summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2020-03-21 21:21:32 +0000
committerKarl Berry <karl@freefriends.org>2020-03-21 21:21:32 +0000
commit9af6f4b19e87b817b84926042b4ee84445ddbb1d (patch)
tree67e9116db3ffce1ae7b8144c6994963a0757e283 /Master/texmf-dist/doc/generic
parent84b5e6586f4b098d4f93a04ecc3dbfaa183f9836 (diff)
rm pst-vue3d, obsolete on ctan
git-svn-id: svn://tug.org/texlive/trunk@54455 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r--Master/texmf-dist/doc/generic/pst-vue3d/Changes23
-rw-r--r--Master/texmf-dist/doc/generic/pst-vue3d/README48
-rw-r--r--Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.bib129
-rw-r--r--Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.pdfbin4588365 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.tex1266
5 files changed, 0 insertions, 1466 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-vue3d/Changes b/Master/texmf-dist/doc/generic/pst-vue3d/Changes
deleted file mode 100644
index e4bb5d2241f..00000000000
--- a/Master/texmf-dist/doc/generic/pst-vue3d/Changes
+++ /dev/null
@@ -1,23 +0,0 @@
------ pst-vue3d.tex
-1.24 2008-02-21 hv: draw circles for 360 degrees instead of 359
-1.23 2007-03-26 hv: load pst-vue3d.pro instead of 3d.pro
-1.22 2005-05-10 hv: make the unit option available
-1.21 2005-02-21 hv: use always pst-xkey and using \def instead
- of \edef for the parameter definitions
-1.2 2004-09-12 hv: use always \pst@object for the definition
- of the 3d objects
-1.1 2004-08-23 hv: use the default macro style of pstricks
-1.0i 2004-06-05 hv: fixed bug
-1.0h 2004-01-05 ml: added dodecaedron
-1.0g 2003-12-21 hv: fixed a bug in \pNodeThreeD
-1.0f 2003-12-20 hv: added two eye macros, drop the options for
- CX,CY,CZ and Xorigine,...
- added option SphericalCoor and modify all
- macros to use it
-1.0e 2003-12-18 hv: edit the \AxesThreeD macro
-1.0d 2003-12-18 hv: fix bug in truncated pyramid
-
-
------ pst-vue3d.pro
-33 2007-03-26 hv: renamed to pst-vue3d.pro
-32 2005-05-10 hv: make the unit option available
diff --git a/Master/texmf-dist/doc/generic/pst-vue3d/README b/Master/texmf-dist/doc/generic/pst-vue3d/README
deleted file mode 100644
index 12ea4dd201d..00000000000
--- a/Master/texmf-dist/doc/generic/pst-vue3d/README
+++ /dev/null
@@ -1,48 +0,0 @@
-%% Package `pst-vue3d.tex'
-%%
-%% Herbert Voss <voss _at_ pstricks.de> (Germany)
-%%
-%% 2007-03-26
-%%
-
-PSTricks offers excellent macros to insert more or less complex
-graphics into a document. pstricks.tex itself is the base for several
-other additional packages, which are mostly named pst-xxxx,
-like pst-vue3d. There exists several packages for plotting three
-dimensional graphical objects. pst-vue3d is similiar to the
-pst-plot package for two dimensional objects and mathematical functions.
-
-
-Save the files
-
-pst-vue3d.sty
-pst-vue3d.tex
-pst-vue3d.pro
-
-in any place, where latex or any other TeX program will find it.
-The pro file should go into $TEXMF$/dvips/pstricks/.
-
-pst-vue3d uses the extended version of the keyval package. So
-be sure that you
-- have installed xkeyval with the special pst-xkey
- (CTAN: tex-archive/macros/latex/contrib/xkeyval/)
-- do not load another package after pst-vue3d, which loads
- the old keyval.sty or pst-key.tex
-
-
-If you like to get the documentation file in another format run
-
-latex pst-vue3d-doc.tex
-bibtex pst-vue3d.doc
-latex pst-vue3d-doc.tex
-dvips pst-vue3d-doc.dvi
-
-to get a PostScript file. But pay attention, that the pst-vue3d
-files are saved in the above mentioned way, before you run
-latex on the documentation file.
-
-The intermediate DVI file works only with viewers which can
-interprete the embedded PostScript code.
-
-For another PDF output read the Introduction from
-the documentation.
diff --git a/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.bib b/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.bib
deleted file mode 100644
index 3b785845e22..00000000000
--- a/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.bib
+++ /dev/null
@@ -1,129 +0,0 @@
-@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} }
-
-@Book{PostScript,
- Author = {Kollock, Nikolai G.},
- Title = {PostScript richtig eingesetzt: vom Konzept zum
- praktischen Einsatz},
- Publisher = {IWT},
- Address = {Vaterstetten},
- year = 1989,
-}
-
-@Manual{pstricks,
- Title = {PSTricks - {\PS} macros for Generic TeX},
- Author = {Timothy Van Zandt},
- Organization = {},
- Address = {\url{http://www.tug.org/application/PSTricks}},
- Note = {},
- year = 1993,
-}
-
-
-@Manual{pdftricks,
- Title = {PSTricks Support for pdf},
- Author = {Herbert Voss},
- Organization = {},
- Address = {\url{http://PSTricks.de/pdf/pdfoutput.phtml}},
- Note = {},
- year = 2002,
-}
-
-@Manual{miwi,
- Title = {References for \TeX{} and Friends},
- Author = {Michael Wiedmann and Peter Karp},
- Organization = {},
- Address = {\url{http://www.miwie.org/tex-refs/}},
- Note = {},
- year = 2003,
-}
-
-
-@Manual{pstlens:2001,
- Title = {PST-lens - {\PS} macros for Generic TeX},
- Author = {Denis Girou and Manuel Luque},
- Organization = {},
- Address = {\url{ftp://ftp.dante.de/tex-archive/graphics/pstricks/contrib/pst-lens/}},
- Note = {},
- year = 2001,
-}
-
-@Manual{vue3d:2002,
- Title = {Vue en 3D},
- Author = {Manuel Luque},
- Organization = {},
- Address = {\url{http://members.aol.com/Mluque5130/vue3d16112002.zip}},
- Note = {},
- year = 2002,
-}
-
-@Article{dtk02.2:jackson.voss:plot-funktionen,
- author = {Laura E. Jackson and Herbert Vo{\ss}},
- title = {Die {P}lot-{F}unktionen von {\texttt{pst-plot}}},
- journal = dtk,
- year = 2002,
- volume = {2/02},
- altvolume = 2,
- altnumber = 14,
- month = jun,
- pages = {27--34},
- annote = bretter,
- keywords = {},
- abstract = { Im letzten Heft wurden die mathematischen Funktionen von
- \PS~im Zusammenhang mit dem {\LaTeX}-Paket
- \texttt{pst-plot} zum Zeichnen von Funktionen beschrieben
- und durch Beispiele erl{\"a}utert. In diesem Teil werden
- die bislang nur erw{\"a}hnten Plot-Funktionen f{\"u}r
- externe Daten behandelt. }
-}
-
-@Article{dtk02.1:voss:mathematischen,
- author = {Herbert Vo{\ss}},
- title = {Die mathematischen {F}unktionen von {P}ostscript},
