diff options
author | Karl Berry <karl@freefriends.org> | 2006-01-09 00:56:57 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-01-09 00:56:57 +0000 |
commit | f07bb53970ee2ecc53f81a206a3d3a67ef665e4a (patch) | |
tree | 6f57a1d62971db79e5ff023bdfd83b22cb971dc9 /Master/texmf-dist/doc/generic/pstricks-add | |
parent | 007f67a693e4d031fd3d792df8e4d5f43e2cb2e7 (diff) |
doc 6
git-svn-id: svn://tug.org/texlive/trunk@85 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pstricks-add')
21 files changed, 10207 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pstricks-add/Changes b/Master/texmf-dist/doc/generic/pstricks-add/Changes new file mode 100644 index 00000000000..73ef5a8beeb --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/Changes @@ -0,0 +1,79 @@ +pstricks-add.pro ----------- (Dominik Rodriguez/hv) + v 0.04 2005-10-06 added subroutines for calculating wavelength to rgb color(hv) + changing name of pst-eqdf.pro to pstricks-add.pro + v 2005.03 2005/05/16 (hv) small changes to the code + v 2005.02 2005/03/05 (dr) white space removal from expression + v 2004.02 2004/11/14 (dr) correction of a priority problem ^ before unary - (new rule FS) + v 2004.01 2004/09/14 (dr) initial version + +pstricks-add ----------- + v 2.70 2005-10-20 - use \def instead of \edef for X|YAxisLabel + - make psgraph correct use of the origin values + - added a new macro \psLNode and \nlput for a + node label with absolute position + v 2.69 2005-10-12 moving the basic arrows into pstricks )-(,]-[ + bugfix for hook arrow + v 2.68 2005-10-09 fix a bug with trigLabels and showorigin + v 2.67 2005-10-08 rewrote \psrotate macro + added three predefined hatchstyles for simulating transparent colors + TRed, TGreen,TBlue + v 2.66 2005-10-06 add more support for Gouraud-shading, emulate the PS subroutines + if not present in the PS level + v 2.65 2005-10-03 add support for Gouraud-shading + v 2.64 2005-09-25 fix a bug in reading ticksize values (\pst@getdimdim} + v 2.63 2005-09-18 fix another bug with option names + v 2.62 2005-09-08 fix new introduced bug in \psbrace + v 2.61 2005-09-08 fix bug in \psbrace + v 2.60 2005-08-28 added some more line fill styles + v 2.59 2005-08-06 bugfix for option intSeparator + add macro \psrotate + v 2.58 2005-07-25 ArrowInside=- for \psbrace + v 2.57 2005-07-07 some improvements to psgraph + v 2.56 2005-06-25 fix bug with \pscustom and poynom + fix introduced trailing space in \readdata + v 2.55 2005-05-26 some tweeks to the code, updating the documentation + v 2.54 2005-05-25 added option ChangeOrder + v 2.53 2005-05-23 dito + v 2.52 2005-05-22 fix bug in psplotTangent + v 2.51 2005-05-21 drop support of option varStep + v 2.50 2005-05-20 first try with psplotDiffEqn, plotting differential equation, + needs _newest_ pst-eqdf.pro and pstricks.pro + v 2.49 2005-05-19 fix bug in psplotTangent and make option showpointa available + v 2.48 2005-05-18 fix some new introduced bugs and make psplotTangent for all + plot macros working + v 2.47 2005-05-17 make psplotTangens also available for the parametric plot + together with the algebraic option + v 2.46 2005-05-16 make psplotTangens also available for the polarplot and + algebraic option + v 2.45 2005-05-16 small changes to the code + v 2.44 2005-05-15 added macro psplotTangent + v 2.43 2005-04-20 some more tweeks to triglabels + v 2.42 2005-04-17 small bugfix with the options + v 2.41 2005-04-17 new option ignoreLines for \readdata + v 2.40 2005-04-13 new option trigLabels + v 2.39 2005-03-17 modify the Rhook subroutine (abs) + v 2.38 2005-03-03 move the loading of a config file into pstricks-add.sty + v 2.37 2005-02-20 drop support of tickstyle (pst-plot), + fix several bugs in connection with the ticksize option + minor code changes + v 2.36 2005-02-20 added missing LabelFactor + v 2.35 2005-02-19 small improvements + v 2.34 2005-02-10 fix bug with comma + v 2.33 2005-01-18 add a config file + v 2.32 2005-01-16 added hook arrow (for bond lines) + v 2.31 2004-12-11 activate \pslinestyle for the axes + v 2.30 2004-12-07 make xyAxes run + v 2.29 2004-12-04 spurious blank in ArrowInside + v 2.28 2004-11-23 small changes to the code + v 2.27 2004-11-19 tickstyle now a pstricks-add key + v 2.26 2004-11-17 spurious blank in \psbrace + v 2.25 2004-11-13 fixed a new introduced bug + v 2.24 2004-11-12 added the psRandom macro for random dots + v 2.23 2004-11-11 added the star option for psgraph + v 2.22 2004-11-04 fixed bug with \psset + v 2.21 2004-10-24 added \psParallelLine for lines parallel to another one + added \psIntersectionPoint(#1)(#2)(#3)(#4){nodeName} + v 2.20 2004-10-24 added \psRelLine for lines relative to another one + v 2.19 2004-10-20 small changes + v 2.18 2004-10-20 add \ncbarr + v 2.17 2004-10-14 new multiple arrows diff --git a/Master/texmf-dist/doc/generic/pstricks-add/README b/Master/texmf-dist/doc/generic/pstricks-add/README new file mode 100644 index 00000000000..0b2dc753ee5 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/README @@ -0,0 +1,50 @@ +pstricks-add redefines a lot of the pstricks macros and uses the extended +version of the keyval package. So be sure that you +- pstricks-add depends on the pstricks.pro Version 1.00, 2005/09/18 + you can get it from http://perce.de/LaTeX/pstricks/ or CTAN +- load pstricks-add at last pstricks related package +- have installed xkeyval with the special pst-xkey + (CTAN: tex-archive/macros/latex/contrib/xkeyval/) +- do not load another package after pstricks-add, which loads + the old keyval.sty or pst-key.tex + +pstricks-add collects a lot of the code which was posted +to the pstricks mailing list and has some more new features: + +- pstricks + o define and calculate colors on PS side + o Gouraud shading + o braces as node connection/linestyle + o line style bar + o arrows, arrows, arrows, ... + +- pst-plot + o new environment psgraph + o new macro pstScalePoints + o new option for logarithmic axes + o new macro and options for ticklines + o new plot option bar and option barwidth + o new options step, start end for plotting data files + o new options xLabel, yLabel + o new option plotNo for multiple data files x y1 y2 y3 ... + o new macro psplotTangent + o new macro psplotDiffEqn + o new option algebraic for infix notation + o new option changeOrder + +- pst-node + o new macro nclineII for a two-colored line + o new option lineAngle for ncdiag + o new macros for interpolation nodes + and linear combination of two vectors + o new macro ncbarr (line with 5 segments) + + +pstricks-add.pro : the prolog file for pstricks-add +pstricks-add-doc.ltx: the main doc file +pstricks-add-doc.tex: the included doc file + +Save the files pstricks-add.sty|tex|pro in the TeX tree, +where the pstricks-add.pro file should go in texmf/dvips/pstricks/, then +run texhash or mktexlsr to update the TeX file base. +The document needs the data files in example/. diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/12-1.txt b/Master/texmf-dist/doc/generic/pstricks-add/examples/12-1.txt new file mode 100644 index 00000000000..5e375916fc6 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/12-1.txt @@ -0,0 +1,1000 @@ +1000.0 0.168 +2000.0 0.1515 +3000.0 0.1433333333 +4000.0 0.1375 +5000.0 0.1338 +6000.0 0.1305 +7000.0 0.1285714286 +8000.0 0.125875 +9000.0 0.1241111111 +10000.0 0.1229 +11000.0 0.1213636364 +12000.0 0.1198333333 +13000.0 0.119 +14000.0 0.118 +15000.0 0.1169333333 +16000.0 0.116375 +17000.0 0.1152941176 +18000.0 0.1146666667 +19000.0 0.1135789474 +20000.0 0.1131 +21000.0 0.1123809524 +22000.0 0.112 +23000.0 0.1114782609 +24000.0 0.1111666667 +25000.0 0.11048 +26000.0 0.11 +27000.0 0.1096666667 +28000.0 0.1091071429 +29000.0 0.1087241379 +30000.0 0.1081666667 +31000.0 0.1077419355 +32000.0 0.10725 +33000.0 0.1072121212 +34000.0 0.107 +35000.0 0.1066285714 +36000.0 0.1062222222 +37000.0 0.106027027 +38000.0 0.1057105263 +39000.0 0.1053076923 +40000.0 0.105075 +41000.0 0.1046585366 +42000.0 0.1045714286 +43000.0 0.1045116279 +44000.0 0.1040681818 +45000.0 0.1038888889 +46000.0 0.1035 +47000.0 0.103212766 +48000.0 0.1030416667 +49000.0 0.102755102 +50000.0 0.10266 +51000.0 0.1023921569 +52000.0 0.1022884615 +53000.0 0.1020377358 +54000.0 0.1018518519 +55000.0 0.1016363636 +56000.0 0.1014821429 +57000.0 0.1014385965 +58000.0 0.1012586207 +59000.0 0.1010677966 +60000.0 0.10095 +61000.0 0.1007377049 +62000.0 0.100516129 +63000.0 0.1003174603 +64000.0 0.100203125 +65000.0 0.09989230769 +66000.0 0.09986363636 +67000.0 0.09962686567 +68000.0 0.09961764706 +69000.0 0.09933333333 +70000.0 0.09907142857 +71000.0 0.09905633803 +72000.0 0.099 +73000.0 0.09887671233 +74000.0 0.09866216216 +75000.0 0.09857333333 +76000.0 0.09847368421 +77000.0 0.09827272727 +78000.0 0.09823076923 +79000.0 0.09805063291 +80000.0 0.0979625 +81000.0 0.09783950617 +82000.0 0.09776829268 +83000.0 0.0976626506 +84000.0 0.0975 +85000.0 0.09737647059 +86000.0 0.09723255814 +87000.0 0.09712643678 +88000.0 0.09707954545 +89000.0 0.09684269663 +90000.0 0.09681111111 +91000.0 0.09672527473 +92000.0 0.09659782609 +93000.0 0.09660215054 +94000.0 0.0964893617 +95000.0 0.09638947368 +96000.0 0.096375 +97000.0 0.09624742268 +98000.0 0.09610204082 +99000.0 0.09601010101 +100000.0 0.09592 +101000.0 0.09577227723 +102000.0 0.09574509804 +103000.0 0.09566019417 +104000.0 0.09550961538 +105000.0 0.09546666667 +106000.0 0.09533962264 +107000.0 0.09530841121 +108000.0 0.09512962963 +109000.0 0.09509174312 +110000.0 0.09502727273 +111000.0 0.09491891892 +112000.0 0.09482142857 +113000.0 0.09469911504 +114000.0 0.09464035088 +115000.0 0.09453043478 +116000.0 0.09451724138 +117000.0 0.0944017094 +118000.0 0.09436440678 +119000.0 0.09423529412 +120000.0 0.094175 +121000.0 0.09412396694 +122000.0 0.09405737705 +123000.0 0.09400813008 +124000.0 0.09395967742 +125000.0 0.093872 +126000.0 0.09379365079 +127000.0 0.09370866142 +128000.0 0.0936484375 +129000.0 0.0936124031 +130000.0 0.09353076923 +131000.0 0.09346564885 +132000.0 0.09338636364 +133000.0 0.09333834586 +134000.0 0.09325373134 +135000.0 0.09315555556 +136000.0 0.093125 +137000.0 0.0931459854 +138000.0 0.09305072464 +139000.0 0.09299280576 +140000.0 0.09292857143 +141000.0 0.09288652482 +142000.0 0.09284507042 +143000.0 0.09276923077 +144000.0 0.09265972222 +145000.0 0.09256551724 +146000.0 0.09251369863 +147000.0 0.09245578231 +148000.0 0.09239189189 +149000.0 0.09232885906 +150000.0 0.09232 +151000.0 0.09227152318 +152000.0 0.09225657895 +153000.0 0.09222875817 +154000.0 0.09212987013 +155000.0 0.09207741935 +156000.0 0.09203205128 +157000.0 0.09192993631 +158000.0 0.09190506329 +159000.0 0.09181132075 +160000.0 0.09176875 +161000.0 0.09172670807 +162000.0 0.09167901235 +163000.0 0.09161349693 +164000.0 0.09156097561 +165000.0 0.09147272727 +166000.0 0.09140361446 +167000.0 0.09134131737 +168000.0 0.09129166667 +169000.0 0.09118343195 +170000.0 0.09115882353 +171000.0 0.09113450292 +172000.0 0.0910755814 +173000.0 0.09106358382 +174000.0 0.09099425287 +175000.0 0.09094857143 +176000.0 0.09085795455 +177000.0 0.09088135593 +178000.0 0.09078089888 +179000.0 0.09077094972 +180000.0 0.09078888889 +181000.0 0.09067955801 +182000.0 0.09061538462 +183000.0 0.09061748634 +184000.0 0.09055434783 +185000.0 0.09051351351 +186000.0 0.09051612903 +187000.0 0.09045454545 +188000.0 0.09043617021 +189000.0 0.09038095238 +190000.0 0.09036842105 +191000.0 0.09028795812 +192000.0 0.09023958333 +193000.0 0.09023316062 +194000.0 0.09020103093 +195000.0 0.09011794872 +196000.0 0.09009183673 +197000.0 0.09002030457 +198000.0 0.09000505051 +199000.0 0.08998492462 +200000.0 0.08992 +201000.0 0.08985572139 +202000.0 0.08984158416 +203000.0 0.08978325123 +204000.0 0.0897254902 +205000.0 0.08966341463 +206000.0 0.08963106796 +207000.0 0.08959903382 +208000.0 0.08958653846 +209000.0 0.0895645933 +210000.0 0.08955714286 +211000.0 0.08953080569 +212000.0 0.08951415094 +213000.0 0.08941784038 +214000.0 0.08937850467 +215000.0 0.0893627907 +216000.0 0.08929166667 +217000.0 0.08923041475 +218000.0 0.08918807339 +219000.0 0.08916438356 +220000.0 0.08917272727 +221000.0 0.08912217195 +222000.0 0.08908108108 +223000.0 0.08904484305 +224000.0 0.08900446429 +225000.0 0.08897777778 +226000.0 0.08895575221 +227000.0 0.08889867841 +228000.0 0.08885964912 +229000.0 0.08886026201 +230000.0 0.08885652174 +231000.0 0.08883549784 +232000.0 0.0887887931 +233000.0 0.08873390558 +234000.0 0.08865811966 +235000.0 0.08865106383 +236000.0 0.08858474576 +237000.0 0.08853164557 +238000.0 0.08846638655 +239000.0 0.08846025105 +240000.0 0.08842083333 +241000.0 0.08838589212 +242000.0 0.08839669421 +243000.0 0.08834567901 +244000.0 0.08829918033 +245000.0 0.08829795918 +246000.0 0.08826422764 +247000.0 0.08824696356 +248000.0 0.08820967742 +249000.0 0.08820883534 +250000.0 0.088176 +251000.0 0.08810756972 +252000.0 0.08810714286 +253000.0 0.08806719368 +254000.0 0.08803937008 +255000.0 0.08799215686 +256000.0 0.08798828125 +257000.0 0.08792607004 +258000.0 0.0878875969 +259000.0 0.08788030888 +260000.0 0.08783461538 +261000.0 0.08779310345 +262000.0 0.08773664122 +263000.0 0.08770342205 +264000.0 0.08768939394 +265000.0 0.08766037736 +266000.0 0.08762406015 +267000.0 0.08762172285 +268000.0 0.08764552239 +269000.0 0.08759851301 +270000.0 0.08756296296 +271000.0 0.0875498155 +272000.0 0.08751470588 +273000.0 0.0874981685 +274000.0 0.0874379562 +275000.0 0.08741090909 +276000.0 0.08739492754 +277000.0 0.08737906137 +278000.0 0.08733093525 +279000.0 0.08730824373 +280000.0 0.08725714286 +281000.0 0.08725622776 +282000.0 0.08724822695 +283000.0 0.08721201413 +284000.0 0.0871584507 +285000.0 0.08716842105 +286000.0 0.08713286713 +287000.0 0.08707665505 +288000.0 0.08702083333 +289000.0 0.08698615917 +290000.0 0.08697931034 +291000.0 0.08696907216 +292000.0 0.08693493151 +293000.0 0.08690443686 +294000.0 0.08684013605 +295000.0 0.08683389831 +296000.0 0.08679391892 +297000.0 0.08677777778 +298000.0 0.08673154362 +299000.0 0.08668561873 +300000.0 0.08665666667 +301000.0 0.08665116279 +302000.0 0.08663907285 +303000.0 0.08659075908 +304000.0 0.08658223684 +305000.0 0.08658688525 +306000.0 0.08656535948 +307000.0 0.0865504886 +308000.0 0.08650649351 +309000.0 0.08647249191 +310000.0 0.0864516129 +311000.0 0.08642765273 +312000.0 0.08637179487 +313000.0 0.08637060703 +314000.0 0.08636942675 +315000.0 0.08633650794 +316000.0 0.08630696203 +317000.0 0.08629968454 +318000.0 0.08629245283 +319000.0 0.08627586207 +320000.0 0.086275 +321000.0 0.08625233645 +322000.0 0.08623291925 +323000.0 0.08621671827 +324000.0 0.08616975309 +325000.0 0.08617230769 +326000.0 0.08616871166 +327000.0 0.08612844037 +328000.0 0.08612804878 +329000.0 0.0860881459 +330000.0 0.08607272727 +331000.0 0.08605438066 +332000.0 0.08604216867 +333000.0 0.086 +334000.0 0.08598502994 +335000.0 0.08595820896 +336000.0 0.08593154762 +337000.0 0.08592581602 +338000.0 0.08590828402 +339000.0 0.0858820059 +340000.0 0.08582941176 +341000.0 0.08582404692 +342000.0 0.08579824561 +343000.0 0.08577259475 +344000.0 0.08575581395 +345000.0 0.08573913043 +346000.0 0.08571098266 +347000.0 0.0856945245 +348000.0 0.08568390805 +349000.0 0.08565902579 +350000.0 0.08564857143 +351000.0 0.08561538462 +352000.0 0.08560227273 +353000.0 0.08559206799 +354000.0 0.08556497175 +355000.0 0.08556901408 +356000.0 0.0855505618 +357000.0 0.08549859944 +358000.0 0.08548324022 +359000.0 0.08547632312 +360000.0 0.08543611111 +361000.0 0.08538781163 +362000.0 0.08537016575 +363000.0 0.08534435262 +364000.0 0.08534065934 +365000.0 0.08531780822 +366000.0 0.08529508197 +367000.0 0.08529427793 +368000.0 0.08527717391 +369000.0 0.08524119241 +370000.0 0.08519459459 +371000.0 0.08515363881 +372000.0 0.08512903226 +373000.0 0.08511796247 +374000.0 0.0850855615 +375000.0 0.08507733333 +376000.0 0.08507712766 +377000.0 0.08506366048 +378000.0 0.08502645503 +379000.0 0.08500527704 +380000.0 0.085 +381000.0 0.08496587927 +382000.0 0.08494240838 +383000.0 0.08491383812 +384000.0 0.08490364583 +385000.0 0.08488571429 +386000.0 0.08487305699 +387000.0 0.08485529716 +388000.0 0.08481443299 +389000.0 0.08478920308 +390000.0 0.08478717949 +391000.0 0.08477749361 +392000.0 0.0847627551 +393000.0 0.08476590331 +394000.0 0.0847715736 +395000.0 0.08474683544 +396000.0 0.08471464646 +397000.0 0.08469017632 +398000.0 0.08466582915 +399000.0 0.08465914787 +400000.0 0.08465 +401000.0 0.08461346633 +402000.0 0.08457960199 +403000.0 0.08455831266 +404000.0 0.08453465347 +405000.0 0.08449876543 +406000.0 0.08449507389 +407000.0 0.08445208845 +408000.0 0.08444362745 +409000.0 0.08443031785 +410000.0 0.08442439024 +411000.0 0.08439659367 +412000.0 0.08438834951 +413000.0 0.08436319613 +414000.0 0.08432608696 +415000.0 0.08433975904 +416000.0 0.08432932692 +417000.0 0.08428776978 +418000.0 0.08428229665 +419000.0 0.08428400955 +420000.0 0.08426190476 +421000.0 0.08423990499 +422000.0 0.08421327014 +423000.0 0.08419621749 +424000.0 0.08419339623 +425000.0 0.08418588235 +426000.0 0.08416197183 +427000.0 0.08413114754 +428000.0 0.08411682243 +429000.0 0.08408624709 +430000.0 0.08409767442 +431000.0 0.08407888631 +432000.0 0.08406712963 +433000.0 0.0840669746 +434000.0 0.08405760369 +435000.0 0.08405977011 +436000.0 0.08405504587 +437000.0 0.08402974828 +438000.0 0.08399771689 +439000.0 0.08397722096 +440000.0 0.08395681818 +441000.0 0.08394557823 +442000.0 0.08391855204 +443000.0 0.08392099323 +444000.0 0.08393018018 +445000.0 0.0839258427 +446000.0 0.08389013453 +447000.0 0.08385458613 +448000.0 0.08383035714 +449000.0 0.08379955457 +450000.0 0.08379111111 +451000.0 0.08380931264 +452000.0 0.0837920354 +453000.0 0.08374613687 +454000.0 0.08372026432 +455000.0 0.0836989011 +456000.0 0.08369517544 +457000.0 0.08367177243 +458000.0 0.08365720524 +459000.0 0.08363834423 +460000.0 0.08360434783 +461000.0 0.08359002169 +462000.0 0.08355844156 +463000.0 0.08353779698 +464000.0 0.0835237069 +465000.0 0.08352688172 +466000.0 0.08350643777 +467000.0 0.08347537473 +468000.0 0.08347435897 +469000.0 0.08347761194 +470000.0 0.08345319149 +471000.0 0.08346072187 +472000.0 0.08344915254 +473000.0 0.08342706131 +474000.0 0.08341561181 +475000.0 0.08340842105 +476000.0 0.08341386555 +477000.0 0.08339622642 +478000.0 0.08336610879 +479000.0 0.08336951983 +480000.0 0.08334375 +481000.0 0.08333056133 +482000.0 0.08331950207 +483000.0 0.08331677019 +484000.0 0.08329958678 +485000.0 0.08326185567 +486000.0 0.08322016461 +487000.0 0.08321765914 +488000.0 0.08320696721 +489000.0 0.08320654397 +490000.0 0.08319591837 +491000.0 0.08318533605 +492000.0 0.08317073171 +493000.0 0.08313793103 +494000.0 0.08313562753 +495000.0 0.08312929293 +496000.0 0.08313709677 +497000.0 0.08310663984 +498000.0 0.08310240964 +499000.0 0.08308016032 +500000.0 0.083076 +501000.0 0.08306786427 +502000.0 0.0830498008 +503000.0 0.08301789264 +504000.0 0.08300396825 +505000.0 0.08299009901 +506000.0 0.08299011858 +507000.0 0.08297633136 +508000.0 0.08295275591 +509000.0 0.08293909627 +510000.0 0.08292352941 +511000.0 0.08290215264 +512000.0 0.08290039062 +513000.0 0.08287524366 +514000.0 0.08286381323 +515000.0 0.08286019417 +516000.0 0.08282751938 +517000.0 0.08283172147 +518000.0 0.08283204633 +519000.0 0.08281888247 +520000.0 0.08280961538 +521000.0 0.08279078695 +522000.0 0.08279118774 +523000.0 0.08278393881 +524000.0 0.08275763359 +525000.0 0.08274666667 +526000.0 0.08273954373 +527000.0 0.08274193548 +528000.0 0.08272159091 +529000.0 0.08269754253 +530000.0 0.08268867925 +531000.0 0.08268361582 +532000.0 0.08265601504 +533000.0 0.08264915572 +534000.0 0.0826329588 +535000.0 0.08261308411 +536000.0 0.08259141791 +537000.0 0.08259962756 +538000.0 0.08257063197 +539000.0 0.08256215213 +540000.0 0.08254074074 +541000.0 0.08252310536 +542000.0 0.08251291513 +543000.0 0.08250460405 +544000.0 0.08250183824 +545000.0 0.08247522936 +546000.0 0.08245054945 +547000.0 0.08243327239 +548000.0 0.08242153285 +549000.0 0.08241165756 +550000.0 0.08240363636 +551000.0 0.08239745917 +552000.0 0.08238405797 +553000.0 0.08236347197 +554000.0 0.08235920578 +555000.0 0.08234954955 +556000.0 0.08231115108 +557000.0 0.08232136445 +558000.0 0.08229569892 +559000.0 0.08228085868 +560000.0 0.08227142857 +561000.0 0.08227807487 +562000.0 0.08224021352 +563000.0 0.08224156306 +564000.0 0.08221453901 +565000.0 0.08220530973 +566000.0 0.08219787986 +567000.0 0.08217989418 +568000.0 0.08216197183 +569000.0 0.08214235501 +570000.0 0.08213859649 +571000.0 0.08214360771 +572000.0 0.08212587413 +573000.0 0.08213089005 +574000.0 0.08211324042 +575000.0 0.08209217391 +576000.0 0.08208333333 +577000.0 0.0820762565 +578000.0 0.08206747405 +579000.0 0.08205699482 +580000.0 0.08204827586 +581000.0 0.08203270224 +582000.0 0.08202749141 +583000.0 0.08201200686 +584000.0 0.08200513699 +585000.0 0.08198803419 +586000.0 0.08198634812 +587000.0 0.08198126065 +588000.0 0.08198979592 +589000.0 0.08197453311 +590000.0 0.08195084746 +591000.0 0.0819323181 +592000.0 0.08190709459 +593000.0 0.08190387858 +594000.0 0.0818956229 +595000.0 0.08188907563 +596000.0 0.08188087248 +597000.0 0.0818760469 +598000.0 0.08186120401 +599000.0 0.08184474124 +600000.0 0.08183 +601000.0 0.0818202995 +602000.0 0.08180564784 +603000.0 0.08180762852 +604000.0 0.08179801325 +605000.0 0.08178347107 +606000.0 0.08177062706 +607000.0 0.08175453048 +608000.0 0.08174835526 +609000.0 0.08174220033 +610000.0 0.08173934426 +611000.0 0.08172504092 +612000.0 0.08170751634 +613000.0 0.08169820555 +614000.0 0.08169381107 +615000.0 0.08167642276 +616000.0 0.08166558442 +617000.0 0.08167098865 +618000.0 0.08166990291 +619000.0 0.08164620355 +620000.0 0.08163225806 +621000.0 0.08162479871 +622000.0 0.08160610932 +623000.0 0.08159390048 +624000.0 0.08158333333 +625000.0 0.0815776 +626000.0 0.08155750799 +627000.0 0.08153907496 +628000.0 0.08152070064 +629000.0 0.08150397456 +630000.0 0.08149365079 +631000.0 0.08147068146 +632000.0 0.08146993671 +633000.0 0.0814628752 +634000.0 0.08144479495 +635000.0 0.08144566929 +636000.0 0.08144025157 +637000.0 0.08142700157 +638000.0 0.0814153605 +639000.0 0.08138028169 +640000.0 0.081365625 +641000.0 0.08135881435 +642000.0 0.08134267913 +643000.0 0.08132192846 +644000.0 0.08130434783 +645000.0 0.08131162791 +646000.0 0.08130185759 +647000.0 0.08129057187 +648000.0 0.08128703704 +649000.0 0.0812742681 +650000.0 0.08127846154 +651000.0 0.08124731183 +652000.0 0.08123619632 +653000.0 0.08124196018 +654000.0 0.08122324159 +655000.0 0.08121832061 +656000.0 0.08120579268 +657000.0 0.08119025875 +658000.0 0.08117325228 +659000.0 0.08116995448 +660000.0 0.08115757576 +661000.0 0.08116036309 +662000.0 0.08114350453 +663000.0 0.08113273002 +664000.0 0.08112650602 +665000.0 0.08112030075 +666000.0 0.08111411411 +667000.0 0.08110194903 +668000.0 0.08109131737 +669000.0 0.08106875934 +670000.0 0.08105820896 +671000.0 0.08104918033 +672000.0 0.08104166667 +673000.0 0.08103417533 +674000.0 0.08102818991 +675000.0 0.0810162963 +676000.0 0.08100739645 +677000.0 0.08099704579 +678000.0 0.08097050147 +679000.0 0.08097201767 +680000.0 0.080975 +681000.0 0.08096622614 +682000.0 0.08096187683 +683000.0 0.08093997072 +684000.0 0.08093567251 +685000.0 0.08092262774 +686000.0 0.08091253644 +687000.0 0.08090247453 +688000.0 0.08090406977 +689000.0 0.08089404935 +690000.0 0.08089130435 +691000.0 0.08086107091 +692000.0 0.0808583815 +693000.0 0.08085281385 +694000.0 0.08084149856 +695000.0 0.08083453237 +696000.0 0.08082902299 +697000.0 0.08081779053 +698000.0 0.08081518625 +699000.0 0.08078826896 +700000.0 0.08077571429 +701000.0 0.08076747504 +702000.0 0.08075356125 +703000.0 0.08075391181 +704000.0 0.08074005682 +705000.0 0.08074893617 +706000.0 0.08073087819 +707000.0 0.08073267327 +708000.0 0.08072316384 +709000.0 0.08071791255 +710000.0 0.08071267606 +711000.0 0.08070886076 +712000.0 0.08070224719 +713000.0 0.08069004208 +714000.0 0.08067927171 +715000.0 0.08065874126 +716000.0 0.08066201117 +717000.0 0.08064574616 +718000.0 0.08062395543 +719000.0 0.08060500695 +720000.0 0.08059583333 +721000.0 0.08059223301 +722000.0 0.08058725762 +723000.0 0.08057676349 +724000.0 0.08058425414 +725000.0 0.08057655172 +726000.0 0.08056060606 +727000.0 0.08055433287 +728000.0 0.0805467033 +729000.0 0.08054046639 +730000.0 0.08053287671 +731000.0 0.08051709986 +732000.0 0.08051092896 +733000.0 0.08049795362 +734000.0 0.08049046322 +735000.0 0.08048163265 +736000.0 0.08047961957 +737000.0 0.08046404342 +738000.0 0.08046070461 +739000.0 0.08044654939 +740000.0 0.0804472973 +741000.0 0.0804291498 +742000.0 0.08042048518 +743000.0 0.08041049798 +744000.0 0.08039247312 +745000.0 0.0803704698 +746000.0 0.08035254692 +747000.0 0.08034672021 +748000.0 0.0803342246 +749000.0 0.08032843792 +750000.0 0.08031733333 +751000.0 0.08030093209 +752000.0 0.08030718085 +753000.0 0.08029747676 +754000.0 0.08028514589 +755000.0 0.08028874172 +756000.0 0.08027513228 +757000.0 0.08025627477 +758000.0 0.08024010554 +759000.0 0.08023847167 +760000.0 0.08023421053 +761000.0 0.08022996058 +762000.0 0.08022965879 +763000.0 0.08021363041 +764000.0 0.08021204188 +765000.0 0.08020130719 +766000.0 0.08020365535 +767000.0 0.08020078227 +768000.0 0.08018489583 +769000.0 0.08018075423 +770000.0 0.08017272727 +771000.0 0.08016861219 +772000.0 0.0801619171 +773000.0 0.08014877102 +774000.0 0.08014341085 +775000.0 0.08013290323 +776000.0 0.08011597938 +777000.0 0.0801029601 +778000.0 0.08009768638 +779000.0 0.08009884467 +780000.0 0.08008717949 +781000.0 0.08007426376 +782000.0 0.08007672634 +783000.0 0.08006130268 +784000.0 0.08005484694 +785000.0 0.08004840764 +786000.0 0.08004452926 +787000.0 0.0800317662 +788000.0 0.08002284264 +789000.0 0.08002281369 +790000.0 0.08000759494 +791000.0 0.08000505689 +792000.0 0.07999368687 +793000.0 0.0799962169 +794000.0 0.07998488665 +795000.0 0.07997610063 +796000.0 0.07997487437 +797000.0 0.07997114178 +798000.0 0.07996115288 +799000.0 0.07994993742 +800000.0 0.07993875 +801000.0 0.07994506866 +802000.0 0.0799276808 +803000.0 0.07991531756 +804000.0 0.07990174129 +805000.0 0.07989937888 +806000.0 0.07989826303 +807000.0 0.07988351921 +808000.0 0.07987128713 +809000.0 0.0798578492 +810000.0 0.07985555556 +811000.0 0.07985326757 +812000.0 0.07984359606 +813000.0 0.0798302583 +814000.0 0.07982063882 +815000.0 0.07981840491 +816000.0 0.07980514706 +817000.0 0.07979926561 +818000.0 0.07979339853 +819000.0 0.07977167277 +820000.0 0.07977560976 +821000.0 0.07976979294 +822000.0 0.07976034063 +823000.0 0.0797654921 +824000.0 0.07976334951 +825000.0 0.07975272727 +826000.0 0.07975423729 +827000.0 0.07975211608 +828000.0 0.07973913043 +829000.0 0.07972617612 +830000.0 0.07971204819 +831000.0 0.07970758123 +832000.0 0.07970673077 +833000.0 0.07970948379 +834000.0 0.07969544365 +835000.0 0.07968023952 +836000.0 0.0796722488 +837000.0 0.07966188769 +838000.0 0.07964319809 +839000.0 0.07964362336 +840000.0 0.07963095238 +841000.0 0.07961950059 +842000.0 0.07960688836 +843000.0 0.0796109134 +844000.0 0.0795971564 +845000.0 0.07959526627 +846000.0 0.07958392435 +847000.0 0.07957142857 +848000.0 0.07956839623 +849000.0 0.07956301531 +850000.0 0.07954941176 +851000.0 0.07953819036 +852000.0 0.07953521127 +853000.0 0.07952872216 +854000.0 0.07951288056 +855000.0 0.07950292398 +856000.0 0.0794953271 +857000.0 0.07949358226 +858000.0 0.07948951049 +859000.0 0.07947729919 +860000.0 0.07946744186 +861000.0 0.07946457607 +862000.0 0.07945823666 +863000.0 0.07946234067 +864000.0 0.07943981481 +865000.0 0.07944046243 +866000.0 0.07944110855 +867000.0 0.07942791234 +868000.0 0.07942626728 +869000.0 0.0794269275 +870000.0 0.07941954023 +871000.0 0.07941905855 +872000.0 0.07939449541 +873000.0 0.0793906071 +874000.0 0.07937414188 +875000.0 0.07936914286 +876000.0 0.07936986301 +877000.0 0.07936488027 +878000.0 0.07935079727 +879000.0 0.07934926052 +880000.0 0.07934431818 +881000.0 0.07934506243 +882000.0 0.07933333333 +883000.0 0.07932502831 +884000.0 0.0793178733 +885000.0 0.07930621469 +886000.0 0.07930361174 +887000.0 0.07929988726 +888000.0 0.07929054054 +889000.0 0.079287964 +890000.0 0.0792752809 +891000.0 0.07926262626 +892000.0 0.07926345291 +893000.0 0.07925195969 +894000.0 0.07924384787 +895000.0 0.07923798883 +896000.0 0.07923883929 +897000.0 0.07922185061 +898000.0 0.07921714922 +899000.0 0.07921357063 +900000.0 0.07919333333 +901000.0 0.07918756937 +902000.0 0.07918070953 +903000.0 0.07917054264 +904000.0 0.07915265487 +905000.0 0.07915469613 +906000.0 0.07914459161 +907000.0 0.07914553473 +908000.0 0.07914647577 +909000.0 0.07914631463 +910000.0 0.07914945055 +911000.0 0.07913062569 +912000.0 0.07913267544 +913000.0 0.0791237678 +914000.0 0.07909628009 +915000.0 0.07908961749 +916000.0 0.07907969432 +917000.0 0.07907197383 +918000.0 0.07907189542 +919000.0 0.07906746464 +920000.0 0.07905869565 +921000.0 0.07905103149 +922000.0 0.07904338395 +923000.0 0.07903575298 +924000.0 0.07903787879 +925000.0 0.07903459459 +926000.0 0.07903563715 +927000.0 0.07903020496 +928000.0 0.07901293103 +929000.0 0.07900322928 +930000.0 0.07900430108 +931000.0 0.07899355532 +932000.0 0.07898283262 +933000.0 0.07897963558 +934000.0 0.07896788009 +935000.0 0.07897005348 +936000.0 0.07895833333 +937000.0 0.07894983991 +938000.0 0.07894136461 +939000.0 0.07893397231 +940000.0 0.07892234043 +941000.0 0.07891710946 +942000.0 0.07891719745 +943000.0 0.07890986214 +944000.0 0.07890677966 +945000.0 0.0789005291 +946000.0 0.07888689218 +947000.0 0.07887961985 +948000.0 0.07886603376 +949000.0 0.07885353003 +950000.0 0.07884947368 +951000.0 0.07884647739 +952000.0 0.07883718487 +953000.0 0.0788363064 +954000.0 0.07882180294 +955000.0 0.07881570681 +956000.0 0.07881276151 +957000.0 0.07879101358 +958000.0 0.07878079332 +959000.0 0.07877893639 +960000.0 0.07876875 +961000.0 0.07875754422 +962000.0 0.07876715177 +963000.0 0.07875908619 +964000.0 0.07875414938 +965000.0 0.0787492228 +966000.0 0.07874016563 +967000.0 0.07873422958 +968000.0 0.07872107438 +969000.0 0.07871723426 +970000.0 0.07871134021 +971000.0 0.07870854789 +972000.0 0.07870781893 +973000.0 0.07870298047 +974000.0 0.07868685832 +975000.0 0.07869333333 +976000.0 0.07868442623 +977000.0 0.07867144319 +978000.0 0.07865235174 +979000.0 0.07865372829 +980000.0 0.07863979592 +981000.0 0.07862793068 +982000.0 0.07862423625 +983000.0 0.07861546287 +984000.0 0.07860670732 +985000.0 0.07859796954 +986000.0 0.07859533469 +987000.0 0.07859270517 +988000.0 0.07857692308 +989000.0 0.07856926188 +990000.0 0.07856262626 +991000.0 0.07855499495 +992000.0 0.07855544355 +993000.0 0.07854179255 +994000.0 0.07853118712 +995000.0 0.07853065327 +996000.0 0.07852108434 +997000.0 0.0785115346 +998000.0 0.07851603206 +999000.0 0.07851151151 +1000000.0 0.078498 diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/12-2.txt b/Master/texmf-dist/doc/generic/pstricks-add/examples/12-2.txt new file mode 100644 index 00000000000..a2d344d7a1c --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/12-2.txt @@ -0,0 +1,1000 @@ +1000.0 0.035 +2000.0 0.0305 +3000.0 0.02733333333 +4000.0 0.02575 +5000.0 0.0252 +6000.0 0.02383333333 +7000.0 0.02314285714 +8000.0 0.021875 +9000.0 0.02111111111 +10000.0 0.0205 +11000.0 0.02009090909 +12000.0 0.01958333333 +13000.0 0.01892307692 +14000.0 0.01864285714 +15000.0 0.01813333333 +16000.0 0.01775 +17000.0 0.01747058824 +18000.0 0.0175 +19000.0 0.01721052632 +20000.0 0.0171 +21000.0 0.017 +22000.0 0.01690909091 +23000.0 0.01686956522 +24000.0 0.01675 +25000.0 0.01632 +26000.0 0.01615384615 +27000.0 0.01596296296 +28000.0 0.01592857143 +29000.0 0.01579310345 +30000.0 0.01556666667 +31000.0 0.01541935484 +32000.0 0.01534375 +33000.0 0.01545454545 +34000.0 0.01538235294 +35000.0 0.0154 +36000.0 0.01527777778 +37000.0 0.01510810811 +38000.0 0.01502631579 +39000.0 0.01492307692 +40000.0 0.014775 +41000.0 0.0146097561 +42000.0 0.01454761905 +43000.0 0.01448837209 +44000.0 0.01440909091 +45000.0 0.01433333333 +46000.0 0.01417391304 +47000.0 0.01412765957 +48000.0 0.0140625 +49000.0 0.01404081633 +50000.0 0.0141 +51000.0 0.014 +52000.0 0.014 +53000.0 0.01388679245 +54000.0 0.01383333333 +55000.0 0.01372727273 +56000.0 0.01367857143 +57000.0 0.01368421053 +58000.0 0.01360344828 +59000.0 0.01355932203 +60000.0 