summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2019-01-17 21:28:05 +0000
committerKarl Berry <karl@freefriends.org>2019-01-17 21:28:05 +0000
commitdf2e480fb0e83b9160de826127a9200714b9f3f2 (patch)
tree4ffb3525a2533fd77c6aa746a2fc1a81c2b78329 /Master/texmf-dist/doc/generic
parentdbec98190c3f22b32302cfc20460edf01458bed7 (diff)
pst-magneticfield (17jan19)
git-svn-id: svn://tug.org/texlive/trunk@49738 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/Changes2
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/README23
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/README.md21
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdfbin1935584 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex502
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdfbin1932614 -> 29922691 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex135
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdfbin1989800 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex706
9 files changed, 151 insertions, 1238 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/Changes b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes
index 2a27ada9221..38ac4bcbc41 100644
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/Changes
+++ b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes
@@ -3,6 +3,8 @@ pst-magneticfield.sty --------
pst-magneticfield.tex --------
+1.15 2019-01-17 - added bar magnet
+1.14 2011-05-01 - allow arrow definition for the current
1.13 2010-06-08 - fixed aspurious blank in \pstmageneticfield
1.12 2010-06-07 - allow density plots
- move PS code into a pro file
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/README b/Master/texmf-dist/doc/generic/pst-magneticfield/README
deleted file mode 100644
index f23740077a2..00000000000
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/README
+++ /dev/null
@@ -1,23 +0,0 @@
-The files ----------------
-Save the files pst-magneticfield.sty|tex in a directory, which is part of your
-local TeX tree.
-Then do not forget to run texhash to update this tree.
-For more information see the documentation of your LATEX distribution
-on installing packages into your LATEX distribution or the
-TeX Frequently Asked Questions:
-(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages).
-
-
-The documentation -------------------
-To get a smaller size of the generated pdf file run the
-Makefile or by hand
-"pst2pdf <file> --Iext=.png --Iscale=0.5 --DPI=150". This will
-create eps/pdf/png images in a subdirectory images/ and then
-using only the png ones for the last _pdflatex_ run. The
-file size can be reduced to about 20% of the one created with
-ps2pdf. The pdf file is saved as yfile>-pdf.pdf.
-
-When running the documentation in a traditional way, then
-uncomment the line (in the preamble)
-
-%\newenvironment{postscript}{}{} % uncomment, when running with latex
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/README.md b/Master/texmf-dist/doc/generic/pst-magneticfield/README.md
new file mode 100644
index 00000000000..fcfa952ec8d
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-magneticfield/README.md
@@ -0,0 +1,21 @@
+# pst-magnetiocfield: creating magnetic field lines in 2D and 3D
+
+Save the files pst-magneticfield.sty|pro|tex in a directory, which is part of your
+local TeX tree. The pro file should go into $TEXMF/dvips/pstricks/
+Then do not forget to run texhash to update this tree.
+
+pst-magneticfield needs pstricks, which should
+be part of your local TeX installation, otherwise get it from a
+CTAN server, http://mirror.ctan.org
+
+PSTricks is PostScript Tricks, the documentation cannot be run
+with pdftex, use the sequence latex->dvips->ps2pdf or
+pdflatex with package auto-pst-pdf or xelatex.
+
+%% This program can be redistributed and/or modified under the terms
+%% of the LaTeX Project Public License Distributed from CTAN archives
+%% in directory macros/latex/base/lppl.txt.
+
+
+%% $Id: README.md 912 2019-01-17 10:46:15Z herbert $
+
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf
deleted file mode 100644
index cf430cfddc0..00000000000
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex
deleted file mode 100644
index 0a171359bbb..00000000000
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex
+++ /dev/null
@@ -1,502 +0,0 @@
-%% $Id: pst-magneticfield-docDE.tex 343 2010-06-10 15:08:37Z herbert $
-\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
- headexclude,footexclude,oneside]{pst-doc}
-\usepackage[latin1]{inputenc}
-\usepackage{pst-magneticfield}
-\let\pstMFfv\fileversion
-
-%\newenvironment{postscript}{}{} % uncomment, when running with latex
-
-\lstset{pos=t,language=PSTricks,
- morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily}
-\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}}
-\def\bgImage{}
-%
-\begin{document}
-
-\title{\texttt{pst-magneticfield}}
-\subtitle{Magnetische Feldlinien einer langgestreckten Spule; v.\pstMFfv}
-\author{J\"{u}rgen Gilg\\ Manuel Luque\\Herbert Vo\ss}
-%\docauthor{J\"{u}rgen Gilg\\Manuel Luque\\Herbert Vo\ss}
-\date{\today}
-\maketitle
-
-
-\clearpage%
-\begin{abstract}
-Das Paket \LPack{pst-magneticfield} zeichnet magnetische Feldlinien einer langgestreckten Spule.
