin{7}\Z
+\MFPsin{8}\Z
+\MFPsin{9}\Z
+\MFPsin{10}\Z
+\MFPsin{20}\Z
+\MFPsin{30}\Z
+\MFPsin{40}\Z
+\MFPsin{50}\Z
+\MFPsin{60}\Z
+\MFPsin{70}\Z
+\MFPsin{80}\Z
+\MFPsin{90}\Z
+\MFPlog{.1}\Z
+\MFPlog{.2}\Z
+\MFPlog{.3}\Z
+\MFPlog{.4}\Z
+\MFPlog{.5}\Z
+\MFPlog{.6}\Z
+\MFPlog{.7}\Z
+\MFPlog{.8}\Z
+\MFPlog{.9}\Z
+\MFPlog{1}\Z
+\MFPlog{1.01}\Z
+\MFPlog{1.02}\Z
+\MFPlog{1.03}\Z
+\MFPlog{1.04}\Z
+\MFPlog{1.05}\Z
+\MFPlog{1.06}\Z
+\MFPlog{1.07}\Z
+\MFPlog{1.08}\Z
+\MFPlog{1.09}\Z
+\MFPexp{.000001}\Z
+\MFPexp{.00001}\Z
+\MFPexp{.0001}\Z
+\MFPexp{.001}\Z
+\MFPexp{.01}\Z
+\MFPexp{.1}\Z
+\MFPexp{1}\Z
+\MFPexp{2}\Z
+\MFPexp{3}\Z
+\MFPexp{4}\Z
+\MFPexp{5}\Z
+\MFPexp{6}\Z
+\MFPexp{7}\Z
+\MFPexp{8}\Z
+\MFPexp{9}\Z
+\MFPexp{10}\Z
+\MFPexp{-8.3254}\Z
+\MFPpow\MFPe{-10}\Z
+\MFPpow\MFPe{-9}\Z
+\MFPpow\MFPe{-8}\Z
+\MFPpow\MFPe{-7}\Z
+\MFPpow\MFPe{-6}\Z
+\MFPpow\MFPe{-5}\Z
+\MFPpow\MFPe{-4}\Z
+\MFPpow\MFPe{-3}\Z
+\MFPpow\MFPe{-2}\Z
+\MFPpow\MFPe{-1}\Z
+\MFPpow\MFPe{0}\Z
+\MFPpow\MFPe{1}\Z
+\MFPpow\MFPe{2}\Z
+\MFPpow\MFPe{3}\Z
+\MFPpow\MFPe{4}\Z
+\MFPpow\MFPe{5}\Z
+\MFPpow\MFPe{6}\Z
+\MFPpow\MFPe{7}\Z
+\MFPpow\MFPe{8}\Z
+\MFPpow\MFPe{9}\Z
+\MFPpow\MFPe{10}\Z}
+
+\def\testiii{%% binary operand forms and print formating, plus
+\MFPsqrt{0}\Z % additional tests of sqrt
+\MFPsqrt{1}\Z
+\MFPsqrt{2}\Z
+\MFPsqrt{3}\Z
+\MFPsqrt{4}\Z
+\MFPsqrt{5}\Z
+\MFPsqrt{6}\Z
+\MFPsqrt{7}\Z
+\MFPsqrt{8}\Z
+\MFPsqrt{9}\Z
+\MFPsqrt{10}\Z
+\MFPsqrt{1524157.65279684}\Z
+\MFPadd\X\Y\Z
+\MFPsub\X\Y\Z
+\MFPsub\Y\X\Z
+\MFPsub\X\X\Z
+\MFPsub\Y\Y\Z
+\MFPmul\X\Y\Z
+\MFPdiv\X\Y\Z
+\MFPdiv\Y\X\Z
+\MFPmax\X\Y\Z
+\MFPmin\X\Y\Z
+\MFPpow\X{5}\Z
+\MFPpow\X{-5}\Z
+\MFPpow\Y{5}\Z
+\MFPpow\Y{-5}\Z
+\MFPcmp\X\Y
+\IFlt{}{}\IFgt{}{}\IFeq{}{}%
+\MFPsub\X\Y\Z
+\IFneg{}{}\IFpos{}{}\IFzero{}{}%
+\def\T{333.00000000}%
+\def\S{1357.12345678}%
+\MFPtruncate{4}\T\Z
+\MFPtruncate{0}\T\Z
+\MFPtruncate{-2}\T\Z
+\MFPstrip\T\Z
+\MFPstrip*\T\Z
+\MFPround{3}\S\Z
+\MFPround{5}\S\Z
+\MFPround{0}\S\Z
+\MFPround{-2}\S\Z
+\def\T{-333.00000000}%
+\def\S{-1357.12345678}%
+\MFPtruncate{4}\T\Z
+\MFPtruncate{0}\T\Z
+\MFPtruncate{-2}\T\Z
+\MFPstrip\T\Z
+\MFPstrip*\T\Z
+\MFPround{3}\S\Z
+\MFPround{5}\S\Z
+\MFPround{0}\S\Z
+\MFPround{-2}\S\Z}
+
+Three test loops follow. The first repeats 500 times a stack program
+that performs each available command followed by popping the result and
+repushing the original value(s).
+
+\newcount\n
+\def\testloopi{%
+ \ifnum \n>0
+ \advance\n -1
+ \testi
+ \expandafter
+ \testloopi
+ \fi
+}
+\n=500
+x\testloopi X
+
+
+The second repeats 100 times a sequence in which all the unary operand
+commands are performed twice, plus extra of sine, log and exp.
+
+\def\testloopii{%
+ \ifnum \n>0
+ \advance\n -1
+ \testii
+ \expandafter
+ \testloopii
+ \fi
+}
+\def\X{1.2}
+\def\Y{-2.3}
+\n=100
+x\testloopii X
+
+
+The third repeats 100 times a sequence in which all the binary operand
+commands are performed, plus some extra tests of sqrt and then all the
+print-preparation commands.
+
+\def\testloopiii{%
+ \ifnum \n>0
+ \advance\n -1
+ \testiii
+ \expandafter
+ \testloopiii
+ \fi
+}
+
+\n=100
+x\testloopiii X
+\end
+
+\end{document}