0.01351666667 +61000.0 0.01345901639 +62000.0 0.01333870968 +63000.0 0.01325396825 +64000.0 0.013203125 +65000.0 0.01313846154 +66000.0 0.01315151515 +67000.0 0.01304477612 +68000.0 0.013 +69000.0 0.01294202899 +70000.0 0.01292857143 +71000.0 0.01297183099 +72000.0 0.01293055556 +73000.0 0.01290410959 +74000.0 0.01281081081 +75000.0 0.01277333333 +76000.0 0.01272368421 +77000.0 0.0127012987 +78000.0 0.01265384615 +79000.0 0.01260759494 +80000.0 0.0125875 +81000.0 0.01259259259 +82000.0 0.01258536585 +83000.0 0.01259036145 +84000.0 0.01253571429 +85000.0 0.01252941176 +86000.0 0.01251162791 +87000.0 0.01245977011 +88000.0 0.01247727273 +89000.0 0.0124494382 +90000.0 0.0124 +91000.0 0.01237362637 +92000.0 0.01234782609 +93000.0 0.01234408602 +94000.0 0.01234042553 +95000.0 0.01234736842 +96000.0 0.01230208333 +97000.0 0.01224742268 +98000.0 0.0122755102 +99000.0 0.01228282828 +100000.0 0.01224 +101000.0 0.01217821782 +102000.0 0.01215686275 +103000.0 0.01215533981 +104000.0 0.01213461538 +105000.0 0.01212380952 +106000.0 0.01205660377 +107000.0 0.01207476636 +108000.0 0.01200925926 +109000.0 0.01200917431 +110000.0 0.012 +111000.0 0.01196396396 +112000.0 0.0119375 +113000.0 0.01191150442 +114000.0 0.01192982456 +115000.0 0.01188695652 +116000.0 0.01190517241 +117000.0 0.01186324786 +118000.0 0.01188983051 +119000.0 0.0118487395 +120000.0 0.01186666667 +121000.0 0.01181818182 +122000.0 0.01181147541 +123000.0 0.01183739837 +124000.0 0.01178225806 +125000.0 0.011784 +126000.0 0.01174603175 +127000.0 0.01169291339 +128000.0 0.011671875 +129000.0 0.01168217054 +130000.0 0.01166923077 +131000.0 0.01164122137 +132000.0 0.01163636364 +133000.0 0.01161654135 +134000.0 0.01158955224 +135000.0 0.01157037037 +136000.0 0.01158088235 +137000.0 0.01158394161 +138000.0 0.01153623188 +139000.0 0.01151079137 +140000.0 0.01148571429 +141000.0 0.0114751773 +142000.0 0.01145774648 +143000.0 0.01144055944 +144000.0 0.01140972222 +145000.0 0.01137931034 +146000.0 0.0113630137 +147000.0 0.01134693878 +148000.0 0.01131081081 +149000.0 0.01130872483 +150000.0 0.01134 +151000.0 0.01133112583 +152000.0 0.01133552632 +153000.0 0.01134640523 +154000.0 0.01132467532 +155000.0 0.01132258065 +156000.0 0.01130769231 +157000.0 0.01129299363 +158000.0 0.01129746835 +159000.0 0.01125786164 +160000.0 0.01125625 +161000.0 0.01125465839 +162000.0 0.01124691358 +163000.0 0.01121472393 +164000.0 0.01120731707 +165000.0 0.01118787879 +166000.0 0.0111626506 +167000.0 0.01114371257 +168000.0 0.01113095238 +169000.0 0.0110887574 +170000.0 0.01107058824 +171000.0 0.01103508772 +172000.0 0.01102906977 +173000.0 0.01099421965 +174000.0 0.01098275862 +175000.0 0.01097714286 +176000.0 0.01096590909 +177000.0 0.01099435028 +178000.0 0.01097191011 +179000.0 0.01098882682 +180000.0 0.01098333333 +181000.0 0.01096132597 +182000.0 0.01097802198 +183000.0 0.01098907104 +184000.0 0.01098913043 +185000.0 0.01098378378 +186000.0 0.01097311828 +187000.0 0.01096791444 +188000.0 0.01095744681 +189000.0 0.01091534392 +190000.0 0.01092105263 +191000.0 0.01089005236 +192000.0 0.01090104167 +193000.0 0.01089637306 +194000.0 0.01087628866 +195000.0 0.01084615385 +196000.0 0.01083163265 +197000.0 0.01081725888 +198000.0 0.01081818182 +199000.0 0.01080904523 +200000.0 0.0108 +201000.0 0.01076616915 +202000.0 0.01075742574 +203000.0 0.01073891626 +204000.0 0.01075490196 +205000.0 0.01075121951 +206000.0 0.01073300971 +207000.0 0.01072463768 +208000.0 0.01072596154 +209000.0 0.01073684211 +210000.0 0.01072857143 +211000.0 0.01071090047 +212000.0 0.01071698113 +213000.0 0.01068075117 +214000.0 0.01065420561 +215000.0 0.0106372093 +216000.0 0.01061111111 +217000.0 0.01059907834 +218000.0 0.01060550459 +219000.0 0.01059360731 +220000.0 0.01058636364 +221000.0 0.01057013575 +222000.0 0.01057207207 +223000.0 0.01056502242 +224000.0 0.01057589286 +225000.0 0.01054222222 +226000.0 0.01055752212 +227000.0 0.01053744493 +228000.0 0.01053070175 +229000.0 0.01053275109 +230000.0 0.01053043478 +231000.0 0.01051948052 +232000.0 0.01051724138 +233000.0 0.01050643777 +234000.0 0.0105042735 +235000.0 0.01050212766 +236000.0 0.01049152542 +237000.0 0.01048101266 +238000.0 0.01046218487 +239000.0 0.01045188285 +240000.0 0.01042916667 +241000.0 0.01041078838 +242000.0 0.01041322314 +243000.0 0.0103909465 +244000.0 0.01037704918 +245000.0 0.01036734694 +246000.0 0.01037804878 +247000.0 0.01037246964 +248000.0 0.01037903226 +249000.0 0.01036546185 +250000.0 0.010352 +251000.0 0.01033466135 +252000.0 0.0103452381 +253000.0 0.01031225296 +254000.0 0.01030314961 +255000.0 0.01029019608 +256000.0 0.01028125 +257000.0 0.01027626459 +258000.0 0.01027131783 +259000.0 0.01025096525 +260000.0 0.01024230769 +261000.0 0.01023371648 +262000.0 0.01021755725 +263000.0 0.01021292776 +264000.0 0.01021212121 +265000.0 0.01020377358 +266000.0 0.01019924812 +267000.0 0.01020599251 +268000.0 0.0102238806 +269000.0 0.01021561338 +270000.0 0.0101962963 +271000.0 0.01019188192 +272000.0 0.01018014706 +273000.0 0.01018681319 +274000.0 0.01017518248 +275000.0 0.01015636364 +276000.0 0.0101557971 +277000.0 0.01014801444 +278000.0 0.01014388489 +279000.0 0.01014695341 +280000.0 0.010125 +281000.0 0.010113879 +282000.0 0.01011347518 +283000.0 0.01010954064 +284000.0 0.0101056338 +285000.0 0.01011578947 +286000.0 0.01011538462 +287000.0 0.0101010453 +288000.0 0.01008680556 +289000.0 0.01007958478 +290000.0 0.01007241379 +291000.0 0.01006872852 +292000.0 0.01006164384 +293000.0 0.0100443686 +294000.0 0.01002721088 +295000.0 0.01001694915 +296000.0 0.01001013514 +297000.0 0.01001346801 +298000.0 0.009989932886 +299000.0 0.009986622074 +300000.0 0.00998 +301000.0 0.009983388704 +302000.0 0.009983443709 +303000.0 0.00997029703 +304000.0 0.009963815789 +305000.0 0.009960655738 +306000.0 0.009954248366 +307000.0 0.009951140065 +308000.0 0.009951298701 +309000.0 0.009944983819 +310000.0 0.00994516129 +311000.0 0.009932475884 +312000.0 0.009923076923 +313000.0 0.009939297125 +314000.0 0.009933121019 +315000.0 0.009920634921 +316000.0 0.009911392405 +317000.0 0.009905362776 +318000.0 0.009911949686 +319000.0 0.009915360502 +320000.0 0.00990625 +321000.0 0.009912772586 +322000.0 0.009906832298 +323000.0 0.009913312693 +324000.0 0.009913580247 +325000.0 0.009910769231 +326000.0 0.009914110429 +327000.0 0.009917431193 +328000.0 0.009923780488 +329000.0 0.009927051672 +330000.0 0.009918181818 +331000.0 0.009924471299 +332000.0 0.009918674699 +333000.0 0.00990990991 +334000.0 0.009901197605 +335000.0 0.009895522388 +336000.0 0.009875 +337000.0 0.009869436202 +338000.0 0.009866863905 +339000.0 0.009855457227 +340000.0 0.009838235294 +341000.0 0.009832844575 +342000.0 0.00981871345 +343000.0 0.009819241983 +344000.0 0.009816860465 +345000.0 0.009808695652 +346000.0 0.009797687861 +347000.0 0.009795389049 +348000.0 0.009798850575 +349000.0 0.009787965616 +350000.0 0.009777142857 +351000.0 0.009763532764 +352000.0 0.009761363636 +353000.0 0.00976203966 +354000.0 0.009748587571 +355000.0 0.009746478873 +356000.0 0.009747191011 +357000.0 0.009739495798 +358000.0 0.009740223464 +359000.0 0.009740947075 +360000.0 0.009727777778 +361000.0 0.009725761773 +362000.0 0.009726519337 +363000.0 0.009713498623 +364000.0 0.009714285714 +365000.0 0.009701369863 +366000.0 0.009699453552 +367000.0 0.009692098093 +368000.0 0.009684782609 +369000.0 0.009669376694 +370000.0 0.009659459459 +371000.0 0.009644204852 +372000.0 0.009642473118 +373000.0 0.00963538874 +374000.0 0.009625668449 +375000.0 0.009618666667 +376000.0 0.009622340426 +377000.0 0.009618037135 +378000.0 0.009603174603 +379000.0 0.009588390501 +380000.0 0.009586842105 +381000.0 0.009587926509 +382000.0 0.009586387435 +383000.0 0.009577023499 +384000.0 0.009575520833 +385000.0 0.009561038961 +386000.0 0.009559585492 +387000.0 0.009563307494 +388000.0 0.009548969072 +389000.0 0.009544987147 +390000.0 0.009541025641 +391000.0 0.009542199488 +392000.0 0.009538265306 +393000.0 0.009541984733 +394000.0 0.009535532995 +395000.0 0.00953164557 +396000.0 0.00952020202 +397000.0 0.009513853904 +398000.0 0.00951758794 +399000.0 0.009511278195 +400000.0 0.00951 +401000.0 0.009498753117 +402000.0 0.009490049751 +403000.0 0.009496277916 +404000.0 0.00949009901 +405000.0 0.009491358025 +406000.0 0.009502463054 +407000.0 0.009493857494 +408000.0 0.009485294118 +409000.0 0.009474327628 +410000.0 0.009465853659 +411000.0 0.009469586375 +412000.0 0.009463592233 +413000.0 0.009457627119 +414000.0 0.009451690821 +415000.0 0.00945060241 +416000.0 0.009444711538 +417000.0 0.009441247002 +418000.0 0.009440191388 +419000.0 0.009431980907 +420000.0 0.009430952381 +421000.0 0.009432304038 +422000.0 0.009426540284 +423000.0 0.009425531915 +424000.0 0.009419811321 +425000.0 0.009418823529 +426000.0 0.009417840376 +427000.0 0.009414519906 +428000.0 0.009422897196 +429000.0 0.009417249417 +430000.0 0.009427906977 +431000.0 0.009429234339 +432000.0 0.009423611111 +433000.0 0.009420323326 +434000.0 0.009412442396 +435000.0 0.009406896552 +436000.0 0.009408256881 +437000.0 0.009402745995 +438000.0 0.009390410959 +439000.0 0.009378132118 +440000.0 0.009361363636 +441000.0 0.009365079365 +442000.0 0.009359728507 +443000.0 0.009358916479 +444000.0 0.009362612613 +445000.0 0.009359550562 +446000.0 0.009349775785 +447000.0 0.009342281879 +448000.0 0.009334821429 +449000.0 0.009325167038 +450000.0 0.00932 +451000.0 0.009321507761 +452000.0 0.009318584071 +453000.0 0.009309050773 +454000.0 0.009303964758 +455000.0 0.009312087912 +456000.0 0.009304824561 +457000.0 0.009301969365 +458000.0 0.009296943231 +459000.0 0.009289760349 +460000.0 0.009284782609 +461000.0 0.009275488069 +462000.0 0.009270562771 +463000.0 0.009261339093 +464000.0 0.009260775862 +465000.0 0.009266666667 +466000.0 0.009263948498 +467000.0 0.009248394004 +468000.0 0.009247863248 +469000.0 0.00923880597 +470000.0 0.009225531915 +471000.0 0.009225053079 +472000.0 0.009224576271 +473000.0 0.009221987315 +474000.0 0.009221518987 +475000.0 0.009214736842 +476000.0 0.009220588235 +477000.0 0.009213836478 +478000.0 0.009209205021 +479000.0 0.00921085595 +480000.0 0.009202083333 +481000.0 0.009197505198 +482000.0 0.00918879668 +483000.0 0.009186335404 +484000.0 0.009175619835 +485000.0 0.009167010309 +486000.0 0.009154320988 +487000.0 0.009158110883 +488000.0 0.009155737705 +489000.0 0.009155419223 +490000.0 0.009157142857 +491000.0 0.00916089613 +492000.0 0.009160569106 +493000.0 0.009156186613 +494000.0 0.009153846154 +495000.0 0.009147474747 +496000.0 0.009151209677 +497000.0 0.00914084507 +498000.0 0.00913253012 +499000.0 0.009132264529 +500000.0 0.00913 +501000.0 0.009127744511 +502000.0 0.009119521912 +503000.0 0.00911332008 +504000.0 0.009111111111 +505000.0 0.009106930693 +506000.0 0.009108695652 +507000.0 0.009104536489 +508000.0 0.009102362205 +509000.0 0.009094302554 +510000.0 0.009082352941 +511000.0 0.009084148728 +512000.0 0.009078125 +513000.0 0.009076023392 +514000.0 0.009071984436 +515000.0 0.009067961165 +516000.0 0.009060077519 +517000.0 0.009059961315 +518000.0 0.009057915058 +519000.0 0.009065510597 +520000.0 0.009061538462 +521000.0 0.009061420345 +522000.0 0.009063218391 +523000.0 0.009066921606 +524000.0 0.009061068702 +525000.0 0.009072380952 +526000.0 0.009068441065 +527000.0 0.009070208729 +528000.0 0.0090625 +529000.0 0.009060491493 +530000.0 0.009062264151 +531000.0 0.009054613936 +532000.0 0.009045112782 +533000.0 0.009041275797 +534000.0 0.009035580524 +535000.0 0.009028037383 +536000.0 0.00902238806 +537000.0 0.009033519553 +538000.0 0.009018587361 +539000.0 0.009025974026 +540000.0 0.00902962963 +541000.0 0.009035120148 +542000.0 0.009027675277 +543000.0 0.009022099448 +544000.0 0.009022058824 +545000.0 0.009018348624 +546000.0 0.009010989011 +547000.0 0.009003656307 +548000.0 0.008998175182 +549000.0 0.008989071038 +550000.0 0.008994545455 +551000.0 0.009 +552000.0 0.008990942029 +553000.0 0.008990958409 +554000.0 0.008987364621 +555000.0 0.008983783784 +556000.0 0.008976618705 +557000.0 0.008971274686 +558000.0 0.00896953405 +559000.0 0.008964221825 +560000.0 0.008960714286 +561000.0 0.008962566845 +562000.0 0.008951957295 +563000.0 0.00895026643 +564000.0 0.00894858156 +565000.0 0.008946902655 +566000.0 0.008948763251 +567000.0 0.00894356261 +568000.0 0.008940140845 +569000.0 0.00892970123 +570000.0 0.008931578947 +571000.0 0.008938704028 +572000.0 0.008933566434 +573000.0 0.008935427574 +574000.0 0.00893554007 +575000.0 0.008932173913 +576000.0 0.008930555556 +577000.0 0.008927209705 +578000.0 0.008929065744 +579000.0 0.008925734024 +580000.0 0.008927586207 +581000.0 0.008925989673 +582000.0 0.008929553265 +583000.0 0.008931389365 +584000.0 0.008924657534 +585000.0 0.008916239316 +586000.0 0.008912969283 +587000.0 0.008914821124 +588000.0 0.008913265306 +589000.0 0.008908319185 +590000.0 0.008908474576 +591000.0 0.008903553299 +592000.0 0.008898648649 +593000.0 0.00889376054 +594000.0 0.008893939394 +595000.0 0.008899159664 +596000.0 0.008902684564 +597000.0 0.008897822446 +598000.0 0.00889632107 +599000.0 0.00889148581 +600000.0 0.008885 +601000.0 0.008888519135 +602000.0 0.008880398671 +603000.0 0.008877280265 +604000.0 0.008879139073 +605000.0 0.00887107438 +606000.0 0.008867986799 +607000.0 0.00886490939 +608000.0 0.008870065789 +609000.0 0.008873563218 +610000.0 0.008868852459 +611000.0 0.008865793781 +612000.0 0.008861111111 +613000.0 0.008856443719 +614000.0 0.008853420195 +615000.0 0.00885203252 +616000.0 0.008849025974 +617000.0 0.008846029173 +618000.0 0.008844660194 +619000.0 0.008841680129 +620000.0 0.008837096774 +621000.0 0.008830917874 +622000.0 0.008826366559 +623000.0 0.008829855538 +624000.0 0.008830128205 +625000.0 0.0088272 +626000.0 0.008822683706 +627000.0 0.008819776715 +628000.0 0.008818471338 +629000.0 0.008815580286 +630000.0 0.008817460317 +631000.0 0.008809825674 +632000.0 0.008814873418 +633000.0 0.008815165877 +634000.0 0.008810725552 +635000.0 0.008807874016 +636000.0 0.008806603774 +637000.0 0.00880533752 +638000.0 0.008810344828 +639000.0 0.008801251956 +640000.0 0.0087984375 +641000.0 0.008795631825 +642000.0 0.008794392523 +643000.0 0.008794712286 +644000.0 0.008787267081 +645000.0 0.008789147287 +646000.0 0.008786377709 +647000.0 0.008785162287 +648000.0 0.008783950617 +649000.0 0.008781201849 +650000.0 0.008783076923 +651000.0 0.008775729647 +652000.0 0.008777607362 +653000.0 0.008777947933 +654000.0 0.008778287462 +655000.0 0.008775572519 +656000.0 0.008769817073 +657000.0 0.008761035008 +658000.0 0.008759878419 +659000.0 0.008758725341 +660000.0 0.008753030303 +661000.0 0.008757942511 +662000.0 0.008753776435 +663000.0 0.008752639517 +664000.0 0.008759036145 +665000.0 0.008757894737 +666000.0 0.008755255255 +667000.0 0.008754122939 +668000.0 0.008755988024 +669000.0 0.008750373692 +670000.0 0.008747761194 +671000.0 0.00874366617 +672000.0 0.008736607143 +673000.0 0.008734026746 +674000.0 0.008734421365 +675000.0 0.00873037037 +676000.0 0.008729289941 +677000.0 0.008725258493 +678000.0 0.008725663717 +679000.0 0.008724594993 +680000.0 0.008722058824 +681000.0 0.008723935389 +682000.0 0.008724340176 +683000.0 0.008715959004 +684000.0 0.008713450292 +685000.0 0.008709489051 +686000.0 0.008704081633 +687000.0 0.008705967977 +688000.0 0.008702034884 +689000.0 0.008690856313 +690000.0 0.008685507246 +691000.0 0.008683068017 +692000.0 0.008682080925 +693000.0 0.008678210678 +694000.0 0.008677233429 +695000.0 0.008679136691 +696000.0 0.008673850575 +697000.0 0.008672883788 +698000.0 0.008671919771 +699000.0 0.008665236052 +700000.0 0.008658571429 +701000.0 0.008656205421 +702000.0 0.00865954416 +703000.0 0.008658605974 +704000.0 0.008653409091 +705000.0 0.00865248227 +706000.0 0.008648725212 +707000.0 0.008644978784 +708000.0 0.008641242938 +709000.0 0.008641748942 +710000.0 0.008642253521 +711000.0 0.00864416315 +712000.0 0.008639044944 +713000.0 0.008638148668 +714000.0 0.008637254902 +715000.0 0.008630769231 +716000.0 0.008629888268 +717000.0 0.008627615063 +718000.0 0.008621169916 +719000.0 0.008614742698 +720000.0 0.0086125 +721000.0 0.008611650485 +722000.0 0.008608033241 +723000.0 0.008598893499 +724000.0 0.008602209945 +725000.0 0.00859862069 +726000.0 0.008597796143 +727000.0 0.008596973865 +728000.0 0.008596153846 +729000.0 0.008598079561 +730000.0 0.008595890411 +731000.0 0.008589603283 +732000.0 0.008587431694 +733000.0 0.008581173261 +734000.0 0.008581743869 +735000.0 0.008575510204 +736000.0 0.00857201087 +737000.0 0.008571234735 +738000.0 0.008574525745 +739000.0 0.008569688769 +740000.0 0.00857027027 +741000.0 0.008568151147 +742000.0 0.008567385445 +743000.0 0.008565275908 +744000.0 0.008565860215 +745000.0 0.008559731544 +746000.0 0.008557640751 +747000.0 0.008558232932 +748000.0 0.008556149733 +749000.0 0.00855540721 +750000.0 0.008552 +751000.0 0.008547270306 +752000.0 0.008541223404 +753000.0 0.008539176627 +754000.0 0.008538461538 +755000.0 0.008539072848 +756000.0 0.008537037037 +757000.0 0.008528401585 +758000.0 0.008523746702 +759000.0 0.0085256917 +760000.0 0.008522368421 +761000.0 0.008515111695 +762000.0 0.008517060367 +763000.0 0.008513761468 +764000.0 0.008506544503 +765000.0 0.008507189542 +766000.0 0.008503916449 +767000.0 0.00850065189 +768000.0 0.008498697917 +769000.0 0.008496749025 +770000.0 0.008496103896 +771000.0 0.008496757458 +772000.0 0.00849611399 +773000.0 0.008495472186 +774000.0 0.008502583979 +775000.0 0.008496774194 +776000.0 0.008490979381 +777000.0 0.008486486486 +778000.0 0.00848714653 +779000.0 0.008486521181 +780000.0 0.008484615385 +781000.0 0.008481434059 +782000.0 0.008484654731 +783000.0 0.008482758621 +784000.0 0.008487244898 +785000.0 0.008484076433 +786000.0 0.008480916031 +787000.0 0.008479034307 +788000.0 0.008474619289 +789000.0 0.008470215463 +790000.0 0.00846835443 +791000.0 0.008466498104 +792000.0 0.008465909091 +793000.0 0.008465321564 +794000.0 0.008462216625 +795000.0 0.008464150943 +796000.0 0.008466080402 +797000.0 0.008465495609 +798000.0 0.008463659148 +799000.0 0.008456821026 +800000.0 0.0084575 +801000.0 0.008458177278 +802000.0 0.008455112219 +803000.0 0.008449564134 +804000.0 0.008446517413 +805000.0 0.008440993789 +806000.0 0.008436724566 +807000.0 0.008433705081 +808000.0 0.008430693069 +809000.0 0.008430160692 +810000.0 0.00842962963 +811000.0 0.008426633785 +812000.0 0.008419950739 +813000.0 0.008418204182 +814000.0 0.00841031941 +815000.0 0.008413496933 +816000.0 0.008408088235 +817000.0 0.008406364749 +818000.0 0.008404645477 +819000.0 0.008402930403 +820000.0 0.008407317073 +821000.0 0.00840682095 +822000.0 0.008403892944 +823000.0 0.008411907655 +824000.0 0.008416262136 +825000.0 0.008414545455 +826000.0 0.008414043584 +827000.0 0.008414752116 +828000.0 0.008410628019 +829000.0 0.008407720145 +830000.0 0.008404819277 +831000.0 0.008403128761 +832000.0 0.008405048077 +833000.0 0.008402160864 +834000.0 0.008398081535 +835000.0 0.008398802395 +836000.0 0.008397129187 +837000.0 0.008396654719 +838000.0 0.008392601432 +839000.0 0.008395709178 +840000.0 0.008392857143 +841000.0 0.008391200951 +842000.0 0.008387173397 +843000.0 0.008389086595 +844000.0 0.008388625592 +845000.0 0.008386982249 +846000.0 0.008382978723 +847000.0 0.008381345927 +848000.0 0.008377358491 +849000.0 0.008373380448 +850000.0 0.008370588235 +851000.0 0.008365452409 +852000.0 0.008356807512 +853000.0 0.008357561547 +854000.0 0.008354800937 +855000.0 0.008353216374 +856000.0 0.00835046729 +857000.0 0.008348891482 +858000.0 0.008351981352 +859000.0 0.008345750873 +860000.0 0.008346511628 +861000.0 0.008347270616 +862000.0 0.008344547564 +863000.0 0.008346465817 +864000.0 0.008341435185 +865000.0 0.008344508671 +866000.0 0.00834295612 +867000.0 0.008340253749 +868000.0 0.00833640553 +869000.0 0.008338319908 +870000.0 0.008335632184 +871000.0 0.008332950631 +872000.0 0.008325688073 +873000.0 0.008329896907 +874000.0 0.00833180778 +875000.0 0.008328 +876000.0 0.008331050228 +877000.0 0.008334093501 +878000.0 0.00833143508 +879000.0 0.008327645051 +880000.0 0.008327272727 +881000.0 0.00833030647 +882000.0 0.008327664399 +883000.0 0.008327293318 +884000.0 0.008325791855 +885000.0 0.008324293785 +886000.0 0.008321670429 +887000.0 0.008324689966 +888000.0 0.008326576577 +889000.0 0.008327334083 +890000.0 0.008324719101 +891000.0 0.00831986532 +892000.0 0.008323991031 +893000.0 0.008316909295 +894000.0 0.008312080537 +895000.0 0.008311731844 +896000.0 0.008314732143 +897000.0 0.008309921962 +898000.0 0.008309576837 +899000.0 0.008307007786 +900000.0 0.008302222222 +901000.0 0.008301886792 +902000.0 0.008301552106 +903000.0 0.008295681063 +904000.0 0.008288716814 +905000.0 0.00828839779 +906000.0 0.008282560706 +907000.0 0.008280044101 +908000.0 0.008284140969 +909000.0 0.008283828383 +910000.0 0.008286813187 +911000.0 0.008285400659 +912000.0 0.008286184211 +913000.0 0.008286966046 +914000.0 0.008281181619 +915000.0 0.008280874317 +916000.0 0.008279475983 +917000.0 0.008280261723 +918000.0 0.008278867102 +919000.0 0.008275299238 +920000.0 0.00827826087 +921000.0 0.00827795874 +922000.0 0.008278741866 +923000.0 0.008280606717 +924000.0 0.008279220779 +925000.0 0.008281081081 +926000.0 0.008277537797 +927000.0 0.008275080906 +928000.0 0.008267241379 +929000.0 0.008270182992 +930000.0 0.008269892473 +931000.0 0.008269602578 +932000.0 0.008265021459 +933000.0 0.008264737406 +934000.0 0.008260171306 +935000.0 0.008258823529 +936000.0 0.008256410256 +937000.0 0.008251867663 +938000.0 0.008252665245 +939000.0 0.008248136315 +940000.0 0.00825 +941000.0 0.008246546227 +942000.0 0.008244161359 +943000.0 0.008242841994 +944000.0 0.008241525424 +945000.0 0.008242328042 +946000.0 0.008244186047 +947000.0 0.008244984161 +948000.0 0.008239451477 +949000.0 0.008236037935 +950000.0 0.008237894737 +951000.0 0.008235541535 +952000.0 0.008235294118 +953000.0 0.008232948583 +954000.0 0.008227463312 +955000.0 0.008227225131 +956000.0 0.008229079498 +957000.0 0.008222570533 +958000.0 0.008221294363 +959000.0 0.008222106361 +960000.0 0.00821875 +961000.0 0.008218522373 +962000.0 0.008223492723 +963000.0 0.008223260644 +964000.0 0.00822406639 +965000.0 0.008221761658 +966000.0 0.008219461698 +967000.0 0.008217166494 +968000.0 0.008213842975 +969000.0 0.008211558308 +970000.0 0.008209278351 +971000.0 0.008209062822 +972000.0 0.00820781893 +973000.0 0.008209660843 +974000.0 0.008209445585 +975000.0 0.008212307692 +976000.0 0.008209016393 +977000.0 0.008205731832 +978000.0 0.008203476483 +979000.0 0.008203268641 +980000.0 0.008197959184 +981000.0 0.008198776758 +982000.0 0.008197556008 +983000.0 0.008196337742 +984000.0 0.008197154472 +985000.0 0.008193908629 +986000.0 0.008190669371 +987000.0 0.008191489362 +988000.0 0.008186234818 +989000.0 0.008185035389 +990000.0 0.008183838384 +991000.0 0.008181634712 +992000.0 0.008178427419 +993000.0 0.008175226586 +994000.0 0.008171026157 +995000.0 0.008172864322 +996000.0 0.008172690763 +997000.0 0.008172517553 +998000.0 0.008176352705 +999000.0 0.008173173173 +1000000.0 0.008169 diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/12-3.txt b/Master/texmf-dist/doc/generic/pstricks-add/examples/12-3.txt new file mode 100644 index 00000000000..3b6718d24ad --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/12-3.txt @@ -0,0 +1,1000 @@ +1000.0 0.037 +2000.0 0.03 +3000.0 0.02766666667 +4000.0 0.02525 +5000.0 0.023 +6000.0 0.022 +7000.0 0.02142857143 +8000.0 0.020875 +9000.0 0.01977777778 +10000.0 0.019 +11000.0 0.01872727273 +12000.0 0.01841666667 +13000.0 0.01807692308 +14000.0 0.01771428571 +15000.0 0.01766666667 +16000.0 0.0173125 +17000.0 0.017 +18000.0 0.01661111111 +19000.0 0.01636842105 +20000.0 0.0163 +21000.0 0.01623809524 +22000.0 0.01609090909 +23000.0 0.01604347826 +24000.0 0.015875 +25000.0 0.01564 +26000.0 0.01546153846 +27000.0 0.01525925926 +28000.0 0.01510714286 +29000.0 0.01503448276 +30000.0 0.01486666667 +31000.0 0.01467741935 +32000.0 0.01453125 +33000.0 0.01448484848 +34000.0 0.0145 +35000.0 0.01431428571 +36000.0 0.01419444444 +37000.0 0.01416216216 +38000.0 0.01405263158 +39000.0 0.01412820513 +40000.0 0.014125 +41000.0 0.01397560976 +42000.0 0.0139047619 +43000.0 0.01386046512 +44000.0 0.01377272727 +45000.0 0.01373333333 +46000.0 0.01365217391 +47000.0 0.01359574468 +48000.0 0.0135 +49000.0 0.01342857143 +50000.0 0.0134 +51000.0 0.01337254902 +52000.0 0.01323076923 +53000.0 0.01322641509 +54000.0 0.01316666667 +55000.0 0.01310909091 +56000.0 0.01308928571 +57000.0 0.01312280702 +58000.0 0.01303448276 +59000.0 0.01296610169 +60000.0 0.01295 +61000.0 0.01293442623 +62000.0 0.01283870968 +63000.0 0.01282539683 +64000.0 0.012765625 +65000.0 0.01270769231 +66000.0 0.0126969697 +67000.0 0.01264179104 +68000.0 0.01261764706 +69000.0 0.0125942029 +70000.0 0.01254285714 +71000.0 0.01252112676 +72000.0 0.01244444444 +73000.0 0.01234246575 +74000.0 0.01231081081 +75000.0 0.01228 +76000.0 0.01228947368 +77000.0 0.01225974026 +78000.0 0.01221794872 +79000.0 0.01220253165 +80000.0 0.012225 +81000.0 0.01216049383 +82000.0 0.01213414634 +83000.0 0.01213253012 +84000.0 0.0120952381 +85000.0 0.01214117647 +86000.0 0.0121627907 +87000.0 0.01209195402 +88000.0 0.01204545455 +89000.0 0.01196629213 +90000.0 0.0119 +91000.0 0.01187912088 +92000.0 0.01189130435 +93000.0 0.01184946237 +94000.0 0.01186170213 +95000.0 0.0118 +96000.0 0.01177083333 +97000.0 0.01174226804 +98000.0 0.01170408163 +99000.0 0.01172727273 +100000.0 0.01171 +101000.0 0.01167326733 +102000.0 0.01167647059 +103000.0 0.01169902913 +104000.0 0.01166346154 +105000.0 0.01165714286 +106000.0 0.0116509434 +107000.0 0.01159813084 +108000.0 0.0115462963 +109000.0 0.01152293578 +110000.0 0.01153636364 +111000.0 0.01146846847 +112000.0 0.01148214286 +113000.0 0.01146902655 +114000.0 0.01143859649 +115000.0 0.0114173913 +116000.0 0.01142241379 +117000.0 0.01138461538 +118000.0 0.01139830508 +119000.0 0.01136134454 +120000.0 0.01135 +121000.0 0.01133884298 +122000.0 0.01131147541 +123000.0 0.01130081301 +124000.0 0.01130645161 +125000.0 0.011288 +126000.0 0.01123809524 +127000.0 0.01122047244 +128000.0 0.01121875 +129000.0 0.0112248062 +130000.0 0.01123076923 +131000.0 0.01116793893 +132000.0 0.01115909091 +133000.0 0.01113533835 +134000.0 0.01111940299 +135000.0 0.01108888889 +136000.0 0.01109558824 +137000.0 0.01108029197 +138000.0 0.01108695652 +139000.0 0.01108633094 +140000.0 0.01109285714 +141000.0 0.01109219858 +142000.0 0.01104929577 +143000.0 0.01102797203 +144000.0 0.01098611111 +145000.0 0.0109862069 +146000.0 0.01097945205 +147000.0 0.01095238095 +148000.0 0.01093243243 +149000.0 0.01091275168 +150000.0 0.01091333333 +151000.0 0.0108807947 +152000.0 0.01088157895 +153000.0 0.01087581699 +154000.0 0.01085714286 +155000.0 0.01081290323 +156000.0 0.01078205128 +157000.0 0.01075159236 +158000.0 0.01074050633 +159000.0 0.01072955975 +160000.0 0.01071875 +161000.0 0.01068944099 +162000.0 0.0107037037 +163000.0 0.01070552147 +164000.0 0.01068292683 +165000.0 0.01065454545 +166000.0 0.01065060241 +167000.0 0.01063473054 +168000.0 0.010625 +169000.0 0.01062130178 +170000.0 0.01062352941 +171000.0 0.01061988304 +172000.0 0.01062790698 +173000.0 0.01059537572 +174000.0 0.01058045977 +175000.0 0.01057714286 +176000.0 0.01058522727 +177000.0 0.0105819209 +178000.0 0.0105505618 +179000.0 0.01051396648 +180000.0 0.01051111111 +181000.0 0.01048618785 +182000.0 0.01045054945 +183000.0 0.01043715847 +184000.0 0.01042934783 +185000.0 0.01042702703 +186000.0 0.01044086022 +187000.0 0.01041176471 +188000.0 0.01039893617 +189000.0 0.01038095238 +190000.0 0.01038421053 +191000.0 0.01036649215 +192000.0 0.01034375 +193000.0 0.01033160622 +194000.0 0.01034020619 +195000.0 0.01032307692 +196000.0 0.01032653061 +197000.0 0.01033502538 +198000.0 0.01032323232 +199000.0 0.01031155779 +200000.0 0.01029 +201000.0 0.01025870647 +202000.0 0.01024752475 +203000.0 0.01024630542 +204000.0 0.0102254902 +205000.0 0.01022439024 +206000.0 0.01020873786 +207000.0 0.01020289855 +208000.0 0.01019711538 +209000.0 0.01017703349 +210000.0 0.01017619048 +211000.0 0.01017061611 +212000.0 0.01016981132 +213000.0 0.01016901408 +214000.0 0.0101588785 +215000.0 0.01014418605 +216000.0 0.01012962963 +217000.0 0.01012442396 +218000.0 0.01010550459 +219000.0 0.01008675799 +220000.0 0.0101 +221000.0 0.0101040724 +222000.0 0.01009009009 +223000.0 0.01007623318 +224000.0 0.01004464286 +225000.0 0.01005777778 +226000.0 0.01005752212 +227000.0 0.01004405286 +228000.0 0.01003947368 +229000.0 0.01004366812 +230000.0 0.01003913043 +231000.0 0.01003030303 +232000.0 0.01002155172 +233000.0 0.01 +234000.0 0.009978632479 +235000.0 0.009978723404 +236000.0 0.009961864407 +237000.0 0.009957805907 +238000.0 0.009953781513 +239000.0 0.009941422594 +240000.0 0.009916666667 +241000.0 0.009908713693 +242000.0 0.00991322314 +243000.0 0.009897119342 +244000.0 0.009905737705 +245000.0 0.009902040816 +246000.0 0.009898373984 +247000.0 0.00987854251 +248000.0 0.009887096774 +249000.0 0.009883534137 +250000.0 0.009876 +251000.0 0.009876494024 +252000.0 0.009865079365 +253000.0 0.00985770751 +254000.0 0.009854330709 +255000.0 0.00982745098 +256000.0 0.00981640625 +257000.0 0.009785992218 +258000.0 0.009779069767 +259000.0 0.009776061776 +260000.0 0.009765384615 +261000.0 0.009762452107 +262000.0 0.009740458015 +263000.0 0.009737642586 +264000.0 0.009731060606 +265000.0 0.009713207547 +266000.0 0.009703007519 +267000.0 0.00970411985 +268000.0 0.009705223881 +269000.0 0.009695167286 +270000.0 0.009692592593 +271000.0 0.009682656827 +272000.0 0.009683823529 +273000.0 0.009673992674 +274000.0 0.009671532847 +275000.0 0.009687272727 +276000.0 0.009688405797 +277000.0 0.009667870036 +278000.0 0.009658273381 +279000.0 0.009652329749 +280000.0 0.009642857143 +281000.0 0.009637010676 +282000.0 0.009624113475 +283000.0 0.009618374558 +284000.0 0.00960915493 +285000.0 0.0096 +286000.0 0.009583916084 +287000.0 0.009581881533 +288000.0 0.009576388889 +289000.0 0.009564013841 +290000.0 0.009568965517 +291000.0 0.009553264605 +292000.0 0.009565068493 +293000.0 0.009546075085 +294000.0 0.009540816327 +295000.0 0.00953220339 +296000.0 0.009530405405 +297000.0 0.009525252525 +298000.0 0.009513422819 +299000.0 0.009501672241 +300000.0 0.009493333333 +301000.0 0.009485049834 +302000.0 0.009466887417 +303000.0 0.009471947195 +304000.0 0.009460526316 +305000.0 0.009468852459 +306000.0 0.009473856209 +307000.0 0.009469055375 +308000.0 0.009454545455 +309000.0 0.00945631068 +310000.0 0.009451612903 +311000.0 0.009446945338 +312000.0 0.009442307692 +313000.0 0.009447284345 +314000.0 0.009436305732 +315000.0 0.009431746032 +316000.0 0.009424050633 +317000.0 0.009425867508 +318000.0 0.00943081761 +319000.0 0.009432601881 +320000.0 0.009421875 +321000.0 0.009420560748 +322000.0 0.009409937888 +323000.0 0.009399380805 +324000.0 0.009388888889 +325000.0 0.009393846154 +326000.0 0.009392638037 +327000.0 0.009388379205 +328000.0 0.009390243902 +329000.0 0.009370820669 +330000.0 0.009375757576 +331000.0 0.00936858006 +332000.0 0.009361445783 +333000.0 0.00936036036 +334000.0 0.009374251497 +335000.0 0.009364179104 +336000.0 0.009363095238 +337000.0 0.009353115727 +338000.0 0.009346153846 +339000.0 0.009330383481 +340000.0 0.009320588235 +341000.0 0.009316715543 +342000.0 0.009312865497 +343000.0 0.009311953353 +344000.0 0.009302325581 +345000.0 0.009289855072 +346000.0 0.009283236994 +347000.0 0.009268011527 +348000.0 0.009264367816 +349000.0 0.009255014327 +350000.0 0.009237142857 +351000.0 0.009245014245 +352000.0 0.00925 +353000.0 0.009243626062 +354000.0 0.009231638418 +355000.0 0.009233802817 +356000.0 0.009221910112 +357000.0 0.009212885154 +358000.0 0.009206703911 +359000.0 0.009206128134 +360000.0 0.009202777778 +361000.0 0.0091966759 +362000.0 0.009198895028 +363000.0 0.009198347107 +364000.0 0.009184065934 +365000.0 0.009183561644 +366000.0 0.009172131148 +367000.0 0.009163487738 +368000.0 0.009154891304 +369000.0 0.009143631436 +370000.0 0.009140540541 +371000.0 0.009132075472 +372000.0 0.009137096774 +373000.0 0.009126005362 +374000.0 0.009122994652 +375000.0 0.00912 +376000.0 0.009119680851 +377000.0 0.009111405836 +378000.0 0.009111111111 +379000.0 0.009105540897 +380000.0 0.009107894737 +381000.0 0.009094488189 +382000.0 