-Die physikalischen Gr\"{o}{\ss}en sind: Radius der Spule, ihre L\"{a}nge und die Anzahl ihrer
-Windungen. Die voreingestellten Werte sind:
-
-\begin{enumerate}
- \item Anzahl der Windungen: \LKeyset{N=6};
- \item Radius: \LKeyset{R=2};
- \item L\"{a}nge: \LKeyset{L=4}.
-\end{enumerate}
-
-Die magnetischen Feldlinien wurden mit dem Runge-Kutta 2 Verfahren angen\"{a}hert, welches sich
-nach einigen anderen Versuchen als der beste Kompromiss zwischen Re\-chen\-ge\-schwin\-dig\-keit und
-Zeichengenauigkeit der Linien erwies. Die Berechnung der notwendigen elliptischen Integrale
-wurden mit einer polynomialen N\"{a}herung aus dem "Handbook of Mathematical Functions
-With Formulas, Graph, And Mathematical Tables" von Milton Abramowitz und Irene.\,A. Stegun
-(\url{http://www.math.sfu.ca/~cbm/aands/})~\cite{abramowitz} realisiert.
-\end{abstract}
-
-\clearpage
-\tableofcontents
-
-\clearpage
-\section{Einleitung}
-
-Im Folgenden stellen wir die Optionen mit ihren voreingestellten Werten vor:
-\begin{enumerate}
- \item Die Maximalzahl von Berechnungspunkten einer jeden Feldlinie um die gesamte Spule: \LKeyset{pointsB=500};
- \item die Maximalzahl von Berechnungspunkten einer jeden Feldlinie um die Windungen: \LKeyset{pointsS=1000};
- \item die Anzahl der Feldlinien um die gesamte Spule: \LKeyset{nL=8};
- \item Schrittweite f\"{u}r die Feldlinien um die gesamte Spule: \LKeyset{PasB=0.02};
- \item Schrittweite f\"{u}r die Feldlinien um die Windungen: \LKeyset{PasS=0.00275};
- \item nur Feldlinien um individuell ausgew\"{a}hlte Windungen: \LKeyset{numSpires=\{\}}, nach dem Gleichheitsszeichen "=" schreiben wir die Nummer(n) der Windung(en) \textsf{1 2 3 etc.} ausgehend von der obersten Windung. Voreingestellt ist, dass bei allen Windungen die Feldlinien gezeichnet werden.
- \item Die Anzahl der Feldlinien um die gew\"{a}hlten Windungen: \LKeyset{nS=1}.
- \item Falls wir die Spule selbst nicht zeichnen m\"{o}chten, erledigt dies die Option \LKeyset{drawSelf=false} (hilfreich bei 3D-Ansichten).
- \item Die Optionen der Spule (Farbe, Linienst\"{a}rke, Pfeile) sind:
- \begin{enumerate}
- \item Die Farbe und Linienst\"{a}rke der Spule: \Lkeyset{styleSpire=styleSpire};
- \item die Stromst\"{a}rkepfeile: \Lkeyset{styleCourant=sensCourant}.
- \end{enumerate}
-\begin{verbatim}
-\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth}
-\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1}
-\end{verbatim}
-
- \item Die Farbe und Linienst\"{a}rke der Feldlinien can mit den g\"{a}ngigen Parametern von \LPack{pstricks} eingestellt werden: \Lkeyword{linecolor} und \Lkeyword{linewidth}
-\end{enumerate}
-
-Der Befehl \Lcs{psmagneticfieldThreeD} erlaubt eine 3D-Ansicht der Spule und der magnetischen Feldlinien.
-
-\clearpage
-\section{Einfluss der physikalischen Gr\"{o}{\ss}en auf das Erscheinungsbild der Feldlinien}
-\subsection{Die L\"{a}nge der Spule}
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5cm}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5cm}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-\textbf{Anmerkung:} Um das Erscheinungsbild der zweiten Spule zu verbessern, mussten wir die Anzahl der Berechungspunkte erh\"{o}hen und die Schrittweite verkleinern,
- \begin{postscript}
-\Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}
-\end{postscript},
-was jedoch eine Erh\"{o}hung der Rechenzeit mit sich brachte.