- journal = dtk,
- year = 2002,
- volume = {1/02},
- altvolume = 1,
- altnumber = 14,
- month = mar,
- pages = {40-47},
- annote = bretter,
- keywords = {},
- abstract = { \PS, faktisch genauso alt wie {\TeX}, ist im
- Verh{\"a}ltnis dazu allgemein noch weniger bekannt, wenn es
- darum geht zu beurteilen, was es denn nun im eigentlichen
- Sinne ist. Au{\ss}erdem wird h{\"a}ufig vergessen, dass
- sich mit den \PS-Funktionen viele Dinge erledigen lassen,
- bei denen sonst auf externe Programme zur{\"u}ckgegriffen
- wird. Dies wird im Folgenden f{\"u}r die mathematischen
- Funktionen im Zusammenhang mit dem Paket \texttt{pst-plot}
- gezeigt. }
-}
-
-
-@Book{companion,
- author = {Michel Goosens and Frank Mittelbach and Alexander
- Samarin},
- title = {The {\LaTeX} {G}raphics {C}ompanion},
- publisher = {{Addison-Wesley Publishing Company}},
- year = {2004},
- edition = {2.},
- address = {Reading, Mass.}
-}
-
-@Book{PSTricks2,
- author = {Herbert Vo\ss},
- title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX},
- edition = {4.},
- publisher = {DANTE -- Lehmanns},
- year = {2007},
- address = {Heidelberg/Hamburg}
-}
-
-@Book{voss:math,
- author = {Herbert Vo\ss},
- title = {\LaTeX\ in {M}athematik und {N}aturwissenschaften},
- publisher = {{Franzis-Verlag}},
- year = {2006},
- address = {Poing}
-}
-
diff --git a/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.pdf b/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.pdf
deleted file mode 100644
index 8f43cdafea1..00000000000
--- a/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.tex b/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.tex
deleted file mode 100644
index e0808473fc1..00000000000
--- a/Master/texmf-dist/doc/generic/pst-vue3d/pst-vue3d-doc.tex
+++ /dev/null
@@ -1,1266 +0,0 @@
-\listfiles
-\documentclass[english]{article}
-\usepackage[T1]{fontenc}
-\usepackage[latin1]{inputenc}
-\usepackage{lmodern}% only for PDF output
-%\usepackage[scaled=0.9]{luximono}
-\usepackage[a4paper,bmargin=2cm,tmargin=2cm]{geometry}
-\usepackage{url}
-\usepackage{morefloats}
-\setcounter{totalnumber}{10}
-\setcounter{dbltopnumber}{10}
-\renewcommand{\textfraction}{0}
-\usepackage{subfig}
-% Mluque5130@aol.com
-% 17 octobre 2003
-% Herbert Voss <voss@pstricks.de>
-% March 2007
-\def\UrlFont{\small\ttfamily}
-\makeatletter
-\def\verbatim@font{\small\normalfont\ttfamily}
-\makeatother
-\usepackage[colorlinks,linktocpage]{hyperref}
-\usepackage[english]{babel}
-\usepackage{pstricks,multido,pst-grad}
-\usepackage{pst-vue3d}
-\let\VueFversion\fileversion
-\usepackage{showexpl}
-\def\PS{PostScript}
-%
-\definecolor{GrisClair} {rgb}{0.6,0.7,0.8}
-\definecolor{GrisTresClair} {rgb}{0.8,0.9,0.7}
-\definecolor{GrayA} {rgb}{0.35,0.95,0.95}
-\definecolor{GrayB} {rgb}{0.85,0.85,0.35}
-\definecolor{GrayC} {rgb}{0.75,0.35,0.55}
-\definecolor{GrayD} {rgb}{0.65,0.65,0.65}
-\definecolor{GrayE} {rgb}{0.7,0.9,0.65}
-\definecolor{LightBlue}{rgb}{.68,.85,.9}
-%
-\newcommand\tapis{%
- \psset{normaleLatitude=90,normaleLongitude=0}
- \FrameThreeD[fillcolor=green,fillstyle=solid](0,0,-5)(-20,-20)(20,20)
- \QuadrillageThreeD[grille=10](0,0,-5)(-20,-20)(20,20)%
-}
-%
-\def\Table{{%
- \CubeThreeD[A=30,B=30,C=2,CubeColorFaceOne={.7 .6 .5}](0,0,-2)
- \psset{normaleLongitude=0,normaleLatitude=90}
- \QuadrillageThreeD[linewidth=0.2mm,linecolor=white,%
- grille=5](0,0,0)(-30,-30)(30,30)
-}}
-%
-\def\DessusTable{{%
- \psset{normaleLongitude=0,normaleLatitude=90}
- \QuadrillageThreeD[linewidth=0.2mm,linecolor=gray,%
- grille=5](0,0,0)(-30,-30)(30,30)%
-}}
-\def\PlansOXYZ{{%
- \psset{normaleLongitude=0,normaleLatitude=90}
- \FrameThreeD[fillstyle=solid,fillcolor=GrisClair](0,0,0)(-50,0)(0,50)
- \QuadrillageThreeD[linewidth=0.2mm,grille=10](0,0,0)(-50,0)(0,50)%
- \psset{normaleLongitude=90,normaleLatitude=0}
- \FrameThreeD[fillstyle=solid,fillcolor=GrisTresClair](0,0,0)(0,0)(50,-50)
- \QuadrillageThreeD[linewidth=0.2mm,grille=10](0,0,0)(0,-50)(50,0)%
- \psset{normaleLongitude=0,normaleLatitude=0}
- \FrameThreeD[fillstyle=solid,fillcolor=GrisTresClair](0,0,0)(-50,0)(0,-50)
- \QuadrillageThreeD[linewidth=0.2mm,grille=10](0,0,0)(-50,-50)(0,0)%
- }}
-\psset{CubeColorFaceOne=1 1 1,%
- CubeColorFaceTwo=1 0 0,%
- CubeColorFaceThree=0 1 0,%
- CubeColorFaceFour=0 0 1,%
- CubeColorFaceFive=1 1 0,%
- CubeColorFaceSix=0 1 1}
-%
-\def\hexagon{%
-\begin{pspicture}(-2.2,-2.2)(2.2,2)
- \Table
- \pNodeThreeD(-8.66,-5,0){A6}
- \pNodeThreeD(-8.66,5,0){A1}
- \pNodeThreeD(0,10,0){A2}
- \pNodeThreeD(8.66,5,0){A3}
- \pNodeThreeD(8.66,-5,0){A4}
- \pNodeThreeD(0,-10,0){A5}%
- \psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,%
- linestyle=none](A1)(A2)(A3)(A4)(A5)(A6)}
- \DessusTable
- \endpsclip
- \psset{A=5,B=5,C=5}
- \CubeThreeD[RotZ=60](-6.83,-11.830,5)%6
- \CubeThreeD[RotZ=120](6.83,-11.830,5)%5
- \CubeThreeD(-13.86,0,5)%1
- \CubeThreeD[RotZ=-60](-6.83,11.830,5)%2
- \CubeThreeD[RotZ=-120](6.83,11.830,5)%3
- \CubeThreeD[RotZ=180](13.86,0,5)%4
-\end{pspicture}%
-}
-%
-\def\stardodecagon{%
- \begin{pspicture}(-2.2,-2)(2.2,2.2)
- \Table
- \pNodeThreeD(-6.83,-11.83,0){A6}%
- \pNodeThreeD(-13.86,0,0){A1}%
- \pNodeThreeD(-6.83,11.83,0){A2}%
- \pNodeThreeD(6.83,11.83,0){A3}%
- \pNodeThreeD(13.86,0,0){A4}%
- \pNodeThreeD(6.83,-11.83,0){A5}%
- \psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,%
- linestyle=none](A1)(A2)(A3)(A4)(A5)(A6)}
- \DessusTable
- \endpsclip%
- \psset{A=5,B=5,C=5}
- \CubeThreeD[RotZ=105](-10.6066,6.12372,5)%2
- \CubeThreeD[RotZ=45](0,12.2474,5)%1
- \CubeThreeD[RotZ=345](10.6066,6.12372,5)%6
- \CubeThreeD[RotZ=165](-10.6066,-6.12372,5)%3
- \CubeThreeD[RotZ=225](0,-12.2474,5)%4
- \CubeThreeD[RotZ=285](10.6066,-6.12372,5)%5
-\end{pspicture}}
-%
-\def\pentagon{%
- \begin{pspicture}(-2.2,-2.2)(2.2,2.2)
- \Table
- \pNodeThreeD(8.5065,0,0){A1}%
- \pNodeThreeD(2.6287,8.09,0){A2}%
- \pNodeThreeD(-6.882,5,0){A3}%
- \pNodeThreeD(-6.882,-5,0){A4}%
- \pNodeThreeD(2.6287,-8.09,0){A5}%
- \psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,%
- linestyle=none](A1)(A2)(A3)(A4)(A5)}
- \DessusTable
- \endpsclip%
- \psset{A=5,B=5,C=5}
- \CubeThreeD(-11.88,0,5)%1
- \CubeThreeD[RotZ=72](-3.617,-11.3,5)%5
- \CubeThreeD[RotZ=-72](-3.617,11.3,5)%2