0.009091623037 +383000.0 0.009091383812 +384000.0 0.009083333333 +385000.0 0.009075324675 +386000.0 0.009080310881 +387000.0 0.009069767442 +388000.0 0.009056701031 +389000.0 0.009051413882 +390000.0 0.009046153846 +391000.0 0.009046035806 +392000.0 0.009040816327 +393000.0 0.009027989822 +394000.0 0.009027918782 +395000.0 0.009012658228 +396000.0 0.009007575758 +397000.0 0.008997481108 +398000.0 0.008992462312 +399000.0 0.008979949875 +400000.0 0.0089725 +401000.0 0.008962593516 +402000.0 0.008955223881 +403000.0 0.008955334988 +404000.0 0.008955445545 +405000.0 0.008943209877 +406000.0 0.008938423645 +407000.0 0.008936117936 +408000.0 0.008928921569 +409000.0 0.008926650367 +410000.0 0.008919512195 +411000.0 0.008922141119 +412000.0 0.008915048544 +413000.0 0.0089031477 +414000.0 0.008896135266 +415000.0 0.008889156627 +416000.0 0.008891826923 +417000.0 0.008889688249 +418000.0 0.008885167464 +419000.0 0.008890214797 +420000.0 0.008892857143 +421000.0 0.008890736342 +422000.0 0.008888625592 +423000.0 0.008888888889 +424000.0 0.008886792453 +425000.0 0.00888 +426000.0 0.008877934272 +427000.0 0.0088735363 +428000.0 0.008871495327 +429000.0 0.008864801865 +430000.0 0.008858139535 +431000.0 0.008849187935 +432000.0 0.008842592593 +433000.0 0.008849884527 +434000.0 0.008847926267 +435000.0 0.008850574713 +436000.0 0.008844036697 +437000.0 0.008832951945 +438000.0 0.008824200913 +439000.0 0.008824601367 +440000.0 0.008825 +441000.0 0.008825396825 +442000.0 0.008814479638 +443000.0 0.00881489842 +444000.0 0.008817567568 +445000.0 0.008820224719 +446000.0 0.008831838565 +447000.0 0.008832214765 +448000.0 0.008823660714 +449000.0 0.008810690423 +450000.0 0.008815555556 +451000.0 0.008815964523 +452000.0 0.008807522124 +453000.0 0.008799116998 +454000.0 0.008799559471 +455000.0 0.008795604396 +456000.0 0.008800438596 +457000.0 0.008792122538 +458000.0 0.008788209607 +459000.0 0.008788671024 +460000.0 0.008784782609 +461000.0 0.008780911063 +462000.0 0.008777056277 +463000.0 0.008771058315 +464000.0 0.008762931034 +465000.0 0.008772043011 +466000.0 0.008766094421 +467000.0 0.008760171306 +468000.0 0.008762820513 +469000.0 0.008754797441 +470000.0 0.008759574468 +471000.0 0.008753715499 +472000.0 0.008747881356 +473000.0 0.008739957717 +474000.0 0.008734177215 +475000.0 0.008722105263 +476000.0 0.008718487395 +477000.0 0.008721174004 +478000.0 0.008715481172 +479000.0 0.008709812109 +480000.0 0.008708333333 +481000.0 0.008704781705 +482000.0 0.008701244813 +483000.0 0.008706004141 +484000.0 0.008696280992 +485000.0 0.008694845361 +486000.0 0.008689300412 +487000.0 0.00868788501 +488000.0 0.008678278689 +489000.0 0.008683026585 +490000.0 0.008685714286 +491000.0 0.008680244399 +492000.0 0.008678861789 +493000.0 0.008675456389 +494000.0 0.008670040486 +495000.0 0.008662626263 +496000.0 0.00866733871 +497000.0 0.008663983903 +498000.0 0.008662650602 +499000.0 0.008657314629 +500000.0 0.008648 +501000.0 0.008648702595 +502000.0 0.008645418327 +503000.0 0.008638170974 +504000.0 0.008638888889 +505000.0 0.008641584158 +506000.0 0.008630434783 +507000.0 0.008629191321 +508000.0 0.008624015748 +509000.0 0.008622789784 +510000.0 0.008619607843 +511000.0 0.008608610568 +512000.0 0.008607421875 +513000.0 0.008598440546 +514000.0 0.008597276265 +515000.0 0.008594174757 +516000.0 0.008589147287 +517000.0 0.008589941973 +518000.0 0.008586872587 +519000.0 0.008585741811 +520000.0 0.008588461538 +521000.0 0.008577735125 +522000.0 0.008578544061 +523000.0 0.008579349904 +524000.0 0.008570610687 +525000.0 0.008577142857 +526000.0 0.008566539924 +527000.0 0.008567362429 +528000.0 0.008564393939 +529000.0 0.008557655955 +530000.0 0.008554716981 +531000.0 0.008544256121 +532000.0 0.008546992481 +533000.0 0.008545966229 +534000.0 0.008546816479 +535000.0 0.008534579439 +536000.0 0.008531716418 +537000.0 0.00852886406 +538000.0 0.008520446097 +539000.0 0.008528756957 +540000.0 0.00852037037 +541000.0 0.008517560074 +542000.0 0.008516605166 +543000.0 0.008511970534 +544000.0 0.008503676471 +545000.0 0.008504587156 +546000.0 0.0085 +547000.0 0.008491773309 +548000.0 0.00849270073 +549000.0 0.008500910747 +550000.0 0.0085 +551000.0 0.008497277677 +552000.0 0.008507246377 +553000.0 0.008513562387 +554000.0 0.008516245487 +555000.0 0.008517117117 +556000.0 0.008510791367 +557000.0 0.008513464991 +558000.0 0.008507168459 +559000.0 0.008504472272 +560000.0 0.008501785714 +561000.0 0.008497326203 +562000.0 0.008485765125 +563000.0 0.008484902309 +564000.0 0.008482269504 +565000.0 0.008492035398 +566000.0 0.008492932862 +567000.0 0.008488536155 +568000.0 0.008475352113 +569000.0 0.008474516696 +570000.0 0.008470175439 +571000.0 0.008464098074 +572000.0 0.008458041958 +573000.0 0.008455497382 +574000.0 0.008445993031 +575000.0 0.008443478261 +576000.0 0.008439236111 +577000.0 0.008433275563 +578000.0 0.008425605536 +579000.0 0.008419689119 +580000.0 0.008418965517 +581000.0 0.008411359725 +582000.0 0.008407216495 +583000.0 0.008409948542 +584000.0 0.008407534247 +585000.0 0.008403418803 +586000.0 0.008395904437 +587000.0 0.00839693356 +588000.0 0.008403061224 +589000.0 0.008397283531 +590000.0 0.008394915254 +591000.0 0.008394247039 +592000.0 0.008383445946 +593000.0 0.008384485666 +594000.0 0.008377104377 +595000.0 0.008373109244 +596000.0 0.008367449664 +597000.0 0.008365159129 +598000.0 0.00835451505 +599000.0 0.008347245409 +600000.0 0.008348333333 +601000.0 0.00834608985 +602000.0 0.00834717608 +603000.0 0.008344941957 +604000.0 0.008344370861 +605000.0 0.008340495868 +606000.0 0.008343234323 +607000.0 0.00833937397 +608000.0 0.008342105263 +609000.0 0.008339901478 +610000.0 0.008339344262 +611000.0 0.008343698854 +612000.0 0.008343137255 +613000.0 0.008336052202 +614000.0 0.008330618893 +615000.0 0.008325203252 +616000.0 0.008327922078 +617000.0 0.008330632091 +618000.0 0.008330097087 +619000.0 0.008327948304 +620000.0 0.008319354839 +621000.0 0.00832689211 +622000.0 0.008326366559 +623000.0 0.008327447833 +624000.0 0.008325320513 +625000.0 0.0083232 +626000.0 0.008321086262 +627000.0 0.008315789474 +628000.0 0.008318471338 +629000.0 0.008314785374 +630000.0 0.008311111111 +631000.0 0.008305863708 +632000.0 0.008308544304 +633000.0 0.008301737757 +634000.0 0.008302839117 +635000.0 0.008303937008 +636000.0 0.008305031447 +637000.0 0.008298273155 +638000.0 0.008293103448 +639000.0 0.008286384977 +640000.0 0.0082921875 +641000.0 0.008290171607 +642000.0 0.008289719626 +643000.0 0.008284603421 +644000.0 0.008288819876 +645000.0 0.008289922481 +646000.0 0.008291021672 +647000.0 0.008289026275 +648000.0 0.008287037037 +649000.0 0.008283513097 +650000.0 0.008278461538 +651000.0 0.008274961598 +652000.0 0.008273006135 +653000.0 0.008266462481 +654000.0 0.008259938838 +655000.0 0.008258015267 +656000.0 0.008256097561 +657000.0 0.008260273973 +658000.0 0.008259878419 +659000.0 0.008261001517 +660000.0 0.008256060606 +661000.0 0.008249621785 +662000.0 0.008250755287 +663000.0 0.00825188537 +664000.0 0.008245481928 +665000.0 0.00825112782 +666000.0 0.008250750751 +667000.0 0.008245877061 +668000.0 0.008241017964 +669000.0 0.008242152466 +670000.0 0.008232835821 +671000.0 0.008233979136 +672000.0 0.008241071429 +673000.0 0.008234769688 +674000.0 0.008235905045 +675000.0 0.008237037037 +676000.0 0.008229289941 +677000.0 0.008228951256 +678000.0 0.008224188791 +679000.0 0.00822533137 +680000.0 0.008225 +681000.0 0.00821732746 +682000.0 0.008209677419 +683000.0 0.008204978038 +684000.0 0.008206140351 +685000.0 0.008202919708 +686000.0 0.008201166181 +687000.0 0.008197962154 +688000.0 0.008199127907 +689000.0 0.008193033382 +690000.0 0.008195652174 +691000.0 0.008192474674 +692000.0 0.008196531792 +693000.0 0.008197691198 +694000.0 0.008195965418 +695000.0 0.008191366906 +696000.0 0.008188218391 +697000.0 0.008182209469 +698000.0 0.008180515759 +699000.0 0.008183118741 +700000.0 0.00818 +701000.0 0.008175463623 +702000.0 0.008175213675 +703000.0 0.008174964438 +704000.0 0.008170454545 +705000.0 0.008171631206 +706000.0 0.008174220963 +707000.0 0.008168316832 +708000.0 0.008162429379 +709000.0 0.008156558533 +710000.0 0.008153521127 +711000.0 0.008154711674 +712000.0 0.008155898876 +713000.0 0.008147265077 +714000.0 0.008149859944 +715000.0 0.008144055944 +716000.0 0.008141061453 +717000.0 0.008138075314 +718000.0 0.008139275766 +719000.0 0.008134909597 +720000.0 0.008134722222 +721000.0 0.008133148405 +722000.0 0.008132963989 +723000.0 0.008128630705 +724000.0 0.008127071823 +725000.0 0.008125517241 +726000.0 0.008121212121 +727000.0 0.008126547455 +728000.0 0.008125 +729000.0 0.008124828532 +730000.0 0.008119178082 +731000.0 0.008120383037 +732000.0 0.008118852459 +733000.0 0.008122783083 +734000.0 0.00811852861 +735000.0 0.008114285714 +736000.0 0.008114130435 +737000.0 0.008108548168 +738000.0 0.008108401084 +739000.0 0.008106901218 +740000.0 0.008108108108 +741000.0 0.008106612686 +742000.0 0.00810916442 +743000.0 0.008107671602 +744000.0 0.008107526882 +745000.0 0.008104697987 +746000.0 0.008104557641 +747000.0 0.008107095047 +748000.0 0.00810026738 +749000.0 0.008104138852 +750000.0 0.008096 +751000.0 0.00810252996 +752000.0 0.008103723404 +753000.0 0.008102257636 +754000.0 0.008099469496 +755000.0 0.008100662252 +756000.0 0.008100529101 +757000.0 0.008097754293 +758000.0 0.008094986807 +759000.0 0.008098814229 +760000.0 0.0081 +761000.0 0.008098554534 +762000.0 0.008098425197 +763000.0 0.008089121887 +764000.0 0.008089005236 +765000.0 0.00808496732 +766000.0 0.008077023499 +767000.0 0.008078226858 +768000.0 0.008075520833 +769000.0 0.008079323797 +770000.0 0.008079220779 +771000.0 0.008079118029 +772000.0 0.008073834197 +773000.0 0.008072445019 +774000.0 0.008069767442 +775000.0 0.008064516129 +776000.0 0.008065721649 +777000.0 0.008061776062 +778000.0 0.008064267352 +779000.0 0.008059050064 +780000.0 0.00806025641 +781000.0 0.008056338028 +782000.0 0.008061381074 +783000.0 0.008056194125 +784000.0 0.008057397959 +785000.0 0.008057324841 +786000.0 0.008058524173 +787000.0 0.008050825921 +788000.0 0.00804822335 +789000.0 0.008045627376 +790000.0 0.008044303797 +791000.0 0.008042983565 +792000.0 0.008039141414 +793000.0 0.008042875158 +794000.0 0.008035264484 +795000.0 0.008028930818 +796000.0 0.008025125628 +797000.0 0.008023839398 +798000.0 0.00801754386 +799000.0 0.008018773467 +800000.0 0.008015 +801000.0 0.008011235955 +802000.0 0.008006234414 +803000.0 0.00800747198 +804000.0 0.008004975124 +805000.0 0.008007453416 +806000.0 0.008003722084 +807000.0 0.008004956629 +808000.0 0.008003712871 +809000.0 0.008003708282 +810000.0 0.008003703704 +811000.0 0.008006165228 +812000.0 0.008006157635 +813000.0 0.008001230012 +814000.0 0.008002457002 +815000.0 0.008006134969 +816000.0 0.008009803922 +817000.0 0.008011015912 +818000.0 0.008006112469 +819000.0 0.008007326007 +820000.0 0.008008536585 +821000.0 0.008007308161 +822000.0 0.008003649635 +823000.0 0.008 +824000.0 0.007997572816 +825000.0 0.007993939394 +826000.0 0.007995157385 +827000.0 0.00799879081 +828000.0 0.008001207729 +829000.0 0.007996381182 +830000.0 0.007992771084 +831000.0 0.007991576414 +832000.0 0.007989182692 +833000.0 0.007986794718 +834000.0 0.007985611511 +835000.0 0.007984431138 +836000.0 0.007982057416 +837000.0 0.007978494624 +838000.0 0.007974940334 +839000.0 0.007973778308 +840000.0 0.007971428571 +841000.0 0.007966706302 +842000.0 0.007964370546 +843000.0 0.00796915777 +844000.0 0.007964454976 +845000.0 0.007964497041 +846000.0 0.007963356974 +847000.0 0.007955135773 +848000.0 0.007954009434 +849000.0 0.007952885748 +850000.0 0.007950588235 +851000.0 0.007951821387 +852000.0 0.007951877934 +853000.0 0.007950762016 +854000.0 0.007949648712 +855000.0 0.007950877193 +856000.0 0.007956775701 +857000.0 0.007952158693 +858000.0 0.007951048951 +859000.0 0.00794644936 +860000.0 0.007948837209 +861000.0 0.007951219512 +862000.0 0.007948955916 +863000.0 0.007950173812 +864000.0 0.007943287037 +865000.0 0.007938728324 +866000.0 0.007937644342 +867000.0 0.007934256055 +868000.0 0.007928571429 +869000.0 0.007927502877 +870000.0 0.007924137931 +871000.0 0.007917336395 +872000.0 0.007915137615 +873000.0 0.00790836197 +874000.0 0.007907322654 +875000.0 0.007905142857 +876000.0 0.007901826484 +877000.0 0.007900798176 +878000.0 0.007896355353 +879000.0 0.007893060296 +880000.0 0.007893181818 +881000.0 0.007892167991 +882000.0 0.007887755102 +883000.0 0.007886749717 +884000.0 0.007890271493 +885000.0 0.00789039548 +886000.0 0.007887133183 +887000.0 0.007887260428 +888000.0 0.007885135135 +889000.0 0.007885264342 +890000.0 0.007884269663 +891000.0 0.007882154882 +892000.0 0.007882286996 +893000.0 0.007879059351 +894000.0 0.007876957494 +895000.0 0.007881564246 +896000.0 0.007880580357 +897000.0 0.007878483835 +898000.0 0.007878619154 +899000.0 0.007882091212 +900000.0 0.007877777778 +901000.0 0.007873473918 +902000.0 0.007872505543 +903000.0 0.007870431894 +904000.0 0.007867256637 +905000.0 0.007866298343 +906000.0 0.007864238411 +907000.0 0.007862183021 +908000.0 0.007862334802 +909000.0 0.007861386139 +910000.0 0.007861538462 +911000.0 0.007858397366 +912000.0 0.007860745614 +913000.0 0.007861993428 +914000.0 0.007858862144 +915000.0 0.007857923497 +916000.0 0.0078569869 +917000.0 0.00785823337 +918000.0 0.00785620915 +919000.0 0.007853101197 +920000.0 0.007852173913 +921000.0 0.00784907709 +922000.0 0.007845986985 +923000.0 0.007840736728 +924000.0 0.007836580087 +925000.0 0.007837837838 +926000.0 0.007836933045 +927000.0 0.007836030205 +928000.0 0.007832974138 +929000.0 0.007835306781 +930000.0 0.007835483871 +931000.0 0.007836734694 +932000.0 0.007830472103 +933000.0 0.007831725616 +934000.0 0.007829764454 +935000.0 0.007831016043 +936000.0 0.007829059829 +937000.0 0.007823906083 +938000.0 0.007824093817 +939000.0 0.007821086262 +940000.0 0.007817021277 +941000.0 0.007817215728 +942000.0 0.007816348195 +943000.0 0.007815482503 +944000.0 0.0078125 +945000.0 0.007812698413 +946000.0 0.007808668076 +947000.0 0.007808870116 +948000.0 0.007803797468 +949000.0 0.007802950474 +950000.0 0.007805263158 +951000.0 0.007807570978 +952000.0 0.007808823529 +953000.0 0.007804826863 +954000.0 0.00780293501 +955000.0 0.007805235602 +956000.0 0.00780334728 +957000.0 0.007800417973 +958000.0 0.007799582463 +959000.0 0.007797705944 +960000.0 0.007796875 +961000.0 0.007797086368 +962000.0 0.007798336798 +963000.0 0.007797507788 +964000.0 0.007795643154 +965000.0 0.007795854922 +966000.0 0.007791925466 +967000.0 0.007789038263 +968000.0 0.007789256198 +969000.0 0.007791537668 +970000.0 0.007792783505 +971000.0 0.007788877446 +972000.0 0.007787037037 +973000.0 0.00778725591 +974000.0 0.007783367556 +975000.0 0.007779487179 +976000.0 0.007780737705 +977000.0 0.007777891505 +978000.0 0.00777402863 +979000.0 0.007773237998 +980000.0 0.007768367347 +981000.0 0.007767584098 +982000.0 0.007765784114 +983000.0 0.007761953204 +984000.0 0.007759146341 +985000.0 0.007757360406 +986000.0 0.007755578093 +987000.0 0.007754812563 +988000.0 0.007758097166 +989000.0 0.007755308392 +990000.0 0.007753535354 +991000.0 0.007750756811 +992000.0 0.007751008065 +993000.0 0.007750251762 +994000.0 0.007745472837 +995000.0 0.007740703518 +996000.0 0.007741967871 +997000.0 0.007739217653 +998000.0 0.007741482966 +999000.0 0.007745745746 +1000000.0 0.007746 diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/HookArrow.pdf b/Master/texmf-dist/doc/generic/pstricks-add/examples/HookArrow.pdf Binary files differnew file mode 100644 index 00000000000..2f9964afb45 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/HookArrow.pdf diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/HookArrow.tex b/Master/texmf-dist/doc/generic/pstricks-add/examples/HookArrow.tex new file mode 100644 index 00000000000..dd51aba9492 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/HookArrow.tex @@ -0,0 +1,41 @@ +\documentclass[12pt]{article} + +\usepackage{pst-node} +\usepackage{pstricks-add} + +\begin{document} + +\[ +\begin{psmatrix} +E&W_i(X)&&Y\\ +&&W_j(X) +\psset{arrows=->,nodesep=3pt,linewidth=5pt} +\everypsbox{\scriptstyle} +\ncline[linecolor=red,arrows=H->,hooklength=5mm,hookwidth=4mm]{1,1}{1,2} +%% This should be \hookrightarrow +\ncline{1,2}{1,4}^{\tilde{t}} +\ncline{1,2}{2,3}<{W_{ij}} +\ncline{2,3}{1,4}>{\tilde{s}} +\end{psmatrix} +\] + +\[ +\begin{psmatrix} +&&C(K)\\ +&M_i&&M_j\\ +W_i(K)&&&&W_j(K) +\psset{arrows=->,nodesep=3pt} +\everypsbox{\scriptstyle} +\ncline[arrows=->>]{1,3}{2,2} +\ncline[arrows=->>]{1,3}{2,4} +\ncline[arrows=<<-,linestyle=dashed]{2,2}{2,4}_{m_{ij}} +\ncline[linecolor=red,arrows=H->,hooklength=5mm,hookwidth=-2mm]{2,2}{3,1}<{m_i} +%% \hookrightarrow with the +%% "litle tail" directed to the left; the same for the next arrow. +\ncline{2,4}{3,5}>{m_j} +\ncline{3,5}{3,1}_{W_{ji}} +\end{psmatrix} +\] +\end{document} + + diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/data.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/data.dat new file mode 100644 index 00000000000..ef26a271f2d --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/data.dat @@ -0,0 +1,1000 @@ +0 0 +1 1 +2 3 +3 6 +4 6 +5 11 +6 15 +7 18 +8 25 +9 26 +10 32 +11 37 +12 37 +13 44 +14 52 +15 65 +16 67 +17 82 +18 89 +19 104 +20 104 +21 111 +22 133 +23 142 +24 144 +25 166 +26 171 +27 182 +28 205 +29 230 +30 235 +31 256 +32 268 +33 289 +34 322 +35 356 +36 363 +37 394 +38 413 +39 430 +40 461 +41 496 +42 527 +43 563 +44 590 +45 616 +46 616 +47 652 +48 685 +49 694 +50 728 +51 779 +52 785 +53 791 +54 823 +55 846 +56 891 +57 892 +58 894 +59 922 +60 976 +61 1002 +62 1025 +63 1083 +64 1130 +65 1173 +66 1176 +67 1208 +68 1211 +69 1221 +70 1272 +71 1281 +72 1290 +73 1329 +74 1379 +75 1428 +76 1460 +77 1489 +78 1550 +79 1600 +80 1666 +81 1678 +82 1680 +83 1760 +84 1785 +85 1796 +86 1874 +87 1881 +88 1932 +89 1936 +90 1968 +91 2016 +92 2091 +93 2111 +94 2181 +95 2227 +96 2260 +97 2354 +98 2371 +99 2423 +100 2498 +101 2552 +102 2585 +103 2622 +104 2676 +105 2678 +106 2752 +107 2842 +108 2904 +109 2984 +110 3029 +111 3037 +112 3062 +113 3162 +114 3181 +115 3266 +116 3364 +117 3461 +118 3479 +119 3494 +120 3523 +121 3630 +122 3668 +123 3699 +124 3815 +125 3939 +126 4003 +127 4107 +128 4168 +129 4199 +130 4231 +131 4304 +132 4331 +133 4354 +134 4416 +135 4435 +136 4448 +137 4514 +138 4601 +139 4672 +140 4736 +141 4843 +142 4845 +143 4923 +144 5059 +145 5095 +146 5240 +147 5255 +148 5289 +149 5393 +150 5475 +151 5586 +152 5647 +153 5669 +154 5733 +155 5837 +156 5871 +157 5881 +158 5970 +159 5973 +160 6055 +161 6107 +162 6266 +163 6399 +164 6402 +165 6474 +166 6605 +167 6669 +168 6837 +169 6908 +170 6958 +171 7103 +172 7183 +173 7319 +174 7464 +175 7513 +176 7672 +177 7693 +178 7841 +179 7891 +180 8035 +181 8200 +182 8337 +183 8515 +184 8545 +185 8546 +186 8632 +187 8793 +188 8822 +189 8996 +190 9073 +191 9227 +192 9317 +193 9381 +194 9394 +195 9494 +196 9614 +197 9744 +198 9805 +199 9923 +200 9942 +201 10079 +202 10169 +203 10322 +204 10393 +205 10570 +206 10723 +207 10802 +208 10862 +209 10958 +210 11054 +211 11216 +212 11409 +213 11528 +214 11659 +215 11793 +216 11888 +217 11900 +218 12081 +219 12082 +220 12161 +221 12311 +222 12345 +223 12403 +224 12469 +225 12678 +226 12695 +227 12732 +228 12863 +229 12896 +230 13120 +231 13142 +232 13361 +233 13549 +234 13702 +235 13821 +236 13978 +237 14182 +238 14356 +239 14472 +240 14668 +241 14794 +242 15008 +243 15092 +244 15148 +245 15172 +246 15218 +247 15430 +248 15639 +249 15744 +250 15973 +251 16076 +252 16233 +253 16466 +254 16572 +255 16752 +256 16987 +257 17013 +258 17034 +259 17101 +260 17301 +261 17495 +262 17576 +263 17604 +264 17610 +265 17720 +266 17924 +267 17933 +268 17997 +269 18152 +270 18353 +271 18417 +272 18553 +273 18663 +274 18897 +275 18934 +276 19092 +277 19366 +278 19615 +279 19783 +280 19980 +281 20044 +282 20249 +283 20484 +284 20623 +285 20641 +286 20718 +287 20937 +288 21202 +289 21401 +290 21403 +291 21657 +292 21667 +293 21693 +294 21893 +295 22053 +296 22115 +297 22207 +298 22342 +299 22617 +300 22724 +301 22851 +302 23048 +303 23263 +304 23379 +305 23586 +306 23597 +307 23761 +308 23853 +309 24112 +310 24421 +311 24718 +312 24904 +313 25001 +314 25298 +315 25387 +316 25430 +317 25611 +318 25895 +319 26138 +320 26186 +321 26482 +322 26753 +323 27073 +324 27266 +325 27497 +326 27663 +327 27871 +328 27982 +329 28032 +330 28037 +331 28082 +332 28363 +333 28416 +334 28626 +335 28672 +336 28995 +337 29143 +338 29192 +339 29491 +340 29515 +341 29618 +342 29731 +343 30003 +344 30259 +345 30288 +346 30312 +347 30613 +348 30730 +349 30941 +350 30951 +351 31118 +352 31438 +353 31582 +354 31722 +355 31984 +356 32116 +357 32425 +358 32780 +359 32841 +360 33017 +361 33378 +362 33523 +363 33742 +364 33859 +365 34163 +366 34349 +367 34687 +368 34755 +369 34939 +370 35136 +371 35226 +372 35456 +373 35802 +374 35957 +375 36266 +376 36623 +377 36876 +378 37192 +379 37566 +380 37901 +381 37914 +382 37974 +383 38260 +384 38311 +385 38329 +386 38347 +387 38354 +388 38724 +389 38794 +390 39163 +391 39372 +392 39656 +393 39959 +394 40224 +395 40446 +396 40550 +397 40604 +398 40932 +399 41331 +400 41533 +401 41920 +402 42274 +403 42338 +404 42644 +405 42815 +406 42962 +407 43222 +408 43457 +409 43615 +410 44001 +411 44263 +412 44274 +413 44427 +414 44545 +415 44916 +416 45298 +417 45523 +418 45537 +419 45659 +420 45793 +421 46125 +422 46455 +423 46725 +424 46751 +425 46820 +426 46954 +427 47162 +428 47361 +429 47709 +430 47981 +431 48040 +432 48241 +433 48585 +434 48745 +435 49167 +436 49215 +437 49652 +438 49977 +439 50108 +440 50161 +441 50399 +442 50421 +443 50523 +444 50637 +445 50846 +446 51223 +447 51592 +448 51740 +449 52142 +450 52447 +451 52813 +452 53012 +453 53333 +454 53380 +455 53556 +456 53876 +457 54028 +458 54231 +459 54642 +460 54935 +461 55191 +462 55618 +463 55978 +464 56029 +465 56051 +466 56356 +467 56503 +468 56582 +469 56709 +470 57169 +471 57598 +472 57751 +473 58214 +474 58566 +475 58695 +476 58963 +477 59314 +478 59719 +479 60158 +480 60380 +481 60582 +482 60674 +483 61030 +484 61163 +485 61328 +486 61752 +487 61764 +488 61978 +489 62369 +490 62556 +491 62997 +492 63268 +493 63736 +494 63796 +495 63874 +496 63896 +497 64259 +498 64582 +499 65061 +500 65410 +501 65879 +502 66153 +503 66445 +504 66799 +505 67153 +506 67345 +507 67747 +508 67976 +509 68216 +510 68324 +511 68635 +512 68883 +513 69203 +514 69359 +515 69871 +516 69924 +517 70071 +518 70523 +519 70604 +520 70849 +521 71038 +522 71307 +523 71553 +524 72026 +525 72365 +526 72788 +527 72928 +528 73199 +529 73601 +530 73648 +531 73825 +532 74113 +533 74258 +534 74283 +535 74611 +536 75104 +537 75609 +538 75804 +539 76075 +540 76480 +541 76837 +542 77166 +543 77602 +544 77886 +545 78348 +546 78793 +547 79243 +548 79711 +549 80033 +550 80149 +551 80449 +552 80563 +553 80750 +554 80930 +555 81198 +556 81252 +557 81324 +558 81835 +559 82227 +560 82730 +561 82861 +562 83211 +563 83399 +564 83482 +565 83678 +566 84126 +567 84131 +568 84501 +569 84542 +570 84772 +571 85126 +572 85250 +573 85594 +574 85694 +575 85710 +576 85776 +577 86099 +578 86327 +579 86451 +580 86512 +581 86955 +582 87037 +583 87541 +584 87928 +585 88137 +586 88585 +587 88877 +588 89170 +589 89241 +590 89780 +591 89880 +592 89990 +593 90462 +594 90538 +595 90720 +596 91265 +597 91809 +598 92109 +599 92707 +600 93188 +601 93341 +602 93621 +603 94003 +604 94474 +605 94659 +606 95163 +607 95281 +608 95511 +609 95837 +610 96311 +611 96859 +612 97314 +613 97744 +614 97854 +615 98301 +616 98710 +617 99216 +618 99678 +619 99820 +620 100357 +621 100957 +622 101109 +623 101361 +624 101383 +625 101726 +626 101765 +627 101848 +628 102168 +629 102246 +630 102392 +631 102516 +632 102949 +633 102973 +634 103258 +635 103663 +636 104075 +637 104558 +638 104941 +639 105149 +640 105342 +641 105760 +642 105926 +643 106075 +644 106412 +645 106561 +646 106900 +647 107513 +648 108090 +649 108266 +650 108268 +651 108901 +652 108959 +653 109365 +654 109642 +655 110203 +656 110707 +657 111246 +658 111438 +659 111922 +660 112262 +661 112916 +662 113319 +663 113661 +664 114136 +665 114291 +666 114722 +667 115066 +668 115095 +669 115461 +670 115697 +671 116359 +672 116550 +673 116919 +674 116974 +675 117531 +676 117767 +677 118054 +678 118510 +679 118664 +680 119002 +681 119298 +682 119431 +683 119704 +684 120280 +685 120542 +686 120998 +687 121446 +688 121450 +689 121882 +690 122081 +691 122738 +692 122853 +693 123331 +694 123626 +695 124268 +696 124389 +697 124497 +698 125149 +699 125734 +700 126280 +701 126797 +702 127219 +703 127346 +704 127842 +705 128531 +706 128899 +707 129465 +708 129540 +709 130021 +710 130072 +711 130693 +712 131143 +713 131843 +714 131949 +715 132401 +716 132554 +717 132861 +718 133249 +719 133770 +720 134488 +721 135178 +722 135190 +723 135404 +724 135851 +725 136059 +726 136174 +727 136739 +728 136997 +729 137702 +730 138214 +731 138587 +732 139096 +733 139241 +734 139840 +735 140159 +736 140309 +737 140922 +738 141616 +739 142352 +740 142763 +741 143147 +742 143484 +743 144165 +744 144608 +745 144686 +746 145034 +747 145417 +748 145939 +749 145981 +750 146171 +751 146608 +752 147226 +753 147718 +754 148254 +755 148487 +756 148668 +757 149226 +758 149314 +759 149434 +760 150073 +761 150366 +762 150797 +763 150951 +764 151291 +765 151813 +766 152307 +767 152588 +768 153185 +769 153313 +770 153483 +771 154016 +772 154602 +773 154805 +774 154890 +775 155126 +776 155806 +777 156377 +778 156692 +779 156734 +780 156883 +781 157412 +782 157929 +783 158547 +784 158764 +785 158973 +786 159385 +787 159416 +788 159637 +789 159670 +790 160103 +791 160549 +792 160679 +793 161283 +794 161951 +795 162320 +796 162776 +797 163374 +798 164039 +799 164090 +800 164460 +801 164947 +802 165162 +803 165373 +804 165703 +805 165906 +806 166207 +807 166815 +808 167412 +809 168041 +810 168758 +811 168994 +812 169548 +813 170116 +814 170134 +815 170275 +816 170725 +817 171110 +818 171652 +819 172034 +820 172524 +821 172996 +822 173240 +823 174005 +824 174380 +825 175092 +826 175597 +827 176176 +828 176920 +829 177290 +830 177982 +831 178062 +832 178824 +833 179596 +834 179693 +835 180165 +836 180650 +837 181475 +838 182033 +839 182121 +840 182814 +841 183388 +842 183971 +843 184270 +844 184786 +845 185560 +846 186048 +847 186777 +848 187228 +849 187467 +850 187788 +851 187831 +852 187835 +853 187979 +854 188220 +855 188853 +856 189642 +857 190249 +858 190994 +859 191590 +860 192304 +861 192904 +862 193122 +863 193575 +864 194069 +865 194874 +866 195488 +867 196335 +868 197090 +869 197859 +870 198241 +871 198948 +872 199153 +873 199264 +874 199531 +875 200155 +876 200335 +877 201046 +878 201848 +879 201885 +880 201979 +881 202107 +882 202892 +883 203113 +884 203406 +885 203888 +886 204508 +887 204880 +888 205419 +889 206285 +890 206301 +891 206455 +892 206902 +893 207157 +894 207246 +895 207758 +896 208566 +897 208977 +898 209635 +899 209773 +900 210085 +901 210951 +902 211525 +903 211557 +904 212143 +905 212342 +906 212833 +907 213309 +908 213515 +909 214052 +910 214773 +911 215134 +912 215895 +913 216268 +914 216808 +915 217435 +916 217828 +917 217888 +918 218804 +919 219013 +920 219563 +921 219629 +922 220022 +923 220829 +924 221335 +925 221385 +926 221772 +927 222538 +928 223369 +929 223421 +930 224214 +931 224950 +932 225376 +933 225441 +934 225647 +935 225874 +936 226647 +937 227340 +938 227981 +939 228754 +940 229465 +941 230385 +942 230550 +943 231021 +944 231829 +945 232030 +946 232657 +947 232855 +948 233463 +949 234013 +950 234622 +951 235472 +952 235775 +953 235914 +954 236551 +955 236951 +956 237532 +957 237668 +958 238018 +959 238404 +960 239162 +961 239195 +962 240002 +963 240893 +964 241209 +965 242172 +966 242201 +967 242263 +968 242465 +969 243094 +970 243710 +971 243799 +972 244333 +973 244861 +974 245416 +975 246031 +976 246139 +977 246486 +978 247242 +979 247666 +980 247869 +981 248654 +982 249249 +983 249324 +984 249402 +985 250116 +986 250382 +987 250517 +988 251198 +989 251929 +990 252212 +991 252213 +992 252493 +993 253441 +994 253948 +995 254830 +996 254984 +997 255322 +998 256249 +999 256500
\ No newline at end of file diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/data0.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/data0.dat new file mode 100644 index 00000000000..35673e6177d --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/data0.dat @@ -0,0 +1,99 @@ +0.100000001 , 64.1517401 +0.200000003 , 25.4078529 +0.300000004 , 13.2339854 +0.400000006 , 7.63403011 +0.500000007 , 4.61202519 +0.600000009 , 2.83883431 +0.70000001 , 1.74732868 +0.800000012 , 1.0561759 +0.900000013 , 0.611122217 +1.00000001 , 0.321529596 +1.10000002 , 0.131543349 +1.20000002 , 0.00567367248 +1.30000002 , -0.0789862347 +1.40000002 , -0.170095177 +1.50000002 , -0.256619957 +1.60000002 , -0.286180997 +1.70000003 , -0.302339123 +1.80000003 , -0.310528612 +1.90000003 , -0.313046254 +2.00000003 , -0.311530824 +2.10000003 , -0.307179613 +2.20000003 , -0.300883046 +2.30000003 , -0.293310754 +2.40000004 , -0.284968553 +2.50000004 , -0.276235877 +2.60000004 , -0.267368322 +2.70000004 , -0.258405438 +2.80000004 , -0.249132286 +2.90000004 , -0.239504329 +3.00000004 , -0.229864298 +3.10000005 , -0.220499192 +3.20000005 , -0.211462445 +3.30000005 , -0.202692796 +3.40000005 , -0.194162561 +3.50000005 , -0.186001864 +3.60000005 , -0.178531549 +3.70000006 , -0.172135592 +3.80000006 , -0.167056667 +3.90000006 , -0.163306203 +4.00000006 , -0.160733658 +4.10000006 , -0.159136729 +4.20000006 , -0.158324497 +4.30000006 , -0.15813331 +4.40000007 , -0.158423196 +4.50000007 , -0.15907208 +4.60000007 , -0.159972749 +4.70000007 , -0.161032215 +4.80000007 , -0.162172062 +4.90000007 , -0.163328719 +5.00000007 , -0.164453166 +5.10000008 , -0.165509946 +5.20000008 , -0.166475608 +5.30000008 , -0.167336799 +5.40000008 , -0.168088232 +5.50000008 , -0.168730718 +5.60000008 , -0.169269396 +5.70000008 , -0.169712231 +5.80000009 , -0.170068809 +5.90000009 , -0.170349416 +6.00000009 , -0.170564368 +6.10000009 , -0.170723547 +6.20000009 , -0.170836118 +6.30000009 , -0.170910356 +6.4000001 , -0.170953586 +6.5000001 , -0.170972175 +6.6000001 , -0.170971569 +6.7000001 , -0.170956367 +6.8000001 , -0.170930394 +6.9000001 , -0.170896797 +7.0000001 , -0.170858122 +7.10000011 , -0.170816407 +7.20000011 , -0.170773252 +7.30000011 , -0.170729892 +7.40000011 , -0.170687261 +7.50000011 , -0.170646041 +7.60000011 , -0.170606713 +7.70000011 , -0.170569598 +7.80000012 , -0.170534886 +7.90000012 , -0.170502668 +8.00000012 , -0.17047296 +8.10000012 , -0.170445719 +8.20000012 , -0.170420861 +8.30000012 , -0.170398274 +8.40000013 , -0.170377825 +8.50000013 , -0.170359373 +8.60000013 , -0.170342769 +8.70000013 , -0.170327864 +8.80000013 , -0.170314513 +8.90000013 , -0.170302576 +9.00000013 , -0.17029192 +9.10000014 , -0.170282419 +9.20000014 , -0.170273957 +9.30000014 , -0.170266427 +9.40000014 , -0.170259729 +9.50000014 , -0.170253774 +9.60000014 , -0.170248481 +9.70000014 , -0.170243776 +9.80000015 , -0.170239593 +9.90000015 , -0.170235872 diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/data1.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/data1.dat new file mode 100644 index 00000000000..fcbfa144464 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/data1.dat @@ -0,0 +1,201 @@ + 0.000 60.00 + 0.005 60.45 + 0.010 69.32 + 0.015 80.69 + 0.020 92.08 + 0.025 101.43 + 0.030 108.21 + 0.035 114.24 + 0.040 121.51 + 0.045 128.15 + 0.050 132.03 + 0.055 133.89 + 0.060 134.52 + 0.065 134.19 + 0.070 133.37 + 0.075 132.32 + 0.080 131.01 + 0.085 129.56 + 0.090 128.41 + 0.095 127.85 + 0.100 127.83 + 0.105 128.11 + 0.110 128.54 + 0.115 129.06 + 0.120 129.45 + 0.125 129.52 + 0.130 129.33 + 0.135 129.00 + 0.140 128.57 + 0.145 128.20 + 0.150 128.14 + 0.155 128.52 + 0.160 129.27 + 0.165 130.16 + 0.170 130.95 + 0.175 131.55 + 0.180 132.09 + 0.185 132.69 + 0.190 133.41 + 0.195 134.25 + 0.200 135.20 + 0.205 136.21 + 0.210 137.29 + 0.215 138.43 + 0.220 139.62 + 0.225 140.83 + 0.230 142.09 + 0.235 143.37 + 0.240 144.61 + 0.245 145.77 + 0.250 146.92 + 0.255 148.09 + 0.260 149.21 + 0.265 150.20 + 0.270 151.12 + 0.275 152.02 + 0.280 152.93 + 0.285 153.83 + 0.290 154.63 + 0.295 155.04 + 0.300 154.51 + 0.305 152.27 + 0.310 147.56 + 0.315 140.13 + 0.320 130.49 + 0.325 119.68 + 0.330 108.74 + 0.335 98.50 + 0.340 89.38 + 0.345 81.49 + 0.350 74.74 + 0.355 69.10 + 0.360 65.40 + 0.365 65.27 + 0.370 67.47 + 0.375 69.10 + 0.380 71.80 + 0.385 79.17 + 0.390 90.26 + 0.395 101.19 + 0.400 109.08 + 0.405 113.10 + 0.410 113.81 + 0.415 112.47 + 0.420 110.24 + 0.425 107.98 + 0.430 106.14 + 0.435 104.89 + 0.440 104.21 + 0.445 103.89 + 0.450 103.71 + 0.455 103.50 + 0.460 103.18 + 0.465 102.74 + 0.470 102.15 + 0.475 101.44 + 0.480 100.67 + 0.485 99.91 + 0.490 99.23 + 0.495 98.63 + 0.500 98.06 + 0.505 97.50 + 0.510 96.98 + 0.515 96.50 + 0.520 96.02 + 0.525 95.48 + 0.530 94.84 + 0.535 94.16 + 0.540 93.51 + 0.545 92.97 + 0.550 92.53 + 0.555 92.11 + 0.560 91.63 + 0.565 91.08 + 0.570 90.49 + 0.575 89.90 + 0.580 89.34 + 0.585 88.79 + 0.590 88.24 + 0.595 87.70 + 0.600 87.18 + 0.605 86.66 + 0.610 86.14 + 0.615 85.63 + 0.620 85.12 + 0.625 84.64 + 0.630 84.18 + 0.635 83.73 + 0.640 83.27 + 0.645 82.76 + 0.650 82.20 + 0.655 81.62 + 0.660 81.04 + 0.665 80.48 + 0.670 79.96 + 0.675 79.48 + 0.680 79.03 + 0.685 78.61 + 0.690 78.20 + 0.695 77.76 + 0.700 77.30 + 0.705 76.81 + 0.710 76.31 + 0.715 75.83 + 0.720 75.35 + 0.725 74.86 + 0.730 74.38 + 0.735 73.90 + 0.740 73.43 + 0.745 72.98 + 0.750 72.54 + 0.755 72.13 + 0.760 71.72 + 0.765 71.30 + 0.770 70.88 + 0.775 70.44 + 0.780 69.98 + 0.785 69.48 + 0.790 68.98 + 0.795 68.50 + 0.800 68.03 + 0.805 67.60 + 0.810 67.21 + 0.815 66.82 + 0.820 66.42 + 0.825 66.00 + 0.830 65.56 + 0.835 65.12 + 0.840 64.70 + 0.845 64.29 + 0.850 63.90 + 0.855 63.52 + 0.860 63.15 + 0.865 62.77 + 0.870 62.37 + 0.875 61.96 + 0.880 61.55 + 0.885 61.16 + 0.890 60.78 + 0.895 60.41 + 0.900 60.01 + 0.905 59.62 + 0.910 59.22 + 0.915 59.00 + 0.920 58.63 + 0.925 58.26 + 0.930 57.91 + 0.935 57.55 + 0.940 57.17 + 0.945 56.76 + 0.950 56.36 + 0.955 55.97 + 0.960 55.60 + 0.965 55.23 + 0.970 54.87 + 0.975 54.52 + 0.980 54.17 + 0.985 53.84 + 0.990 53.55 + 0.995 53.67 + 1.000 55.42