-
-
-\clearpage
-
-\subsection{Die Anzahl der Windungen}
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-
-\clearpage
-\section{Optionen f\"{u}r die Linien}
-\subsection{Die Anzahl der Feldlinien}
-
-Auf Grund der Symmetrie des Problems ist die gew\"{a}hlte Anzahl der Feldlinien \Lkeyword{nL} nur die H\"{a}lfte der tats\"{a}chlich gezeichneten Feldlinien. Hinzu kommt noch eine Feldlinie, die in Richtung der Symmetrieachse der Spule zeigt. Die Anzahl der Feldlinien um die Windungen herum \Lkeyword{nS} kommen auch noch hinzu, diese k\"{o}nnen jedoch mit \Lkeyword{numSpires} individuell ausgew\"{a}hlt werden.
-
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]}
-\end{pspicture*}
-\end{lstlisting}
-
-\clearpage
-\subsection{Die Anzahl der Berechnungspunkte und die Schrittweite}
-
-Die Feldlinien wurden mit einem numerischen Verfahren (Runge-Kutta 2) berechnet und dementsprechend h\"{a}ngt die Genauigkeit der Linien entscheidend ab von der Schrittweite und der Anzahl der Berechnungspunkte, wie in den folgenden zwei Beispielen gezeigt wird:
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-Sollten die voreingestellten Werte f\"{u}r eine individuelle Gestaltung nicht passen, dann muss man mit den Werten \Lkeyword{pasB}, \Lkeyword{pointsB} (bzw. \Lkeyword{pasS}, \Lkeyword{pointsS}) spielen, bis es passt.
-
-
-
-
-\clearpage
-
-\section{Der Parameter \nxLkeyword{numSpires}}
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-8,-10)(8,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10)
-\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9)
-\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}\quad
-\begin{pspicture*}[showgrid](0,-10)(16,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10)
-\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9)
-\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-8,-10)(8,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10)
-\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9)
-\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}\quad
-\begin{pspicture*}[showgrid](0,-10)(16,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10)
-\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9)
-\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}
-\end{lstlisting}
-
-\clearpage
-\section{Der Parameter \nxLkeyword{AntiHelmholtz}}
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture*}[showgrid](-7,-6)(7,6)
-\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}}]
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.75,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture*}[showgrid](-7,-6)(7,6)
-\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}}]
-\end{pspicture*}
-\end{lstlisting}
-
-
-\clearpage
-\section{3D-Ansichten}
-3D-Ansichten sind mit den zwei folgenden Makros m\"{o}glich
-
-\begin{BDef}
-\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\
-\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2
-\end{BDef}
-
-in denen die in den vorigen Abschnitten besprochenen Parameter die Optionen von \Lcs{psmagneticfield} darstellen und mit \verb+(x1,y1)(x2,y2)+ werden die
-Koordinaten der linken unteren und rechten oberen Ecke des Gitternetzes festgelegt, welches das Feldlinienbild einrahmt wie mit \Lcs{psframe}. Wir k\"{o}nnen die Option \Lkeyword{viewpoint} des Pakets \LPack{pst-3d} nutzen, um den Ansichtspunkt zu w\"{a}hlen/\"{a}ndern.
- Die voreingestellten Parameter f\"{u}r das Gitternetz sind:
-
-\begin{verbatim}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10}
-\newpsstyle{cadre}{linecolor=green!20}
-\end{verbatim}
-
-M\"{o}glichkeiten zur Gestaltung des Gitternetzes zeigen die folgenden zwei Beispiele:
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.7cm}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.7cm}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6)
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.7cm}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6)
-\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.7cm}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6)
-\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75cm,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.75cm,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6)
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\section{Feldst\"arkendichte}
-
-\begin{center}
-\begin{postscript}
-\begin{pspicture}(-6,-4)(6,4)
-\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\begin{pspicture}(-6,-4)(6,4)
-\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75}
-\begin{pspicture}(-6,-5)(6,5)
-\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.75}
-\begin{pspicture}(-6,-5)(6,5)
-\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75,AntiHelmholtz,
- R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\begin{pspicture*}(-7,-6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-
-\begin{lstlisting}
-\psset{unit=0.75,AntiHelmholtz,
- R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\begin{pspicture*}(-7,-6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
-\end{pspicture*}
-\end{lstlisting}
-
-
-\clearpage
-\section{Liste aller optionalen Parameter von \texttt{pst-magneticfield}}
-
-\xkvview{family=pst-magneticfield,columns={key,type,default}}
-
-\nocite{*}
-\bgroup
-\raggedright
-\bibliographystyle{plain}
-\bibliography{pst-magneticfield-doc}
-\egroup
-
-\printindex
-\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf
index b24d1f038e2..9f418f3c532 100644
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf
+++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex
index 100a0253d56..7332ee4e06d 100644
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex
+++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex
@@ -1,17 +1,19 @@
-%% $Id: pst-magneticfield-docEN.tex 343 2010-06-10 15:08:37Z herbert $
-\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
+%% $Id: pst-magneticfield-docEN.tex 912 2019-01-17 10:46:15Z herbert $
+\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings,
headexclude,footexclude,oneside]{pst-doc}
-\usepackage[latin1]{inputenc}
\usepackage{pst-magneticfield}
\let\pstMFfv\fileversion
+\usepackage{graphicx}
\lstset{pos=t,language=PSTricks,
morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily}
-%\newenvironment{postscript}{}{} % uncomment, when running with latex
+\newenvironment{postscript}{}{} % uncomment, when running with latex
\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}}
\def\bgImage{}
-%
+
+\addbibresource{pst-magneticfield-doc.bib}
+
\begin{document}
\title{\texttt{pst-magneticfield}}
@@ -506,6 +508,126 @@ with setting the keyword \Lkeyword{setgray}.