- \CubeThreeD[RotZ=-144](9.61267,6.984,5)%3
- \CubeThreeD[RotZ=144](9.61267,-6.984,5)%4
-\end{pspicture}}
-%
-\def\stardecagon{%
- \begin{pspicture}*(-2.2,-1.75)(2.2,2.2)
- \Table
- \pNodeThreeD(-12.03,0,0){A1}%
- \pNodeThreeD(-3.7178,-11.44,0){A2}%
- \pNodeThreeD(9.7325,-7.071,0){A3}%
- \pNodeThreeD(9.7325,7.071,0){A4}%
- \pNodeThreeD(-3.7178,11.44,0){A5}%
- \psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,%
- linestyle=none](A1)(A2)(A3)(A4)(A5)}
- \DessusTable
- \endpsclip%
- \psset{A=5,B=5,C=5}
- \CubeThreeD[RotZ=81](-7.87375,-5.72061,5)%4
- \CubeThreeD[RotZ=9](-7.87375,5.72061,5)%3
- \CubeThreeD[RotZ=153](3.0075,-9.2561,5)%5
- \CubeThreeD[RotZ=-63](3.0075,9.25615,5)%2
- \CubeThreeD[RotZ=-135](9.73249,0,5)%1
-\end{pspicture}%
-}
-\def\octogon{%
- \begin{pspicture}(-2.2,-2.2)(2.2,2.2)
- \Table
- \pNodeThreeD(12.07,5,0){A1}%
- \pNodeThreeD(5,12.07,0){A2}%
- \pNodeThreeD(-5,12.07,0){A3}%
- \pNodeThreeD(-12.07,5,0){A4}%
- \pNodeThreeD(-12.07,-5,0){A5}%
- \pNodeThreeD(-5,-12.071,0){A6}%
- \pNodeThreeD(5,-12.07,0){A7}%
- \pNodeThreeD(12.07,-5,0){A8}%
- \psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,%
- linestyle=none](A1)(A2)(A3)(A4)(A5)(A6)(A7)(A8)}
- \DessusTable
- \endpsclip%
- \psset{A=5,B=5,C=5}
- \CubeThreeD(-17.07,0,5)%5
- \CubeThreeD[RotZ=45](-12.07,-12.07,5)%6
- \CubeThreeD[RotZ=90](0,-17.07,5)%7
- \CubeThreeD[RotZ=135](12.07,-12.07,5)%8
- \CubeThreeD[RotZ=-45](-12.07,12.07,5)%4
- \CubeThreeD[RotZ=-90](0,17.07,5)%3
- \CubeThreeD[RotZ=-135](12.07,12.07,5)%2
- \CubeThreeD[RotZ=180](17.07,0,5)%1
-\end{pspicture}%
-}
-%
-\def\starhexadecagon{%
- \begin{pspicture}(-2.2,-2)(2.2,2.2)
- \Table
- \pNodeThreeD(17.07,7.07,0){A1}%
- \pNodeThreeD(7.07,17.07,0){A2}%
- \pNodeThreeD(-7.07,17.07,0){A3}%
- \pNodeThreeD(-17.07,7.07,0){A4}%
- \pNodeThreeD(-17.07,-7.07,0){A5}%
- \pNodeThreeD(-7.07,-17.07,0){A6}%
- \pNodeThreeD(7.07,-17.07,0){A7}%
- \pNodeThreeD(17.07,-7.07,0){A8}%
- \psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,%
- linestyle=none](A1)(A2)(A3)(A4)(A5)(A6)(A7)(A8)}
- \DessusTable
- \endpsclip%
- \psset{A=5,B=5,C=5}
- \CubeThreeD[RotZ=225](-17.07,0,5)%5
- \CubeThreeD[RotZ=-90](-12.07,-12.07,5)%6
- \CubeThreeD[RotZ=-45](0,-17.07,5)%7
- \CubeThreeD(12.07,-12.07,5)%8
- \CubeThreeD[RotZ=180](-12.07,12.07,5)%4
- \CubeThreeD[RotZ=135](0,17.07,5)%3
- \CubeThreeD[RotZ=90](12.07,12.07,5)%2
- \CubeThreeD[RotZ=45](17.07,0,5)%1
-\end{pspicture}}
-%
-\def\DecorSable{%
- \FrameThreeD[normaleLongitude=0,normaleLatitude=90,%
- fillstyle=solid,fillcolor=GrayE](0,0,0)(-60,-60)(60,60)
- \QuadrillageThreeD[normaleLongitude=0,normaleLatitude=90,%
- linecolor=GrayA,linewidth=0.2mm,grille=10](0,0,0)(-60,-60)(60,60)%
-}
-\newpsstyle{GradGrayWhite}{fillstyle=gradient,%
- gradbegin=blue,gradend=white,linewidth=0.1mm}%
-
-\begin{document}
-
-\title{3D views with \texttt{pst-vue3d}\\[3ex]
- \normalsize (v. \VueFversion)}
-\author{Manuel Luque\thanks{\url{mluque5130 _at_ aol.com}}\
-and Herbert Vo\ss\thanks{\url{voss _at_ pstricks.de}}}
-
-\maketitle
-\tableofcontents
-\clearpage
-
-\section{Presentation}
-The 3D representation of an object or a landscape is one of the
-most interesting subject in computer science and have many
-industrial applications (car and plane design, video game
-etc\ldots). In a smaller way, one can obtain very didactic
-realizations using PSTricks with two peculiarities:
-\begin{itemize}
- \item using PostScript;
- \item being manageable through \LaTeX.
-\end{itemize}
-Package \texttt{pst-key} of David \textsc{Carlisle} allows to
-write commands with parameters. Using this as an interface, one
-can observe the result of little modifications of some parameters.
-Our parameters being here: the position of the watcher, the choice
-of an solid (cube, sphere etc\ldots) and many other things. I want
-to signal that
-\begin{itemize}
-\item
-Regarding 3D representation, one does not forget the package pst-3d by Timothy Van Zandt
-who has used the best part of Post\-Script. Althrought limited to parallel projections,
-this package allows to draw very interesting 3D figure.\footnote{A lot of different examples
-for 3D images are available at: \url{http://members.aol.com/Mluque5130/}}
-\item Thanks to Denis \textsc{Girou}, i have discovered the
-package \texttt{pst-xkey} and I have learned it.
-\item I have written another package for drawing picture reflecting
-in spherical mirrors.%
-\footnote{\url{http://melusine.eu.org/syracuse/mluque/BouleMiroir/boulemiroir.html}}
-
-It is a french paper which illustrate a study of Pr. Henri
-\textsc{Bouasse} from this book \textit{Optique sup\'erieure}, edited in $1917$ by Delagrave.
-\end{itemize}
-
-
-\section{Aims}
-First, we want to draw the 3D representation with elimination of
-the hidden parts of some objects.
-
-The position of the watcher will be defined by its spherical
-coordinates: the distances from the origin, the longitude $\theta$
-and the latitude $\phi$. We will choose, too, the distance of the
-projection screen from this point.
-
-Second, we want to define some $3D$ elements of the scene: the bricks.
-
-The following bricks are already defined
-\begin{itemize}
-\item A box given by its three dimensions \verb+A,B,C+: it could
-be turn into a cube or a dice.
-\item A point which can be defined it two ways
-\begin{itemize}
-\item By cartesian coordinates $(x,y,z)$
-\item Or by spherical coordinates $(R,\theta,\phi)$
- ($\theta$, $\phi$ are, respectively, longitude and latitude).
-\end{itemize}
-\item A rectangle.
-\item A circle defined by the normal line to its plane, its center
-and its radius. An arc is defined as the circle with two limit
-angles.
-\item A tetrahedron given by the coordinates of the center of its
-base and the radius of the circle containing the vertex of each
-faces. We can make it rotate.
-\item A square pyramid given by the half of the length of the side
-of its base and its height. We can make it rotate and move.
-\item A sphere given by the coordinates of its center \verb+\SphereThreeD(x,y,z){Radius}+
-and its radius. We can make it rotate with the parameters
-\verb+RotX=...+, \verb+RotY=...+, \verb+RotZ=...+ We can choose to
-draw only some meridians and parallel circles.