\ No newline at end of file diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/data2.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/data2.dat new file mode 100644 index 00000000000..c175518f580 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/data2.dat @@ -0,0 +1,251 @@ +0 0 +1 1 +2 3 +3 6 +4 6 +5 11 +6 15 +7 18 +8 25 +9 26 +10 32 +11 37 +12 37 +13 44 +14 52 +15 65 +16 67 +17 82 +18 89 +19 104 +20 104 +21 111 +22 133 +23 142 +24 144 +25 166 +26 171 +27 182 +28 205 +29 230 +30 235 +31 256 +32 268 +33 289 +34 322 +35 356 +36 363 +37 394 +38 413 +39 430 +40 461 +41 496 +42 527 +43 563 +44 590 +45 616 +46 616 +47 652 +48 685 +49 694 +50 728 +51 779 +52 785 +53 791 +54 823 +55 846 +56 891 +57 892 +58 894 +59 922 +60 976 +61 1002 +62 1025 +63 1083 +64 1130 +65 1173 +66 1176 +67 1208 +68 1211 +69 1221 +70 1272 +71 1281 +72 1290 +73 1329 +74 1379 +75 1428 +76 1460 +77 1489 +78 1550 +79 1600 +80 1666 +81 1678 +82 1680 +83 1760 +84 1785 +85 1796 +86 1874 +87 1881 +88 1932 +89 1936 +90 1968 +91 2016 +92 2091 +93 2111 +94 2181 +95 2227 +96 2260 +97 2354 +98 2371 +99 2423 +100 2498 +101 2552 +102 2585 +103 2622 +104 2676 +105 2678 +106 2752 +107 2842 +108 2904 +109 2984 +110 3029 +111 3037 +112 3062 +113 3162 +114 3181 +115 3266 +116 3364 +117 3461 +118 3479 +119 3494 +120 3523 +121 3630 +122 3668 +123 3699 +124 3815 +125 3939 +126 4003 +127 4107 +128 4168 +129 4199 +130 4231 +131 4304 +132 4331 +133 4354 +134 4416 +135 4435 +136 4448 +137 4514 +138 4601 +139 4672 +140 4736 +141 4843 +142 4845 +143 4923 +144 5059 +145 5095 +146 5240 +147 5255 +148 5289 +149 5393 +150 5475 +151 5586 +152 5647 +153 5669 +154 5733 +155 5837 +156 5871 +157 5881 +158 5970 +159 5973 +160 6055 +161 6107 +162 6266 +163 6399 +164 6402 +165 6474 +166 6605 +167 6669 +168 6837 +169 6908 +170 6958 +171 7103 +172 7183 +173 7319 +174 7464 +175 7513 +176 7672 +177 7693 +178 7841 +179 7891 +180 8035 +181 8200 +182 8337 +183 8515 +184 8545 +185 8546 +186 8632 +187 8793 +188 8822 +189 8996 +190 9073 +191 9227 +192 9317 +193 9381 +194 9394 +195 9494 +196 9614 +197 9744 +198 9805 +199 9923 +200 9942 +201 10079 +202 10169 +203 10322 +204 10393 +205 10570 +206 10723 +207 10802 +208 10862 +209 10958 +210 11054 +211 11216 +212 11409 +213 11528 +214 11659 +215 11793 +216 11888 +217 11900 +218 12081 +219 12082 +220 12161 +221 12311 +222 12345 +223 12403 +224 12469 +225 12678 +226 12695 +227 12732 +228 12863 +229 12896 +230 13120 +231 13142 +232 13361 +233 13549 +234 13702 +235 13821 +236 13978 +237 14182 +238 14356 +239 14472 +240 14668 +241 14794 +242 15008 +243 15092 +244 15148 +245 15172 +246 15218 +247 15430 +248 15639 +249 15744 +250 15973
\ No newline at end of file diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/data3.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/data3.dat new file mode 100644 index 00000000000..a364d701bc2 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/data3.dat @@ -0,0 +1,201 @@ + 0.000 -2.50 + 0.005 -1.99 + 0.010 -0.30 + 0.015 4.13 + 0.020 13.38 + 0.025 28.98 + 0.030 50.90 + 0.035 77.54 + 0.040 107.38 + 0.045 140.64 + 0.050 178.40 + 0.055 219.83 + 0.060 261.04 + 0.065 296.91 + 0.070 324.44 + 0.075 343.62 + 0.080 355.50 + 0.085 361.69 + 0.090 365.03 + 0.095 368.62 + 0.100 373.63 + 0.105 378.46 + 0.110 380.61 + 0.115 379.02 + 0.120 373.82 + 0.125 365.64 + 0.130 356.65 + 0.135 350.11 + 0.140 346.68 + 0.145 342.68 + 0.150 333.46 + 0.155 318.08 + 0.160 300.16 + 0.165 284.50 + 0.170 274.03 + 0.175 269.79 + 0.180 271.15 + 0.185 275.29 + 0.190 278.41 + 0.195 278.36 + 0.200 276.25 + 0.205 274.57 + 0.210 273.76 + 0.215 271.64 + 0.220 266.67 + 0.225 259.84 + 0.230 253.63 + 0.235 249.81 + 0.240 248.42 + 0.245 248.77 + 0.250 250.60 + 0.255 254.21 + 0.260 259.40 + 0.265 264.37 + 0.270 266.65 + 0.275 265.49 + 0.280 262.59 + 0.285 260.82 + 0.290 261.87 + 0.295 264.55 + 0.300 265.84 + 0.305 263.56 + 0.310 257.47 + 0.315 248.74 + 0.320 238.67 + 0.325 227.49 + 0.330 214.46 + 0.335 198.64 + 0.340 179.05 + 0.345 154.73 + 0.350 125.23 + 0.355 91.14 + 0.360 53.95 + 0.365 15.45 + 0.370 -21.37 + 0.375 -49.99 + 0.380 -62.54 + 0.385 -56.58 + 0.390 -37.83 + 0.395 -15.76 + 0.400 1.86 + 0.405 11.54 + 0.410 13.66 + 0.415 10.78 + 0.420 5.87 + 0.425 1.24 + 0.430 -1.95 + 0.435 -3.54 + 0.440 -3.98 + 0.445 -3.80 + 0.450 -3.43 + 0.455 -3.16 + 0.460 -3.09 + 0.465 -3.21 + 0.470 -3.44 + 0.475 -3.76 + 0.480 -4.13 + 0.485 -4.46 + 0.490 -4.74 + 0.495 -4.99 + 0.500 -5.30 + 0.505 -5.66 + 0.510 -6.05 + 0.515 -6.44 + 0.520 -6.73 + 0.525 -6.81 + 0.530 -6.67 + 0.535 -6.38 + 0.540 -6.08 + 0.545 -5.83 + 0.550 -5.66 + 0.555 -5.56 + 0.560 -5.49 + 0.565 -5.45 + 0.570 -5.46 + 0.575 -5.51 + 0.580 -5.61 + 0.585 -5.73 + 0.590 -5.81 + 0.595 -5.84 + 0.600 -5.83 + 0.605 -5.82 + 0.610 -5.84 + 0.615 -5.87 + 0.620 -5.91 + 0.625 -5.98 + 0.630 -6.07 + 0.635 -6.17 + 0.640 -6.30 + 0.645 -6.41 + 0.650 -6.43 + 0.655 -6.30 + 0.660 -6.01 + 0.665 -5.55 + 0.670 -4.96 + 0.675 -4.37 + 0.680 -3.94 + 0.685 -3.79 + 0.690 -3.94 + 0.695 -4.33 + 0.700 -4.83 + 0.705 -5.31 + 0.710 -5.65 + 0.715 -5.85 + 0.720 -5.95 + 0.725 -6.02 + 0.730 -6.10 + 0.735 -6.19 + 0.740 -6.29 + 0.745 -6.37 + 0.750 -6.40 + 0.755 -6.32 + 0.760 -6.07 + 0.765 -5.64 + 0.770 -5.08 + 0.775 -4.47 + 0.780 -3.84 + 0.785 -3.19 + 0.790 -2.58 + 0.795 -2.11 + 0.800 -1.84 + 0.805 -1.78 + 0.810 -1.90 + 0.815 -2.15 + 0.820 -2.45 + 0.825 -2.71 + 0.830 -2.86 + 0.835 -2.91 + 0.840 -2.96 + 0.845 -3.02 + 0.850 -3.10 + 0.855 -3.20 + 0.860 -3.36 + 0.865 -3.52 + 0.870 -3.63 + 0.875 -3.64 + 0.880 -3.52 + 0.885 -3.30 + 0.890 -3.04 + 0.895 -2.80 + 0.900 -2.59 + 0.905 -2.42 + 0.910 -2.27 + 0.915 -0.53 + 0.920 -0.16 + 0.925 0.08 + 0.930 0.13 + 0.935 -0.05 + 0.940 -0.41 + 0.945 -0.90 + 0.950 -1.44 + 0.955 -1.99 + 0.960 -2.46 + 0.965 -2.79 + 0.970 -2.98 + 0.975 -3.08 + 0.980 -3.13 + 0.985 -3.13 + 0.990 -3.05 + 0.995 -2.86 + 1.000 -2.57
\ No newline at end of file diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/dataI.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/dataI.dat new file mode 100755 index 00000000000..7651357cacc --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/dataI.dat @@ -0,0 +1,6 @@ +1 891560 +2 534050 +3 525876 +4 552269 +5 411130 +6 436733 diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/dataII.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/dataII.dat new file mode 100755 index 00000000000..d5492e4f569 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/dataII.dat @@ -0,0 +1,6 @@ +1 1355 +2 432 +3 390 +4 301 +5 194 +6 193 diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/dataMul.dat b/Master/texmf-dist/doc/generic/pstricks-add/examples/dataMul.dat new file mode 100644 index 00000000000..92ba51f9353 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/dataMul.dat @@ -0,0 +1,15 @@ +[% file dataMul.dat +0 0 3.375 0.0625 +10 5.375 7.1875 4.5 +20 7.1875 8.375 6.25 +30 5.75 7.75 6.6875 +40 2.1875 5.75 5.9375 +50 -1.9375 2.1875 4.3125 +60 -5.125 -1.8125 0.875 +70 -6.4375 -5.3125 -2.6875 +80 -4.875 -7.1875 -4.875 +90 0 -7.625 -5.625 +100 5.5 -6.3125 -5.8125 +110 6.8125 -2.75 -4.75 +120 5.25 2.875 -0.75 +]% diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/doppellog.pdf b/Master/texmf-dist/doc/generic/pstricks-add/examples/doppellog.pdf Binary files differnew file mode 100644 index 00000000000..bfe87f63665 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/doppellog.pdf diff --git a/Master/texmf-dist/doc/generic/pstricks-add/examples/doppellog.tex b/Master/texmf-dist/doc/generic/pstricks-add/examples/doppellog.tex new file mode 100644 index 00000000000..249e5fcf5a0 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/examples/doppellog.tex @@ -0,0 +1,31 @@ +\documentclass[a4paper]{article}% Lars Kotthoff + +\usepackage{pstricks,pst-plot,pstricks-add} + +\begin{document} + +\pstScalePoints(1,1){ log }{ ln } % log e y scale + +\psset{xunit=3.5cm,yunit=2cm} +\begin{pspicture}(2.5,-.5)(7,-6) + \psaxes[axesstyle=frame,xticksize=0 -4.5,yticksize=0 3,% + logLines=all,subticks=10,xsubticksize=0 -4.5,ysubticksize=0 3,% + Ox=3,Oy=-1,ylogBase=e,xlogBase=10]{->}(3,-1)(6,-5.5) + \readdata{\one}{12-1.txt} + \listplot[linewidth=2pt,linecolor=red]{\one} + \readdata{\two}{12-2.txt} + \listplot[linestyle=dashed,linewidth=2pt,linecolor=blue]{\two} + \readdata{\three}{12-3.txt} + \listplot[linestyle=dotted,linewidth=2pt,linecolor=magenta]{\three} + \psframe[fillcolor=white,fillstyle=solid,framearc=.2](4.65,-2.9)(5.7,-4) + \uput[0](6,-1){$x$} + \uput[-90](3,-5.5){$f(x)$} + \psline[linecolor=red,linewidth=2pt](4.7,-3.15)(5.1,-3.15) + \rput[lc](5.4,-3.15){$f(x)=\frac{\pi(x)}{x}$} + \psline[linecolor=blue,linestyle=dashed,linewidth=2pt](4.7,-3.45)(5.1,-3.45) + \rput[lc](5.4,-3.45){$f(x)=\frac{t(x)}{x}$} + \psline[linecolor=magenta,linestyle=dotted,linewidth=2pt](4.7,-3.75)(5.1,-3.75) + \rput[lc](5.4,-3.75){$f(x)=\frac{g(x)}{x}$} +\end{pspicture} + +\end{document} diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.ltx b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.ltx new file mode 100644 index 00000000000..4e41c58017e --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.ltx @@ -0,0 +1,155 @@ +\documentclass[12pt]{article} +\listfiles +\usepackage{filecontents} +\begin{filecontents*}{demo0.dat} + 0.1414 0.0052 + 0.2828 0.0217 + 0.4243 0.0480 + 0.5657 0.0890 + 0.7071 0.1375 + 0.8485 0.1906 + 0.9899 0.2663 + 1.1314 0.3580 + 1.2728 0.4644 + 1.4142 0.5801 + 1.5556 0.7033 + 1.6971 0.8899 + 1.8385 1.1143 + 1.9799 1.2593 + 2.1213 1.5692 + 2.2627 3.2331 + 2.4042 4.4097 + 2.5456 5.8186 + 2.6870 7.4441 + 2.8284 8.2287 +\end{filecontents*} + +\begin{filecontents*}{demo1.dat} +1 99447169 +2 110351058 +3 123557238 +4 138346129 +5 145050826 +6 160363212 +7 174000394 +8 183856559 +9 189128691 +10 197634845 +11 213257357 +12 216899512 +13 230152738 +14 224144907 +15 247410024 +16 261168438 +17 252920343 +18 326153799 +19 319442110 +20 310351522 +21 381919943 +22 438043888 +23 357527766 +24 603304997 +\end{filecontents*} + +\begin{filecontents*}{demo2.dat} + 1989 3.08 + 1990 3.84 + 1991 4.08 + 1992 3.21 + 1993 5.23 + 1994 2.97 + 1995 2.53 + 1996 2.8 + 1997 2.78 + 1998 3.15 + 1999 2.32 + 2000 2.4 + 2001 2.46 +\end{filecontents*} +\begin{filecontents*}{demo3.dat} + 1989 3.08 + 1990 3.1 + 1991 3.08 + 1992 3.21 + 1993 5.0 + 1994 2.27 + 1995 3.53 + 1996 3.8 + 1997 2.8 + 1998 4.15 + 1999 3.32 + 2000 1.4 + 2001 2.46 +\end{filecontents*} + + +\usepackage[T1]{fontenc} +\usepackage[latin1]{inputenc} +\usepackage{lmodern} +%\usepackage[scaled]{luximono} +\usepackage[lmargin=2.5cm]{geometry} +\usepackage{tabularx} +\usepackage{url} +\usepackage{graphicx} +\usepackage[dvipsnames]{pstricks} +\usepackage{framed} +\usepackage{pst-eucl} +\usepackage{pstricks-add} +\let\pstricksaddFV\fileversion +\def\PST{\texttt{PSTricks}} +% +\usepackage{showexpl} +\lstset{preset=\raggedright} +% +\usepackage{longtable} +\usepackage{pifont} +\usepackage{amsmath} +\def\textat{\protect\makeatletter\texttt{@}\protect\makeatother} +\makeatletter +\renewcommand*\l@section{\@dottedtocline{1}{1.5em}{2.5em}} +\renewcommand*\l@subsection{\@dottedtocline{2}{3.8em}{3.2em}} +\renewcommand*\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}} +\renewcommand*\l@paragraph{\@dottedtocline{4}{10em}{5em}} +\renewcommand*\l@subparagraph{\@dottedtocline{5}{12em}{6em}} +\makeatother +\let\psEllipticArc\psellipticarc +\let\psEllipticArcN\psellipticarcn +\let\psWedgeEllipse\psellipticwedge +\usepackage[colorlinks,linktocpage]{hyperref} +%\def\UrlFont{\small\ttfamily} +\makeatletter +\def\verbatim@font{\small\normalfont\ttfamily} +\makeatother +%\parindent=0pt +\newcommand\verbI[1]{{\small\texttt{#1}}} +\newcommand\CMD[1]{{\texttt{\textbackslash#1}}} +\let\param\texttt +% +\newcommand{\pstEllipse}[5][]{% + \psset{#1} + \parametricplot{#4}{#5}{#2\space t cos mul #3\space t sin mul}% +} +% +\newcommand{\pstEllipseWedge}[5][]{% + \psset{#1} + \pscustom{% + \parametricplot{#4}{#5}{#2\space t cos mul #3\space t sin mul}% + \psline(! #2\space #5\space cos mul #3\space #5\space sin mul)% + (0,0)% + (! #2\space #4\space cos mul #3\space #4\space sin mul)% + }% +} +% +\psset{subgriddiv=0,griddots=5,gridlabels=7pt} +% +\DeclareRobustCommand\cs[1]{\texttt{\char`\\#1}} +\def\PS{PostScript} +% +%\renewcommand{\ttdefault}{ul9}% Luxi Mono + +\parindent=0pt +\parskip=1ex plus 5pt +\begin{document} +\input{pstricks-add-doc} +\end{document} + diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf Binary files differnew file mode 100644 index 00000000000..549cb053d4f --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex new file mode 100644 index 00000000000..ccd7eacda14 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex @@ -0,0 +1,4933 @@ +\title{\texttt{pstricks-add}\\additionals Macros for \texttt{pstricks}% +%\thanks{% +% This document was written with \texttt{Kile: 1.7 (Qt: 3.1.1; KDE: 3.3;} +% \url{http://sourceforge.net/projects/kile/}) and the PDF output +% was build with VTeX/Free (\url{http://www.micropress-inc.com/linux})} +\\ + \small v.\pstricksaddFV} +\author{Herbert Vo\ss} +\date{\today} + +\maketitle + +\begin{abstract} +This version of \verb+pstricks-add+ needs \verb+pstricks.tex+ version >1.04 from June 2004, +otherwise the additional macros may not work as espected. The ellipsis +material and the option \verb+asolid+ (renamed to \verb+eofill+) are +now part of the new \verb+pstricks.tex+ package, available at CTAN or at +\url{http://perce.de/LaTeX/}. \verb+pstricks-add+ will for ever be an experimental and +dynamical package, try it at your own risk. + +\begin{itemize} +\item It is important to load \verb+pstricks-add+ as \textbf{last} PSTricks related package, otherwise +a lot of the macros won't work in the expected way. +\item \verb+pstricks-add+ uses the extended version of the keyval package. So be sure, that +you have installed \verb+pst-xkey+ which is part of the \verb+xkeyval+-package and that all +packages, that uses the old keyval interface are loaded \textbf{before} the \verb+xkeyval+.\cite{xkeyval} +\item the option \verb+tickstyle+ from \verb+pst-plot+is no more supported, use \verb+ticksize+ instead. +\item the option \verb+xyLabel+ is no more supported, use the macros \verb+\def\pshlabel#1{...}+ and + \verb+\def\psvlabel#1{...}+ instead. +\end{itemize} + +\end{abstract} + +\clearpage +\tableofcontents + +\clearpage +%-------------------------------------------------------------------------------------- +\part{\texttt{pstricks}} +%-------------------------------------------------------------------------------------- + + + + +%-------------------------------------------------------------------------------------- +\section{Numeric functions} +%-------------------------------------------------------------------------------------- + +All macronames contain a \textat{} in their name, because they are only for internal use, +but it is no problem to use it as the other macros. One can define another name without +a \textat{}: +\begin{verbatim} +\makeatletter +\let\pstdivide\pst@divide +\makeatother +\end{verbatim} + +or put the macro inside of the \verb+\makeatletter+ -- \verb+\makeatother+ sequence. + +%-------------------------------------------------------------------------------------- +\subsection{\CMD{pst\textat{}divide}} +%-------------------------------------------------------------------------------------- + +\verb+pstricks+ itself has its own divide macro, called \verb+\pst@divide+ which can divide two lengthes and saves the quotient as a floating point number: + +\begin{verbatim} +\pst@divide{<dividend>}{<divisor>}{<result as a macro>} +\end{verbatim} + +\begin{LTXexample}[width=2cm] +\makeatletter +\pst@divide{34pt}{6pt}\quotient \quotient\\ +\pst@divide{-6pt}{34pt}\quotient \quotient +\makeatother +\end{LTXexample} + +\noindent this gives the output $5.66666$. The result is not a length! + +%-------------------------------------------------------------------------------------- +\subsection{\CMD{pst\textat{}mod}} +%-------------------------------------------------------------------------------------- +\verb+pstricks-add+ defines an additional numeric function for the modulus: + +\begin{verbatim} +\pst@mod{<integer>}{<integer>}{<result as a macro>} +\end{verbatim} + +\begin{LTXexample}[width=2cm] +\makeatletter +\pst@mod{34}{6}\modulo \modulo\\ +\pst@mod{25}{-6}\modulo \modulo +\makeatother +\end{LTXexample} + +\noindent this gives the output $4$. Using this internal numeric functions in documents +requires a setting inside the \verb+makeatletter+ and \verb+makeatother+ environment. +It makes some sense to define a new macroname in the preamble to use it throughou, e.g. +\verb+\let\modulo\pst@mod+. + +%-------------------------------------------------------------------------------------- +\subsection{\CMD{pst\textat{}max}} +%-------------------------------------------------------------------------------------- + +\begin{verbatim} +\pst@max{<integer>}{<integer>}{<result as count register>} +\end{verbatim} + +\begin{LTXexample}[width=2cm] +\newcount\maxNo +\makeatletter +\pst@max{-34}{-6}\maxNo \the\maxNo\\ +\pst@max{0}{11}\maxNo \the\maxNo +\makeatother +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\CMD{pst\textat{}maxdim}} +%-------------------------------------------------------------------------------------- + +\begin{verbatim} +\pst@maxdim{<dimension>}{<dimension>}{<result as dimension register>} +\end{verbatim} + +\begin{LTXexample}[width=2cm] +\newdimen\maxDim +\makeatletter +\pst@maxdim{34cm}{1234pt}\maxDim \the\maxDim\\ +\pst@maxdim{34cm}{123pt}\maxDim \the\maxDim +\makeatother +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{\CMD{pst\textat{}abs}} +%-------------------------------------------------------------------------------------- + +\begin{verbatim} +\pst@abs{<integer>}{<result as a count register>} +\end{verbatim} + +\begin{LTXexample}[width=2cm] +\newcount\absNo +\makeatletter +\pst@abs{-34}\absNo \the\absNo\\ +\pst@abs{4}\absNo \the\absNo +\makeatother +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{\CMD{pst\textat{}absdim}} +%-------------------------------------------------------------------------------------- + +\begin{verbatim} +\pst@absdim{<dimension>}{<result as a dimension register>} +\end{verbatim} + +\begin{LTXexample}[width=2cm] +\newdimen\absDim +\makeatletter +\pst@absdim{-34cm}\absDim \the\absDim\\ +\pst@absdim{4sp}\absDim \the\absDim +\makeatother +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\section{Dashed Lines} +%-------------------------------------------------------------------------------------- +Tobias N�ring implemented an enhanced feature for dashed lines. The number +of arguments is no more limited. + +\begin{verbatim} +dash=value1[unit] value2[unit] ... +\end{verbatim} + +\begin{LTXexample}[width=0.4\linewidth] +\psset{linewidth=2.5pt,unit=0.6} +\begin{pspicture}(-5,-4)(5,4) + \psgrid[subgriddiv=0,griddots=10,gridlabels=0pt] + \psset{linestyle=dashed} + \pscurve[dash=5mm 1mm 1mm 1mm,linewidth=0.1](-5,4)(-4,3)(-3,4)(-2,3) + \psline[dash=5mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm](-5,0.9)(5,0.9) + \psccurve[linestyle=solid](0,0)(1,0)(1,1)(0,1) + \psccurve[linestyle=dashed,dash=5mm 2mm 0.1 0.2,linetype=0](0,0)(-2.5,0)(-2.5,-2.5)(0,-2.5) + \pscurve[dash=3mm 3mm 1mm 1mm,linecolor=red,linewidth=2pt](5,-4)(5,2)(4.5,3.5)(3,4)(-5,4) +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\section{\CMD{rmultiput}: a multiple \CMD{rput}} +%-------------------------------------------------------------------------------------- +\verb+PSTricks+ already knows a \verb+multirput+, which puts a box n times with +a difference of $dx$ and $dy$ relativ to each other. It is not possible to put +it with a different distance from one point to the next one. This is possible +with \verb+rmultiput+: +\begin{verbatim} +\rmultiput[<options>]{<any material>}(x1,y1)(x2,y2) ... (xn,yn) +\rmultiput*[<options>]{<any material>}(x1,y1)(x2,y2) ... (xn,yn) +\end{verbatim} + +\begin{LTXexample}[width=6.2cm] +\psset{unit=0.75} +\begin{pspicture}(-4,-4)(4,4) +\rmultiput[rot=45]{\red\psscalebox{3}{\ding{250}}}% + (-2,-4)(-2,-3)(-3,-3)(-2,-1)(0,0)(1,2)(1.5,3)(3,3) +\rmultiput[rot=90,ref=lC]{\blue\psscalebox{2}{\ding{253}}}% + (-2,2.5)(-2,2.5)(-3,2.5)(-2,1)(1,-2)(1.5,-3)(3,-3) +\psgrid[subgriddiv=0,gridcolor=lightgray] +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\section{\CMD{psrotate}: Rotating objects} +%-------------------------------------------------------------------------------------- +\CMD{rput} also has an optional argument for rotating objects, but always +depending to the \CMD{rput} coordinates. With \CMD{psrotate} the rotating +center can be placed anywhere. The rotation is done with \verb+\pscustom+, +all optional arguments are only valid if they are part of the \verb+\pscustom+ +macro. +\begin{verbatim} +\psrotate[options](x,y){rot angle}{<object>} +\end{verbatim} + +\begin{LTXexample}[width=0.4\linewidth] +\psset{unit=0.75} +\begin{pspicture}(-0.5,-3.5)(8.5,4.5) + \psaxes{->}(0,0)(-0.5,-3)(8.5,4.5) + \psdots[linecolor=red,dotscale=1.5](2,1) + \psarc[linecolor=red,linewidth=0.4pt,showpoints=true] + {->}(2,1){3}{0}{60} + \pspolygon[linecolor=green](2,1)(5,1.1)(6,-1)(2,-2) + \psrotate[linecolor=blue](2,1){60}{ + \pspolygon(2,1)(5,1.1)(6,-1)(2,-2)} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\section{\CMD{pslineII}: Colored lines} +%-------------------------------------------------------------------------------------- +The dashed lines are by default black and white lines. The new macro \verb|\pslineII| +offers two-color lines and has the same syntax as \verb|\psline|. + +\begin{LTXexample}[width=8cm] +\begin{pspicture}(0,-0.5)(7,0.5) +\pslineII[linewidth=5pt,arrowscale=2]{o-o}(0,0)(7,0) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{The options} +%-------------------------------------------------------------------------------------- + +\begin{center} +\begin{tabular}{l|p{6cm}} +name & meaning\\\hline +\verb|dashColorI| & first color, default is \verb|black|\tabularnewline +\verb|dashColorII| & second color, default is \verb|red|\tabularnewline +\verb|dashNo| & the difference in per cent of the colored lines, default is $0.2$\tabularnewline +\verb|linecap| & \parbox[t]{6cm}{how two lines are connected.\\ + 0: no modification\\ + 1: rounded edges\\ + 2: an additional half square at both ends} +\end{tabular} +\end{center} + +\verb|dashNo| can have values greater than $1$. In this case the value will be taken as an absolute width in the pt unit. Only this unit is possible! + +\subsection{Examples} + +\begin{LTXexample}[width=3.5cm] +\psset{linewidth=2pt} +\begin{pspicture}(3,3) + \pslineII{->}(0,0)(3,3) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{linewidth=2pt} +\begin{pspicture}(3,3) + \pslineII[dashColorI=blue]{->}(0,0)(3,3) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{linewidth=2pt} +\begin{pspicture}(3,3) + \pslineII[dashColorI=blue,dashNo=15]{->}(0,0)(3,3) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{linewidth=2pt} +\begin{pspicture}(3,3) + \pslineII[dashColorI=blue,linecap=1,% + dashNo=0.3,linewidth=0.5](0,0)(2,3) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample} +\psset{linecolor=red,arrowscale=3} +\psset{dashColorI=red,dashColorII=blue,dashNo=20,linewidth=2pt} +\begin{pspicture}(0,0)(7,-5) +\pslineII{<->}(0,0)(7,0)(7,-5)(0,-5) +\pslineII[linewidth=5pt,% + dashNo=0.1,arrowscale=2]{o-o}(0,-2.5)(7,-2.5) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[pos=t] +\psset{linewidth=15pt,dashNo=10} +\begin{pspicture}(0,1)(10,-6) + \pslineII[linecap=2](0,0)(5,0)(5,-5)(0,-5)(0,0) + \rput{45}(7,-2.5){% + \pslineII[linecap=1,dashColorI=yellow,% + dashColorII=cyan](0,0)(5,0)(5,-5)(0,-5)(0,0)% +} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\section{\CMD{pslineIII} Variable linewidth} +%-------------------------------------------------------------------------------------- +By default all lines have a fixed width. \verb|\pslineIII| allows to +define the start and the end width of a line. It has the same syntax as \verb|\psline|. + +\begin{center} +\begin{pspicture}(0,-0.5)(12,0.5) +\pslineIII[wBegin=1cm,wEnd=0.3cm,linecolor=cyan](0,0)(12,0) +\end{pspicture} +\end{center} + +\begin{lstlisting}[basicstyle=\ttfamily\footnotesize] +\pslineIII[wBegin=1cm,wEnd=0.3cm,linecolor=cyan](0,0)(12,0) +\end{lstlisting} + + + +%-------------------------------------------------------------------------------------- +\subsection{The options} +%-------------------------------------------------------------------------------------- + +\begin{center} +\begin{tabular}{l|p{8cm}} +name & meaning\\\hline +\verb|wBegin| & first width, default is \verb|\pslinewidth|\tabularnewline +\verb|wEnd| & last width, default is \verb|\pslinewidth|\tabularnewline +\end{tabular} +\end{center} + +It is also possible to use \verb|pslineIII| with more than two coordinates, like + +\begin{center} +\begin{pspicture}(0,-0.5)(12,2) +\pslineIII[wBegin=1cm,wEnd=0.1cm,linecolor=red](0,0)(3,1.5)(9,1.5)(12,0) +\end{pspicture} + +\end{center} +\begin{lstlisting}[basicstyle=\ttfamily\footnotesize] +\pslineIII[wBegin=1cm,wEnd=0.1cm,linecolor=cyan](0,0)(0,1.5)(12,1.5)(12,0) +\end{lstlisting} + +\iffalse +%-------------------------------------------------------------------------------------- +\subsection{Examples} +%-------------------------------------------------------------------------------------- + +\begin{LTXexample} +\begin{pspicture}(-5,-5)(5,5) + \psgrid[griddots=10, gridlabels=7pt, subgriddiv=0] +% + \pslineIII[wBegin=1cm,wEnd=0.2cm,linecolor=cyan]% + (-4,4)(3,4)(5,2)(2,-5)(-5,-2)(-5,0) + \pslineIII[wBegin=0.5cm](-5,-3)(5,3) + \pslineIII[wBegin=0.5cm,wEnd=0.1cm,linecolor=red](0,-5)(0,0)(0,5) + \pslineIII[wBegin=1cm,wEnd=0.3cm,linecolor=blue](-4,4)(5,-4) +% +\end{pspicture} +\end{LTXexample} + +\clearpage + +\fi + + +%-------------------------------------------------------------------------------------- +\section{\CMD{psbrace}} +%-------------------------------------------------------------------------------------- +\subsection{Syntax} +\begin{verbatim} +\psbrace[<options>](<A>)(<B>){<text>} +\end{verbatim} + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,4) +\psgrid[subgriddiv=0,griddots=10] +\pnode(0,0){A} +\pnode(4,4){B} +\psbrace[linecolor=red,ref=lC](A)(B){Text I} +\psbrace[linecolor=blue,ref=lC](3,4)(0,1){Text II} +\end{pspicture} +\end{LTXexample} + +\bigskip +The option \verb|\specialCoor| is enabled, so that all types of coordinates are possible, (nodename), ($x,y$), ($nodeA|nodeB$), ... + +%-------------------------------------------------------------------------------------- +\subsection{Options} +%-------------------------------------------------------------------------------------- + +Additional to all other available options from \verb|pstricks| or the other related packages, there are two new option, named \verb|braceWidth| and \verb|bracePos|. All important ones are shown in the following table. + +\begin{center} +\begin{tabular}{l|l} +name & meaning\\\hline +\verb|braceWidth| & default is $0.35$\\ +\verb|bracePos| & relative position (default is $0.5$)\\ +\verb|linearc| & absolute value for the arcs (default is $2$mm)\\ +\verb|nodesepA| & x-separation (default is $0pt$)\\ +\verb|nodesepB| & y-separation (default is $0pt$)\\ +\verb|rot| & additional rotating for the text (default is $0$)\\ +\verb|ref| & reference point for the text (default is c) +\end{tabular} +\end{center} + +By default the text is written perpedicular to the brace line and can be changed with +the \verb|pstricks| option \verb|rot=...