\clearpage
+\section{Stream density}
+
+
+\begin{center}
+\begin{postscript}
+\begin{pspicture}(-6,-4)(6,4)
+\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
+\end{pspicture}
+\end{postscript}
+\end{center}
+
+\begin{lstlisting}
+\begin{pspicture}(-6,-4)(6,4)
+\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
+\end{pspicture}
+\end{lstlisting}
+
+\begin{center}
+\begin{postscript}
+\psset{unit=0.75}
+\begin{pspicture}(-6,-5)(6,5)
+\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
+\end{pspicture}
+\end{postscript}
+\end{center}
+
+\begin{lstlisting}
+\psset{unit=0.75}
+\begin{pspicture}(-6,-5)(6,5)
+\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
+\end{pspicture}
+\end{lstlisting}
+
+
+\begin{center}
+\begin{postscript}
+\psset{unit=0.75,AntiHelmholtz,
+ R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
+ nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
+\begin{pspicture*}(-7,-6)(7,6)
+\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
+\end{pspicture*}
+\end{postscript}
+\end{center}
+
+
+\begin{lstlisting}
+\psset{unit=0.75,AntiHelmholtz,
+ R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
+ nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
+\begin{pspicture*}(-7,-6)(7,6)
+\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
+\end{pspicture*}
+\end{lstlisting}
+
+
+
+\section{Bar magnet}
+The magnetic field of a bat magnet can be simulated. There is one macro for the bar magnet, which will be
+put over one of the above created mnagnetic fields.
+
+\begin{BDef}
+\Lcs{psBarMagnet}\OptArgs\OptArg{\Largr{$x,y$}}
+\end{BDef}
+
+\begin{LTXexample}
+\begin{pspicture}(-1,-2)(12,2)
+\psBarMagnet% (0,0) is assumed
+\psBarMagnet(2,0.5)
+\psBarMagnet*(4,0)
+\psBarMagnet[rot=90](7,0)
+\psBarMagnet[rot=45](10,0)
+\end{pspicture}
+\end{LTXexample}
+
+
+Bar magnet and field can be put of the other by single commands:
+
+
+\begin{LTXexample}
+\begin{pspicture*}[showgrid=false](-5,-8)(5,8)
+\psset{linecolor=blue}
+\psscalebox{0.8 1.2}{\psmagneticfield[R=1,L=5,N=5,pointsS=200,nL=9,nS=0,PasB=0.1,numSpires=0](-8,-10)(8,10)}
+\rput(0,0){\psscalebox{2.2 3.0}{\psBarMagnet}}
+\end{pspicture*}
+\end{LTXexample}
+
+
+or by using the optional argument \Lkeyword{showField}:
+
+\begin{LTXexample}
+\begin{pspicture*}(-5,-8)(5,8)
+\psBarMagnet[showField](0,0)
+\end{pspicture*}
+\end{LTXexample}
+
+A rotation has to be done with the command \Lcs{rotatebox} from package \LPack{graphicx}:
+
+
+\begin{LTXexample}
+\begin{pspicture*}(-5,-8)(5,8)
+\rotatebox{180}{\psBarMagnet[showField](0,0)}
+\end{pspicture*}
+\end{LTXexample}
+
+
+Scaling is possible with the optional argument \Lkeyword{magnetscale} and all options which
+are valid for
+
+
+\begin{LTXexample}
+\begin{pspicture*}(-5,-8)(5,8)
+\psBarMagnet[showField,nL=18,magnetScale=1 1.5](0,0)
+\end{pspicture*}
+\end{LTXexample}
+
+
+
+
+\clearpage
\section{List of all optional arguments for \texttt{pst-magneticfield}}
\xkvview{family=pst-magneticfield,columns={key,type,default}}
@@ -513,8 +635,7 @@ with setting the keyword \Lkeyword{setgray}.