- \item A solid or empty half-sphere (same parameters than a sphere)
- \item A vertical cylinder defined by its radius and its height. We
- can make it rotate using the parameters \verb+RotX=...+, \verb+RotY=...+, \verb+RotZ=...+
- An we can choose the center of its base in the same way than the Sphere.
-\item A cone and a truncated cone defined by the radius of their
-base, the height and the height of the truncature.
-\end{itemize}
-
-\vspace*{1cm}
-To construct a scene, one may choose himself the order of the
-objects. For example, if an object 1 is partially hidden by an
-object 2, we write, in the list of commands, first object 1 and
-second object 2.
-
-\section{Rotating in the 3D space}
-
-A 3D object can be rotated around every axes with the \verb+RotX+, \verb+RotY+ and
-\verb+RotZ+ option. They can be mixed in every combination. Figure~\ref{fig:rot} shows
-how a rotation around the z-axes works.
-
-\begin{figure}[!htb]
-\multido{\iRotZ=0+45}{8}{%
- \begin{pspicture}(-1.5,-1.5)(1.5,1.5)
- \psset{THETA=70,PHI=30,Dobs=200,Decran=10}
- \psset{A=5,B=5,C=A,fillstyle=solid,fillcolor=GrisClair,%
- linecolor=red, RotZ=\iRotZ}
- \tapis\DieThreeD(0,0,0)%
- \LineThreeD[linecolor=red,linestyle=dashed,arrows=->](0,0,0)(0,0,25)
- \pNodeThreeD(0,0,12.5){Z'}
- \uput[180](Z'){\texttt{RotZ=\iRotZ}}
- \end{pspicture}\hfill %
-}
-
-\psset{THETA=-10,PHI=20,Dobs=200,Decran=10}
-\multido{\iCX=0+30}{8}{%
- \begin{pspicture}(-1.5,-1.5)(1.5,1.5)
- \AxesThreeD{->}(50,20,20)
- \psset{A=20,B=5,C=10,fillstyle=solid,fillcolor=LightBlue,linecolor=gray}
- \psset{RotZ=0,RotY=0,RotX=\iCX}
- \CubeThreeD(0,0,0)%
- \psset{linestyle=dashed}
- \end{pspicture}\hfill%
-}%
-\caption{Diffenerent views of a die and a cube\label{fig:rot}}
-\end{figure}
-
-
-\section{Location of the cube in the space}
-Suppose that one wants to place a 10-units edge cube at the point
-$(x=40,y=40,z=35)$. First, the half edge of the cube will be
-define by the parameters : \verb+A=5,B=5,C=5+, and next the
-coordinates of its center by \texttt{(40,40,35)}. On the
-figure, the period of the grid is 10~units
-(figure~\ref{coordinates}).
-
-\begin{figure}[!htb]
-\centering
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=30,PHI=30,Dobs=200,Decran=12}
-\begin{pspicture}(-2.8,-3)(3.5,3.5)
- \PlansOXYZ
- \pNodeThreeD(40,40,35){G}
- \pNodeThreeD(40,40,0){G_XY}
- \pNodeThreeD(40,0,0){G_X}
- \pNodeThreeD(0,40,0){G_Y}
- \pNodeThreeD(0,0,35){G_Z}
- \pNodeThreeD(0,40,35){G_YZ}
- \pNodeThreeD(40,0,35){G_XZ}
- \psdots(G)(G_XY)(G_XZ)(G_YZ)(G_X)(G_Y)(G_Z)
- \psline(G)(G_XY)
- \psline(G)(G_XZ)
- \psline(G)(G_YZ)
- \psline(G_Z)(G_XZ)
- \psline(G_Z)(G_YZ)
- \AxesThreeD{->}(55)
-\end{pspicture}
-\end{LTXexample}
-\caption{\label{coordinates}Origin \texttt{(40,40,35)}}
-\end{figure}
-
-\begin{figure}[!ht]
-\centering
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=30,PHI=30,Dobs=200,Decran=12}
-\begin{pspicture}(-2.8,-3)(3.5,3.5)
- \PlansOXYZ
- \pNodeThreeD(40,40,35){G}
- \pNodeThreeD(40,40,0){G_XY}
- \pNodeThreeD(40,0,0){G_X}
- \pNodeThreeD(0,40,0){G_Y}
- \pNodeThreeD(0,0,35){G_Z}
- \pNodeThreeD(0,40,35){G_YZ}
- \pNodeThreeD(40,0,35){G_XZ}
- \psdots(G)(G_XY)(G_XZ)(G_YZ)(G_X)(G_Y)(G_Z)
- \psline(G)(G_XY)
- \psline(G)(G_XZ)
- \psline(G)(G_YZ)
- \psline(G_Z)(G_XZ)
- \psline(G_Z)(G_YZ)
- \psset{A=5,B=5,C=5}
- \DieThreeD(40,40,35)%
- \AxesThreeD{->}(55)
-\end{pspicture}
-\end{LTXexample}
-\caption{\label{CubeOne}The placed cube.}
-\end{figure}
-
-
-To make it rotate of around $OX$ , one adds the parameter \verb+RotX=90+(figure~\ref{RotX}).
-
-\begin{figure}[!ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=30,PHI=30,Dobs=200,Decran=12}
-\begin{pspicture}(-2.8,-3)(3.5,3.5)
- \PlansOXYZ
- \AxesThreeD{->}(55)
- \psset{A=5,B=5,C=5,RotX=90}
- % projections sur les plaans
- \DieThreeD(40,40,5)%
- \DieThreeD(5,40,35)%
- \DieThreeD(40,5,35)%
- \pNodeThreeD(40,40,35){G}
- \pNodeThreeD(40,40,10){G_XY}
- \pNodeThreeD(10,40,35){G_YZ}
- \pNodeThreeD(40,10,35){G_XZ}
- \psline(G)(G_XY)
- \psline(G)(G_XZ)
- \psline(G)(G_YZ)
- \DieThreeD(40,40,35)%
-\end{pspicture}
-\end{LTXexample}
-\caption{\label{RotX} 90\textsuperscript{o} rotation around $OX$ and plane projections.}
-\end{figure}
-
-
-Three successive rotations around three axes with: \verb+RotX=60,RotY=20,RotZ=110+, are illustrate in figure~\ref{RotXYZ}.
-
-\begin{figure}[!ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=30,PHI=30,Dobs=200,Decran=12}
-\begin{pspicture}(-2.8,-3)(3.5,3.5)
- \PlansOXYZ
- \AxesThreeD(55)
- \DieThreeD[A=5,B=5,C=5,RotX=30,RotY=20,RotZ=150](40,40,35)%
-\end{pspicture}
-\end{LTXexample}
-\caption{\label{RotXYZ}rotations around $OX$, $OY$ et $OZ$: \texttt{RotX=60,RotY=20,RotZ=110}.}
-\end{figure}
-
-\section{Constructions using cubes}
-This section was done after a book first published in 1873 and
-titled:
-
-\begin{figure}[!ht]
-\centering
-\psframebox{%
-\begin{pspicture}(-3.1,-3.8)(3.1,3)
-\rput(0,2.6){M\'ETHODE INTUITIVE}
-\rput(0,2){\Large EXERCICES ET TRAVAUX}
-\rput(0,1.5){POUR LES ENFANTS}
-\rput(0,1){\tiny SELON LA M\'ETHODE ET LES PROC\'ED\'ES}
-\rput(0,0){de \textbf{PESTALOZZI et FR\OE{}BEL}}
-\rput(0,-1){M\textsuperscript{me} FANNY DELON}
-\rput(0,-1.5){\tiny Directrice d'une \'Ecole professionnelle \`a Paris}
-\rput(0,-2){M. CH. DELON}
-\rput(0,-2.5){\tiny Licenci\'e \`es sciences}
-\rput(0,-3){PARIS}
-\rput(0,-3.5){1873}
-\end{pspicture}}
-\end{figure}
-
-for children at infant school! One can not be surprised that
-theses kinds of pedagogue gave rise to the generation of Eintein,
-Maxwell, Bohr etc.