|. The text parameter can take any object and +may also be empty. The reference point can be any value of the combination of \verb|l| (left) +or \verb|r| (right) and \verb|b| (bottom) or \verb|B| (Baseline) or \verb|C| (center) +or \verb|t| (top), where the default is \verb|c|, the center of the object. + +%-------------------------------------------------------------------------------------- +\subsection{Examples} +%-------------------------------------------------------------------------------------- + +\begin{LTXexample} +\begin{pspicture}(8,2.5) +\psbrace(0,0)(0,2){\fbox{Text}}% +\psbrace[nodesepA=20pt](2,0)(2,2){\fbox{Text}} +\psbrace[ref=lC](4,0)(4,2){\fbox{Text}} +\psbrace[ref=lt,rot=90,nodesepB=-15pt](6,0)(6,2){\fbox{Text}} +\psbrace[ref=lt,rot=90,nodesepA=-5pt,nodesepB=15pt](8,2)(8,0){\fbox{Text}} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample} +\def\someMath{$\int\limits_1^{\infty}\frac{1}{x^2}\,dx=1$} +\begin{pspicture}(8,2.5) +\psbrace(0,0)(0,2){\someMath}% +\psbrace[nodesepA=30pt](2,0)(2,2){\someMath} +\psbrace[ref=lC](4,0)(4,2){\someMath} +\psbrace[ref=lt,rot=90,nodesepB=-30pt](6,0)(6,2){\someMath} +\psbrace[ref=lt,rot=90,nodesepB=30pt](8,2)(8,0){\someMath} +\end{pspicture} +\end{LTXexample} + +%$ + +\begin{LTXexample} +\begin{pspicture}(\linewidth,5) +\psbrace(0,0.5)(\linewidth,0.5){\fbox{Text}}% +\psbrace[bracePos=0.25,nodesepB=-10pt,rot=90](0,2)(\linewidth,2){\fbox{Text}} +\psbrace[ref=lC,nodesepA=-3.5cm,nodesepB=-15pt,rot=90](0,4)(\linewidth,4){% + \fbox{some very, very long wonderful Text}} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample} +\def\someMath{$\int\limits_1^{\infty}\frac{1}{x^2}\,dx=1$} +\begin{pspicture}(12,11) +\psgrid[subgriddiv=0,griddots=10] +\pnode(0,0){A} +\pnode(4,6){B} +\psbrace[ref=lC](A)(B){One} +\psbrace[rot=180,nodesepA=-5pt,ref=rb](B)(A){Two} +\psbrace[linecolor=blue,bracePos=0.25,braceWidth=1,ref=lB](8,1)(1,7){Three} +\psbrace[braceWidth=-1,rot=180,ref=rB](8,1)(1,7){Four} +\psbrace[linearc=0.5,linecolor=red,linewidth=3pt,braceWidth=1.5,% + bracePos=0.25,ref=lC](8,1)(8,9){\someMath} +\psbrace(4,9)(6,9){} +\psbrace(6,9)(6,7){} +\psbrace(6,7)(4,7){} +\psbrace(4,7)(4,9){} +\psset{linecolor=red} +\psbrace[ref=lb](7,10)(3,10){I} +\psbrace[ref=lb,bracePos=0.75](3,10)(3,6){II} +\psbrace[ref=lb](3,6)(7,6){III} +\psbrace[ref=lb](7,6)(7,10){IV} +\end{pspicture} +\end{LTXexample} + +%$ + +\begin{LTXexample}[width=5cm] +\[ +\begin{pmatrix} + \Rnode[vref=2ex]{A}{~1} \\ + & \ddots \\ + && \Rnode[href=2]{B}{1} \\ + &&& \Rnode[vref=2ex]{C}{0} \\ + &&&& \ddots \\ + &&&&& \Rnode[href=2]{D}{0}~ \\ +\end{pmatrix} +\] +\psbrace[linewidth=0.1pt,rot=-90,nodesep=0.2](B)(A){\small n times} +\psbrace[linewidth=0.1pt,rot=-90,nodesep=0.2](D)(C){\small n times} +\end{LTXexample} + + +It is also possible to put a vertical brace around a default paragraph. This works +with setting two invisible nodes at the beginning and the end of the paragraph. +Inentation is possible with a minipage. + +\begin{framed} +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\noindent\rnode{A}{} + +\vspace*{-1ex} +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\vspace*{-2ex} +\noindent\rnode{B}{}\psbrace[linecolor=red](A)(B){} + +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\medskip +\hfill\begin{minipage}{0.95\linewidth} +\noindent\rnode{A}{} + +\vspace*{-1ex} +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\vspace*{-2ex} +\noindent\rnode{B}{}\psbrace[linecolor=red](A)(B){} +\end{minipage} +\end{framed} + +\begin{lstlisting} +\begin{framed} +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\noindent\rnode{A}{} + +\vspace*{-1ex} +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\vspace*{-2ex} +\noindent\rnode{B}{}\psbrace[linecolor=red](A)(B){} + +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\medskip +\hfill\begin{minipage}{0.95\linewidth} +\noindent\rnode{A}{} + +\vspace*{-1ex} +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. +Some nonsense text, which is nothing more than nonsense. + +\vspace*{-2ex} +\noindent\rnode{B}{}\psbrace[linecolor=red](A)(B){} +\end{minipage} +\end{framed} +\end{lstlisting} + + +%-------------------------------------------------------------------------------------- +\section{Random dots} +%-------------------------------------------------------------------------------------- +The syntax of the new macro \verb+\psRandom+ is: + +\begin{verbatim} +\psRandom[<option>]{} +\psRandom[<option>]{<clip path>} +\psRandom[<option>](<xMax,yMax>){<clip path>} +\psRandom[<option>](<xMin,yMin>)(<xMax,yMax>){<clip path>} +\end{verbatim} + +If there is no area for the dots defined, then \verb+(0,0)(1,1)+ in the actual +scale is used for placing the dots. This area should be greater than the clipping +path to be sure that the dots are placed over the full area. The clipping path can +be everything. If no clipping path is given, then the frame \verb+(0,0)(1,1)+ +in user coordinates is used. The new options are: + +\begin{center} +\begin{tabular}{l|l|l} +name & default\\\hline +\verb|randomPoints| & \verb|1000| & number of random dots\tabularnewline +\verb|color| & \verb+false+ & random color\tabularnewline +\end{tabular} +\end{center} + + +\begin{LTXexample}[width=0.3\linewidth] +\psset{unit=5cm} +\begin{pspicture}(1,1) + \psRandom[dotsize=1pt,fillstyle=solid](1,1){\pscircle(0.5,0.5){0.5}} +\end{pspicture} +\begin{pspicture}(1,1) + \psRandom[dotsize=2pt,randomPoints=5000,color,% + fillstyle=solid](1,1){\pscircle(0.5,0.5){0.5}} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=0.4\linewidth] +\psset{unit=5cm} +\begin{pspicture}(1,1) + \psRandom[randomPoints=200,dotsize=8pt,dotstyle=+]{} +\end{pspicture} +\begin{pspicture}(1.5,1) + \psRandom[dotsize=5pt,color](0,0)(1.5,0.8){\psellipse(0.75,0.4)(0.75,0.4)} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample} +\psset{unit=2.5cm} +\begin{pspicture}(0,-1)(3,1) + \psRandom[dotsize=4pt,dotstyle=o,linecolor=blue,fillcolor=red,% + fillstyle=solid,randomPoints=1000]% + (0,-1)(3,1){\psplot{0}{3.14}{ x 114 mul sin }} +\end{pspicture} +\end{LTXexample} + +\psset{unit=1cm} + +\clearpage +%-------------------------------------------------------------------------------------- +\section{Arrows} +%-------------------------------------------------------------------------------------- +\subsection{Definition} +%-------------------------------------------------------------------------------------- +\verb|pstricks-add| defines the following ''arrows``: + +\begin{center} + \bgroup + \def\myline#1{\psline[linecolor=red,linewidth=1pt]{#1}(0,1ex)(1.3,1ex)}% + \psset{arrowscale=1.5} + \begin{tabular}{cp{1.8cm}l}% + Value & Example & Name \\[2pt]\hline + \verb/-/ & \myline{-} & None\\ + \verb/<->/ & \myline{<->} & Arrowheads.\\ + \verb/>-</ & \myline{>-<} & Reverse arrowheads.\\ + \verb/<<->>/ & \myline{<<->>} & Double arrowheads.\\ + \verb/>>-<</ & \myline{>>-<<} & Double reverse arrowheads.\\ + \verb/|-|/ & \myline{|-|} & T-bars, flush to endpoints.\\ + \verb/|*-|*/ & \myline{|*-|*} & T-bars, centered on endpoints.\\ + \verb/[-]/ & \myline{[-]} & Square brackets.\\ + \verb/]-[/ & \myline{]-[} & Reversed square brackets.\\ + \verb/(-)/ & \myline{(-)} & Rounded brackets.\\ + \verb/)-(/ & \myline{)-(} & Reversed rounded brackets.\\ + \verb/o-o/ & \myline{o-o} & Circles, centered on endpoints.\\ + \verb/*-*/ & \myline{*-*} & Disks, centered on endpoints.\\ + \verb/oo-oo/ & \myline{oo-oo} & Circles, flush to endpoints.\\ + \verb/**-**/ & \myline{**-**} & Disks, flush to endpoints.\\ + \verb/|<->|/ & \myline{|<->|} & T-bars and arrows.\\ + \verb/|>-<|/ & \myline{|>-<|} & T-bars and reverse arrows.\\ + \verb/h-h|/ & \myline{h-h} & left/right hook arrows.\\ + \verb/H-H|/ & \myline{H-H} & left/right hook arrows.\\ + \end{tabular} + \egroup +\end{center} + +You can also mix and match, e.g., \verb/->/, \verb/*-)/ and \verb/[->/ are all valid values +of the \verb|arrows| parameter. The parameter can be set with +\begin{verbatim} +\psset{arrows=<type>} +\end{verbatim} + +\noindent or for some macros with a special option, like\\[5pt] +\noindent\verb|\psline[<general options>]{<arrow type>}(A)(B)|\\ +\noindent\verb/\psline[linecolor=red,linewidth=2pt]{|->}(0,0)(0,2)/ \ \psline[linecolor=red,linewidth=2pt]{|->}(0,0)(0,2) + +\subsection{Multiple arrows} +There are two new options which are only valid for the arrow type \verb+<<+ or \verb+>>+. +\verb+nArrow+ sets both, the \verb+nArrowA+ and the \verb+nArrowB+ parameter. The meaning +is declared in the following tables. Without setting one of these parameters the behaviour +is like the one described in the old PSTricks manual. + +\begin{center} + \begin{tabular}{lc}% + Value & Meaning \\[2pt]\hline + \verb+->>+ & \ -A \\ + \verb+<<->>+ & A-A\\ + \verb+<<-+ & A-\ \\ + \verb+>>-+ & B-\ \\ + \verb+-<<+ & \ -B\\ + \verb+>>-<<+ & B-B\\ + \verb+>>->>+ & B-A\\ + \verb+<<-<<+ & A-B + \end{tabular} +\end{center} + +\begin{center} + \bgroup + \psset{linecolor=red,linewidth=1pt,arrowscale=2}% + \begin{tabular}{lp{2.8cm}}% + Value & Example \\[2pt]\hline + \verb+\psline{->>}(0,1ex)(2.3,1ex)+ & \psline{->>}(0,1ex)(2.3,1ex) \\ + \verb+\psline[nArrowsA=3]{->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{->>}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=5]{->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{->>}(0,1ex)(2.3,1ex)\\ + \verb+\psline{<<-}(0,1ex)(2.3,1ex)+ & \psline{<<-}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=3]{<<-}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<-}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=5]{<<-}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<-}(0,1ex)(2.3,1ex)\\ + \verb+\psline{<<->>}(0,1ex)(2.3,1ex)+ & \psline{<<->>}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=3]{<<->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<->>}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=5]{<<->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<->>}(0,1ex)(2.3,1ex)\\ + \verb+\psline{<<-|}(0,1ex)(2.3,1ex)+ & \psline{<<-|}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=3]{<<-<<}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<-<<}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=5]{<<-o}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<-o}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=3,nArrowsB=4]{<<-<<}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3,nArrowsB=4]{<<-<<}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=3,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)\\ + \verb+\psline[nArrowsA=1,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=1,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)\\ + \end{tabular} + \egroup +\end{center} + +\subsection{\texttt{hookarrow}} + +\begin{LTXexample} +\psset{arrowsize=8pt,arrowlength=1,linewidth=1pt,nodesep=2pt,shortput=tablr} +\large +\begin{psmatrix}[colsep=12mm,rowsep=10mm] + & & $R_2$ \\ + & & 0 & & $R_3$\\ +$e_b:S$ & 1 & & 1 & 0 \\ + & & 0 \\ + & & $R_1$ \\ +\end{psmatrix} +\ncline{h-}{1,3}{2,3}<{$e_{r2}$}>{$f_{r2}$} +\ncline{-h}{2,3}{3,2}<{$e_1$} +\ncline{-h}{3,1}{3,2}^{$e_s$}_{$f_{s}$} +\ncline{-h}{3,2}{4,3}>{$e_3$}<{$f_3$} +\ncline{-h}{4,3}{3,4}>{$e_4$}<{$f_4$} +\ncline{-h}{3,4}{2,3}>{$e_2$}<{$f_2$} +\ncline{-h}{3,4}{3,5}^{$e_5$} +\ncline{-h}{3,5}{2,5}<{$e_{r3}$}>{$f_{r3}$} +\ncline{-h}{4,3}{5,3}<{$e_{r1}$}>{$f_{r1}$} +\end{LTXexample} + + +\subsection{\texttt{hookrightarrow} and \texttt{hookleftarrow}} +This is another type of an arrow and abbreviated with \verb+H+. The length and width of the hook +is set by the new options \verb+hooklength+ and \verb+hookwidth+, which are by default set to +% +\begin{verbatim} +\psset{hooklength=3mm,hookwidth=1mm} +\end{verbatim} +% +If the line begins with a right hook then the line ends with a left hook and vice versa: + +\begin{LTXexample}[width=3cm] +\begin{pspicture}(3,4) +\psline[linewidth=5pt,linecolor=blue,hooklength=5mm,hookwidth=-3mm]{H->}(0,3.5)(3,3.5) +\psline[linewidth=5pt,linecolor=red,hooklength=5mm,hookwidth=3mm]{H->}(0,2.5)(3,2.5) +\psline[linewidth=5pt,hooklength=5mm,hookwidth=3mm]{H-H}(0,1.5)(3,1.5) +\psline[linewidth=1pt]{H-H}(0,0.5)(3,0.5) +\end{pspicture} +\end{LTXexample} + + + +\begin{LTXexample}[width=7.25cm] +$\begin{psmatrix} +E&W_i(X)&&Y\\ +&&W_j(X) +\psset{arrows=->,nodesep=3pt,linewidth=2pt} +\everypsbox{\scriptstyle} +\ncline[linecolor=red,arrows=H->,% + hooklength=4mm,hookwidth=2mm]{1,1}{1,2} +\ncline{1,2}{1,4}^{\tilde{t}} +\ncline{1,2}{2,3}<{W_{ij}} +\ncline{2,3}{1,4}>{\tilde{s}} +\end{psmatrix}$ +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{ArrowInside} Option} +%-------------------------------------------------------------------------------------- + +It is now possible to have arrows inside the lines and not only at the beginning or +the end. The new defined options + +\psset{arrowscale=2,linecolor=red,unit=1cm,linewidth=1.5pt} +\begin{longtable}{l|p{9cm}|p{2.2cm}} +Name & Example & Output\\\hline +\endfirsthead +Name & Example & Output\\\hline +\endhead +\texttt{ArrowInside} & + \texttt{\textbackslash psline[ArrowInside=->](0,0)(2,0)} & + \psline[ArrowInside=->](0,0.1)(2,0.1) \\ +\texttt{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsidePos=0.25](0,0)(2,0)} +& \psline[ArrowInside=->, ArrowInsidePos=0.25](0,0.1)(2,0.1) \\ +\texttt{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsidePos=10](0,0)(2,0)} +& \psline[ArrowInside=->, ArrowInsidePos=10](0,0.1)(2,0.1) \\ +\texttt{ArrowInsideNo} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsideNo=2](0,0)(2,0)} +& \psline[ArrowInside=->, ArrowInsideNo=2](0,0.1)(2,0.1) \\ +\texttt{ArrowInsideOffset} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsideNo=2,\%} + \hspace*{20pt}\texttt{ArrowInsideOffset=0.1](0,0)(2,0)} +& \psline[ArrowInside=->, ArrowInsideNo=2,ArrowInsideOffset=0.1](0,0.1)(2,0.1) \\ +% +\texttt{ArrowInside} & \texttt{\textbackslash psline[ArrowInside=->]\{->\}(0,0)(2,0)} & + \psline[ArrowInside=->]{->}(0,0)(2,0)\\ +\texttt{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsidePos=0.25]\{->\}(0,0)(2,0)} + & \psline[ArrowInside=->, ArrowInsidePos=0.25]{->}(0,0)(2,0) \\ +\texttt{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsidePos=10]\{->\}(0,0)(2,0)} + & \psline[ArrowInside=->, ArrowInsidePos=10]{->}(0,0)(2,0) \\ +\texttt{ArrowInsideNo} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsideNo=2]\{->\}(0,0)(2,0)} + & \psline[ArrowInside=->, ArrowInsideNo=2]{->}(0,0)(2,0) \\ +\texttt{ArrowInsideOffset} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{ArrowInsideNo=2,\%} + \hspace*{20pt}\texttt{ArrowInsideOffset=0.1]\{->\}(0,0)(2,0)} + & \psline[ArrowInside=->, ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(0,0)(2,0) \\ +% +\texttt{ArrowFill} & \texttt{\textbackslash psline[ArrowFill=false,\%} + \hspace*{20pt}\texttt{arrowinset=0]\{->\}(0,0)(2,0)} & + \psline[ArrowFill=false,arrowinset=0]{->}(0,0)(2,0)\\ +\texttt{ArrowFill} & \texttt{\textbackslash psline[ArrowFill=false,\%} + \hspace*{20pt}\texttt{arrowinset=0]\{<<->>\}(0,0)(2,0)} & + \psline[ArrowFill=false,arrowinset=0]{<<->>}(0,0)(2,0)\\ +\texttt{ArrowFill} & \texttt{\textbackslash psline[ArrowInside=->,\%} + \hspace*{20pt}\texttt{arrowinset=0,\%}\hspace{30pt} + \hspace*{20pt}\texttt{ArrowFill=false,\%}\hspace{30pt} + \hspace*{20pt}\texttt{ArrowInsideNo=2,\%} + \hspace*{20pt}\texttt{ArrowInsideOffset=0.1]\{->\}(0,0)(2,0)} + & \psline[ArrowInside=->, ArrowFill=false,ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(0,0)(2,0) \\ +\end{longtable} + +\medskip +Without the default arrow definition there is only the one inside the line, defined +by the type and +the position. The position is relative to the length of the whole line. $0.25$ means +at $25\%$ of the +line length. The peak of the arrow gets the coordinates which are calculated by the +macro. If you want arrows with an abolute position difference, then choose a +value greater than \verb|1|, e.g. \verb|10| which places an arrow every 10 pt. The +default unit \verb|pt| cannot be changed. + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{ArrowFill} Option} +%-------------------------------------------------------------------------------------- + +By default all arrows are filled polygons. With the option \verb|ArrowFill=false| there +are ''white`` arrows. Only for the beginning/end arrows they are empty, the inside arrows +are overpainted with the line. + + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=3} +\psline[linecolor=red,arrowinset=0]{<->}(0,0)(3,0) +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=3} +\psline[linecolor=red,arrowinset=0,ArrowFill=false]{<->}(0,0)(3,0) +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=3} +\psline[linecolor=red,arrowinset=0,arrowsize=0.2,ArrowFill=false]{<->}(0,0)(3,0) +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=3} +\psline[linecolor=blue,arrowscale=6,ArrowFill=true]{>>->>}(0,0)(3,0) +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=3} +\psline[linecolor=blue,arrowscale=6,ArrowFill=false]{>>->>}(0,0)(3,0) +\rule{3cm}{0pt}\\[30pt] +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=3} +\psline[linecolor=blue,arrowscale=6,ArrowFill=true]{>|->|}(0,0)(3,0) +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=3} +\psline[linecolor=blue,arrowscale=6,ArrowFill=false]{>|->|}(0,0)(3,0)% +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{Examples} +%-------------------------------------------------------------------------------------- + +All examples are printed with \verb|\psset{arrowscale=2,linecolor=red}|. +\subsubsection{\CMD{psline}} + +\bigskip +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=->]{|<->|}(2,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=-|]{|-|}(2,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=->,ArrowInsideNo=2]{->}(2,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=->,ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(2,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=-*]{->}(0,0)(2,1)(3,0)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=-*,ArrowInsidePos=0.25]{->}(0,0)(2,1)(3,0)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=-*,ArrowInsidePos=0.25,ArrowInsideNo=2]{->}% + (0,0)(2,1)(3,0)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=->, ArrowInsidePos=0.25]{->}% + (0,0)(2,1)(3,0)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[linestyle=none,ArrowInside=->,ArrowInsidePos=0.25]{->}% + (0,0)(2,1)(3,0)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=-<, ArrowInsidePos=0.75]{->}% + (0,0)(2,1)(3,0)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true,ArrowInside=-*} +\psline(0,0)(2,1)(3,0)(4,0)(6,2) +\psset{linestyle=none} +\psline[ArrowInsidePos=0](0,0)(2,1)(3,0)(4,0)(6,2) +\psline[ArrowInsidePos=1](0,0)(2,1)(3,0)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,5) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=->,ArrowInsidePos=20](0,0)(3,0)% + (3,3)(1,3)(1,5)(5,5)(5,0)(7,0)(6,3) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,2) +\psset{arrowscale=2,ArrowFill=true} +\psline[ArrowInside=-|]{<->}(0,2)(2,0)(3,2)(4,0)(6,2) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsubsection{\CMD{pspolygon}} +%-------------------------------------------------------------------------------------- +% Polygons (\pspolygon macro) + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,3) +\psset{arrowscale=2} +\pspolygon[ArrowInside=-|](0,0)(3,3)(6,3)(6,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,3) +\psset{arrowscale=2} +\pspolygon[ArrowInside=->,ArrowInsidePos=0.25]% + (0,0)(3,3)(6,3)(6,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,3) +\psset{arrowscale=2} +\pspolygon[ArrowInside=->,ArrowInsideNo=4]% + (0,0)(3,3)(6,3)(6,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,3) +\psset{arrowscale=2} +\pspolygon[ArrowInside=->,ArrowInsideNo=4,% + ArrowInsideOffset=0.1](0,0)(3,3)(6,3)(6,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,3) +\psset{arrowscale=2} + \pspolygon[ArrowInside=-|](0,0)(3,3)(6,3)(6,1) + \psset{linestyle=none,ArrowInside=-*} + \pspolygon[ArrowInsidePos=0](0,0)(3,3)(6,3)(6,1) + \pspolygon[ArrowInsidePos=1](0,0)(3,3)(6,3)(6,1) + \psset{ArrowInside=-o} + \pspolygon[ArrowInsidePos=0.25](0,0)(3,3)(6,3)(6,1) + \pspolygon[ArrowInsidePos=0.75](0,0)(3,3)(6,3)(6,1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\begin{pspicture}(6,5) +\psset{arrowscale=2} + \pspolygon[ArrowInside=->,ArrowInsidePos=20]% + (0,0)(3,0)(3,3)(1,3)(1,5)(5,5)(5,0)(7,0)(6,3) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsubsection{\CMD{psbezier}} +%-------------------------------------------------------------------------------------- +% Bezier curves (\psbezier macro) + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(3,3) +\psset{arrowscale=2} + \psbezier[ArrowInside=-|](1,1)(2,2)(3,3) + \psset{linestyle=none,ArrowInside=-o} + \psbezier[ArrowInsidePos=0.25](1,1)(2,2)(3,3) + \psbezier[ArrowInsidePos=0.75](1,1)(2,2)(3,3) + \psset{linestyle=none,ArrowInside=-*} + \psbezier[ArrowInsidePos=0](1,1)(2,2)(3,3) + \psbezier[ArrowInsidePos=1](1,1)(2,2)(3,3) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,3) +\psset{arrowscale=2} + \psbezier[ArrowInside=->,showpoints=true]% + {*-*}(2,3)(3,0)(4,2) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,3) +\psset{arrowscale=2} + \psbezier[ArrowInside=->,showpoints=true,% + ArrowInsideNo=2](2,3)(3,0)(4,2) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,3) +\psset{arrowscale=2} + \psbezier[ArrowInside=->,showpoints=true,% + ArrowInsideNo=2,ArrowInsideOffset=-0.2]{->}(2,3)(3,0)(4,2) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=5.5cm] +\begin{pspicture}(5,3) +\psset{arrowscale=2} + \psbezier[ArrowInsideNo=9,ArrowInside=-|,% + showpoints=true]{*-*}(1,3)(3,0)(5,3) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,3) +\psset{arrowscale=2} + \psset{ArrowInside=-|} + \psbezier[ArrowInsidePos=0.25,showpoints=true]{*-*}(2,3)(3,0)(4,2) + \psset{linestyle=none} + \psbezier[ArrowInsidePos=0.75](2,3)(3,0)(4,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=5.5cm] +\begin{pspicture}(5,6) +\psset{arrowscale=2} + \pnode(3,4){A}\pnode(5,6){B}\pnode(5,0){C} + \psbezier[ArrowInside=->,% + showpoints=true](A)(B)(C) + \psset{linestyle=none,ArrowInside=-<} + \psbezier[ArrowInsideNo=4](A)(B)(C) + \psset{ArrowInside=-o} + \psbezier[ArrowInsidePos=0.1](A)(B)(C) + \psbezier[ArrowInsidePos=0.9](A)(B)(C) + \psset{ArrowInside=-*} + \psbezier[ArrowInsidePos=0.3](A)(B)(C) + \psbezier[ArrowInsidePos=0.7](A)(B)(C) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[pos=t] +\begin{pspicture}(-3,-5)(15,5) + \psbezier[ArrowInsideNo=19,% + ArrowInside=->,ArrowFill=false,% + showpoints=true]{->}(-3,0)(5,-5)(8,5)(15,-5) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsubsection{\CMD{pcline}} +%-------------------------------------------------------------------------------------- +These examples need the package \verb|pst-node|. + +% Lines (\pcline macro) +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,1) +\psset{arrowscale=2} +\pcline[ArrowInside=->](0,0)(2,1) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,1) +\psset{arrowscale=2} +\pcline[ArrowInside=->]{<->}(0,0)(2,1) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,1) +\psset{arrowscale=2} +\pcline[ArrowInside=-|,ArrowInsidePos=0.75]{|-|}(0,0)(2,1) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=2.5cm] +\psset{arrowscale=2} +\pcline[ArrowInside=->,ArrowInsidePos=0.65]{*-*}(0,0)(2,0) +\naput[labelsep=0.3]{\large$g$} +\end{LTXexample} + + +\begin{LTXexample}[width=2.5cm] +\psset{arrowscale=2} +\pcline[ArrowInside=->,ArrowInsidePos=10]{|-|}(0,0)(2,0) +\naput[labelsep=0.3]{\large$l$} +\end{LTXexample} + + + +%-------------------------------------------------------------------------------------- +\subsubsection{\CMD{pccurve}} +%-------------------------------------------------------------------------------------- +These examples also need the package \verb|pst-node|. + +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,2) +\psset{arrowscale=2} +\pccurve[ArrowInside=->,ArrowInsidePos=0.65,showpoints=true]{*-*}(0,0)(2,2) +\naput[labelsep=0.3]{\large$h$} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=2.5cm] +\begin{pspicture}(2,2) +\psset{arrowscale=2} +\pccurve[ArrowInside=->,ArrowInsideNo=3,showpoints=true]{|->}(0,0)(2,2) +\naput[labelsep=0.3]{\large$i$} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,4) +\psset{arrowscale=2} +\pccurve[ArrowInside=->,ArrowInsidePos=20]{|-|}(0,0)(4,4) +\naput[labelsep=0.3]{\large$k$} +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\section{\CMD{psFormatInt}} +%-------------------------------------------------------------------------------------- +There exist some packages and a lot of code to format an integer like $1\,000\,000$ +or $1,234,567$ (in Europe $1.234.567$). But all packages expect a real number as +argument and cannot handle macros as an argument. For this case \verb|pstricks-add| +has a macro \verb|psFormatInt| which can handle both: + +\begin{LTXexample}[width=3cm] +\psFormatInt{1234567}\\ +\psFormatInt[intSeparator={,}]{1234567}\\ +\psFormatInt[intSeparator=.]{1234567}\\ +\psFormatInt[intSeparator=$\cdot$]{1234567}\\ +\def\temp{965432} +\psFormatInt{\temp} +\end{LTXexample} + +With the option \verb|intSeparator| the symbol can be changed to any any non-number character. + + +%-------------------------------------------------------------------------------------- +\section{Color} +%-------------------------------------------------------------------------------------- + +%-------------------------------------------------------------------------------------- +\subsection{,,Tranparent colors''} +%-------------------------------------------------------------------------------------- + +\verb+pstricks-add+ simulates transparency with hatch lines: +\begin{lstlisting} +\def\defineTColor{\@ifnextchar[{\defineTColor@i}{\defineTColor@i[]}} +\def\defineTColor@i[#1]#2#3{% transparency "Colors" + \newpsstyle{#2}{% + fillstyle=vlines,hatchwidth=0.1\pslinewidth, + hatchsep=1\pslinewidth,hatchcolor=#3,#1% + }% +} +\defineTColor{TRed}{red} +\defineTColor{TGreen}{green} +\defineTColor{TBlue}{blue} +\end{lstlisting} + +There are three predefined "'transparent"` colors \verb+TRed+, \verb+TGreen+, \verb+TBlue+. +They are used as \PST styles and not as colors: + +\resetOptions +\bgroup +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(-3,-5)(5,5) +\psframe(-1,-3)(5,5) % objet de base +\psrotate(2,-2){15}{% + \psframe[style=TRed](-1,-3)(5,5)} +\psrotate(2,-2){30}{% + \psframe[style=TGreen](-1,-3)(5,5)} +\psrotate(2,-2){45}{% + \psframe[style=TBlue](-1,-3)(5,5)} +\psframe[linewidth=3pt](-1,-3)(5,5) +\psdots[dotstyle=+,dotangle=45,dotscale=3](2,-2) % centre de la rotation +\end{pspicture} +\end{LTXexample} +\egroup + +%-------------------------------------------------------------------------------------- +\subsection{Calculated colors} +%-------------------------------------------------------------------------------------- +The \verb+xcolor+ package (version 2.6) has a new feature for defining colors: +\begin{verbatim} + \definecolor[ps]{<name>}{<model>}{< PS code >} +\end{verbatim} + +\verb+model+ can be one of the color models, which PostScript will understand, e.g. \verb+rgb+. +With this definition the color is calculated on PostScript side. +\begin{LTXexample}[pos=t,preset=\centering] +\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}% +\psset{unit=1bp} +\begin{pspicture}(0,-30)(400,100) +\multido{\iLAMBDA=0+1}{400}{% + \pstVerb{ + \iLAMBDA\space 379 add dup /lambda exch def + tx@addDict begin wavelengthToRGB end + }% + \psline[linecolor=bl](\iLAMBDA,0)(\iLAMBDA,100)% +} +\psaxes[yAxis=false,Ox=350,dx=50bp,Dx=50]{->}(-29,-10)(420,100) +\uput[-90](420,-10){$\lambda$[\textsf{nm}]} +\end{pspicture} +\end{LTXexample} + + +\begin{center} +\newcommand{\Touch}{% +\psframe[linestyle=none,fillstyle=solid,fillcolor=bl,dimen=middle](0.1,0.75)} +\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}% +% Echelle 1cm <-> 40 nm +% 1 nm <-> 0.025 cm +\psframebox[fillstyle=solid,fillcolor=black]{% +\begin{pspicture}(-1,-0.5)(12,1.5) +\multido{\iLAMBDA=380+2}{200}{% + \pstVerb{ + /lambda \iLAMBDA\space def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! lambda 0.025 mul 9.5 sub 0){\Touch} +} +\multido{\n=0+1,\iDiv=380+40}{11}{% + \psline[linecolor=white](\n,0.1)(\n,-0.1) + \uput[270](\n,0){\textbf{\white\iDiv}}} + \psline[linecolor=white]{->}(11,0) + \uput[270](11,0){\textbf{\white$\lambda$(nm)}} +\end{pspicture}} + +\psframebox[fillstyle=solid,fillcolor=black]{% +\begin{pspicture}(-1,-0.5)(12,1) + \pstVerb{ + /lambda 656 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 656 0.025 mul 9.5 sub 0){\Touch} + \pstVerb{ + /lambda 486 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 486 0.025 mul 9.5 sub 0){\Touch} + \pstVerb{ + /lambda 434 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 434 0.025 mul 9.5 sub 0){\Touch} + \pstVerb{ + /lambda 410 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 410 0.025 mul 9.5 sub 0){\Touch} +\multido{\n=0+1,\iDiv=380+40}{11}{% + \psline[linecolor=white](\n,0.1)(\n,-0.1) + \uput[270](\n,0){\textbf{\white\iDiv}}} + \psline[linecolor=white]{->}(11,0) + \uput[270](11,0){\textbf{\white$\lambda$(nm)}} +\end{pspicture}} + +Spectrum of hydrogen emission (Manuel Luque) +\end{center} + +\begin{lstlisting} +\newcommand{\Touch}{% +\psframe[linestyle=none,fillstyle=solid,fillcolor=bl,dimen=middle](0.1,0.75)} +\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}% +% Echelle 1cm <-> 40 nm +% 1 nm <-> 0.025 cm +\psframebox[fillstyle=solid,fillcolor=black]{% +\begin{pspicture}(-1,-0.5)(12,1.5) +\multido{\iLAMBDA=380+2}{200}{% + \pstVerb{ + /lambda \iLAMBDA\space def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! lambda 0.025 mul 9.5 sub 0){\Touch} +} +\multido{\n=0+1,\iDiv=380+40}{11}{% + \psline[linecolor=white](\n,0.1)(\n,-0.1) + \uput[270](\n,0){\textbf{\white\iDiv}}} + \psline[linecolor=white]{->}(11,0) + \uput[270](11,0){\textbf{\white$\lambda$(nm)}} +\end{pspicture}} + +\psframebox[fillstyle=solid,fillcolor=black]{% +\begin{pspicture}(-1,-0.5)(12,1) + \pstVerb{ + /lambda 656 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 656 0.025 mul 9.5 sub 0){\Touch} + \pstVerb{ + /lambda 486 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 486 0.025 mul 9.5 sub 0){\Touch} + \pstVerb{ + /lambda 434 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 434 0.025 mul 9.5 sub 0){\Touch} + \pstVerb{ + /lambda 410 def + lambda + tx@addDict begin wavelengthToRGB end + }% + \rput(! 410 0.025 mul 9.5 sub 0){\Touch} +\multido{\n=0+1,\iDiv=380+40}{11}{% + \psline[linecolor=white](\n,0.1)(\n,-0.1) + \uput[270](\n,0){\textbf{\white\iDiv}}} + \psline[linecolor=white]{->}(11,0) + \uput[270](11,0){\textbf{\white$\lambda$(nm)}} +\end{pspicture}} + +Spectrum of hydrogen emission (Manuel Luque) +\end{lstlisting} + + + +%-------------------------------------------------------------------------------------- +\subsection{Gouraud shading} +%-------------------------------------------------------------------------------------- +\begin{quotation} +Gouraud shading is a method used in computer graphics to simulate the differing effects of +light and colour across the surface of an object. In practice, Gouraud shading is used to +achieve smooth lighting on low-polygon surfaces without the heavy computational requirements +of calculating lighting for each pixel. The technique was first presented by Henri Gouraud in 1971.\\ +~\hfill{\small \url{http://www.wikipedia.org}} +\end{quotation} + +PostScript level 3 supports this kind of shading and it could only be seen with Acroread 7 +or younger. Die Syntax ist relativ einfach + +\begin{verbatim} + \psGTriangle(x1,y1)(x2,y2)(x3,y3){color1}{color2}{color3} +\end{verbatim} + +\psset{unit=0.75cm} + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(0,-.25)(10,10) + \psGTriangle(0,0)(5,10)(10,0){red}{green}{blue} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(0,-.25)(10,10) + \psGTriangle*(0,0)(9,10)(10,3){black}{white!50}{red!50!green!95} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(0,-.25)(10,10) + \psGTriangle*(0,0)(5,10)(10,0){-red!100!green!84!blue!86} + {-red!80!green!100!blue!40} + {-red!60!green!30!blue!100} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t,preset=\centering] +\definecolor{rose}{rgb}{1.00, 0.84, 0.88} +\definecolor{vertpommepasmure}{rgb}{0.80, 1.0, 0.40} +\definecolor{fushia}{rgb}{0.60, 0.30, 1.0} +\begin{pspicture}(0,-.25)(10,10) + \psGTriangle(0,0)(5,10)(10,0){rose}{vertpommepasmure}{fushia} +\end{pspicture} +\end{LTXexample} + +\newpage +%-------------------------------------------------------------------------------------- +\part{\texttt{pst-node}} +%-------------------------------------------------------------------------------------- +\section{\CMD{nclineII}} +%-------------------------------------------------------------------------------------- +The dashed lines are black and white by default. The new macro \verb|\nclineII| +offers two-color lines and has the same syntax as \verb|\ncline|: +\begin{verbatim} +\ncline[<options>]{<Node A>}{<Node B>} +\end{verbatim} + +\begin{LTXexample}[width=0.2\linewidth] +\circlenode[linecolor=blue,linewidth=2pt]{A}{A}% +\hspace{9cm}\circlenode[linecolor=cyan,linewidth=2pt]{B}{B} +\nclineII[linewidth=5pt]{A}{B} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{The options} +%-------------------------------------------------------------------------------------- + +These options are all defined in the package \verb|pstricks-add|. + +\medskip +\begin{tabularx}{\linewidth}{l|X} +name & meaning\\\hline +\verb|dashColorI| & first color, default is \verb|black|\tabularnewline +\verb|dashColorII| & second color, default is \verb|red|\tabularnewline +\verb|dashNo| & The ratio of dashColorI to dashColorII, the default is $0.2$\tabularnewline +\end{tabularx} +\medskip + +\verb|dashNo| can have values greater than $1$. In this case the value will be taken as an absolute width in the pt unit. Only this unit is possible! + +%-------------------------------------------------------------------------------------- +\subsection{Examples} +%-------------------------------------------------------------------------------------- +\begin{LTXexample}[width=4.5cm] +\circlenode{A}{A}\hspace*{3cm}\dianode{B}{B}% +\nclineII[linewidth=8pt,dashColorI=blue]{A}{B} +\end{LTXexample} + +\begin{LTXexample}[width=4.5cm] +\circlenode{A}{A}\hspace*{3cm}\circlenode{B}{B}% +\nclineII[dashColorI=blue,linewidth=3pt,dashNo=15]{->}{A}{B} +\end{LTXexample} + +\begin{LTXexample}[width=4.5cm] +\dianode{A}{A}\hspace*{3cm}\circlenode{B}{B}% +\nclineII[dashColorI=blue,linecap=1,dashNo=0.3,linewidth=0.5]{A}{B} +\end{LTXexample} + +\psset{unit=1cm} + +%-------------------------------------------------------------------------------------- +\section{\CMD{pclineII}} +%-------------------------------------------------------------------------------------- +This is nearly the same macro as \verb|\psline| from the main \pnode{C}\verb|pstricks| package. +\begin{verbatim} +\pcline[<options>](<Node A>)(<Node B>) +\end{verbatim} + +\begin{LTXexample} +\circlenode[linecolor=blue,linewidth=2pt]{A}{A}% +\hspace*{6cm}\circlenode[linecolor=cyan,linewidth=2pt]{B}{B} +\pclineII[linewidth=5pt](A)(B) +\end{LTXexample} + + +\begin{LTXexample} +\raggedright This macro makes only sense when connecting two ''invisible`` nodes, +like this connection from here\pnode{D}\pclineII{->}(D)(C){} +to the above word \verb|pstricks|. +\end{LTXexample} + + + +%-------------------------------------------------------------------------------------- +\section{\CMD{ncdiag} and \CMD{pcdiag}} +%-------------------------------------------------------------------------------------- +With the new option \verb|lineAngle| the lines drawn by the \verb|ncdiag| macro +can now have a specified gradient. Without this option one has to define the two +arms (which maybe zero) and PSTricks draws the connection between them. Now there +is only a static \verb|armA|, the second one \verb|armB| is calculated when an angle +\verb|lineAngle| is defined. This angle is the gradient of the intermediate line +between the two arms. The syntax of \verb|ncdiag| is + +\begin{verbatim} +\ncdiag[<options>]{<Node A>}{<Node B>} +\pcdiag[<options>](<Node A>)(<Node B>) +\end{verbatim} + + +\begin{tabularx}{\linewidth}{l|X} +name & meaning\\\hline +\verb|lineAngle| & angle of the intermediate line segment. Default is 0, which is the same than using \verb|ncdiag| without the \verb|lineAngle| option.