\nocite{*}
\bgroup
\raggedright
-\bibliographystyle{plain}
-\bibliography{pst-magneticfield-doc}
+\printbibliography
\egroup
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf
deleted file mode 100644
index 239b57cf325..00000000000
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex
deleted file mode 100644
index 38edd66a0d5..00000000000
--- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex
+++ /dev/null
@@ -1,706 +0,0 @@
-%% $Id: pst-magneticfield-docFR.tex 343 2010-06-10 15:08:37Z herbert $
-\documentclass[11pt,english,french,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
- headexclude,footexclude,oneside]{pst-doc}
-\usepackage[latin1]{inputenc}
-\usepackage{pst-magneticfield}
-\let\pstMFfv\fileversion
-
-%\newenvironment{postscript}{}{} % uncomment, when running with latex
-
-\lstset{pos=t,language=PSTricks,
- morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily}
-\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}}
-\def\bgImage{}
-%
-\begin{document}
-
-\title{\texttt{pst-magneticfield}}
-\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv}
-\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss}
-%\docauthor{Juergen Gilg\\Manuel Luque\\Herbert Vo\ss}
-\date{\today}
-\maketitle
-
-
-\clearpage%
-\begin{abstract}
-Le package \LPack{pst-magneticfield} a pour objet de tracer l'allure des lignes de
-champ d'un solénoïde. Les paramètres physiques du solénoïde sont le rayon, le nombre
-de spires et la longueur, les valeurs par défaut sont données ci-dessous :
-\begin{enumerate}
- \item le nombre de spires : \LKeyset{N=6} ;
- \item le rayon : \LKeyset{R=2} ;
- \item la longueur : \LKeyset{L=4}.
-\end{enumerate}
-Le tracé a été modélisé avec la méthode de Runge-Kutta 2 qui, après plusieurs essais,
-semble être le meilleur compromis entre rapidité des calculs et précision du tracé.
-Le calcul des intégrales elliptiques nécessaires à l'évaluation du champ magnétique
-a été réalisé par des approximations polynômiales tirées du ``\textit{Handbook of
-Mathematical Functions With Formulas, Graph, And Mathematical Tables}'' de
-Milton Abramowitz et Irene.A. Stegun \url{http://www.math.sfu.ca/~cbm/aands/}.
-\end{abstract}
-
-\clearpage
-\tableofcontents
-
-
-\clearpage
-
-\section{Introduction}
-Les options de tracé, avec les valeurs par défaut, sont les suivantes :
-\begin{enumerate}
- \item Le nombre de points maximum sur chaque ligne de l'ensemble de la bobine : \LKeyset{pointsB=500} ;
- \item le nombre de points maximum sur des lignes autour de spires choisies : \LKeyset{pointsS=1000} ;
- \item le nombre de lignes de l'ensemble de la bobine : \LKeyset{nL=8} ;
- \item le pas du tracé pour les lignes de l'ensemble de la bobine : \LKeyset{PasB=0.02} ;
- \item le pas du tracé pour les lignes autour de spires choisies : \LKeyset{PasS=0.00275} ;
- \item la possibilité de choisir individuellement des spires pour améliorer le rendu
- du tracé : \LKeyset{numSpires=\{\}} , on place à la suite du signe ``='' les numéros
- des spires \textsf{1 2 3 etc.} en partant de la spire du haut. Par défaut,
- toutes les spires sont ciblées.
- \item Le nombre de lignes de champ autour des spires choisies : \LKeyset{nS=1}.
- \item On peut décider de ne pas représenter le solénoïde avec l'option \LKeyset{drawSelf=false},
- c'est utile pour la représentation en 3D.
- \item les options de tracé des spires (couleur, épaisseur, flèches) sont :
- \begin{enumerate}
- \item La couleur et l'épaisseur du trait des spires : \Lkeyset{styleSpire=styleSpire} ;
- \item le fléchage du sens du courant : \Lkeyset{styleCourant=sensCourant}.
- \end{enumerate}
-
-\begin{verbatim}
-\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth}
-\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1}
-\end{verbatim}
-
- \item La couleur et l'épaisseur des lignes de champ se règlent avec les paramètres usuels
- de \LPack{pstricks} : \Lkeyword{linecolor} et \Lkeyword{linewidth}.
- \item On peut mettre en image de fond la carte de la densité de flux avec l'option \textsf{StreamDensityPlot}, celle-ci est par défaut en couleur, mais il est possible de l'afficher en niveaux de gris avec \textsf{setgray}.
-\end{enumerate}
-Une commande \Lcs{psmagneticfieldThreeD} permet la visualisation en 3D du solénoïde et
-des lignes de champ.