-
-
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=15,PHI=50,Dobs=200,Decran=15}
-\hexagon
-\end{LTXexample}
-\caption{\label{hexagone}hexagon.}
-\end{figure}
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=15,PHI=50,Dobs=200,Decran=15}%
-\stardodecagon
-\end{LTXexample}
-\caption{\label{dodecagone}star dodecagon.}
-\end{figure}
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=-15,PHI=50,Dobs=200,Decran=15}
-\pentagon
-\end{LTXexample}
-\caption{\label{pentagone}pentagon.}
-\end{figure}
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=-15,Decran=10,Dobs=100,PHI=75}
-\stardecagon
-\end{LTXexample}
-\caption{\label{decagone}star decagon.}
-\end{figure}
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=20,PHI=75,Decran=10,Dobs=100}
-\begin{pspicture*}(-2.5,-2.5)(2.5,2)
-\Table
-\psset{A=5,B=5,C=5}
-\CubeThreeD(-7.88675,0,5)%1
-\CubeThreeD[RotZ=-120](3.94338,6.83,5)%2
-\CubeThreeD[RotZ=120](3.94338,-6.83,5)%3
-\end{pspicture*}
-\end{LTXexample}
-\caption{\label{triangle}triangle.}
-\end{figure}
-
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=-15,PHI=50,Decran=10,Dobs=150}
-\octogon
-\end{LTXexample}
-\caption{\label{octogone}octogon.}
-\end{figure}
-
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=-15,Decran=10,Dobs=150,PHI=75}
-\starhexadecagon
-\end{LTXexample}
-\caption{\label{hexadecagon}star hexadecagon.}
-\end{figure}
-
-\begin{figure}[ht]
-\begin{LTXexample}[width=0.45\linewidth]
-\psset{THETA=-15,Decran=10,Dobs=150,PHI=75}
-\begin{pspicture}(-2.2,-1.75)(2.2,2.2)
- \Table
- \pNodeThreeD(-8.66,-5,0){A6}
- \pNodeThreeD(-8.66,5,0){A1}
- \pNodeThreeD(0,10,0){A2}
- \pNodeThreeD(8.66,5,0){A3}
- \pNodeThreeD(8.66,-5,0){A4}
- \pNodeThreeD(0,-10,0){A5}%
- \psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,%
- linestyle=none](A1)(A2)(A3)(A4)(A5)(A6)}
- \DessusTable
- \endpsclip
- \psset{A=5,B=5,C=5}
- \DieThreeD[RotZ=60,RotX=-90](-6.83,-11.83,5)%
- \DieThreeD[RotZ=120,RotY=-90](6.83,-11.83,5)%
- \DieThreeD[RotX=90](-13.86,0,5)%
- \DieThreeD[RotZ=-60,RotY=90](-6.83,11.83,5)%
- \DieThreeD[RotZ=-120,RotY=180](6.83,11.83,5)%
- \DieThreeD[RotZ=180](13.86,0,5)%
-\end{pspicture}
-\end{LTXexample}
-\caption{\label{pentagoneDie}hexagon with dices.}
-\end{figure}
-
-Observing figure from off :
-\begin{verbatim}
-\psset{PHI=90,THETA=0}
-\end{verbatim}
- one obtains classical geometric
-figures :
-
-(\ref{hexagonePlan}) (\ref{dodecagonePlan}) (\ref{pentagonePlan}) (\ref{decagonePlanStar})
-(\ref{trianglePlan}) (\ref{octogonePlan}) (\ref{hexadecagonePlan}) (\ref{hexagonePlanDie}).
-
-\begin{figure}[ht]
-\centering
-\psset{THETA=0,Decran=10,Dobs=125,PHI=90}
-\hexagon
-\caption{\label{hexagonePlan}``flat'' hexagon.}
-\end{figure}
-
-
-\begin{figure}[ht]
-\centering
-\psset{Decran=10,Dobs=100}
-\psset{PHI=90,THETA=0}
-\stardecagon
-\caption{\label{dodecagonePlan}``flat'' star dodecagone.}
-\end{figure}
-%
-\begin{figure}[ht]
-\centering
-\psset{Decran=10,Dobs=125}
-\psset{PHI=90,THETA=0}
-\pentagon
-\caption{\label{pentagonePlan}``flat'' pentagon.}
-\end{figure}
-
-
-\begin{figure}[ht]
-\centering
-\psset{THETA=0,Decran=10,Dobs=125,PHI=90}
-\stardecagon
-\caption{\label{decagonePlanStar}``flat'' star decagon.}
-\end{figure}
-%
-
-
-%
-\begin{figure}[ht]
-\centering
-\psset{PHI=90,THETA=0,Decran=10,Dobs=100}
-\begin{pspicture}*(-2.2,-2.2)(2.2,2.2)
-\Table
-\psset{A=5,B=5,C=5}
-\CubeThreeD(-7.88675,0,5)%1
-\CubeThreeD[RotZ=-120](3.94338,6.83,5)%2
-\CubeThreeD[RotZ=120](3.94338,-6.83,5)%3
-\end{pspicture}
-\caption{\label{trianglePlan}``flat'' triangle.}
-\end{figure}
-
-
-\begin{figure}[ht]
-\centering
-\psset{PHI=90,THETA=0,Decran=10,Dobs=125}
-\octogon
-\caption{\label{octogonePlan}``flat'' octogon.}
-\end{figure}
-
-
-
-\begin{figure}[ht]
-\centering
-\psset{PHI=90,THETA=0,Decran=10,Dobs=125}
-\starhexadecagon
-\caption{\label{hexadecagonePlan}``flat'' star hexadecagon.}
-\end{figure}
-
-\begin{figure}[ht]
-\centering
-\psset{PHI=90,THETA=0,Decran=10,Dobs=125}
-\begin{pspicture}(-2.2,-2.2)(2.2,2.2)
-\Table
-\pNodeThreeD(-8.66,-5,0){A6}
-\pNodeThreeD(-8.66,5,0){A1}
-\pNodeThreeD(0,10,0){A2}
-\pNodeThreeD(8.66,5,0){A3}
-\pNodeThreeD(8.66,-5,0){A4}
-\pNodeThreeD(0,-10,0){A5}%
-\psclip{\pspolygon[fillstyle=solid,fillcolor=GrisClair,linestyle=none](A1)(A2)(A3)(A4)(A5)(A6)}
-\DessusTable
-\endpsclip
-\psset{A=5,B=5,C=5}
-\DieThreeD[RotZ=60,RotX=-90](-6.83,-11.83,5)%
-\DieThreeD[RotZ=120,RotY=-90](6.83,-11.83,5)%
-\DieThreeD[RotX=90](-13.86,0,5)%
-\DieThreeD[RotZ=-60,RotY=90](-6.83,11.83,5)%
-\DieThreeD[RotZ=-120,RotY=180](6.83,11.83,5)%
-\DieThreeD[RotZ=180](13.86,0,5)%
-\end{pspicture}
-\caption{\label{hexagonePlanDie}``flat'' hexagon with dices.}
-\end{figure}
-
-
-
-
-\clearpage
-
-
-\section{Sphere, part of sphere, half-sphere, parallels and meridians}
-
-Beside \verb+sphereThreeD+ there exist several macro for spheres:
-
-\begin{itemize}
-\item \verb|SphereInverseThreeD|
-\item \verb|\SphereCercleThreeD|
-\item \verb|\SphereMeridienThreeD|
-\item \verb|\DemiSphereThreeDThreeD|
-\item \verb|\SphereCreuseThreeD|
-\item \verb|\PortionSphereThreeD|
-\end{itemize}
-
-
-The macro:
-\begin{verbatim}
-\SphereThreeD(10,30,20){20}
-\end{verbatim}
-draws the sphere defined by the coordinates of its centre and its radius which is shown in
-figure~\ref{sphere} together with the macro
-\begin{verbatim}
-\PortionSphereThreeD(0,0,0){20}
-\end{verbatim}
-and some more additional lines.