\tabularnewline +\end{tabularx} + + +\resetOptions +\begin{LTXexample}[width=5.5cm] +\begin{pspicture}(5,6) + \circlenode{A}{A}\quad\circlenode{C}{C}% + \quad\circlenode{E}{E} + \rput(0,4){\circlenode{B}{B}} + \rput(1,5){\circlenode{D}{D}} + \rput(2,6){\circlenode{F}{F}} + \psset{arrowscale=2,linearc=0.2,% + linecolor=red,armA=0.5, angleA=90,angleB=-90} + \ncdiag[lineAngle=20]{->}{A}{B} + \ncput*[nrot=:U]{line I} + \ncdiag[lineAngle=20]{->}{C}{D} + \ncput*[nrot=:U]{line II} + \ncdiag[lineAngle=20]{->}{E}{F} + \ncput*[nrot=:U]{line III} +\end{pspicture} +\end{LTXexample} + + +The \verb|ncdiag| macro sets the \verb|armB| dynamically to the calculated value. Any +user setting of \verb|armB| is overwritten by the macro. The \verb|armA| could be set to +a zero length: + + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,3) + \rput(0.5,0.5){\circlenode{A}{A}} + \rput(3.5,3){\circlenode{B}{B}} + {\psset{linecolor=red,arrows=<-,arrowscale=2} + \ncdiag[lineAngle=60,% + armA=0,angleA=0,angleB=180]{A}{B} + \ncdiag[lineAngle=60,% + armA=0,angleA=90,angleB=180]{A}{B}} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,3) + \rput(1,0.5){\circlenode{A}{A}} + \rput(4,3){\circlenode{B}{B}} + {\psset{linecolor=red,arrows=<-,arrowscale=2} + \ncdiag[lineAngle=60,% + armA=0.5,angleA=0,angleB=180]{A}{B} + \ncdiag[lineAngle=60,% + armA=0,angleA=70,angleB=180]{A}{B} + \ncdiag[lineAngle=60,% + armA=0.5,angleA=180,angleB=180]{A}{B}} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=4.5cm] +\begin{pspicture}(4,5.5) + \cnode*(0,0){2pt}{A}% + \cnode*(0.25,0){2pt}{C}% + \cnode*(0.5,0){2pt}{E}% + \cnode*(0.75,0){2pt}{G}% + \cnode*(2,4){2pt}{B}% + \cnode*(2.5,4.5){2pt}{D}% + \cnode*(3,5){2pt}{F}% + \cnode*(3.5,5.5){2pt}{H}% + {\psset{arrowscale=2,linearc=0.2,% + linecolor=red,armA=0.5, angleA=90,angleB=-90} + \pcdiag[lineAngle=20]{->}(A)(B) + \pcdiag[lineAngle=20]{->}(C)(D) + \pcdiag[lineAngle=20]{->}(E)(F) + \pcdiag[lineAngle=20]{->}(G)(H)} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\section{\CMD{ncdiagg} and \CMD{pcdiagg}} +%-------------------------------------------------------------------------------------- +This is nearly the same than \verb+\ncdiag+ except that \verb+armB=0+ and the \verb+angleB+ +value is computed by the macro, so that the line ends at the node with an angle +like a \verb+\pcdiagg+ line. The syntax of \verb|ncdiagg|/\verb+pcdiagg+ is + +\begin{verbatim} +\ncdiag[<options>]{<Node A>}{<Node B>} +\pcdiag[<options>](<Node A>)(<Node B>) +\end{verbatim} + +\begin{LTXexample}[width=5cm] +\begin{pspicture}(4,6) + \psset{linecolor=black} + \circlenode{A}{A}% + \quad\circlenode{C}{C}% + \quad\circlenode{E}{E} + \rput(0,4){\circlenode{B}{B}} + \rput(1,5){\circlenode{D}{D}} + \rput(2,6){\circlenode{F}{F}} + {\psset{arrowscale=2,linearc=0.2,linecolor=red,armA=0.5, angleA=90} + \ncdiagg[lineAngle=-160]{->}{A}{B} + \ncput*[nrot=:U]{line I} + \ncdiagg[lineAngle=-160]{->}{C}{D} + \ncput*[nrot=:U]{line II} + \ncdiagg[lineAngle=-160]{->}{E}{F} + \ncput*[nrot=:U]{line III}} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=5cm] +\begin{pspicture}(4,6) + \psset{linecolor=black} + \cnode*(0,0){2pt}{A}% + \cnode*(0.25,0){2pt}{C}% + \cnode*(0.5,0){2pt}{E}% + \cnode*(0.75,0){2pt}{G}% + \cnode*(2,4){2pt}{B}% + \cnode*(2.5,4.5){2pt}{D}% + \cnode*(3,5){2pt}{F}% + \cnode*(3.5,5.5){2pt}{H}% + {\psset{arrowscale=2,linearc=0.2,linecolor=red,armA=0.5, angleA=90} + \pcdiagg[lineAngle=20]{->}(A)(B) + \pcdiagg[lineAngle=20]{->}(C)(D) + \pcdiagg[lineAngle=20]{->}(E)(F) + \pcdiagg[lineAngle=20]{->}(G)(H)} +\end{pspicture} +\end{LTXexample} + +The only catch for \verb+\ncdiagg+ is, that you need the right value for \verb+lineAngle+. +If the node connection is on the wrong side +of the second node, then choose the corresponding angle, e.g.: if $20$ is wrong then take +$-160$, the corresponding to $180$. + + +\begin{LTXexample}[width=4cm] +\begin{pspicture}(4,1.5) + \circlenode{a}{A} + \rput[l](3,1){\rnode{b}{H}} + \ncdiagg[lineAngle=60,angleA=180,armA=.5,nodesepA=3pt,linecolor=blue]{b}{a} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=4cm] +\begin{pspicture}(4,1.5) + \circlenode{a}{A} + \rput[l](3,1){\rnode{b}{H}} + \ncdiagg[lineAngle=60,armA=.5,nodesepB=3pt,linecolor=blue]{a}{b} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=4cm] +\begin{pspicture}(4,1.5) + \circlenode{a}{A} + \rput[l](3,1){\rnode{b}{H}} + \ncdiagg[lineAngle=-120,armA=.5,nodesepB=3pt,linecolor=blue]{a}{b} +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\section{\CMD{ncbarr}} +%-------------------------------------------------------------------------------------- +This has the same behaviour as \verb+ncbar+, but has 5 segments and all are +horizontal ones. This is the reason why \verb+angleA+ must be $0$ or alternative $180$. +All other values are set to $0$ by the macro. The intermediate horizontal line is +symmetrical to the distance of the two nodes. + + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=2}% +\circlenode{X}{X}\\[1cm] +\circlenode{Y}{Y} +\ncbarr[angleA=0,arrows=->,arrowscale=2]{X}{Y} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=2}% +\ovalnode{X}{Xxxxx}\\[1cm] +\circlenode{Y}{Yyyy} +\ncbarr[angleA=180,arrows=->,arrowscale=2,linecolor=red]{X}{Y} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\psset{arrowscale=2}% +\ovalnode{X}{Xxxxx}\\[1cm] +\circlenode{Y}{Yyyy} +\ncbarr[angleA=20,arm=1cm,arrows=->,arrowscale=2]{X}{Y} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\section{\CMD{psRelNode}} +%-------------------------------------------------------------------------------------- +With this macro it is possible to put a node relative to a given line. Parameter are +the angle and the length factor: +\begin{verbatim} +\psRelNode(<P0>)(<P1>){<length factor>}{<end node name>} +\psRelLine[<options>](<P0>)(<P1>){<length factor>}{<end node name>} +\end{verbatim} + +The length factor depends to the distance of $\overline{P_0P_1}$ and the end node name must +be a valid nodename and shouldn't contain any of the special PostScript characters. There are +two valid options: + +\begin{tabularx}{\linewidth}{l|l|X} +name & default & meaning\\\hline +\verb|angle| & $0$ & angle between the given line $\overline{P_0P_1}$ and the new one +$\overline{P_0P_endNode}$\tabularnewline +\verb+trueAngle+ & false & defines whether the angle depends to the seen line or to the +mathematical one, which respect the scaling factors \verb+xunit+ and \verb+yunit+. +\end{tabularx} + +\begin{LTXexample}[width=7cm] +\begin{pspicture}(7,6) + \psgrid[gridwidth=0pt,gridcolor=gray,gridlabels=0pt,subgriddiv=2] + \pnode(3,3){A}\pnode(4,2){B} + \psline[nodesep=-3,linewidth=0.5pt](A)(B) + \multido{\iA=0+30}{12}{% + \psRelNode[angle=\iA](A)(B){2}{C}% + \qdisk(C){2pt} + \uput[0](C){\iA}} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\section{\CMD{psRelLine}} +%-------------------------------------------------------------------------------------- +With this macro it is possible to plot lines relative to a given one. Parameter are +the angle and the length factor: +\begin{verbatim} +\psRelLine(<P0>)(<P1>){<length factor>}{<end node name>} +\psRelLine{<arrows>}(<P0>)(<P1>){<length factor>}{<end node name>} +\psRelLine[<options>](<P0>)(<P1>){<length factor>}{<end node name>} +\psRelLine[<options>]{<arrows>}(<P0>)(<P1>){<length factor>}{<end node name>} +\end{verbatim} + +The length factor depends to the distance of $\overline{P_0P_1}$ and the end node name must +be a valid nodename and shouldn't contain any of the special PostScript characters. There are +two valid options which are described in the forgoing section for \verb+\psRelNode+. + +The following two figures show the same, the first one with a scaling different to $1:1$, +this is the reason why the end points are on an ellipse and not on a circle like in the +second figure. + +\begin{LTXexample}[width=5cm] +\psset{yunit=2,xunit=1} +\begin{pspicture}(-2,-2)(3,2) +\psgrid[subgriddiv=2,subgriddots=10,gridcolor=lightgray] +\pnode(-1,0){A}\pnode(3,2){B} +\psline[linecolor=red](A)(B) +\psRelLine[linecolor=blue,angle=30](-1,0)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=blue,angle=-30](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=magenta,angle=90](-1,0)(3,2){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=magenta,angle=-90](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=5cm] +\begin{pspicture}(-2,-2)(3,2) +\psgrid[subgriddiv=2,subgriddots=10,gridcolor=lightgray] +\pnode(-1,0){A}\pnode(3,2){B} +\psline[linecolor=red](A)(B) +\psarc[linestyle=dashed](A){2.23}{-90}{135} +\psRelLine[linecolor=blue,angle=30](-1,0)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=blue,angle=-30](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=magenta,angle=90](-1,0)(3,2){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=magenta,angle=-90](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\end{pspicture} +\end{LTXexample} + +\medskip +The following figure has also a different scaling, but has set the option \verb+trueAngle+, +all angles depends to what "you see". + +\begin{LTXexample}[width=6.5cm] +\psset{yunit=2,xunit=1} +\begin{pspicture}(-3,-1)(3,2)\psgrid[subgridcolor=lightgray] +\pnode(-1,0){A}\pnode(3,2){B} +\psline[linecolor=red](A)(B) +\psarc(A){2.83}{-45}{135} +\psRelLine[linecolor=blue,angle=30,trueAngle](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=blue,angle=-30,trueAngle](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=magenta,angle=90,trueAngle](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\psRelLine[linecolor=magenta,angle=-90,trueAngle](A)(B){0.5}{EndNode} +\qdisk(EndNode){2pt} +\end{pspicture} +\end{LTXexample} + +\medskip +Two examples with using \verb+\multido+ to show the behaviour of the options \verb+trueAngle+ +and \verb+angle+. + +\medskip +\begin{LTXexample}[width=8cm] +\psset{yunit=4,xunit=2} +\begin{pspicture}(-1,0)(3,2)\psgrid[subgridcolor=lightgray] +\pnode(-1,0){A}\pnode(1,1){B} +\psline[linecolor=red](A)(3,2) +\multido{\iA=0+10}{36}{% + \psRelLine[linecolor=blue,angle=\iA](B)(A){-0.5}{EndNode} + \qdisk(EndNode){2pt} +} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=8cm] +\psset{yunit=4,xunit=2} +\begin{pspicture}(-1,0)(3,2)\psgrid[subgridcolor=lightgray] +\pnode(-1,0){A}\pnode(1,1){B} +\psline[linecolor=red](A)(3,2) +\multido{\iA=0+10}{36}{% + \psRelLine[linecolor=magenta,angle=\iA,trueAngle]{->}(B)(A){-0.5}{EndNode} +} +\end{pspicture} +\end{LTXexample} + +\begin{center} +\bgroup +\psset{xunit=0.75\linewidth,yunit=0.75\linewidth,trueAngle}% +\begin{pspicture}(1,0.6)%\psgrid + \pnode(.3,.35){Vk} \pnode(.375,.35){D} \pnode(0,.4){DST1} \pnode(1,.18){DST2} + \pnode(0,.1){A1} \pnode(1,.31){A1} + { \psset{linewidth=.02,linestyle=dashed,linecolor=gray}% + \pcline(DST1)(DST2) % <- Druckseitentangente + \pcline(A2)(A1) % <- Anstr"omrichtung + \lput*{:U}{\small Anstr"omrichtung $v_{\infty}$} }% + \psIntersectionPoint(A1)(A2)(DST1)(DST2){Hk} + \pscurve(Hk)(.4,.38)(Vk)(.36,.33)(.5,.32)(Hk) + \psParallelLine[linecolor=red!75!green,arrows=->,arrowscale=2](Vk)(Hk)(D){.1}{FtE} + \psRelLine[linecolor=red!75!green,arrows=->,arrowscale=2,angle=90](D)(FtE){4}{Fn}% why "4"? + \psParallelLine[linestyle=dashed](D)(FtE)(Fn){.1}{Fnr1} + \psRelLine[linestyle=dashed,angle=90](FtE)(D){-4}{Fnr2} % why "-4"? + \psline[linewidth=1.5pt,arrows=->,arrowscale=2](D)(Fnr2) + \psIntersectionPoint(D)([nodesep=2]D)(Fnr1)([offset=-4]Fnr1){Fh} + \psIntersectionPoint(D)([offset=2]D)(Fnr1)([nodesep=4]Fnr1){Fv} + \psline[linecolor=blue,arrows=->,arrowscale=2](D)(Fh) + \psline[linecolor=blue,arrows=->,arrowscale=2](D)(Fv) + \psline[linestyle=dotted](Fh)(Fnr1) \psline[linestyle=dotted](Fv)(Fnr1) + \uput{.1}[0](Fh){\blue $F_{H}$} \uput{.1}[180](Fv){\blue $F_{V}$} + \uput{.1}[-45](Fnr1){$F_{R}$} \uput{.1}[90](Fn){\color{red!75!green}$F_{N}$} + \uput{.25}[-90](FtE){\color{red!75!green}$F_{T}$} +\end{pspicture} +\egroup +\end{center} +\begin{lstlisting} +\psset{xunit=0.75\linewidth,yunit=0.75\linewidth,trueAngle}% +\end{center} +\begin{pspicture}(1,0.6)%\psgrid + \pnode(.3,.35){Vk} \pnode(.375,.35){D} \pnode(0,.4){DST1} \pnode(1,.18){DST2} + \pnode(0,.1){A1} \pnode(1,.31){A1} + { \psset{linewidth=.02,linestyle=dashed,linecolor=gray}% + \pcline(DST1)(DST2) % <- Druckseitentangente + \pcline(A2)(A1) % <- Anstr"omrichtung + \lput*{:U}{\small Anstr"omrichtung $v_{\infty}$} }% + \psIntersectionPoint(A1)(A2)(DST1)(DST2){Hk} + \pscurve(Hk)(.4,.38)(Vk)(.36,.33)(.5,.32)(Hk) + \psParallelLine[linecolor=red!75!green,arrows=->,arrowscale=2](Vk)(Hk)(D){.1}{FtE} + \psRelLine[linecolor=red!75!green,arrows=->,arrowscale=2,angle=90](D)(FtE){4}{Fn}% why "4"? + \psParallelLine[linestyle=dashed](D)(FtE)(Fn){.1}{Fnr1} + \psRelLine[linestyle=dashed,angle=90](FtE)(D){-4}{Fnr2} % why "-4"? + \psline[linewidth=1.5pt,arrows=->,arrowscale=2](D)(Fnr2) + \psIntersectionPoint(D)([nodesep=2]D)(Fnr1)([offset=-4]Fnr1){Fh} + \psIntersectionPoint(D)([offset=2]D)(Fnr1)([nodesep=4]Fnr1){Fv} + \psline[linecolor=blue,arrows=->,arrowscale=2](D)(Fh) + \psline[linecolor=blue,arrows=->,arrowscale=2](D)(Fv) + \psline[linestyle=dotted](Fh)(Fnr1) \psline[linestyle=dotted](Fv)(Fnr1) + \uput{.1}[0](Fh){\blue $F_{H}$} \uput{.1}[180](Fv){\blue $F_{V}$} + \uput{.1}[-45](Fnr1){$F_{R}$} \uput{.1}[90](Fn){\color{red!75!green}$F_{N}$} + \uput{.25}[-90](FtE){\color{red!75!green}$F_{T}$} +\end{pspicture} +\end{lstlisting} + + +%-------------------------------------------------------------------------------------- +\section{\CMD{psParallelLine}} +%-------------------------------------------------------------------------------------- +With this macro it is possible to plot lines relative to a given one, which is parallel. There is no special parameter here. +\begin{verbatim} +\psParallelLine(<P0>)(<P1>)(<P2>){<length>}{<end node name>} +\psParallelLine{<arrows>}(<P0>)(<P1>)(<P2>){<length>}{<end node name>} +\psParallelLine[<options>](<P0>)(<P1>)(<P2>){<length>}{<end node name>} +\psParallelLine[<options>]{<arrows>}(<P0>)(<P1>)(<P2>){<length>}{<end node name>} +\end{verbatim} + +The line starts at $P_2$, is parallel to $\overline{P_0P_1}$ and the length of this +parallel line depends to the length factor. The end node name must +be a valid nodename and shouldn't contain any of the special PostScript characters. + +\begin{LTXexample} +\begin{pspicture*}(-5,-4)(5,3.5) + \psgrid[subgriddiv=0,griddots=5] + \pnode(2,-2){FF}\qdisk(FF){1.5pt} + \pnode(-5,5){A}\pnode(0,0){O} + \multido{\nCountA=-2.4+0.4}{9}{% + \psParallelLine[linecolor=red](O)(A)(0,\nCountA){9}{P1} + \psline[linecolor=red](0,\nCountA)(FF) + \psRelLine[linecolor=red](0,\nCountA)(FF){9}{P2} + } + \psline[linecolor=blue](A)(FF) + \psRelLine[linecolor=blue](A)(FF){5}{END1} + \psline[linewidth=2pt,arrows=->](2,0)(FF) +\end{pspicture*} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\section{\CMD{psIntersectionPoint}} +%-------------------------------------------------------------------------------------- +This macro calculates the intersection point of two lines, given by the four coordinates. +There is no special parameter here. +\begin{verbatim} +\psIntersectionPoint(<P0>)(<P1>)(<P2>)(<P3>){<node name>} +\end{verbatim} + +\begin{LTXexample}[width=5.5cm] +\psset{unit=0.5cm} +\begin{pspicture}(-5,-4)(5,5) + \psaxes{->}(0,0)(-5,-4)(5,5) + \psline[linecolor=red,linewidth=2pt](-5,-1)(5,5) + \psline[linecolor=blue,linewidth=2pt](-5,3)(5,-4) + \qdisk(-5,-1){3pt}\uput[-90](-5,-1){A} + \qdisk(5,5){3pt}\uput[-90](5,5){B} + \qdisk(-5,3){3pt}\uput[-90](-5,3){C} + \qdisk(5,-4){3pt}\uput[-90](5,-4){D} + \psIntersectionPoint(-5,-1)(5,5)(-5,3)(5,-4){IP} + \qdisk(IP){5pt}\uput{0.3}[90](IP){IP} + \psline[linestyle=dashed](IP|0,0)(IP)(0,0|IP) +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\section{\CMD{setLNode} and \CMD{setLCNode}} +%-------------------------------------------------------------------------------------- +\CMD{psLNode} interpolates the Line $\overline{AB}$ by the given value and sets a node at this +point. The syntax is +% +\begin{verbatim} +\setLNode(P1)(P2){value}{Node name} +\end{verbatim} + +\begin{LTXexample}[width=5cm] +\begin{pspicture}(5,5) +\psgrid[subgriddiv=0,griddots=10] +\psset{linecolor=red} +\psline{o-o}(1,1)(5,5) +\setLNode(1,1)(5,5){0.75}{PI} +\qdisk(PI){4pt} +\psset{linecolor=blue} +\psline{o-o}(4,3)(2,5) +\setLNode(4,3)(2,5){-0.5}{PII} +\qdisk(PII){4pt} +\end{pspicture} +\end{LTXexample} + + +\bigskip +The \CMD{psLCNode} macro builds the linear combination of the two given vectors and stores the end of +the new vector as a node. All vectors start at $(0,0)$, so a \verb+\rput+ maybe appropriate. + The syntax is +% +\begin{verbatim} +\setLCNode(P1){value 1}(P2){value 2}{Node name} +\end{verbatim} + +\begin{LTXexample}[width=5cm] +\begin{pspicture}(5,5) +\psgrid[subgriddiv=0,griddots=10] +\psset{linecolor=black} +\psline[linestyle=dashed]{->}(3,1.5) +\psline[linestyle=dashed]{->}(0.375,1.5) +\psset{linecolor=red} +\psline{->}(2,1)\psline{->}(0.5,2) +\setLCNode(2,1){1.5}(0.5,2){0.75}{PI} +\psline[linewidth=2pt]{->}(PI) +\psset{linecolor=black} +\psline[linestyle=dashed](3,1.5)(PI) +\psline[linestyle=dashed](0.375,1.5)(PI) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\section{\CMD{nlput}} +%-------------------------------------------------------------------------------------- +\CMD{ncput} allows to set a label relative to the first node of the last +node connection. With \CMD{nlput} this can be done absolute to a given +node. The syntax is different to the other node connection makros. + +\begin{verbatim} +\nlput[options](A)(B){distance}{text} +\end{verbatim} + + +\begin{LTXexample}[width=5cm] +\begin{pspicture}(5,2) +\pnode(0,0){A} +\pnode(5,2){B} +\ncline{A}{B} +\nlput[nrot=:U](A)(B){1cm}{Test} +\nlput[nrot=:D](A)(B){2cm}{Test} +\nlput[nrot=:U](A)(B){3cm}{Test} +\nlput(A)(B){4cm}{Test} +\end{pspicture} +\end{LTXexample} + + + + +\clearpage +%-------------------------------------------------------------------------------------- +\part{\texttt{pst-plot}} +%-------------------------------------------------------------------------------------- +\section{ New options} +%-------------------------------------------------------------------------------------- +The option \verb+tickstyle=full|top|bottom+ is no more working in the \verb+pstricks-add+ +package, because everything can be set by the \verb+ticksize+ option. +{ +\ttfamily +\begin{longtable}{lll} +\caption{All new parameters for \texttt{pst-plot}}\\[-5pt] +\textrm{Name} & \textrm{Type} & \textrm{Default}\\\hline +\endfirsthead +\textrm{Name} & \textrm{Type} & \textrm{Default}\\\hline +\endhead +algebraic & false|true & false\\ %ok +comma & false|true & false\\ %ok +xAxis & false|true & true\\%ok +yAxis & false|true & true\\%ok +xyAxes & false|true & true\\%ok +xDecimals & <number> or empty & \{\}\\%ok +yDecimals & <number> or empty & \{\}\\%ok +xyDecimals & <number> or empty & \{\}\\%ok +%xLabel & <anything> & \{\}\\%ok +%yLabel & <anything> & \{\}\\%ok +%xyLabel & <anything> & \{\}\\%ok +%tickstyle & full|top|bottom & full\\%ok +ticks & <all|x|y|none> & all\\%ok +labels & <all|x|y|none> & all\\%ok +subticks & <number> & 0\\ +xsubticks & <number> & 0\\ +ysubticks & <number> & 0\\ +ticksize & <length [length]> & -4pt 4pt\\ +subticksize & <number> & 0.75\\ +tickwidth & <length> & 0.5\verb+\pslinewidth+\\ +subtickwidth & <length> & 0.25\verb+\pslinewidth+\\ +tickcolor & <color> & black\\ +xtickcolor & <color> & black\\ +ytickcolor & <color> & black\\ +subtickcolor & <color> & darkgray\\ +xsubtickcolor & <color> & darkgray\\ +ysubtickcolor & <color> & darkgray\\ +ticklinestyle & solid | dashed | dotted | none & solid\\ +subticklinestyle & solid | dashed | dotted | none & solid\\ +xlabelFactor & <anything> & \{\textbackslash\@ empty\}\\ +ylabelFactor & <anything> & \{\textbackslash\@ empty\}\\ +xlogBase & <number> or empty & \{\}\\ +ylogBase & <number> or empty & \{\}\\ +xylogBase & <number> or empty & \{\}\\ +logLines & <none|x|y|all> & none\\ +ignoreLines & <number> & 0\\ +nStep & <number> & 1\\ +nStart & <number> & 0\\ +nEnd & <number> or empty & \{\}\\ +xStep & <number> & 0\\ +yStep & <number> & 0\\ +xStart & <number> or empty & \{\}\\ +yStart & <number> or empty & \{\}\\ +xEnd & <number> or empty & \{\}\\ +yEnd & <number> or empty & \{\}\\ +plotNo & <number> & 1\\ +plotNoMax & <number> & 1\\ +xAxisLabel & <anything> & \{\textbackslash\@ empty\}\\ +yAxisLabel & <anything> & \{\textbackslash\@ empty\}\\ +xAxisLabelPos & <(x,y)> or empty & \{\textbackslash\@ empty\}\\ +yAxisLabelPos & <(x,y)> or empty & \{\textbackslash\@ empty\}\\ +llx & <length> & 0pt\\ +lly & <length> & 0pt\\ +urx & <length> & 0pt\\ +ury & <length> & 0pt\\ +polarplot & false|true & false\\ +trigLabels & false|true & false\\ +ChangeOrder & false|true & false\\ +\end{longtable} +} + + +\clearpage +%-------------------------------------------------------------------------------------- +\subsection[\texttt{algebraic}]{\texttt{algebraic}\footnote{This part is adapted from the package \texttt{pst-eqdf}, written by Dominique Rodriguez.}} +%-------------------------------------------------------------------------------------- +By default the function of \verb+\psplot+ has to be described in Reversed Polish Notation. +The option \verb+algebraic+ allows to do this in the common algebraic notation. E.g.: + +\begin{tabular}{l|l} +RPN & algebraic\\\hline +\verb+x ln+ & \verb+ln(x)+\\ +\verb+x cos 2.71 x neg 10 div exp mul+ & \verb+cos(x)*2.71^(-x/10)+\\ +\verb+1 x div cos 4 mul+ & \verb+4*cos(1/x)+\\ +\verb+t cos t sin+ & \verb+cos(t)|sin(t)+ +\end{tabular} + +Setting the option \verb$algebraic$ to \verb$true$, allow the user to describe all +expression to be written in the classical algebraic notation (infix notation). The four arithmetic +operarions are obviously defined \verb$+-*/$, and also the exponential operator +\verb$^$. The natural priorities are used : $3+4\times 5^5=3+(4\times (5^5))$, and by default +the computation is done from left to right. The following functions are defined : + +\medskip +\begin{tabular}{ll} +\verb$sin$, \verb$cos$, \verb$tan$, \verb$acos$, \verb$asin$ & in radians\\ +\verb$log$, \verb$ln$\\ +\verb$ceiling$, \verb$floor$, \verb$truncate$, \verb$round$\\ +\verb$sqrt$ & square root\\ +\verb$abs$ & absolute value\\ +\verb$fact$ & for the factorial\\ +\verb$SUM$ & for building sums\\ +\verb$IFTE$ & for an easy case structure +\end{tabular} + +\medskip +These options can be used with \textbf{all} plot macros. + +{\bfseries Using the option \verb+algebraic+ implies that all angles have to be used in the +radian unit! } + +For the \verb+\parametricplot+ the two parts must be divided by the \verb+|+ character: + +\begin{LTXexample}[width=2cm] +\begin{pspicture}(-0.5,-0.5)(0.5,0.5) +\parametricplot[algebraic,linecolor=red]{-3.14}{3.14}{cos(t)|sin(t)} +\end{pspicture} +\end{LTXexample} + + +\bigskip +\begin{LTXexample}[pos=t] +\psset{lly=-0.5cm} +\psgraph(-10,-3)(10,2){\linewidth}{6cm} + \psset{algebraic=true, plotpoints=101} + \psplot[linecolor=yellow, linewidth=4\pslinewidth]{-10}{10}{2*sin(x)}% + \psplot[linecolor=red, showpoints=true]{-10}{10}{2*sin(x)} +\endpsgraph +\end{LTXexample} + + +\begin{LTXexample}[pos=t] +\psset{lly=-0.5cm} +\psgraph(0,-5)(18,3){15cm}{5cm} + \psset{algebraic,plotpoints=501} + \psplot[linecolor=yellow, linewidth=4\pslinewidth]{0.01}{18}{ln(x)}% + \psplot[linecolor=red]{0.01}{18}{ln(x)} + \psplot[linecolor=yellow,linewidth=4\pslinewidth]{0}{18}{3*cos(x)*2.71^(-x/10)} + \psplot[linecolor=blue,showpoints=true,plotpoints=51]{0}{18}{3*cos(x)*2.71^(-x/10)} +\endpsgraph +\end{LTXexample} + +\iffalse +\begin{LTXexample} +\begin{psgraph}(0,-4)(0.2,4){{15cm}}{5cm} + \psset{algebraic=true, plotpoints=501} + \psplot[linecolor=yellow, linewidth=4\pslinewidth]{0.02}{.2}{4*cos(1/x)}% + \psplot[linecolor=red]{.02}{.2}{4*cos(1/x)}% +\end{psgraph} +\end{LTXexample} + +\fi + + +%-------------------------------------------------------------------------------------- +\subsubsection{Using the \texttt{SUM} function} +%-------------------------------------------------------------------------------------- + +Syntax: \verb+SUM(<index name>,<start>,<step>,<end>,<function>)+ + +Let's plot the first development of cosine with polynomials: +$\displaystyle\sum_{n=0}^{+\infty}\frac{(-1)^nx^{2n}}{n!}$. + +\begin{center} +\bgroup +\psset{algebraic=true,plotpoints=501, yunit=3} +\def\getColor#1{\ifcase#1 black\or red\or magenta\or yellow\or green\or Orange\or blue\or + DarkOrchid\or BrickRed\or Rhodamine\or OliveGreen\fi} +\begin{pspicture}(-7,-1.5)(7,1.5) + \psclip{\psframe(-7,-1.5)(7,1.5)} + \psplot{-7}{7}{cos(x)} + \multido{\n=1+1}{10}{% + \psplot[linecolor=\getColor{\n}]{-7}{7}{% + SUM(ijk,0,1,\n,(-1)^ijk*x^(2*ijk)/fact(2*ijk))}} + \endpsclip + \psaxes(0,0)(-7,-1.5)(7,1.5) +\end{pspicture} +\egroup +\end{center} +\begin{lstlisting} +\psset{algebraic=true,plotpoints=501, yunit=3} +\def\getColor#1{\ifcase#1 black\or red\or magenta\or yellow\or green\or Orange\or blue\or + DarkOrchid\or BrickRed\or Rhodamine\or OliveGreen\fi} +\begin{pspicture}(-7,-1.5)(7,1.5) + \psclip{\psframe(-7,-1.5)(7,1.5)} + \psplot{-7}{7}{cos(x)} + \multido{\n=1+1}{10}{% + \psplot[linecolor=\getColor{\n}]{-7}{7}{% + SUM(ijk,0,1,\n,(-1)^ijk*x^(2*ijk)/fact(2*ijk))}} + \endpsclip + \psaxes(0,0)(-7,-1.5)(7,1.5) +\end{pspicture} +\end{lstlisting} + + +%-------------------------------------------------------------------------------------- +\subsubsection{Using the \texttt{IFTE} function} +%-------------------------------------------------------------------------------------- +Syntax: \verb+IFTE(<condition>,<true part>,<false part>)+ + +Nesting of several \verb+IFTE+ are possible and seen in the following examples. +A classical example is a piece wise linear function. + +\begin{LTXexample}[pos=t] +\begin{pspicture}(-7.5,-2.5)(7.5,6)\psgrid[subgriddiv=1,gridcolor=lightgray] + \psset{algebraic=true, plotpoints=21,linewidth=2pt} + \psplot[linecolor=blue]{-7.5}{7.5}{IFTE(x<-6,8+x,IFTE(x<0,-x/3,IFTE(x<3,2*x,9-x)))} + \psplot[linecolor=red, plotpoints=101]{-7.5}{7.5}{% + IFTE(2*x<-2^2*sqrt(9),7+x,IFTE(x<0,x^2/18-1,IFTE(x<3,2*x^2/3-1,8-x)))}% +\end{pspicture} +\end{LTXexample} + + +When you program a piece-wise defined function you must take care that a +plotting point must be put on each point where the description changes. Use \verb+showpoints=true+ to +see what's going on, when there is a problem. You are on the save side, when you choose a +big number for \verb+plotpoints+. + +\newpage + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{comma}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +comma=false|true +\end{verbatim} +Setting this option to true gives labels with a comma as a decimal separator instead +of the dot. \verb|comma| and \verb|comma=true| is the same. + +\resetOptions +\medskip +\begin{LTXexample}[width=5.5cm] +\begin{pspicture}(-0.5,-0.5)(5,5.5) +\psaxes[Dx=1.5,Dy=0.5,comma]{->}(5,5) +\psplot[linecolor=red,linewidth=3pt]{0}{4.5}% + {x 180 mul 1.52 div cos 2 mul 2.5 add} +\psline[linestyle=dashed](0,2.5)(4.5,2.5) +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{xyAxes}, \texttt{xAxis} and \texttt{yAxis}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +xyAxes=true|false +xAxis=true|false +yAxis=true|false +\end{verbatim} + +Sometimes there is only a need for one axis with ticks. In this case you can set one +of the following options to false. The \verb+xyAxes+ makes only sense, when you want +to set both, x and y to true with only one command again to the default, because with +\verb+xyAxes=false+ you get nothing with the \verb+psaxes+ macro. + + +\resetOptions% +\begin{LTXexample} +\begin{pspicture}(5,1) +\psaxes[yAxis=false,linecolor=blue]{->}(0,0.5)(5,0.5) +\end{pspicture} +\begin{pspicture}(1,5) +\psaxes[xAxis=false,linecolor=red]{->}(0.5,0)(0.5,5) +\end{pspicture} +\begin{pspicture}(1,5) +\psaxes[xAxis=false,linecolor=red]{->}(0.5,0)(0.5,5) +\end{pspicture}\hspace{2em} +\begin{pspicture}(1,5) +\psaxes[xAxis=false,linecolor=red,labelsep=-20pt]{->}(0.5,0)(0.5,5) +\end{pspicture}% +\begin{pspicture}(1,5) +\psaxes[xAxis=false,linecolor=red]{->}(0.5,0)(0.501,5) +\end{pspicture}% +\end{LTXexample} + +As seen in the example, a single y axis gets the labels on the right side. This can be +changed in two ways, first with the option \verb+labelsep+ and second with a very +short and therefore invisible x-axis (right example). + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{xyDecimals}, \texttt{xDecimals} and \texttt{yDecimals}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +xyDecimals=<number> +xDecimals=<any> +yDecimals=<any> +\end{verbatim} +By default the labels of the axes get numbers with or without decimals, just depending to the +numbers. With these options \verb|??Decimals| it is possible to determine the decimals, +where the option \verb|xyDecimals| sets this identical for both axes. +The default setting \verb|{}| means, that you'll get the standard behaviour. + + +\begin{LTXexample}[width=6cm] +\begin{pspicture}(-1.5,-0.5)(5,4.75) + \psaxes[xyDecimals=2]{->}(0,0)(4.5,4.5) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample} +\def\pshlabel#1{\footnotesize$#1$} +\def\psvlabel#1{\footnotesize$#1$} +\psset{xunit=10cm, yunit=0.01cm} +\begin{pspicture}(-0.3,-150)(1.5,550.0) + \psaxes[Dx=0.25,Dy=100,ticksize=-4pt 0,comma=true,% + xDecimals=3,yDecimals=1]{->}(0,0)(0,-100)(1.4,520) +\end{pspicture} +\end{LTXexample} + +\resetOptions + +%-------------------------------------------------------------------------------------- +\subsection{Changing the label style} +%-------------------------------------------------------------------------------------- +There are no special keywords to change the \index{labelstyle}labelstyle for the \verb|\psaxes| +macro. With a redefinition of the two macros \verb+\pshlabel+ and \verb+\psvlabel+ +it is possible to set both axes in any shape. +Like the default \verb|pst-plot| package the coordinates are printed in mathmode, changing +the fontsize to italic needs textmode. + +\begin{verbatim} +\def\pshlabel#1{\scriptsize\itshape #1} +\def\psvlabel#1{\sffamily\footnotesize #1} +\end{verbatim} + +\resetOptions +\begin{LTXexample} +\def\pshlabel#1{\scriptsize\itshape #1} +\def\psvlabel#1{\sffamily\footnotesize #1} +\psset{yunit=1cm,xunit=3cm} +\begin{pspicture}(-0.3,-0.5)(5,4.75) +\psaxes[Dy=0.5, Dx=0.25]{->}(0,0)(4.5,4.5) +\end{pspicture} +\end{LTXexample} + +\resetOptions + +\iffalse + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{tickstyle}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +tickstyle=full|bottom|top +\end{verbatim} + +This option is already in the \verb+pst-plot+ package and only mentioned here for +some completness. + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[tickstyle=bottom,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture}\\[0.