-
-\clearpage
-\section{Influence des paramètres physiques sur la carte du champ magnétique}
-\subsection{La longueur du solénoïde}
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5cm}
-\begin{pspicture*}(-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,StreamDensityPlot](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,StreamDensityPlot]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5cm}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-\textbf{Remarque :} pour affiner le tracé du deuxième solénoïde, on a du augmenter
-le nombre de points et diminuer le pas du tracé :
-\begin{postscript}
-\Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}
-\end{postscript},
-ce qui rallonge la durée des calculs.
-
-
-
-\clearpage
-
-\subsection{Le nombre de spires}
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-\clearpage
-\section{Les options de tracé}
-\subsection{Le nombre de lignes de champ}
-En raison de la symétrie du phénomène le nombre de lignes de champ donné en option
-\Lkeyword{nL} est la moitié du nombre réellement représenté auquel il faut ajouter
-la ligne confondue avec l'axe de révolution. Il faut aussi rajouter les lignes
-autour des spires \Lkeyword{nS}, ces spires pouvant être choisies individuellement
-avec \Lkeyword{numSpires}.
-
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]}
-\end{pspicture*}
-\end{lstlisting}
-
-\clearpage
-\subsection{Le nombre de points et le pas du tracé}
-Le tracé des lignes de champ est réalisé par une méthode numérique (RK2) et il s'ensuit
-le pas du tracé et le nombre de points choisis influent sur la précision du tracé,
-comme dans les deux exemples ci-dessous :
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]}
-\end{pspicture*}
-\begin{pspicture*}[showgrid](-7,-8)(7,8)
-\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
-\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
-\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
-\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
-\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]}
-\end{pspicture*}
-\end{lstlisting}
-
-
-Si les valeurs par défaut ne conviennent pas il faut donc trouver par des
-essais les valeurs qui donnent un tracé correct.
-
-
-\clearpage
-
-\section{Le paramètre: numSpires}
-\begin{center}
-\begin{postscript}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-8,-10)(8,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10)
-\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9)
-\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}\quad
-\begin{pspicture*}[showgrid](0,-10)(16,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10)
-\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9)
-\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-
-\begin{lstlisting}
-\psset{unit=0.5}
-\begin{pspicture*}[showgrid](-8,-10)(8,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10)
-\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9)
-\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}\quad
-\begin{pspicture*}[showgrid](0,-10)(16,10)
-\psset{linecolor=blue}
-\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10)
-\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9)
-\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]}
-\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
-\end{pspicture*}
-\end{lstlisting}
-
-\clearpage
-\section{Le param\`etre \nxLkeyword{AntiHelmholtz}}
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture*}[showgrid](-7,-6)(7,6)
-\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}}]
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.75,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture*}[showgrid](-7,-6)(7,6)
-\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}}]
-\end{pspicture*}
-\end{lstlisting}
-
-
-\clearpage
-\section{La vue en 3D}
-La vue en 3D utilise la commande
-
-\begin{BDef}
-\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\
-\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2
-\end{BDef}
-
-dans laquelle les options sont les paramètres de
-\Lcs{psmagneticfield} et \verb+(x1,y1)(x2,y2)+ les coordonnées des coins
-inférieur gauche et supérieur droit du cadre dans lequel est encapsulée
-la carte du champ comme pour \Lcs{psframe}. On pourra utiliser l'option \Lkeyword{viewpoint} du
-package \LPack{pst-3d} pour modifier le point de vue.
-
-Les options du cadre sont, par défaut, les suivantes :
-\begin{verbatim}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10}
-\newpsstyle{cadre}{linecolor=green!20}
-\end{verbatim}
-
-Ce sont donc celles-ci qu'il faudra modifier si on souhaite en changer, comme dans l'exemple ci-dessous.
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.7cm}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.7cm}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6)
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.7cm}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6)
-\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.7cm}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6)
-\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75cm,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.75cm,AntiHelmholtz,N=2,
- R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant}
-\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
-\newpsstyle{cadre}{linecolor=yellow!50}
-\begin{pspicture}(-7,-6)(7,6)
-\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6)
-\end{pspicture}
-\end{lstlisting}
-
-
-\section{Density plots}
-\begin{center}
-\begin{postscript}
-\begin{pspicture}(-6,-4)(6,4)
-\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\begin{pspicture}(-6,-4)(6,4)
-\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75}
-\begin{pspicture}(-6,-5)(6,5)
-\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
-\end{pspicture}
-\end{postscript}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.75}
-\begin{pspicture}(-6,-5)(6,5)
-\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{center}
-\begin{postscript}
-\psset{unit=0.75,AntiHelmholtz,
- R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\begin{pspicture*}(-7,-6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
-\end{pspicture*}
-\end{postscript}
-\end{center}
-
-
-\begin{lstlisting}
-\psset{unit=0.75,AntiHelmholtz,
- R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
- nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
-\begin{pspicture*}(-7,-6)(7,6)
-\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
-\end{pspicture*}
-\end{lstlisting}
-
-\section{Un article très intéressant}
-Il s'agit de celui paru dans le bulletin de l'union des physiciens \no{}918(2) de novembre 2009 : \textit{Intégrales elliptiques et champ magnétique créé par une spire circulaire}, dans lequel Thierry PRÉ démontre l'expression des composantes du champ magnétique de deux façons, à partir de la loi de Biot-Savart, puis à partir du potentiel vecteur ; il donne aussi différentes représentations des lignes de champ de plusieurs configurations de spires, obtenues à l'aide du logiciel \textit{Mathematica}.