-
-\begin{verbatim}
-\begin{pspicture}(-3,-3.5)(3,5)
-\psset{THETA=30,PHI=30,Dobs=100,Decran=10}
-{\psset{style=GradGrayWhite}%
-\SphereThreeD(0,0,0){20}
-\psset{fillstyle=solid,fillcolor=gray}
-\PortionSphereThreeD(0,0,0){20}
-\pNodeThreeD(20;10;10){C1}
-\pNodeThreeD(40;10;10){D1}
-\psline(C1)(D1)
-\pNodeThreeD(20;10;-10){C2}
-\pNodeThreeD(40;10;-10){D2}
-\psline(C2)(D2)
-\pNodeThreeD(20;-10;-10){C3}
-\pNodeThreeD(40;-10;-10){D3}
-\psline(C3)(D3)
-\pNodeThreeD(20;-10;10){C4}
-\pNodeThreeD(40;-10;10){D4}
-\psline(C4)(D4)
-\PortionSphereThreeD%
- [style=GradGrayWhite](0,0,0){40}}
-% PhiCercle=latitude of the cercle
-% \SphereCercle[PhiCercle=...]{radius}
-\psset{linecolor=white,PhiCercle=45}
-\SphereCercleThreeD(0,0,0){20}
-% ThetaMeridien=longitude of the meridian
-% \SphereMeridien[ThetaMeridien=...]{radius}
-\SphereMeridienThreeD%
- [ThetaMeridien=45](0,0,0){20}
-\pNodeThreeD(20;45;45){A}
-\pNodeThreeD(50;45;45){B}
-\psline[linecolor=black]{->}(A)(B)
-\pNodeThreeD(20;0;90){Nord}
-\pNodeThreeD(40;0;90){Nord1}
-\psline[linecolor=black]{->}(Nord)(Nord1)
-\SphereCercleThreeD[PhiCercle=0](0,0,0){20}
-\SphereMeridienThreeD%
- [ThetaMeridien=0](0,0,0){20}
-\end{pspicture}
-\end{verbatim}
-
-
-
-\begin{figure}[!htb]
-\begin{pspicture}(-3,-3.5)(3,5)
-\psset{THETA=30,PHI=30,Dobs=100,Decran=10}
-\bgroup
- \psset{style=GradGrayWhite}%
- \SphereThreeD(0,0,0){20}
- \psset{fillstyle=solid,fillcolor=gray}
- \PortionSphereThreeD(0,0,0){20}
- \pNodeThreeD(20;10;10){C1}
- \pNodeThreeD(40;10;10){D1}
- \psline(C1)(D1)
- \pNodeThreeD(20;10;-10){C2}
- \pNodeThreeD(40;10;-10){D2}
- \psline(C2)(D2)
- \pNodeThreeD(20;-10;-10){C3}
- \pNodeThreeD(40;-10;-10){D3}
- \psline(C3)(D3)
- \pNodeThreeD(20;-10;10){C4}
- \pNodeThreeD(40;-10;10){D4}
- \psline(C4)(D4)
- \PortionSphereThreeD[style=GradGrayWhite](0,0,0){40}
-\egroup
-% PhiCercle=latitude of the cercle
-% \SphereCercle[PhiCercle=...]{radius}
- \psset{linecolor=white,PhiCercle=45}
- \SphereCercleThreeD(0,0,0){20}
-% ThetaMeridien=longitude of the meridian
-% \SphereMeridien[ThetaMeridien=...]{radius}
- \SphereMeridienThreeD[ThetaMeridien=45](0,0,0){20}
-% \pNodeThreeD(radius}{longitude}{latitude}{name of the point}
- \pNodeThreeD(20;45;45){A}
- \pNodeThreeD(50;45;45){B}
- \psline[linecolor=black]{->}(A)(B)
- \pNodeThreeD(20;0;90){Nord}
- \pNodeThreeD(40;0;90){Nord1}
- \psline[linecolor=black]{->}(Nord)(Nord1)
- \SphereCercleThreeD[PhiCercle=0](0,0,0){20}
- \SphereMeridienThreeD[ThetaMeridien=0](0,0,0){20}
-\end{pspicture}
-\caption{\label{sphere}A Sphere.}
-\end{figure}
-
-
-\begin{figure}[!htb]
-\centering
-\begin{pspicture}(-3,-2)(3,5)
- \psset{THETA=60,PHI=30,Dobs=100,Decran=10}
-% \DemiSphereThreeD(x,y,z){radius}
- \DemiSphereThreeD[RotX=180,style=GradGrayWhite](0,0,0){20}
- \SphereCreuseThreeD[RotX=180,linecolor=white,style=GradGrayWhite](0,0,0){20}
- \AxesThreeD[linestyle=dashed](30,30,40)
-\end{pspicture}
-\caption{\label{halfsphere}half-sphere.}
-\end{figure}
-
-
-\begin{figure}[!htb]
-\centering
-\begin{pspicture}(-3,-2)(3,2)
-\psset{THETA=60,PHI=20,Dobs=100,Decran=10}
-\psset{style=GradGrayWhite}%
-\SphereThreeD(0,0,0){10}%
-\DemiSphereThreeD[RotX=180](0,0,0){20}%
-\begin{psclip}{%
-\SphereCreuseThreeD[RotX=180,linecolor=white](0,0,0){20}}%
-\SphereThreeD(0,0,0){10}
-\end{psclip}%
-\end{pspicture}
-\caption{\label{egg} levitation}
-\end{figure}
-
-
-\section{A Hole in a sphere}
-
-\begin{figure}[!htb]
-\centering
-\psset{THETA=10,PHI=30,Dobs=100,Decran=10}
-\begin{pspicture}*(-3,-3)(3,3)
- \SphereThreeD[style=GradGrayWhite,gradmidpoint=0.2](0,0,0){40}%
- \begin{psclip}{\PortionSphereThreeD[PortionSpherePHI=40,%
- DeltaPHI=30,DeltaTHETA=30,linewidth=4\pslinewidth](0,0,0){40}}%
- \SphereInverseThreeD[style=GradGrayWhite](0,0,0){40}%
- \SphereThreeD[style=GradGrayWhite](0,0,0){30}%
- \begin{psclip}{\PortionSphereThreeD[PortionSpherePHI=30,%
- DeltaPHI=30,DeltaTHETA=30,linewidth=4\pslinewidth](0,0,0){30}}%
- \SphereInverseThreeD[style=GradGrayWhite](0,0,0){30}%
- \SphereThreeD[style=GradGrayWhite](0,0,0){20}%
- \begin{psclip}{\PortionSphereThreeD[PortionSpherePHI=30,%
- DeltaPHI=30,DeltaTHETA=30,linewidth=4\pslinewidth](0,0,0){20}}%
- \SphereInverseThreeD[style=GradGrayWhite](0,0,0){20}%
- \SphereThreeD[style=GradGrayWhite](0,0,0){10}%
- \begin{psclip}{%
- \PortionSphereThreeD[PortionSpherePHI=30,%
- DeltaPHI=30,DeltaTHETA=30,linewidth=4\pslinewidth](0,0,0){10}}%
- \SphereInverseThreeD[style=GradGrayWhite](0,0,0){10}%
- \SphereThreeD[style=GradGrayWhite](0,0,0){5}%
- \end{psclip}%
- \end{psclip}%
- \end{psclip}%
- \end{psclip}%
-\end{pspicture}
-\caption{\label{Holeinasphere}A Hole in a sphere.}
-\end{figure}
-
-It is a rectangular hole whose the size are meridian and parallels
-arcs (figure~\ref{Holeinasphere}).
-
-We define the part of the sphere setting its radius, the center
-of the sphere and the $\Delta\phi$ and $\Delta\theta$.
-\begin{verbatim}
-\PortionSphereThreeD[PortionSpherePHI=45,%
- PortionSphereTHETA=0,%
- DeltaPHI=45,%
- DeltaTHETA=20](0,0,0){20}
-\end{verbatim}
-
-There are the parameters of the first hole. The radius is
-\texttt{20}.
-\begin{verbatim}
-{\psset{fillstyle=gradient,%
- gradbegin=white,%
- gradend=blue,%
- gradmidpoint=0.2,%
- linecolor=cyan,%
- linewidth=0.1mm}
-\SphereThreeD(0,0,0){20}}%
-\begin{psclip}{%
-\PortionSphereThreeD[PortionSpherePHI=45,%
- DeltaPHI=45,DeltaTHETA=20](0,0,0){20}}
-\SphereInverseThreeD[fillstyle=solid,%
- fillcolor=red,%
- linecolor=blue](0,0,0){20}%
-\end{psclip}%
-\end{verbatim}
-
-This is the tricks to see the inner of the sphere.
-
-\verb+\SphereInverse+ define the hidden part of the sphere.