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[tickstyle=bottom,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticksize=0 4pt,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture}\\[0.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticksize=0 4pt,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + + +The \verb+tickstyle+ option changes the position of the labels by default. +If you want the labels on the other side of an axis, then use the options +\verb+labelsep+ or set the ticks with \verb+ticksize+. + + +\fi + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{ticks}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +ticks=all|x|y|none +\end{verbatim} + +This option is also already in the \verb+pst-plot+ package and only mentioned here for +some completness. + +\begin{LTXexample}[width=3.5cm] +\psset{ticksize=6pt} +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=all,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=y,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=x,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=none,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{labels}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +labels=all|x|y|none +\end{verbatim} + +This option is also already in the \verb+pst-plot+ package and only mentioned here for +some completness. + +\begin{LTXexample}[width=3.5cm] +\psset{ticksize=6pt} +\begin{pspicture}(-1,-1)(2,2) +\psaxes[labels=all,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[labels=y,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[labels=x,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[labels=none,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{ticksize}, \texttt{xticksize}, \texttt{yticksize}} +%-------------------------------------------------------------------------------------- + +With this new option the recent \verb+tickstyle+ option of \verb+pst-plot+ is obsolete +and no more supported by \verb+pstricks-add+. + +Syntax: +\begin{verbatim} +ticksize=value[unit] +ticksize=value[unit] value[unit] +xticksize=value[unit] +xticksize=value[unit] value[unit] +yticksize=value[unit] +yticksize=value[unit] value[unit] +\end{verbatim} + +\verb+ticksize+ sets both values. The first one is left/below and the optional second +one is right/above of the coordinate axis. The old setting \verb+tickstyle=bottom+ is +now easy to realize, e.g.: \verb+ticksize=-6pt 0+, or vice versa, if the coordinates +are set from positive to negative values. + +\medskip +\begin{LTXexample}[width=6cm] +\psset{arrowscale=3} +\begin{pspicture}(-1.5,-1.5)(4,3.5) + \psaxes[ticksize=0.5cm]{->}(0,0)(-1.5,-1.5)(4,3.5) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6cm] +\psset{arrowscale=3} +\begin{pspicture}(-1.5,-1.5)(4,3.5) + \psaxes[xticksize=-10pt 0,yticksize=0 10pt]{->}(0,0)(-1.5,-1.5)(4,3.5) +\end{pspicture} +\end{LTXexample} + +A grid is also possible by setting the values to the max/min coordinates. + +\begin{LTXexample}[width=6cm] +\psset{arrowscale=3} +\begin{pspicture}(-.5,-.5)(5,4.5) + \psaxes[ticklinestyle=dashed,ticksize=0 4cm]{->}(0,0)(-.5,-.5)(5,4.5) +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{subticks}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +subticks=<number> +\end{verbatim} + +By default subticks cannot have labels. + +\begin{LTXexample}[width=3.5cm] +\psset{ticksize=6pt} +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=all,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=y,subticks=5]{->}(0,0)(-1,-1)(2,2) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=x,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\begin{pspicture}(-1,-1)(2,2) +\psaxes[ticks=none,subticks=5]{->}(0,0)(2,2)(-1,-1) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{subticksize}, \texttt{xsubticksize}, \texttt{ysubticksize}} +%-------------------------------------------------------------------------------------- + +Syntax: +\begin{verbatim} +subticksize=value +xsubticksize=value +ysubticksize=value +\end{verbatim} + +\verb+subticksize+ sets both values, which are relative to the ticksize length and +can have any number. 1 sets it to the same length as the main ticks. + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{yunit=1.5cm,xunit=3cm} +\begin{pspicture}(-1.25,-4.75)(3.25,.75) + \psaxes[xticksize=-4.5 0.5,ticklinestyle=dashed,subticks=5,xsubticksize=1,% + ysubticksize=0.75,xsubticklinestyle=dotted,xsubtickwidth=1pt, + subtickcolor=gray]{->}(0,0)(-1,-4)(3.25,0.5) +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{tickcolor}, \texttt{subtickcolor}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +tickcolor=<color> +xtickcolor=<color> +ytickcolor=<color> +subtickcolor=<color> +xsubtickcolor=<color> +ysubtickcolor=<color> +\end{verbatim} + +\verb+tickcolor+ and \verb+subtickcolor+ set both for the x- and the y-Axis. + +\begin{LTXexample}[preset=\centering,pos=t] +\def\pshlabel#1{\footnotesize$#1$} +\begin{pspicture}(0,-0.75)(10,1) +\psaxes[labelsep=2pt,yAxis=false,% + labelsep=-10pt,ticksize=0 10mm,subticks=10,subticksize=0.75,% + tickcolor=red,subtickcolor=blue,tickwidth=1pt,% + subtickwidth=0.5pt](10.01,0) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=5cm] +\def\pshlabel#1{\footnotesize$#1$} +\begin{pspicture}(5,-0.75)(10,1) +\psaxes[labelsep=2pt,yAxis=false,% + labelsep=5pt,ticksize=0 -10mm,subticks=10,subticksize=0.75,% + tickcolor=red,subtickcolor=blue,tickwidth=1pt,% + subtickwidth=0.5pt,Ox=5](5,0)(5,0)(10.01,0) +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{ticklinestyle} and \texttt{subticklinestyle}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +ticklinestyle=solid|dashed|dotted|none +xticklinestyle=solid|dashed|dotted|none +yticklinestyle=solid|dashed|dotted|none +subticklinestyle=solid|dashed|dotted|none +xsubticklinestyle=solid|dashed|dotted|none +ysubticklinestyle=solid|dashed|dotted|none +\end{verbatim} + +\verb+ticklinestyle+ and \verb+subticklinestyle+ set both values for the x and y axis. The +value \verb+none+ doesn't really makes sense, because it is the same to +\verb+[sub]ticklines=0+ + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{unit=4cm} +\pspicture(-0.15,-0.15)(2.5,1) + \psaxes[axesstyle=frame,logLines=y,xticksize=0 1,xsubticksize=1,% + ylogBase=10,tickcolor=red,subtickcolor=blue,tickwidth=1pt,% + subticks=20,xsubticks=10,xticklinestyle=dashed,% + xsubticklinestyle=dashed](2.5,1) +\endpspicture +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{loglines}} +%-------------------------------------------------------------------------------------- +Syntax: +\begin{verbatim} +loglines=all|x|y +\end{verbatim} + +\begin{LTXexample}[width=5.5cm] +\pspicture(0,-1)(5,5) + \psaxes[subticks=5,axesstyle=frame,xylogBase=10,logLines=all](5,5) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{unit=4cm} +\pspicture(-0.15,-0.15)(2.5,3) + \psaxes[axesstyle=frame,logLines=y,xticksize=0 3,xsubticksize=1,% + ylogBase=10,tickcolor=red,subtickcolor=blue,tickwidth=1pt,% + subticks=20,xsubticks=10](2.5,3) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{unit=4} +\pspicture(-0.5,-0.3)(3,1.2) + \psaxes[axesstyle=frame,logLines=x,xlogBase=10,Dy=0.5,% + tickcolor=red,subtickcolor=blue,tickwidth=1pt,ysubticks=5,xsubticks=10](3,1) +\endpspicture +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{xylogBase}, \texttt{xlogBase} and \texttt{ylogBase}} +%-------------------------------------------------------------------------------------- +There are additional options \verb|xylogBase | xlogBase | ylogBase| to get one or both axes with logarithm labels. +For an intervall of [$10^{-3} ... 10^2$] choose a \verb|pstricks| intervall of [-3,2]. \verb|pstricks| takes $0$ as the origin of this axes, which is wrong +if we want to have a logarithm axes. With the options \verb|Oy| and \verb|Ox| we can set +the origin to $-3$, so that the first label gets $10^{-3}$. If this is not done by the +user then \verb|pstricks-add| does it by default. An alternative is to set these +parameters to empty values \verb|Ox={},Oy={}|, in this case \verb|pstricks-add| does nothing. + + +%------------------------------------------------------------------------------------ +\subsubsection{\texttt{xylogBase}} +%------------------------------------------------------------------------------------ +This mode is in math also called double logarithm. It is a combination of the two forgoing modes and the function is now $y=\log x$ and is shown in the following example. + +\medskip +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) + \psplot[linewidth=2pt,linecolor=red]{0.001}{3}{x log} + \psaxes[xylogBase=10,Oy=-3]{<->}(-3,-3)(3.5,3.5) + \uput[-90](3.5,-3){x} + \uput[180](-3,3.5){y} + \rput(2.5,1){$y=\log x$} +\end{pspicture} +\end{LTXexample} + + + +%-------------------------------------------------------------------------------------------- +\subsubsection{\texttt{ylogBase}} +%-------------------------------------------------------------------------------------------- +The values for the \texttt{psaxes} y-coordinate are now the exponents to the base $10$ and for the right function to the base $e$: $10^{-3} \ldots 10^1$ which corresponds to the given y-intervall $-3\ldots 1.5$, where only integers as exponents are possible. These logarithm labels have no effect to the internal used units. To draw the logarithm function we have to use the math function +\[y=\log\{\log x\}\] +\[y=\ln\{\ln x\}\] +with an drawing intervall of $1.001\ldots 6$. + +\medskip +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-0.5,-3.5)(6.5,1.5) + \psaxes[ylogBase=10]{<->}(0,-3)(6.5,1.5) + \uput[-90](6.5,-3){x} + \uput[0](0,1.4){y} + \rput(5,1){$y=\log x$} + \psplot[linewidth=2pt,% + plotpoints=100,linecolor=red]{1.001}{6}{x log log} % log(x) +\end{pspicture} +\end{LTXexample} + +\medskip +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-0.5,-3.5)(6.5,1.5) + \psplot[linewidth=2pt,plotpoints=100,linecolor=red]% + {1.04}{6}{/ln {log 0.4343 div} def x ln ln} % log(x) + \psaxes[ylogBase=e]{<->}(0,-3)(6.5,1.5) + \uput[-90](6.5,-3){x} + \uput[0](0,1.5){y} + \rput(5,1){$y=\ln x$} +\end{pspicture} +\end{LTXexample} + + + +\medskip +\begin{LTXexample}[width=7cm] + \begin{pspicture}(-0.5,1.75)(6.5,4.5) + \psaxes[ylogBase=10,Oy=2]{<->}(0,2)(0,2)(6.5,4.5) + \end{pspicture} +\end{LTXexample} + + + +\medskip +\begin{LTXexample}[width=7cm] + \begin{pspicture}(-0.5,-0.25)(6.5,4.5) + \psplot{0}{6}{x x cos add log} % x + cox(x) + \psplot[linecolor=red]{0}{6}{x 3 exp x cos add log} % x^3 + cos(x) + \psplot[linecolor=cyan]{0}{6}{x 5 exp x cos add log} % x^5 + cos(x) + \psaxes[ylogBase=10]{<->}(6.5,4.5) + \end{pspicture} +\end{LTXexample} + + + +\medskip +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-0.5,-1.25)(6.5,4.5) + \psplot{0}{6}{x x cos add log} % x + cox(x) + \psplot[linecolor=red]{0}{6}{x 3 exp x cos add log} % x^3 + cos(x) + \psplot[linecolor=cyan]{0}{6}{x 5 exp x cos add log} % x^5 + cos(x) + \psaxes[ylogBase=10]{<->}(0,-1)(0,-1)(6.5,4.5) +\end{pspicture} +\end{LTXexample} + + + +\medskip +\begin{LTXexample}[width=4cm] +\begin{pspicture}(2.5,1.75)(6.5,4.5) + \psplot[linecolor=cyan]{3}{6}{x 5 exp x cos add log} % x^5 + cos(x) + \psaxes[ylogBase=10,Ox=3,Oy=2]{->}(3,2)(3,2)(6.5,4.5) +\end{pspicture} +\end{LTXexample} + + + + +%-------------------------------------------------------------------------------------- +\subsubsection{\texttt{xlogBase}} +%-------------------------------------------------------------------------------------- +Now we have to use the easy math function $y=x$ because the x axis is still $\log x$. + +\medskip +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) + \psplot[linewidth=2pt,linecolor=red]{-3}{3}{x} % log(x) + \psplot[linewidth=2pt,linecolor=blue]{-1.3}{1.5}{x 0.4343 div} % ln(x) + \psaxes[xlogBase=10,Oy=-3]{->}(-3,-3)(3.5,3.5) + \uput[-90](3.5,-3){x} + \uput[180](-3,3.5){y} + \rput(2.5,1){$y=\log x$} + \rput[lb](0,-1){$y=\ln x$} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{yunit=3cm,xunit=2cm} +\begin{pspicture}(-1.25,-1.25)(4.25,1.5) + \uput[-90](4.25,-1){x} + \uput[0](-1,1){y} + \rput(0,1){$y=\sin x$} + \psplot[linewidth=2pt,plotpoints=5000,linecolor=red]{-1}{3.5}{10 x exp sin } + \psaxes[xlogBase=10,Oy=-1]{->}(-1,-1)(4.25,1.25) +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3.5,-2.5)(3.5,2.5) + \psaxes[xlogBase=10]{->}(0,0)(-3.5,-2.5)(3.5,2.5) + \psplot{-2.5}{2.5}{10 x exp log} +\end{pspicture} +\end{LTXexample} + + + +\medskip +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3.5,-2.5)(3.5,2.5) + \psaxes[xlogBase=10,Ox={},Oy={}]{->}(0,0)(-3.5,-2.5)(3.5,2.5) + \psplot{-2.5}{2.5}{10 x exp log} +\end{pspicture} +\end{LTXexample} + + +%------------------------------------------------------------------------------------ +\subsubsection{No logstyle (\texttt{xylogBase=\{\}})} +%------------------------------------------------------------------------------------ +This is only a demonstration that the default option \verb|logBase={}| still works ... :-) + +\medskip +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3.5,-0.5)(3.5,2.5) + \psplot[linewidth=2pt,linecolor=red,xylogBase={}]{0.5}{3}{x log} % log(x) + \psaxes{->}(0,0)(-3.5,0)(3.5,2.5) + \uput[-90](3.5,0){x} + \uput[180](0,2.5){y} + \rput(2.5,1){$y=\log x$} +\end{pspicture} +\end{LTXexample} + + +\newpage +%-------------------------------------------------------------------------------------- +\subsection{\texttt{subticks}, \texttt{tickwidth} and \texttt{subtickwidth}} +%-------------------------------------------------------------------------------------- + + +\begin{center} +\psset{arrowscale=3} + \psaxes[labelsep=2pt,yAxis=false,subticks=8]{->}(0,0)(-5,-1)(5,1)\\[1cm] + \psaxes[yAxis=false,subticks=4,ticksize=-4pt 0]{->}(0,0)(5,1)(-5,-1)\\ + \psaxes[yAxis=false,subticks=4,ticksize=-10pt 0]{->}(0,0)(-5,-5)(5,5)\\[1cm] + \psaxes[yAxis=false,subticks=10,ticksize=0 -10pt,labelsep=15pt]{->}(0,0)(-5,-5)(5,5)\\[1cm] + \psaxes[yAxis=false,subticks=4,ticksize=0 10pt,labelsep=-15pt]{->}(0,0)(5,5)(-5,-5)\\[1cm] + \psaxes[yAxis=false,subticks=4,ticksize=0 -10pt]{->}(0,0)(5,5)(-5,-5)\\[0.25cm] + \psaxes[yAxis=false,subticks=0]{->}(0,0)(-5,-5)(5,5)\\[1cm] + \psaxes[yAxis=false,subticks=0,tickcolor=red,linecolor=blue]{->}(0,0)(5,5)(-5,-5)\\ + \psaxes[yAxis=false,subticks=5,tickwidth=2pt,subtickwidth=1pt]{->}(0,0)(-5,-5)(5,5)\\[1cm] + \psaxes[yAxis=false,subticks=0,tickcolor=red]{->}(0,0)(5,5)(-5,-5) +\end{center} +\begin{lstlisting}[xrightmargin=-1.75cm] +\psset{arrowscale=3} +\psaxes[labelsep=2pt,yAxis=false,subticks=8]{->}(0,0)(-5,-1)(5,1)\\[1cm] +\psaxes[yAxis=false,subticks=4,ticksize=-4pt 0]{->}(0,0)(5,1)(-5,-1)\\ +\psaxes[yAxis=false,subticks=4,ticksize=-10pt 0]{->}(0,0)(-5,-5)(5,5)\\[1cm] +\psaxes[yAxis=false,subticks=10,ticksize=0 -10pt,labelsep=15pt]{->}(0,0)(-5,-5)(5,5)\\[1cm] +\psaxes[yAxis=false,subticks=4,ticksize=0 10pt,labelsep=-15pt]{->}(0,0)(5,5)(-5,-5)\\[1cm] +\psaxes[yAxis=false,subticks=4,ticksize=0 -10pt]{->}(0,0)(5,5)(-5,-5)\\[0.25cm] +\psaxes[yAxis=false,subticks=0]{->}(0,0)(-5,-5)(5,5)\\[1cm] +\psaxes[yAxis=false,subticks=0,tickcolor=red,linecolor=blue]{->}(0,0)(5,5)(-5,-5)\\ +\psaxes[yAxis=false,subticks=5,tickwidth=2pt,subtickwidth=1pt]{->}(0,0)(-5,-5)(5,5)\\[1cm] +\psaxes[yAxis=false,subticks=0,tickcolor=red]{->}(0,0)(5,5)(-5,-5) +\end{lstlisting} + +\vspace*{4cm} +\begin{center} + \psset{arrowscale=3} + \psaxes[xAxis=false,subticks=8]{->}(0,0)(-5,-5)(5,5)\hspace{2em} + \psaxes[xAxis=false,subticks=4]{->}(0,0)(5,5)(-5,-5)\hspace{4em} + \psaxes[xAxis=false,subticks=4,ticksize=0 4pt]{->}(0,0)(-5,-5)(5,5)\hspace{3em} + \psaxes[xAxis=false,subticks=4,ticksize=-4pt 0]{->}(0,0)(-5,-5)(5,5)\hspace{1em} + \psaxes[xAxis=false,subticks=4,ticksize=0 4pt]{->}(0,0)(5,5)(-5,-5)\hspace{2em} + \psaxes[xAxis=false,subticks=4,ticksize=-4pt 0,linecolor=red]{->}(0,0)(5,5)(-5,-5)\hspace{4em} + \psaxes[xAxis=false,subticks=0]{->}(0,0)(-5,-5)(5,5)\hspace{1em} + \psaxes[xAxis=false,subticks=0,tickcolor=red,linecolor=blue]{->}(0,0)(5,5)(-5,-5)\hspace{4em} + \psaxes[xAxis=false,subticks=5,tickwidth=2pt,subtickwidth=1pt]{->}(0,0)(-5,-5)(5,5)\hspace{2em} + \psaxes[xAxis=false,subticks=5,tickcolor=red,tickwidth=2pt,% + ticksize=10pt,subtickcolor=blue,subticksize=0.75]{->}(0,0)(5,5)(-5,-5) +\end{center} + +\vspace*{5cm} +\begin{lstlisting}[xrightmargin=-1.75cm] +\psset{arrowscale=3} +\psaxes[xAxis=false,subticks=8]{->}(0,0)(-5,-5)(5,5)\hspace{2em} +\psaxes[xAxis=false,subticks=4]{->}(0,0)(5,5)(-5,-5)\hspace{4em} +\psaxes[xAxis=false,subticks=4,ticksize=0 4pt]{->}(0,0)(-5,-5)(5,5)\hspace{3em} +\psaxes[xAxis=false,subticks=4,ticksize=-4pt 0]{->}(0,0)(-5,-5)(5,5)\hspace{1em} +\psaxes[xAxis=false,subticks=4,ticksize=0 4pt]{->}(0,0)(5,5)(-5,-5)\hspace{2em} +\psaxes[xAxis=false,subticks=4,ticksize=-4pt 0,linecolor=red]{->}(0,0)(5,5)(-5,-5)\hspace{4em} +\psaxes[xAxis=false,subticks=0]{->}(0,0)(-5,-5)(5,5)\hspace{1em} +\psaxes[xAxis=false,subticks=0,tickcolor=red,linecolor=blue]{->}(0,0)(5,5)(-5,-5)\hspace{4em} +\psaxes[xAxis=false,subticks=5,tickwidth=2pt,subtickwidth=1pt]{->}(0,0)(-5,-5)(5,5)\hspace{2em} +\psaxes[xAxis=false,subticks=5,tickcolor=red,tickwidth=2pt,% + ticksize=10pt,subtickcolor=blue,subticksize=0.75]{->}(0,0)(5,5)(-5,-5) +\end{lstlisting} + +\begin{LTXexample}[width=5.5cm] +\pspicture(5,5.5) +\psaxes[subticks=4,ticksize=6pt,subticksize=0.5,% + tickcolor=red,subtickcolor=blue]{->}(5.4,5) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=5.5cm] +\pspicture(5,5.5) + \psaxes[subticks=5,ticksize=0 6pt,subticksize=0.5]{->}(5.4,5) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=5.5cm] +\pspicture(5,5.5) + \psaxes[subticks=5,ticksize=-6pt 0,subticksize=0.5]{->}(5.4,5) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\pspicture(-3,-3)(3,3.5) + \psaxes[subticks=5,ticksize=0 6pt,subticksize=0.5]{->}(0,0)(3,3)(-3,-3) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=6.5cm] +\pspicture(0,0.5)(-3,-3) + \psaxes[subticks=5,ticksize=-6pt 0,subticksize=0.5,linecolor=red]{->}(-3,-3) +\endpspicture +\end{LTXexample} + + + +\begin{LTXexample}[width=5.5cm] +\psset{axesstyle=frame} +\pspicture(5,5.5) + \psaxes[subticks=4,tickcolor=red,subtickcolor=blue](5,5) +\endpspicture +\end{LTXexample} + +\vspace{1cm} +\begin{LTXexample}[width=5.5cm] +\pspicture(5,5.5) + \psaxes[subticks=5,subticksize=1,subtickcolor=lightgray](5,5) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=5.5cm] +\pspicture(5,5.5) + \psaxes[subticks=2,subticksize=1,subtickcolor=lightgray](5,5) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\pspicture(3,4.5) + \psaxes[subticks=5,ticksize=-7pt 0](3,4) +\endpspicture +\end{LTXexample} + + +\begin{LTXexample}[width=3.5cm] +\pspicture(0,1)(-3,-4) + \psaxes[subticks=5](-3,-4) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\pspicture(3,4.5) + \psaxes[axesstyle=axes,subticks=5](3,4) +\endpspicture +\end{LTXexample} + +\begin{LTXexample}[width=3.5cm] +\pspicture(0,1)(-3,-4) + \psaxes[axesstyle=axes,subticks=5,% + ticksize=0 10pt,labelsep=13pt](-3,-4) +\endpspicture +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{xlabelFactor} and \texttt{ylabelFactor}} +%-------------------------------------------------------------------------------------- +When having big numbers as data records then it makes sense to write the values +as ${<number>\cdot 10^{<exp>}}$. These new options allow to define the additional part +of the value. + +\resetOptions +\begin{LTXexample} +\readdata{\data}{demo1.dat} +\pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op} +\psset{llx=-1cm,lly=-1cm} +\psgraph[ylabelFactor={\cdot 10^6},Dx=5,Dy=100](0,0)(25,750){8cm}{5cm} + \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} +\endpsgraph +\pstScalePoints(1,1){}{}% reset +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{Plot style \texttt{bar} and option \texttt{barwidth}} +%-------------------------------------------------------------------------------------- +This option allows to draw bars for the data records. The width of the bars +is controlled by the option \verb+barwidth+, which is set by default to +value of \verb+0.25cm+, which is the total width. + +\def\barData{ +0 0.03 +1 0.11 +2 0.28 +3 0.84 +4 6.70 +5 8.55 +6 8.77 +7 11.09 +8 7.18 +9 6.20 +10 5.78 +11 4.19 +12 2.37 +13 2.26 +14 1.68 +15 1.03 +16 1.37 +17 1.34 +18 0.92 +19 0.67 +20 0.87 +21 1.20 +22 1.98 +23 3.99 +24 5.08 +25 5.17 +26 5.78 +27 4.44 +28 0.11 +} + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{xunit=.44cm,yunit=.3cm} +\begin{pspicture}(-2,-1.5)(29,13) + \psaxes[axesstyle=axes,Ox=1466,Oy=0,Dx=4,Dy=2,% + ylabelFactor={\,\%}]{-}(29,12) + \listplot[shadow=true,linecolor=blue,plotstyle=bar,barwidth=0.3cm, + fillcolor=red,fillstyle=solid]{\barData} + \rput{90}(-3,6.25){Amount} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{xunit=.44cm,yunit=.3cm} +\begin{pspicture}(-2,-1.5)(29,13) + \psaxes[axesstyle=axes,Ox=1466,Oy=0,Dx=4,Dy=2,% + ylabelFactor={\,\%}]{-}(29,12) + \listplot[linecolor=blue,plotstyle=bar,barwidth=0.3cm, + fillcolor=red,fillstyle=crosshatch]{\barData} + \rput{90}(-3,6.25){Amount} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[preset=\centering,pos=t] +\psset{xunit=.44cm,yunit=.3cm} +\begin{pspicture}(-2,-1.5)(29,13) + \psaxes[axesstyle=axes,Ox=1466,Oy=0,Dx=4,Dy=2,% + ylabelFactor={\,\%}]{-}(29,12) + \listplot[linecolor=blue,plotstyle=bar,barwidth=0.3cm, + fillcolor=red,fillstyle=vlines]{\barData} + \listplot[showpoints=true]{\barData} + \rput{90}(-3,6.25){Amount} +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{Axis with trigonmetrical units} +%-------------------------------------------------------------------------------------- +With the option \verb+trigLabels=true+ the labels on the x axis are trigonometrical ones: + +\medskip +\begin{LTXexample}[preset=\centering,pos=t] +\begin{pspicture}(-0.5,-1.25)(10,1.25) + \psplot[linecolor=red,linewidth=1.5pt]% + {0}{9.424777961}{x 180 mul 3.141592654 div sin} + \psaxes[xunit=1.570796327,showorigin=false,trigLabels]{->}(0,0)(-0.5,-1.25)(6.4,1.25) +\end{pspicture} +\end{LTXexample} + +With the value of \verb+xunit+ one can change the labels. + +\medskip +\begin{LTXexample}[preset=\centering,pos=t] +\begin{pspicture}(-0.5,-1.25)(10,1.25) + \psplot[linecolor=red,linewidth=1.5pt]% + {0}{9.424777961}{x 180 mul 3.141592654 div sin} + \psaxes[xunit=0.7853981635,showorigin=false,trigLabels]{->}(0,0)(-1,-1.25)(12.8,1.25) +\end{pspicture} +\end{LTXexample} + +\medskip +\begin{LTXexample}[preset=\centering,pos=t] +\begin{pspicture}(-0.5,-1.25)(10,1.25) + \psplot[linecolor=red,linewidth=1.5pt]% + {0}{9.424777961}{x 180 mul 3.141592654 div sin} + \psaxes[xunit=0.7853981635,showorigin=false,trigLabels,Dx=2]{->}(0,0)(-1,-1.25)(12.8,1.25) +\end{pspicture} +\end{LTXexample} + +%------------------------------------------------------------------------------------ +\subsection{New options for \CMD{readdata}} +%------------------------------------------------------------------------------------ + + +By default the macros \verb|\readdata| reads every +data record, which could be annoying when you have some text lines at top of your +data files or when there are more than 10000 records to read. + + +\verb|pstricks-add| defines two additional keys \verb|ignoreLines| and \verb|nStep|, which allows +to ignore preceeding lines, e.g. \verb|ignoreLines=2|, or to read only a selected part of the data records, +e.g. \verb|nStep=10|, only every 10\textsuperscript{th} records is saved. + +\begin{lstlisting} +\readdata[ignoreLines=2]{\dataA}{stressrawdata.dat} +\readdata[nStep=10]{\dataA}{stressrawdata.dat} +\end{lstlisting} + +The default value for \verb+ignoreLines+ is $0$ and for \verb+nStep+ is $1$. +the following data file has two text lines which shall be ignored by the \verb+\readdata+ macro: + +\begin{LTXexample}[width=4cm] +\begin{filecontents*}{pstricks-add-data9.dat} +some nonsense in this line ���time forcex forcey +0 0.2 +1 1 +2 4 +\end{filecontents*} +\readdata[ignoreLines=2]{\data}{pstricks-add-data9.dat} +\pspicture(2,4) + \listplot[showpoints=true]{\data} + \psaxes{->}(2,4) +\endpspicture +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsection{New options for \texttt{\textbackslash listplot}} +%-------------------------------------------------------------------------------------- +By default the plot macros \verb|\dataplot|, \verb|\fileplot| and \verb|\listplot| plot every +data record. The package \verb|pst-plot-add| defines additional keys \verb|nStep, nStart, nEnd| and \verb|xStep, xStart, xEnd|, which allows +to plot only a selected part of the data records, e.g. \verb|nStep=10|. These "n" options mark the number of the record to be plot ($0,1,2,...$) and the "x" ones the x-values of the data records. + + +\begin{center} +\begin{tabular}{l|l} +Name & Default setting\\\hline +\verb|nStart| & \verb|1|\\ +\verb|nEnd| & \verb|{}|\\ +\verb|nStep| & \verb|1|\\ +\verb|xStart| & \verb|{}|\\ +\verb|xEnd| & \verb|{}|\\ +\verb|yStart| & \verb|{}|\\ +\verb|yEnd| & \verb|{}|\\ +\verb|xStep| & \verb|0|\\ +\verb|plotNo| & \verb|1|\\ +\verb|plotNoMax| & \verb|1|\\ +\verb|ChangeOrder| & \verb|false| +\end{tabular} +\end{center} + +These new options are only available +for the \verb|\listplot| macro, which is not a real limitation, because all data records can be read +from a file with the \verb|\readdata| macro (see example files or \cite{dtk02.2:jackson.voss:plot-funktionen}): +\begin{verbatim} +\readdata[nStep=10]{\data}{/home/voss/data/data1.dat} +\end{verbatim} + +The use \verb|nStep| and \verb|xStep| options make only real sense when also using the +option \verb|plotstyle=dots|. Otherwise the coordinates are connected by a line as usual. Also the \verb|xStep| option needs increasing x values. +Pay attention that \verb+nStep+ can be used for \verb+\readdata+ and for \verb+\listplot+. If used +in both macros than the effect is multiplied, e.g. \verb+\readdata+ with \verb+nStep=5+ and +\verb+\listplot+ with \verb+nStep=10+ means, that only every 50\textsuperscript{th} data records +is read and plotted. + +When both, \verb|x/yStart/End| are defined then the values are also compared with +both values. + +%-------------------------------------------------------------------------------------- +\subsubsection{Example for \texttt{nStep/xStep}} +%-------------------------------------------------------------------------------------- + +The datafile \verb|data.dat| contains $1000$ data records. The thin blue line is the plot +of all records with the plotstyle option \verb|curve|. + +\begin{LTXexample}[preset=\centering,pos=t] +\readdata{\data}{examples/data.dat} +\psset{xunit=0.125mm,yunit=0.0002mm} +\begin{pspicture}(-80,-30000)(1000,310000) +\psaxes[axesstyle=frame,Dx=100,dx=100,Dy=50000,dy=50000](1000,300000) +\listplot[nStep=50,linewidth=3pt,linecolor=red,plotstyle=dots]{\data} +\listplot[linewidth=1pt,linecolor=blue]{\data} +\end{pspicture} +\end{LTXexample} + + + +%-------------------------------------------------------------------------------------- +\subsubsection{Example for \texttt{nStart/xStart}} +%-------------------------------------------------------------------------------------- + +\begin{LTXexample}[preset=\centering,pos=t] +\readdata{\data}{examples/data.dat} +\psset{xunit=0.125mm,yunit=0.0002mm} +\begin{pspicture}(-80,-30000)(1000,310000) +\psaxes[axesstyle=frame,Dx=100,dx=100,Dy=50000,dy=50000](1000,300000) +\listplot[nStart=200,linewidth=3pt,linecolor=blue]{\data} +\end{pspicture} +\end{LTXexample} + +%-------------------------------------------------------------------------------------- +\subsubsection{Example for \texttt{nEnd/xEnd}} +%-------------------------------------------------------------------------------------- + +\begin{LTXexample}[preset=\centering,pos=t] +\readdata{\data}{examples/data.dat} +\psset{xunit=0.125mm,yunit=0.0002mm} +\begin{pspicture}(-80,-30000)(1000,310000) +\psaxes[axesstyle=frame,Dx=100,dx=100,Dy=50000,dy=50000](1000,300000) +\listplot[nEnd=800,linewidth=3pt,linecolor=blue]{\data} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsubsection{Example for all new options} +%-------------------------------------------------------------------------------------- + +\begin{LTXexample}[preset=\centering,pos=t] +\readdata{\data}{examples/data.dat} +\psset{xunit=0.125mm,yunit=0.0002mm} +\begin{pspicture}(-80,-30000)(1000,310000) +\psaxes[axesstyle=frame,Dx=100,dx=100,Dy=50000,dy=50000](1000,300000) +\listplot[nStart=200, nEnd=800, nStep=50,linewidth=3pt,linecolor=blue,% + plotstyle=dots]{\data} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsubsection{Example for \texttt{xStart}} +%-------------------------------------------------------------------------------------- + +This example shows the use of the same plot with different units and different +\verb|xStart| value. The blue curve is the original plot of the data records. +To show the important part of the curve there is another one plotted with a +greater \verb|yunit| and a start value of \verb|xStart=0.35|. This makes it +possible to have a kind of a zoom to the original graphic. + +\begin{LTXexample}[preset=\centering,pos=t] +\def\pshlabel#1{\scriptsize\sffamily$#1$} +\def\psvlabel#1{\sffamily\scriptsize$#1$} +\psset{xunit=10cm, yunit=0.01cm} +\readdata{\data}{examples/data3.dat} +\begin{pspicture}(-0.1,-100)(1.5,700.0) + \psaxes[Dx=0.25,Dy=100,dy=100\psyunit,ticksize=-4pt 0]{->}(0,0)(0,-100)(1.4,520) + \uput[0](1.4,0){\textsf{t [s]}} + \rput(-0.125,200){\psrotateleft{\small\sffamily flow [ml/s]}} + \listplot[linewidth=2pt, linecolor=blue]{\data} + \rput(0.4,300){ + \pscustom[yunit=0.04cm, linewidth=1pt]{% + \listplot[xStart=0.355]{\data} + \psline(1,-2.57)(1,0)(0.355,0) + \fill[fillstyle=hlines,fillcolor=gray,hatchwidth=0.4pt,hatchsep=1.5pt,hatchcolor=red]% + \psline[linewidth=0.5pt]{->}(0.7,0)(1.05,0) + }% + } + \psline[linewidth=.01]{->}(0.75,300)(0.4,20) + \psline[linewidth=.01]{->}(1,290)(1.1,440) + \rput(1.1,470){\footnotesize\sffamily leak volume} + \psline[linewidth=.01]{->}(0.78,200)(1,100) + \rput[l](1.02,100){\footnotesize\sffamily closing volume} +\end{pspicture} +\end{LTXexample} + + +\resetOptions +%-------------------------------------------------------------------------------------- +\subsubsection{Example for \texttt{yStart}/\texttt{yEnd}} +%-------------------------------------------------------------------------------------- + +\begin{LTXexample}[preset=\centering,pos=t] +\readdata{\data}{examples/data.dat} +\psset{xunit=0.125mm,yunit=0.0002mm} +\begin{pspicture}(-80,-30000)(1000,310000) + \psaxes[axesstyle=frame,Dx=100,dx=100,Dy=50000,dy=50000](1000,300000) + \psset{linewidth=0.1pt, linestyle=dashed,linecolor=red} + \psline(0,40000)(1000,40000) + \psline(0,175000)(1000,175000) + \listplot[yStart=40000, yEnd=175000,linewidth=3pt,linecolor=blue,plotstyle=dots]{\data} +\end{pspicture} +\end{LTXexample} + + + +%-------------------------------------------------------------------------------------- +\subsubsection{Example for \texttt{plotNo/plotNoMax}} +%-------------------------------------------------------------------------------------- +By default the plot macros expect \verb+x|y+ data records, but +when having data files with multiple values for y, like: +\begin{verbatim} +x y1 y2 y3 y4 ... yMax +x y1 y2 y3 y4 ... yMax +... +\end{verbatim} + +you can select the y value which should be plotted. The option \verb+plotNo+ marks the plotted +value (default $1$) and the option \verb+plotNoMax+ tells \verb+pst-plot+ how many $y$ values are +present. There are no real restrictions in the maximum number for \verb+plotNoMax+. + +We have the following data file: +\begin{verbatim} +[% file examples/data.dat +0 0 3.375 0.0625 +10 5.375 7.1875 4.5 +20 7.1875 8.375 6.25 +30 5.75 7.75 6.6875 +40 2.1875 5.75 5.9375 +50 -1.9375 2.1875 4.3125 +60 -5.125 -1.8125 0.875 +70 -6.4375 -5.3125 -2.6875 +80 -4.875 -7.1875 -4.875 +90 0 -7.625 -5.625 +100 5.5 -6.3125 -5.8125 +110 6.8125 -2.75 -4.75 +120 5.25 2.875 -0.75 +]% +\end{verbatim} + +\noindent which holds data records for multiple plots (\verb+x y1 y2 y3+). This can be plotted +without any modification to the data file: + +\begin{LTXexample}[preset=\centering,pos=t] +\readdata\Data{examples/dataMul.dat} +\psset{xunit=0.1cm, yunit=0.5cm,lly=-0.5cm} +\begin{pspicture}(0,-7.5)(150,10) +\psaxes[Dx=10,Dy=2.5]{->}(0,0)(0,-7.5)(150,7.5) +\psset{linewidth=2pt,plotstyle=line} +\listplot[linecolor=green,plotNo=1,plotNoMax=3]{\Data} +\listplot[linecolor=red,plotNo=2,plotNoMax=3]{\Data} +\listplot[linecolor=blue,plotNo=3,plotNoMax=3]{\Data} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsubsection{Example for \texttt{changeOrder}} +%-------------------------------------------------------------------------------------- +It is only possible to fill the region between two listplots +with \verb+\pscustom+ if one of both has the values in a reverse +order. Otherwise we do not get a closed path. With the option \verb+ChangeOrder+ +the values are used in a reverse order: + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{filecontents*}{test.dat} + 0 3 8 + 2 4 7 + 5 5 5.5 + 7 3.5 5 + 10 2 9 +\end{filecontents*} +\begin{psgraph}[axesstyle=frame,ticklinestyle=dotted,ticksize=0 10](0,0)(10,10){4in}{2in}% + \readdata{\data}{test.dat}% + \pscustom[fillstyle=solid,fillcolor=gray]{% + \listplot[plotNo=2,plotNoMax=2]{\data}% + \listplot[plotNo=1,plotNoMax=2,ChangeOrder]{\data}} +\end{psgraph} +\end{LTXexample} + + + + +%-------------------------------------------------------------------------------------- +\section{Polar plots} +%-------------------------------------------------------------------------------------- + +With the option \verb+polarplot=false|true+ it is possible to use \verb+\psplot+ +in polar mode: +\begin{verbatim} +\psplot[polarplot=true,...]