-
-\url{http://www.udppc.asso.fr/bupdoc/textes/fichierjoint/918/0918D119.zip}
-
-Thierry met les sources \textsf{Mathematica} des figures illustrant son article à la disposition de ceux qui ont la chance de posséder ou de pouvoir utiliser ce logiciel :
-\begin{verbatim}
-Commandes à copier dans mathematica pour les figures de mon article .........
-
-**************************************************************************************************************
-bx[x_, y_, a_, R_, I_] :=
- I*(y - R)/x/
- Sqrt[(a + Abs[x])^2 + (y - R)^2]*(-EllipticK[
- 4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)] + (a^2 +
- Abs[x]^2 + (y - R)^2)/((a - Abs[x])^2 + (y - R)^2)*
- EllipticE[4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)])
-**************************************************************************************************************
-by[x_, y_, a_, R_, I_] :=
- I/Sqrt[(a + Abs[x])^2 + (y - R)^2]*(EllipticK[
- 4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)] + (a^2 -
- Abs[x]^2 - (y - R)^2)/((a - Abs[x])^2 + (y - R)^2)*
- EllipticE[4*a*Abs[x]/((a + Abs[x])^2 + (y - R)^2)])
-**************************************************************************************************************
-StreamPlot[{bx[x, y, 1, 0, 1], by[x, y, 1, 0, 1]}, {x, -4, 4}, {y, -4,
- 4}]
-
-**************************************************************************************************************
-
-StreamDensityPlot[{bx[x, y, 1, 0, 1], by[x, y, 1, 0, 1]}, {x, -4,
- 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-
-StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1],
- by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1]}, {x, -4, 4}, {y, -4, 4},
- ImageSize -> Large, StreamStyle -> Black, ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1] +
- bx[x, y, 1, 0, 1],
- by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1] + by[x, y, 1, 0, 1]}, {x, -4,
- 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, 1] +
- bx[x, y, 1, 1.5, 1] + bx[x, y, 1, -1.5, 1],
- by[x, y, 1, 0.5, 1] + by[x, y, 1, -0.5, 1] + by[x, y, 1, 1.5, 1] +
- by[x, y, 1, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large,
- StreamStyle -> Black, ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-
-StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1] +
- bx[x, y, 1, 2, 1] + bx[x, y, 1, -2, 1] + bx[x, y, 1, 0, 1],
- by[x, y, 1, 1, 1] + by[x, y, 1, -1, 1] + by[x, y, 1, 2, 1] +
- by[x, y, 1, -2, 1] + by[x, y, 1, 0, 1]}, {x, -4, 4}, {y, -4, 4},
- ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-
-StreamDensityPlot[{bx[x, y, 1, 1.5, 1] + bx[x, y, 1, -1.5, 1],
- by[x, y, 1, -1.5, 1] + by[x, y, 1, 1.5, 1]}, {x, -4, 4}, {y, -4, 4},
- ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 1, 1] + bx[x, y, 1, -1, 1],
- by[x, y, 1, -1, 1] + by[x, y, 1, 1, 1]}, {x, -4, 4}, {y, -4, 4},
- ImageSize -> Large, StreamStyle -> Black, ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, 1],
- by[x, y, 1, -0.5, 1] + by[x, y, 1, 0.5, 1]}, {x, -4, 4}, {y, -4, 4},
- ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 0.25, 1] + bx[x, y, 1, -0.25, 1],
- by[x, y, 1, -0.25, 1] + by[x, y, 1, 0.25, 1]}, {x, -4, 4}, {y, -4,
- 4}, ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-
-StreamDensityPlot[{bx[x, y, 1, 0.125, 5] + bx[x, y, 1, -0.125, 5],
- by[x, y, 1, -0.125, 5] + by[x, y, 1, 0.125, 5]}, {x, -4, 4}, {y, -4,
- 4}, ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> "Rainbow" ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 1, -0.5, -1],
- by[x, y, 1, -0.5, -1] + by[x, y, 1, 0.5, 1]}, {x, -4, 4}, {y, -4,
- 4}, ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue ,
- StreamPoints -> Fine]
-
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 0.5, 4] + bx[x, y, 1, -0.5, 2] +
- bx[x, y, 1, 1.5, 8] + bx[x, y, 1, -1.5, 1],
- by[x, y, 1, 0.5, 4] + by[x, y, 1, -0.5, 2] + by[x, y, 1, 1.5, 8] +
- by[x, y, 1, -1.5, 1]}, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large,