-
-
-\section{Drawing a cylinder}
-A cylinder is defined by the radius of its base and its height.
-The center of the base is set in the usual way, and
-\textsf{RotX,RotY,RotZ} make it rotate around the axes.
-
-\verb+\CylindreThreeD(x,y,z){radius}{hauteur}+
-
-\begin{figure}[!htb]
-\centering
-\begin{pspicture}(-3.5,-2)(3,4.5)
-\psset{THETA=5,PHI=40,Dobs=150,Decran=6.5,fillstyle=solid,linewidth=0.1mm}
-% plan horizontal
-{\psset{normaleLongitude=0, normaleLatitude=90}
-\FrameThreeD[fillstyle=solid,fillcolor=GrisClair](0,0,0)(-50,0)(50,50)
-\FrameThreeD[fillstyle=solid,fillcolor=GrisClair](0,0,0)(-50,0)(50,-50)
-\QuadrillageThreeD(0,0,0)(-50,-50)(50,50)}
-\multido{\iCY=-45+90}{2}{%
- \CylindreThreeD(-45,\iCY,0){5}{50}
- \DemiSphereThreeD(-45,\iCY,50){5}%
-}
-\CylindreThreeD(0,0,0){10}{15}
-\CylindreThreeD(0,0,15){20}{5}
-\DemiSphereThreeD[RotX=180](0,0,35){20}
-\SphereCreuseThreeD[RotX=180](0,0,35){20}
-{\psset{RotY=90,RotX=0,RotZ=30}
-\CylindreThreeD(15,15,5){5}{20}}
-\multido{\iCY=-45+90}{2}{%
-\CylindreThreeD(45,\iCY,0){5}{50}
-\DemiSphereThreeD(45,\iCY,50){5}}
-\end{pspicture}
-\caption{\label{cylinder}cylinders.}
-\end{figure}
-
-\begin{verbatim}
-\CylindreThreeD(0,0,-5){10}{15}}
-\psset{RotY=90}
-\CylindreThreeD(15,15,-5){5}{20}
-\end{verbatim}
-
-
-\section{Tetrahedron, cone and square pyramid}
-\subsection{square pyramid}
-\begin{verbatim}
-\psset{A=...,Hpyramide=...}
-\Pyramide
-\end{verbatim}
-
-See the examples of figures~(\ref{Pyramid})~(\ref{Obelisque}).
-
-\begin{figure}[!htb]
-\centering
-\psset{ColorFaceD=GrayD,ColorFaceA=GrayA,%
- ColorFaceB=GrayB,ColorFaceC=GrayC,ColorFaceE=GrayE}
-\psframebox[fillstyle=solid,fillcolor=GrayB,framesep=0pt]{%
-\begin{pspicture}*(-3,-4)(3,4)
-\psset{THETA=-70,PHI=60,Dobs=200,Decran=15}
-\DecorSable
-\psset{RotZ=45,fillstyle=solid,linecolor=black,A=9}
-\PyramideThreeD(5,35,0){10}
-\psset{A=10}
-\PyramideThreeD(0,0,0){13}
-\psset{A=7}
-\PyramideThreeD(10,-35,0){8.7}
-\end{pspicture}}
-\caption{\label{Pyramid}Pyramids of Egypt.}
-\end{figure}
-
-
-\begin{figure}[!htb]
-\centering
-\psframebox[fillstyle=solid,fillcolor=GrayB,framesep=0pt]{%
- \begin{pspicture}*(-2.5,-2)(2.5,5.5)
- \psset{THETA=30,PHI=30,Dobs=400,Decran=12}
- \DecorSable
- \CubeThreeD[A=15,B=15,C=15](0,0,15)%
- \psset{A=10,fillstyle=solid}
- \PyramideThreeD[fracHeight=0.8](0,0,30){150}%
- \psset{A=2}
- \PyramideThreeD(0,0,150){5}%
- \end{pspicture}%
-}
-\caption{\label{Obelisque}Obelisk of Egypt.}
-\end{figure}
-
-
-\subsection{Cone}
-\begin{verbatim}
-\ConeThreeD[fracHeight=...]
- (x,y,z){radius}{Height}
-\end{verbatim}
-by default \verb+fracHeight=1+ : figure~\ref{Cone}.
-
-\begin{figure}[!htb]
-\centering
-\psframebox[fillstyle=solid,fillcolor=GrayB,framesep=0pt]{%
-\begin{pspicture}*(-3,-5)(3,4)
-\psset{THETA=30,PHI=40,Dobs=200,Decran=12,fillstyle=solid,%
- fillcolor=GrisClair,linewidth=0.25\pslinewidth}
-\DecorSable
-\CylindreThreeD(0,0,0){10}{50}
-\ConeThreeD[fillcolor=GrayB](0,0,50){10}{10}
-\CylindreThreeD[RotY=90,RotZ=150](40,20,10){10}{50}
-\ConeThreeD[fracHeight=0.5](20,-20,0){10}{10}
-\CylindreThreeD(20,-20,5){5}{50}
-\ConeThreeD[fracHeight=0.5](50,50,0){10}{10}
-\CylindreThreeD(50,50,5){5}{50}
-\end{pspicture}}
-\caption{\label{Cone}Cones and cylinders.}
-\end{figure}
-
-\section{Points and lines}
-The command allowing to mark points and thus to draw lines
-and polygons can be used of two manners, either with the Cartesian coordinates
- \begin{verbatim}
-\pNodeThreeD(x,y,z){name}
-\end{verbatim}
- or with the spherical coordinates :
-\begin{verbatim}
-\pNodeThreeD(radius;longitude;latitude)%
- {name of the point}
-\end{verbatim}
-
-For example \verb+\pNodeThreeD(25,-25,25){A}+, the point $A(25,25,25)$ places.
-Points being positioned, just to write \verb+\psline(A)(B)+, to draw the segment $AB$.
-
- On the figure~\ref {points}, one drew a cube with its diagonals.
-\begin{figure}[!htb]
-\centering
-\psset{unit=1cm}
- \psset{THETA=70,PHI=30,Dobs=150,Decran=10}
- \begin{pspicture}(-3,-3)(3,4)
- \AxesThreeD[linecolor=red,linestyle=dashed](50,60,50)
- \pNodeThreeD(25,-25,25){A}
- \pNodeThreeD(25,25,25){B}
- \pNodeThreeD(25,25,-25){C}
- \pNodeThreeD(25,-25,-25){D}
- \pNodeThreeD(-25,-25,25){E}
- \pNodeThreeD(-25,25,25){F}
- \pNodeThreeD(-25,25,-25){G}
- \pNodeThreeD(-25,-25,-25){H}
- \pspolygon(A)(B)(C)(D)
- \pspolygon(E)(F)(G)(H)
- \psline(A)(E)
- \psline(B)(F)
- \psline(C)(G)
- \psline(D)(H)
- \psset{linestyle=dashed}
- \psline(A)(G)
- \psline(B)(H)
- \psline(C)(E)
- \psline(D)(F)
-% routine page 49 in "présentation de PSTricks"
-% D.Girou "cahier 16 Gutengerg"
- \newcounter{lettre}
- \multido{\i=1+1}{8}{%
- \setcounter{lettre}{\i}
- \psdot[linecolor=red](\Alph{lettre})
- \uput[90](\Alph{lettre}){\Alph{lettre}}
- }
-\end{pspicture}
-\caption{\label{points}Points and lines.}
-\end{figure}
-
-
-\section{Circles}
-A circle is defined by a vector normal for its plan by $(\theta,\varphi)$, with the following parameters for example:
-\begin{verbatim}
-normaleLongitude=60,normaleLatitude=90
-\end{verbatim}
-The coordinates of his centre as well as his radius.