- StreamStyle -> Black, ColorFunction -> Hue ,
- StreamPoints -> Fine]
-
-**************************************************************************************************************
-StreamDensityPlot[{bx[x, y, 1, 0.5, 1] + bx[x, y, 0.5, -0.5, 1] +
- bx[x, y, 2, 1.5, 1] + bx[x, y, 0.25, -1.5, 1],
- by[x, y, 1, 0.5, 1] + by[x, y, 0.5, -0.5, 1] + by[x, y, 2, 1.5, 1] +
- by[x, y, 0.25, -1.5, 1]}, {x, -4, 4}, {y, -4, 4},
- ImageSize -> Large, StreamStyle -> Black, ColorFunction -> Hue ,
- StreamPoints -> Fine]
-**************************************************************************************************************
-
-StreamDensityPlot[{
- bx[x - 2, y, 0.5, 0, 1]
- - by[-y + 2, x, 0.5, 0, 1]
- - bx[x + 2, y, 0.5, 0, 1] +
- by[-y - 2, x, 0.5, 0, 1]
- ,
- by[x - 2, y, 0.5, 0, 1] +
- bx[-y + 2, x, 0.5, 0, 1]
- - by[x + 2, y, 0.5, 0, 1]
- - bx[-y - 2, x, 0.5, 0, 1]
- }, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> Hue ,
- StreamPoints -> Fine]
-
-**************************************************************************************************************
-
-StreamDensityPlot[{
- bx[x - 2, y, 0.5, 0, 1]
- - by[-y + 2, x, 0.5, 0, 1]
- - bx[x + 2, y, 0.5, 0, 1] +
- by[-y - 2, x, 0.5, 0, 1] +
- bx[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707),
- 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 -
- by[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707),
- 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 +
- -bx[-0.707*(x + 2*0.707) +
- 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) -
- 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 -
- by[-0.707*(x + 2*0.707) +
- 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707),
- 0.5, 0, 1]*0.707 +
- -bx[-0.707*(x + 2*0.707) -
- 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) +
- 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 +
- by[-0.707*(x + 2*0.707) -
- 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + 0.707*(x + 2*0.707),
- 0.5, 0, 1]*0.707 +
- bx[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707),
- 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 +
- by[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707),
- 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707
- ,
- by[x - 2, y, 0.5, 0, 1] +
- bx[-y + 2, x, 0.5, 0, 1]
- - by[x + 2, y, 0.5, 0, 1]
- - bx[-y - 2, x, 0.5, 0, 1] +
- bx[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707),
- 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 +
- by[0.707*(x - 2*0.707) + 0.707*(y - 2*0.707),
- 0.707*(y - 2*0.707) - 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 +
- bx[-0.707*(x + 2*0.707) +
- 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707),
- 0.5, 0, 1]*0.707 -
- by[-0.707*(x + 2*0.707) +
- 0.707*(y - 2*0.707), -0.707*(y - 2*0.707) - 0.707*(x + 2*0.707),
- 0.5, 0, 1]*0.707 +
- -bx[-0.707*(x + 2*0.707) -
- 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) +
- 0.707*(x + 2*0.707), 0.5, 0, 1]*0.707 -
- by[-0.707*(x + 2*0.707) -
- 0.707*(y + 2*0.707), -0.707*(y + 2*0.707) + 0.707*(x + 2*0.707),
- 0.5, 0, 1]*0.707 +
- -bx[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707),
- 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707 +
- by[0.707*(x - 2*0.707) - 0.707*(y + 2*0.707),
- 0.707*(y + 2*0.707) + 0.707*(x - 2*0.707), 0.5, 0, 1]*0.707
- }, {x, -4, 4}, {y, -4, 4}, ImageSize -> Large, StreamStyle -> Black,
- ColorFunction -> Hue ,
- StreamPoints -> Fine
- ]
-**************************************************************************************************************
-\end{verbatim}
-
-
-
-\clearpage
-\section{Liste des arguments optionnels pour \texttt{pst-magneticfield}}
-
-\xkvview{family=pst-magneticfield,columns={key,type,default}}
-
-\nocite{*}
-\bgroup
-\raggedright
-\bibliographystyle{plain}
-\bibliography{pst-magneticfield-doc}
-\egroup
-
-
-\printindex
-
-
-
-
-\end{document}