-\begin{verbatim}
-\CircleThreeD(x,y,z){radius}
-\end{verbatim}
-
-The circles of the figure~\ref{circles}, were drawn with the following
-commands:
-
-\begin{figure}[!htb]
-\centering
-\psframebox{%
- \begin{pspicture}(-2.5,-3.5)(3.5,1.5)
- \psset{THETA=50,PHI=50,Dobs=250,Decran=10}
- \multido{\iX=-70+10}{15}{%
- \pNodeThreeD(\iX,0,0){X1}
- \pNodeThreeD(\iX,50,0){X2}
- \psline(X1)(X2)
- }
- \multido{\iY=0+10}{6}{%
- \pNodeThreeD(-70,\iY,0){Y1}
- \pNodeThreeD(70,\iY,0){Y2}
- \psline(Y1)(Y2)%
- }
- \psset{normaleLongitude=0,normaleLatitude=90}
- \multido{\iXorigine=-65+10}{14}{%
- \multido{\iYorigine=5+10}{5}{%
- \CircleThreeD[linecolor=red](\iXorigine,\iYorigine,0){5}%
- }%
- }
- \end{pspicture}%
-}
-\caption{\label{circles}circles.}
-\end{figure}
-
-\begin{verbatim}
-\psset{normaleLongitude=0,%
- normaleLatitude=90}
-\multido{\iXorigine=-65+10}{14}{%
- \multido{\iYorigine=5+10}{5}{%
- \CircleThreeD[linecolor=red]%
- (\iXorigine,\iYorigine,0){5}}}
-\end{verbatim}
-
-\section{The macros and the options}
-\subsection{The colors of the cube, the pyramid and tetraedre}
-
-The predefined colors for the different sides of a cube are
-always set in the \verb+rgb+ mode :
-\begin{verbatim}
-CubeColorFaceOne=1 1 0,%
-CubeColorFaceTwo=0.9 0.9 0,%
-CubeColorFaceThree=0.8 0.8 0,%
-CubeColorFaceFour=0.7 0.7 0,%
-CubeColorFaceFive=0.65 0.65 0,%
-CubeColorFaceSix=0.75 0.75 0
-\end{verbatim}
-
-The colors for the pyramid and the tetraedre are taken from the predefined ones:
-\begin{verbatim}
-ColorFaceD=cyan,
-ColorFaceA=magenta,
-ColorFaceB=red,
-ColorFaceC=blue,
-ColorFaceE=yellow
-\end{verbatim}
-
-They can be changed in the usual way with the \verb+\psset+ macro.
-
-
-\subsection{Common parameters}
-\verb+RotX=<value>, RotY=<value>, RotZ=<value>+
-
-The predefined value is zero, means no rotation.
-
-\subsection{Cube}
-The following command places a parallelepiped with a length of $a=40$, $b=20$ and $c=10$ units
-and it is placed with its center at the point $x=25$, $y=25$ and $z=25$
-
-\begin{verbatim}
-\CubeThreeD[A=20,B=10,C=5](25,25,25)
-\end{verbatim}
-
-\begin{figure}[!htb]
-\centering
-\begin{pspicture}(-3,-3)(3,3.5)
-\psset{PHI=30,THETA=45,Dobs=200}
-\PlansOXYZ\AxesThreeD(55)
-\FrameThreeD[normaleLongitude=0,%
- normaleLatitude=90,%
- fillstyle=vlines,hatchsep=0.4mm](25,25,0)(-10,-15)(10,15)
-\FrameThreeD[normaleLongitude=0,%
- normaleLatitude=0,%
- fillstyle=vlines,hatchsep=0.4mm](0,25,25)(-10,-5)(10,5)
-\FrameThreeD[normaleLongitude=90,%
- normaleLatitude=0,%
- fillstyle=vlines,hatchsep=0.4mm](25,0,25)(-15,-5)(15,5)
-\CubeThreeD[A=15,B=10,C=5](25,25,25)%
-\end{pspicture}
-\caption{\label{Prisme}Parallelepiped}
-\end{figure}
-
-In other words: the length of the sides is \verb+2A,2B,2C+ (see figure~\ref{Prisme}).
-
-For rotations, let us consider the result of a rotation around one of the axes, while knowing that it is possible to combine them. The corresponding rotation of projection on the horizontal level is obtained with the parameter: \verb+normaleLongitude=<degrees>+ (figure~\ref{PrismeRotZ}).
-
-\begin{figure}[!htb]
-\centering
-\begin{pspicture}(-3,-3)(3,3.5)
-\psset{PHI=30,THETA=45,Dobs=200,RotZ=60}
-\PlansOXYZ\AxesThreeD(55)
-% la projection sur le plan Oxy
-\FrameThreeD[normaleLongitude=60,%
- normaleLatitude=90,%
- fillstyle=vlines,hatchsep=0.4mm](25,25,0)(-10,-15)(10,15)
-\CubeThreeD[A=15,B=10,C=5](25,25,25)%
-\end{pspicture}
-\caption{\label{PrismeRotZ}The same parallelepiped rotated with \texttt{RotZ=60}.}
-\end{figure}
-
-There is no difference to a die, except that all sides have the same length.
-
-
-\begin{figure}[!htb]
-\centering
-\begin{pspicture}(-3,-3)(3,3.5)
-\psset{PHI=30,THETA=45,Dobs=200,RotZ=60,,RotX=90}
-\PlansOXYZ\AxesThreeD(55)
-% la projection sur le plan Oxy
-\FrameThreeD[normaleLongitude=60,%
- normaleLatitude=90,%
- fillstyle=vlines,hatchsep=0.4mm](25,25,0)(-5,-15)(5,15)
-\CubeThreeD[A=15,B=10,C=5](25,25,25)%
-\end{pspicture}
-\caption{\label{PrismeRotXRotZ}The same parallelepiped, rotated with the values \texttt{RotX=90,RotZ=60}}
-\end{figure}
-
-
-\subsection{Cylinder and circle}
-In addition to the already quoted optional parameters the cylinder requires the obligatory parameters:
-\begin{verbatim}
-\CylindreThreeD[...](x,y,z){radius}{height}
-\end{verbatim}
-
-Projection on the horizontal level is obtained with the following values:
-
-\begin{verbatim}
-\CircleThreeD[normaleLongitude=0,%
- normaleLatitude=90,%
- fillstyle=vlines,%
- hatchsep=0.4mm](30,30,0){10}
-\end{verbatim}
-
-The circle macro needs the following parameters:
-
-\begin{verbatim}
-\CircleThreeD[...](x,y,z){radius}
-\end{verbatim}
-
-Figure~\ref{CylindreDemo} shows an example of the above macros.
-
-\begin{figure}[!ht]
-\centering
-\begin{pspicture}(-3,-3)(3,3.5)
-\psset{PHI=30,THETA=45,Dobs=200}
-\PlansOXYZ\AxesThreeD(55)
-% la projection sur le plan Oxy
-\CircleThreeD[normaleLongitude=0,%
- normaleLatitude=90,%
- fillstyle=vlines,%
- hatchsep=0.4mm](30,30,0){10}
-\CylindreThreeD[fillstyle=solid,fillcolor=yellow,%
- linewidth=0.1mm](30,30,20){10}{30}%
-\end{pspicture}
-\caption{\label{CylindreDemo}A cylinder with a radius of $10$ units and a
- height of $50$ units
- with its base center at \texttt{(30,30,20)}.%
-}
-\end{figure}
-
-
-\section{See the interior of a cube}
-The following option makes it possible to visualize the interior of the box, the result is seen in the figure~\ref{Cube inside} :
-
-\begin{verbatim}
-\DieThreeD(0,0,0)%
-\begin{psclip}{%
-\FrameThreeD[normaleLongitude=0,%
- normaleLatitude=90]%
- (0,0,10)(-10,-10)(10,10)}%
-\DieThreeD[CubeInside=true](0,0,0)%
-\end{psclip}%
-\end{verbatim}
-
-\begin{figure}
-\centering
-\begin{pspicture}(-2,-2)(2,3.5)
- \psset{A=10,B=10,C=10,PHI=60,THETA=-60}
- \DieThreeD(0,0,0)%
- \begin{psclip}{%
- \FrameThreeD[normaleLongitude=0,%
- normaleLatitude=90](0,0,10)(-10,-10)(10,10)}%
- \DieThreeD[CubeInside=true](0,0,0)%
- \end{psclip}%
- \FrameThreeD[normaleLongitude=0,%
- normaleLatitude=90,linewidth=1mm](0,0,10)(-10,-10)(10,10)%
-\end{pspicture}
-\caption{\label{Cube inside}An empty box.}
-\end{figure}
-
-
-\nocite{*}
-
-\bibliographystyle{plain}
-\bibliography{pst-vue3d-doc}
-
-\end{document}