{<start angle>}{<end angle>}{<r(alpha)>} +\end{verbatim} + +The equation in PostScript code is interpreted as a function $r=f(\alpha)$, e.g. for the +circle with radius 1 as $r=\sqrt{\sin^2x+\cos^2x}$: + +\begin{verbatim} +x sin dup mul x cos dup mul add sqrt +\end{verbatim} + + +\medskip +\begin{LTXexample}[width=6cm] +\resetOptions +\def\pshlabel#1{\footnotesize$#1$} +\def\psvlabel#1{\footnotesize$#1$} +\psset{plotpoints=200,unit=0.75} +\begin{pspicture}*(-5,-5)(3,3) + \psaxes[labelsep=.75mm,arrowlength=1.75,ticksize=2pt,% + linewidth=0.17mm]{->}(0,0)(-4.99,-4.99)(3,3) + \rput[Br](3,-.35){$x$} + \rput[tr](-.15,3){$y$} + \rput[Br](-.15,-.35){$0$} + \psset{linewidth=.35mm,polarplot=true} + \psplot[linecolor=red]{140}{310}{3 neg x sin mul x cos mul x sin 3 exp x cos 3 exp add div} + \psplot[linecolor=cyan]{140}{310}{6 neg x sin mul x cos mul x sin 3 exp x cos 3 exp add div} + \psplot[linecolor=blue]{140}{310}{9 neg x sin mul x cos mul x sin 3 exp x cos 3 exp add div} +\end{pspicture} +\end{LTXexample} + + + +\medskip +\begin{LTXexample}[width=5cm] +\resetOptions +\psset{plotpoints=200,unit=1} +\begin{pspicture}(-2.5,-2.5)(2.5,2.5)% Ulrich Dirr + \psaxes[labelsep=.75mm,arrowlength=1.75,% + ticksize=2pt,linewidth=0.17mm]{->}(0,0)(-2.5,-2.5)(2.5,2.5) + \rput[Br](2.5,-.35){$x$} + \rput[tr](-.15,2.5){$y$} + \rput[Br](-.15,-.35){$0$} + \psset{linewidth=.35mm,plotstyle=curve,polarplot=true} + \psplot[linecolor=red]{0}{360}{x cos 2 mul x sin mul} + \psplot[linecolor=green]{0}{360}{x cos 3 mul x sin mul} + \psplot[linecolor=blue]{0}{360}{x cos 4 mul x sin mul} +\end{pspicture} +\end{LTXexample} + + + +\medskip +\begin{LTXexample}[width=8cm] +\psset{plotpoints=200,unit=0.5} +\begin{pspicture}(-8.5,-8.5)(9,9)% Ulrich Dirr +\psaxes[Dx=2,dx=2,Dy=2,dy=2,labelsep=.75mm,% + arrowlength=1.75,ticksize=2pt,linewidth=0.17mm]{->}(0,0)(-8.5,-8.5)(9,9) +\rput[Br](9,-.7){$x$} +\rput[tr](-.3,9){$y$} +\rput[Br](-.3,-.7){$0$} +% +\psset{linewidth=.35mm,plotstyle=curve,polarplot=true} +\psplot[linecolor=blue]{0}{720}{8 2.5 x mul sin mul} +\end{pspicture} +\end{LTXexample} + + +\resetOptions + + + + +%-------------------------------------------------------------------------------------- +\section{New commands and environments} +%-------------------------------------------------------------------------------------- +%-------------------------------------------------------------------------------------- +\subsection{\CMD{pstScalePoints}} +%-------------------------------------------------------------------------------------- +The syntax is +\begin{verbatim} +\pstScalePoints(xScale,xScale){xPS}{yPS} +\end{verbatim} + +\verb+xScale,yScale+ are decimal values as scaling factors, the \verb+xPs+ and \verb+yPS+ +are additional PostScript code to the x- and y-values of the data records. This macro +is only valid for the \CMD{listplot} macro! + +\resetOptions +\begin{LTXexample}[width=6cm] +\def\data{% + 0 0 1 3 2 4 3 1 + 4 2 5 3 6 6 } +\begin{pspicture}(-0.5,-1)(6,6) + \psaxes{->}(0,0)(6,6) + \listplot[showpoints=true,% + linecolor=red]{\data} + \pstScalePoints(1,0.5){}{3 add} + \listplot[showpoints=true,% + linecolor=blue]{\data} +\end{pspicture} +\end{LTXexample} + +\bigskip +\verb+\pstScalePoints(1,0.5){}{3 add}+ means that \textbf{first} the value $3$ is added +to the $y$ values and \textbf{second} this value is scaled with the factor $0.5$. +As seen for the blue line for $x=0$ we get $y(0)=(0+3)\cdot 0.5=1.5$. + +Changes with \verb+\pstScalePoints+ are always global to all following \verb+\listplot+ +macros. This is the reason why it is a good idea to reset the values at the end of the +\verb+pspicture+ environment. + +\begin{verbatim} +\pstScalePoints(1,1){}{} +\end{verbatim} + +%-------------------------------------------------------------------------------------- +\subsection{\texttt{psgraph} environment} +%-------------------------------------------------------------------------------------- +This new environment does the scaling, it expects as parameter the values (without units!) for the +coordinate system and the values of the physical width and height (with units!). The syntax is: + +\begin{verbatim} +\psgraph[<axes options>]{<arrows>}% + (xOrig,yOrig)(xMin,yMin)(xMax,yMax){xLength}{yLength} +... +\endpsgraph + +\begin{psgraph}[<axes options>]{<arrows>}% + (xOrig,yOrig)(xMin,yMin)(xMax,yMax){xLength}{yLength} +... +\end{psgraph} +\end{verbatim} + +where the options are valid \textbf{only} for the the \verb+\psaxes+ macro. The first +two arguments have the usual \verb+PSTricks+ behaviour. +\begin{itemize} + \item if \verb+(xOrig,yOrig)+ is missing, it is substituted to $(0,0)$; + \item if \verb+(xOrig,yOrig)+ \textbf{and} (xMin,yMin) are missing, they are both + substituted to $(0,0)$. +\end{itemize} + + +\begin{LTXexample}[pos=t,preset=\centering] +\readdata{\data}{demo1.dat} +\pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op} +\psset{llx=-1cm,lly=-1cm} +\psgraph[axesstyle=frame,xticksize=0 759,yticksize=0 25,% + subticks=0,ylabelFactor={\cdot 10^6},% + Dx=5,dy=100\psyunit,Dy=100](0,0)(25,750){10cm}{6cm} % parameters + \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} +\endpsgraph +\end{LTXexample} + + +\begin{LTXexample}[width=7cm] +\readdata{\data}{demo1.dat} +\psset{xAxisLabel=x-Axes,yAxisLabel=y-Axes,llx=-1cm,% + xAxisLabelPos={3cm,-1cm},yAxisLabelPos={-1.5cm,2.5cm}} +\pstScalePoints(1,0.00000001){}{} +\begin{psgraph}[axesstyle=frame,xticksize=0 7.5,yticksize=0 25,subticksize=1,% + ylabelFactor={\cdot 10^8},Dx=5,Dy=1,xsubticks=2](0,0)(25,7.5){5.5cm}{5cm} + \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} +\end{psgraph} +\end{LTXexample} + + +\begin{LTXexample}[width=6.5cm] +\readdata{\data}{demo1.dat} +\psset{llx=-0.5cm,lly=-1cm} +\pstScalePoints(1,0.000001){}{} +\psgraph[arrows=->,Dx=5,dy=200\psyunit,Dy=200,% + subticks=5,ticksize=-10pt 0,tickwidth=0.5pt,% + subtickwidth=0.1pt](0,0)(25,750){5.5cm}{5cm} +\listplot[linecolor=red,linewidth=2pt,showpoints=true,]{\data} +\endpsgraph +\end{LTXexample} + + +\begin{LTXexample}[pos=t,preset=\centering] +\pstScalePoints(1,0.2){}{log} +\psset{lly=-0.75cm} +\psgraph[ylogBase=10,Dx=5,Dy=1,subticks=5](0,0)(25,2){12cm}{4cm} + \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} +\endpsgraph +\end{LTXexample} + + +\begin{LTXexample}[pos=t,preset=\centering] +\readdata{\data}{demo0.dat} +\psset{lly=-0.5cm} +\pstScalePoints(1,1){}{log} +\begin{psgraph}[arrows=->,Dx=0.5,ylogBase=10,Oy=-1,xsubticks=10,% + ysubticks=2](0,-3)(3,1){12cm}{4cm} + \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} +\end{psgraph} +\end{LTXexample} + + +\begin{LTXexample}[width=6.5cm] +\readdata{\data}{demo0.dat} +\pstScalePoints(1,1){}{log} +\psgraph[arrows=->,Dx=0.5,ylogBase=10,Oy=-1,subticks=4](0,-3)(3,1){6cm}{3cm} + \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data} +\endpsgraph +\end{LTXexample} + + +\begin{LTXexample}[pos=t,preset=\centering] +\readdata{\data}{demo2.dat}% +\readdata{\dataII}{demo3.dat}% +\pstScalePoints(1,1){1989 sub}{} +\psset{llx=-0.5cm,lly=-1cm, xAxisLabel=Year,yAxisLabel=Whatever,% + xAxisLabelPos={2in,-0.4in},yAxisLabelPos={-0.4in,1in}} +\psgraph[axesstyle=frame,Dx=2,Ox=1989,subticks=2](0,0)(12,6){4in}{2in}% + \listplot[linecolor=red,linewidth=2pt]{\data} + \listplot[linecolor=blue,linewidth=2pt]{\dataII} + \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII} +\endpsgraph +\end{LTXexample} + +\begin{LTXexample}[pos=t,preset=\centering] +\psset{llx=-0.5cm,lly=-0.75cm} +\pstScalePoints(1,1){1989 sub}{2 sub} +\begin{psgraph}[axesstyle=frame,Dx=2,Ox=1989,Oy=2,subticks=2](0,0)(12,4){6in}{3in}% + \listplot[linecolor=red,linewidth=2pt]{\data} + \listplot[linecolor=blue,linewidth=2pt]{\dataII} + \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII} +\end{psgraph} +\end{LTXexample} + +%\newpage +An example with ticks on every side of the frame: + +\begin{LTXexample}[pos=t,preset=\centering] +\def\data{0 0 1 1 2 4 3 9} +\psset{lly=-0.5cm} +\begin{psgraph}[axesstyle=frame,ticksize=0 4pt](0,0)(3.0,9.0){12cm}{5cm} + \psaxes[axesstyle=frame,labels=none,ticksize=-4pt 0](3,9)(0,0)(3,9) + \listplot[linecolor=red,linewidth=2pt]{\data} +\end{psgraph} +\end{LTXexample} + + +%------------------------------------------------------------------------------------------- +\subsubsection{The new options} +%------------------------------------------------------------------------------------------- + +\begin{center} +\begin{tabular}{>{\tt}l>{\tt}ll} +\textrm{name} & \textrm{default} & meaning\\\hline +xAxisLabel & x & label for the x-axis\\ +yAxisLabel & y & label for the y-axis\\ +xAxisLabelPos & \{\} & where to put the x-label\\ +yAxisLabelPos & \{\} & where to put the y-label\\ +llx & 0pt & trim for the lower left x\\ +lly & 0pt & trim for the lower left y\\ +urx & 0pt & trim for the upper right x\\ +ury & 0pt & trim for the upper right y +\end{tabular} +\end{center} + +There is one restriction in using the trim parameters, they must been set +\textbf{before} \verb+psgraph+ is called. They are senseless, when using +as parameters of \verb+psgraph+ itself. + +\medskip +\resetOptions + +\begin{LTXexample}[pos=t] +\psset{llx=-1cm,lly=-1.25cm,urx=0.5cm,ury=0.1in,xAxisLabel=Year,% + yAxisLabel=Whatever,xAxisLabelPos={.4\linewidth,-0.4in},% + yAxisLabelPos={-0.4in,2in}} +\pstScalePoints(1,1){1989 sub}{} +\psframebox[linestyle=dashed,boxsep=0pt]{% +\begin{psgraph}[axesstyle=frame,Ox=1989,subticks=2](0,0)(12,6){0.8\linewidth}{4in}% + \listplot[linecolor=red,linewidth=2pt]{\data}% + \listplot[linecolor=blue,linewidth=2pt]{\dataII}% + \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}% +\end{psgraph}% +} +\end{LTXexample} +\pstScalePoints(1,1){}{}% reset + + +%-------------------------------------------------------------------------------------- +\subsubsection{Problems} +%-------------------------------------------------------------------------------------- +Floating point operations in \TeX\ are a real mess, which causes a lot of problems +when there are very small oder very big units. With the options of \verb+\pst-plot+ +it is possible to choose normal units (whatever this may be ...), but plotting +the data as usual. + +\begin{LTXexample}[pos=t] +\begin{filecontents*}{test.dat} +3.2345 34.5 +3.2364 65.4 +3.2438 50.2 +\end{filecontents*} + +\psset{lly=-0.5cm,llx=-1cm} +\readdata{\data}{test.dat} +\pstScalePoints(1,1){3.23 sub 100 mul}{} +\begin{psgraph}[Ox=3.23,Dx=0.01,dx=\psxunit,Dy=10](0,0)(3,70){0.8\linewidth}{5cm}% + \listplot[showpoints=true,plotstyle=curve]{\data} +\end{psgraph} +\end{LTXexample} + +This example shows some important facts: +\begin{itemize} +\item \verb+3.23 sub 100 mul+: the x values are now $0.45; 0.64; 1.38$ +\item \verb+Ox=3.23+: the origin of the x axis is set to $3.23$ +\item \verb+Dx=0.01+: the increment of the labels +\item \verb+dx=\psxunit+: uses the calculated unit value to get every unit a label +\item \verb+Dy=10+: increase the y labels by 10 +\end{itemize} + +Using the internal \verb+\psxunit+ one can have dynamical x-units, depending to +the linewidth od the document. + +\resetOptions + +%-------------------------------------------------------------------------------------- +\subsection[\CMD{psplotTangent}]{\CMD{psplotTangent}\footnote{This part is adapted from the package \texttt{pst-eqdf}, written by Dominique Rodriguez.}} +%-------------------------------------------------------------------------------------- +There is an additional option, named \verb+Derive+ vor an alternative function (see +following example) to calculate the slope of the tangent. This will be in general the +first derivation, but can also be any other function. If this option is different to +to the default value \verb+Derive=default+, +then this function is taken to calculate the slope. For the other cases, \verb+pstricks-add+ +builds a secant with -0.00005<x<0.00005, calculates the slope and takes this for the +tangent. This maybe problematic in some cases of special functions or $x$ values, then it may be appropriate to use the +Derivate option. + +The macro expects three parameters: + +\begin{description} +\item[$x$]: the $x$ value of the function for which the tangent should be calculated +\item[$dx$]: the $dx$ to both sides of the $x$ value +\item[$f(x)$]: the function in infix (with option \verb+algebraic+) or the default +postfix (PostScript) notation +\end{description} + +The following examples show the use of the algebraic option together with the Derive option. +Remember that using the \verb+algebraic+ option implies that the angles have to be in the +radian unit! + +\begin{center} +\bgroup +\def\F{x RadtoDeg dup dup cos exch 2 mul cos add exch 3 mul cos add} +\def\Fp{x RadtoDeg dup dup sin exch 2 mul sin 2 mul add exch 3 mul sin 3 mul add neg} +\psset{plotpoints=1001} +\begin{pspicture}(-7.5,-2.5)(7.5,4)%X\psgrid + \psaxes{->}(0,0)(-7.5,-2)(7.5,3.5) + \psplot[linewidth=3\pslinewidth]{-7}{7}{\F} + \psset{linecolor=red, arrows=<->, arrowscale=2} + \multido{\n=-7+1}{8}{\psplotTangent{\n}{1}{\F}} + \psset{linecolor=magenta, arrows=<->, arrowscale=2}% + \multido{\n=0+1}{8}{\psplotTangent[linecolor=blue, Derive=\Fp]{\n}{1}{\F}} +\end{pspicture} +\egroup +\end{center} + +\begin{lstlisting} +\def\F{x RadtoDeg dup dup cos exch 2 mul cos add exch 3 mul cos add} +\def\Fp{x RadtoDeg dup dup sin exch 2 mul sin 2 mul add exch 3 mul sin 3 mul add neg} +\psset{plotpoints=1001} +\begin{pspicture}(-7.5,-2.5)(7.5,4)%X\psgrid + \psaxes{->}(0,0)(-7.5,-2)(7.5,3.5) + \psplot[linewidth=3\pslinewidth]{-7}{7}{\F} + \psset{linecolor=red, arrows=<->, arrowscale=2} + \multido{\n=-7+1}{8}{\psplotTangent{\n}{1}{\F}} + \psset{linecolor=magenta, arrows=<->, arrowscale=2}% + \multido{\n=0+1}{8}{\psplotTangent[linecolor=blue, Derive=\Fp]{\n}{1}{\F}} +\end{pspicture} +\end{lstlisting} + + +\begin{center} +\bgroup +\def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)} +\begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid + \psaxes{->}(0,0)(-7.5,-2)(7.5,3.5) + \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg} + \multido{\n=-7+1}{8}{\psplotTangent[linecolor=red,arrows=<->,arrowscale=2,algebraic]{\n}{1}{\Falg}} + \multido{\n=0+1}{8}{\psplotTangent[linecolor=magenta,% + arrows=<->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}} +\end{pspicture} +\egroup +\end{center} + +\begin{lstlisting} +\def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)} +\begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid + \psaxes{->}(0,0)(-7.5,-2)(7.5,3.5) + \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg} + \multido{\n=-7+1}{8}{\psplotTangent[linecolor=red,arrows=<->,arrowscale=2,algebraic]{\n}{1}{\Falg}} + \multido{\n=0+1}{8}{\psplotTangent[linecolor=magenta,% + arrows=<->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}} +\end{pspicture} +\end{lstlisting} + +The next example shows the use of \verb+Derive+ option to draw the perpendicular line of the +tangent. + +\begin{LTXexample}[width=8cm,wide] +\begin{pspicture}(-0.5,-0.5)(7.25,7.25) + \def\Func{10 x div} + \psaxes[arrowscale=1.5]{->}(7,7) + \psplot[linewidth=2pt,algebraic]{1.5}{5}{10/x} + \psplotTangent[linewidth=.5\pslinewidth,linecolor=red,algebraic]{3}{2}{10/x} + \psplotTangent[linewidth=.5\pslinewidth,linecolor=blue,algebraic,Derive=(x*x)/10]{3}{2}{10/x} + \psline[linestyle=dashed](!0 /x 3 def \Func)(!3 /x 3 def \Func)(3,0) +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsubsection{A \texttt{polarplot} example} +%-------------------------------------------------------------------------------------- + +Let's work with the classical cardioid : $\rho=2(1+\cos(\theta))$ +and $\displaystyle \frac{d\rho}{d\theta}=-2\sin(\theta)$. The Derive option always expects the +$\frac{d\rho}{d\theta}$ value and uses internally the equation for the derivation of implicit +defined functions: + +\[ +\frac{dy}{dx}=\frac{\rho\prime\cdot\sin\theta + x}{\rho\prime\cdot\cos\theta - y} +\] +where $x=r\cdot\cos\theta$ and $y=r\cdot\sin\theta$ + + +\begin{LTXexample}[width=6cm,wide] +\begin{pspicture}(-1,-3)(5,3)%\psgrid[subgridcolor=lightgray] + \psaxes{->}(0,0)(-1,-3)(5,3) + \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,% + plotpoints=500]{0}{360}{1 x cos add 2 mul} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6cm,wide] +\begin{pspicture}(-1,-3)(5,3)%\psgrid[subgridcolor=lightgray] + \psaxes{->}(0,0)(-1,-3)(5,3) + \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,plotpoints=500]{0}{360}{1 x cos add 2 mul} + \multido{\n=0+36}{10}{% + \psplotTangent[polarplot,linecolor=red,arrows=<->]{\n}{1.5}{1 x cos add 2 mul} } +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6cm,wide] +\begin{pspicture}(-1,-3)(5,3)%\psgrid[subgridcolor=lightgray] + \psaxes{->}(0,0)(-1,-3)(5,3) + \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,algebraic,plotpoints=500]{0}{6.289}{2*(1+cos(x))} + \multido{\r=0.000+0.314}{21}{% + \psplotTangent[polarplot,Derive=-2*sin(x),algebraic,linecolor=red,arrows=<->]{\r}{1.5}{2*(1+cos(x))} } +\end{pspicture} +\end{LTXexample} + + + +%-------------------------------------------------------------------------------------- +\subsubsection{A \CMD{parametricplot} example} +%-------------------------------------------------------------------------------------- + +Let's work with a Lissajou curve : + $\displaystyle\left\{\begin{array}{l}x=3.5\cos(2t)\\y=3.5\sin(6t)\end{array}\right.$ +whose derivative is : + $\displaystyle\left\{\begin{array}{l}x=-7\sin(2t)\\y=21\cos(6t)\end{array}\right.$ + +The parameter must be the letter $t$ instead of $x$ and when using the \verb+algebraic+ option +divide the two equations by a | (see example). + +\begin{LTXexample}[pos=t,wide] +\def\Lissa{t dup 2 RadtoDeg mul cos 3.5 mul exch 6 mul RadtoDeg sin 3.5 mul}% +\psset{yunit=0.6} +\begin{pspicture}(-4,-4)(4,6) + \parametricplot[plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\Lissa} + \multido{\r=0.000+0.314}{11}{% + \psplotTangent[linecolor=red,arrows=<->]{\r}{1.5}{\Lissa} } + \multido{\r=0.157+0.314}{11}{% + \psplotTangent[linecolor=blue,arrows=<->]{\r}{1.5}{\Lissa} } +\end{pspicture}\hfill% +\def\LissaAlg{3.5*cos(2*t)|3.5*sin(6*t)} \def\LissaAlgDer{-7*sin(2*t)|21*cos(6*t)}% +\begin{pspicture}(-4,-4)(4,6) + \parametricplot[algebraic,plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\LissaAlg} + \multido{\r=0.000+0.314}{11}{% + \psplotTangent[algebraic,linecolor=red,arrows=<->]{\r}{1.5}{\LissaAlg} } + \multido{\r=0.157+0.314}{11}{% + \psplotTangent[algebraic,linecolor=blue,arrows=<->,% + Derive=\LissaAlgDer]{\r}{1.5}{\LissaAlg} } +\end{pspicture} +\end{LTXexample} + + + +%-------------------------------------------------------------------------------------- +\subsection[\CMD{psplotDiffEqn} -- solving diffential equations]{\CMD{psplotDiffEqn} -- solving diffential equations\footnote{This part is adapted from the package \texttt{pst-eqdf}, written by Dominique Rodriguez.}} +%-------------------------------------------------------------------------------------- + + + A differential euqation of first order is like + +\begin{align} y'=f(x,y) \end{align} + + +where $y$ is a function of $x$. We define some vectors $Y=[y, y', \cdots , y^{(n-1)}]$ +und $Y'=[y', y'', \cdots , y^{n}]$, depending to the order $n$. +The syntax of the macro is + +\begin{verbatim} +\psplotDiffEqn[options]{x0}{x1}{y0}{f(x,y)} +\end{verbatim} + +\begin{itemize}\setlength\itemsep{0pt}\setlength\parsep{0pt}\setlength\parskip{0pt} +\item \verb+options+: the \verb+\psplotDiffEqn+ specific options and all other of PSTricks, which +make sense; +\item $x_0$: the start value; +\item $x_1$: the end value of the definition interval; +\item $y_0$: the initial values for $y(x_0)\ y'(x_0)\ \ldots$; +\item $f(x,y,y',...)$: the differential equation, depending to the number of initial values, e.g.: + \verb+{0 1}+ for $y_0$ are two initial values, so that we have a differential equation of + second order $f(x,y,y')$ and the macro leaves $y\ y'$ on the stack. +\end{itemize} + +The new options are: + + +\begin{itemize}\setlength\itemsep{0pt}\setlength\parsep{0pt}\setlength\parskip{0pt} +\item \param{method}: integration method (\verb+euler+ for order 1 euler method, \verb+rk4+ for + 4\textsuperscript{th} order Runge-Kutta method); +\item \param{whichabs}: select the abscissa for plotting the graph, by default it is + $x$, but you can specify a number which represent a position in the vector $y$; +\item \param{whichord}: same as precedent for the ordinate, by default $y(0)$; +\item \param{plotfuncx}: describe a ps function for the abscissa, parameter + \param{whichabs} becomes useless; +\item \param{plotfuncy}: idem for ordoinate; +\item \param{buildvector}: boolean parameter for specifying the input-output of the + $f$ description: + \begin{description} + \item[\texttt{true}] (default): $y$ is put on the stack element by element, $y'$ + must be given in the same way; + \item[\texttt{false}]: $y$ is put on the stack as a vector, $y'$ must be returned + in the same way; + \end{description} + +\item \param{algebraic}: algebraic description for $f$, \param{buildvector} + parameter is useless when activating this option. +\end{itemize} + + +The variable $t$ (time) is represented by $x$ in the \verb+\psplotDiffEqn+, +$x$ and $y$ (position) are represented respectively by $y[0]$ and $y[1]$ +For \verb+funcx+ and \verb+funcy+ there is some examples at the end. + +\def\Grav{% + /yp2 exch def /xp2 exch def /ay2 exch def /ax2 exch def + /yp1 exch def /xp1 exch def /ay1 exch def /ax1 exch def + /ro2 ax2 ax1 sub dup mul ay2 ay1 sub dup mul add def + xp1 yp1 + ax2 ax1 sub ro2 sqrt div ro2 div + ay2 ay1 sub ro2 sqrt div ro2 div + xp2 yp2 + 3 index -20 mul + 3 index -20 mul} + %% 0 1 2 3 4 5 6 7 + %% x1 y1 x'1 y'1 x2 y2 x'2 y'2 +\def\InitCond{ 1 1 .1 0 -1 -1 -2 0} + +\begin{lstlisting} +\def\Grav{% + /yp2 exch def /xp2 exch def /ay2 exch def /ax2 exch def + /yp1 exch def /xp1 exch def /ay1 exch def /ax1 exch def + /ro2 ax2 ax1 sub dup [21~mul ay2 ay1 sub dup mul add def + xp1 yp1 + ax2 ax1 sub ro2 sqrt div ro2 div + ay2 ay1 sub ro2 sqrt div ro2 div + xp2 yp2 + 3 index -20 mul 3 index -20 mul} + %% 0 1 2 3 4 5 6 7 + %% x1 y1 x'1 y'1 x2 y2 x'2 y'2 +\def\InitCond{ 1 1 .1 0 -1 -1 -2 0} +\end{lstlisting} + +%-------------------------------------------------------------------------------------- +\subsubsection{\texttt{plotfuncx} and \texttt{plotfuncy}} +%-------------------------------------------------------------------------------------- +%[pos=b,caption={Gravitational interaction: center to one of the star}] +\begin{lstlisting} +\begin{pspicture}(-4,-2.5)(1,1.1)\psgrid[subgriddiv=1] + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=200,% + plotfuncx=y dup 4 get exch 0 get sub,% + plotfuncy=dup 5 get exch 1 get sub ]{0}{3.9}{\InitCond}{\Grav} +\end{pspicture} +\end{lstlisting} + + +\begin{center} +\bgroup +\begin{pspicture}(-4,-2.5)(1,1.1)\psgrid[subgriddiv=1] + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=200,% + plotfuncx=y dup 4 get exch 0 get sub,% + plotfuncy=dup 5 get exch 1 get sub ]{0}{3.9}{\InitCond}{\Grav} +\end{pspicture} +\egroup +\end{center} + +The center of the landmark is set to $y[0]$ and $y[1]$ +There is also a drawing of the speed (vitesse in french) of the stars which uses +these parameters. + +\iffalse + +%-------------------------------------------------------------------------------------- +\subsection{PostScript} +%-------------------------------------------------------------------------------------- + +PostScript uses the stack system and the LIFO system, "'Last In, First Out"`. + +\newlength{\Li}\settowidth{\Li}{Function} +\begin{table}[htbp] + \begin{center}{\ttfamily + \begin{tabular}{|l|r@{ $\rightarrow$ }l|}\hline + \multirow{2}{\Li}{\normalfont Function}&\multicolumn{2}{c|}{\normalfont Pile de donnés}\\ + &\normalfont on stack before & \normalfont after\\\hline\hline + add&$x\quad y$&$x+y$\\\hline + sub&$x\quad y$&$x-y$\\\hline + mul&$x\quad y$&$x\times y$\\\hline + div&$x\quad y$&$x\div y$\\\hline + sqrt&$x$&$\sqrt{x}$\\\hline + abs&$x$&$|x|$\\\hline + neg&$x$&$-x$\\\hline + cos&$x$&$\cos(x)$ ($x$ in degrees)\\\hline + sin&$x$&$\sin(x)$ ($x$ in degrees)\\\hline + tan&$x$&$\tan(x)$ ($x$ in degrees)\\\hline + atan&$y\quad x$&$\angle{(\vec{Ox};\vec{OM})}$ (in degrees of $M(x,y)$)\\\hline + ln&$x$&$\ln(x)$\\\hline + log&$x$&$\log(x)$\\\hline + array&$n$&\normalfont$v$ (of dimension $n$)\\\hline + aload&$v$&$x_1\quad x_2\quad \cdots\quad x_n\quad v$\\\hline + astore&$x_1\quad x_2\quad \cdots\quad x_n\quad v$&$v$\\\hline + pop&$x$&\\\hline + dup&$x\quad x$&\\\hline + roll&$x_1\quad x_2\quad \cdots\quad x_n\quad n p$&\\\hline + \end{tabular}} + \caption{Some primitive PostScript macros}\label{tab:primpost} + \end{center} +\end{table} + +\fi +%-------------------------------------------------------------------------------------- +\subsubsection{Simple equation of first order$y'=y$} +%-------------------------------------------------------------------------------------- + +For the initial value $y(0)=1$ we have the solution $y(x)=e^x$. $y$ is always +on the stack, so we have to do nothing. Using the \verb+algebraic+ option, we write it +as \verb$y[0]$. The following example shows different solutions depending to the number of plotpoints +with $y_0=1$: + + +\begin{lstlisting} +\psset{xunit=4, yunit=.4} +\begin{pspicture}(3,19)\psgrid[subgriddiv=1] + \psplot[linewidth=6\pslinewidth, linecolor=green]{0}{3}{Euler x exp} + \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic=true]{0}{3}{1}{y[0]} + \psplotDiffEqn[linecolor=blue,plotpoints=151]{0}{3}{1}{} + \psplotDiffEqn[linecolor=red,method=rk4,plotpoints=15]{0}{3}{1}{} + \psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=4]{0}{3}{1}{} + \psset{linewidth=4\pslinewidth} + \rput*(0.35,19){\psline[linecolor=magenta](-.75cm,0)} + \rput*[l](0.35,19){\small Euler order 1 $h=0{,}2$} + \rput*(0.35,17){\psline[linecolor=blue](-.75cm,0)} + \rput*[l](0.35,17){\small Euler order 1 $h=0{,}02$} + \rput*(0.35,15){\psline[linecolor=Orange](-.75cm,0)} + \rput*[l](0.35,15){\small RK ordre 4 $h=1$} + \rput*(0.35,13){\psline[linecolor=red](-.75cm,0)} + \rput*[l](0.35,13){\small RK ordre 4 $h=0{,}2$} + \rput*(0.35,11){\psline[linecolor=green](-.75cm,0)} + \rput*[l](0.35,11){\small solution exacte} +\end{pspicture} +\end{lstlisting} + +\begin{center} +\bgroup +\psset{xunit=4, yunit=.4} +\begin{pspicture}(3,19)\psgrid[subgriddiv=1] + \psplot[linewidth=6\pslinewidth, linecolor=green]{0}{3}{Euler x exp} + \psplotDiffEqn[linecolor=magenta,plotpoints=16,algebraic=true]{0}{3}{1}{y[0]} + \psplotDiffEqn[linecolor=blue,plotpoints=151]{0}{3}{1}{} + \psplotDiffEqn[linecolor=red,method=rk4,plotpoints=15]{0}{3}{1}{} + \psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=4]{0}{3}{1}{} + \psset{linewidth=4\pslinewidth} + \rput*(0.35,19){\psline[linecolor=magenta](-.75cm,0)} + \rput*[l](0.35,19){\small Euler order 1 $h=0{,}2$} + \rput*(0.35,17){\psline[linecolor=blue](-.75cm,0)} + \rput*[l](0.35,17){\small Euler order 1 $h=0{,}02$} + \rput*(0.35,15){\psline[linecolor=Orange](-.75cm,0)} + \rput*[l](0.35,15){\small RK ordre 4 $h=1$} + \rput*(0.35,13){\psline[linecolor=red](-.75cm,0)} + \rput*[l](0.35,13){\small RK ordre 4 $h=0{,}2$} + \rput*(0.35,11){\psline[linecolor=green](-.75cm,0)} + \rput*[l](0.35,11){\small solution exacte} +\end{pspicture} +\egroup +\end{center} + +\clearpage +%-------------------------------------------------------------------------------------- +\subsubsection{$y'=-y$} +%-------------------------------------------------------------------------------------- + +For the initial value $y(0)=1$ we get the solution $y(x)=e^{-x}$, which is seen in +the following example with $y_0=1$: + +\begin{lstlisting}[xrightmargin=-1cm] +\def\Funct{neg}\def\FunctAlg{-y[0]} +\psset{xunit=1.5, yunit=7} +\begin{pspicture}(0,0)(10,1)\psgrid[subgriddiv=1] + \psplot[linewidth=6\pslinewidth,linecolor=green]{0}{10}{Euler x neg exp} + \psplotDiffEqn[linecolor=magenta,plotpoints=11]{0}{10}{1}{\Funct} + \psplotDiffEqn[linecolor=blue,plotpoints=101,algebraic=true]{0}{10}{1}{\FunctAlg} + \psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=11]{0}{10}{1}{\Funct} + \psplotDiffEqn[linecolor=red,method=rk4,plotpoints=51]{0}{10}{1}{\Funct} + \psset{linewidth=4\pslinewidth} + \rput*(3.3,.9){\psline[linecolor=magenta](-.75cm,0)} + \rput*[l](3.3,.9){\small Euler order 1 $h=1$} + \rput*(3.3,.8){\psline[linecolor=blue](-.75cm,0)} + \rput*[l](3.3,.8){\small Euler order 1 $h=0{,}1$} + \rput*(3.3,.7){\psline[linecolor=Orange](-.75cm,0)} + \rput*[l](3.3,.7){\small RK ordre 4 $h=1$} + \rput*(3.3,.6){\psline[linecolor=red](-.75cm,0)} + \rput*[l](3.3,.6){\small RK ordre 4 $h=0{,}2$} + \rput*(3.3,.5){\psline[linecolor=green](-.75cm,0)} + \rput*[l](3.3,.5){\small solution exacte} +\end{pspicture} +\end{lstlisting} + + +\begin{center} +\bgroup +\def\Funct{neg}\def\FunctAlg{-y[0]} +\psset{xunit=1.5, yunit=7} +\begin{pspicture}(0,0)(10,1)\psgrid[subgriddiv=1] + \psplot[linewidth=6\pslinewidth,linecolor=green]{0}{10}{Euler x neg exp} + \psplotDiffEqn[linecolor=magenta,plotpoints=11]{0}{10}{1}{\Funct} + \psplotDiffEqn[linecolor=blue,plotpoints=101,algebraic=true]{0}{10}{1}{\FunctAlg} + \psplotDiffEqn[linecolor=Orange,method=rk4,plotpoints=11]{0}{10}{1}{\Funct} + \psplotDiffEqn[linecolor=red,method=rk4,plotpoints=51]{0}{10}{1}{\Funct} + \psset{linewidth=4\pslinewidth} + \rput*(3.3,.9){\psline[linecolor=magenta](-.75cm,0)} + \rput*[l](3.3,.9){\small Euler order 1 $h=1$} + \rput*(3.3,.8){\psline[linecolor=blue](-.75cm,0)} + \rput*[l](3.3,.8){\small Euler order 1 $h=0{,}1$} + \rput*(3.3,.7){\psline[linecolor=Orange](-.75cm,0)} + \rput*[l](3.3,.7){\small RK ordre 4 $h=1$} + \rput*(3.3,.6){\psline[linecolor=red](-.75cm,0)} + \rput*[l](3.3,.6){\small RK ordre 4 $h=0{,}2$} + \rput*(3.3,.5){\psline[linecolor=green](-.75cm,0)} + \rput*[l](3.3,.5){\small solution exacte} +\end{pspicture} +\egroup +\end{center} + +%-------------------------------------------------------------------------------------- +\subsubsection{$y'=\displaystyle\frac{2-ty}{4-t^2}$}% $ +%-------------------------------------------------------------------------------------- + +For the initial value $y(0)=1$ the exact solution is $y(x)=\displaystyle\frac{t+\sqrt{4-t^2}}{2}$. +The function $f$ described in PostScript code is like (y ist still on the stack): +\begin{verbatim} +x %% y x +mul %% x*y +2 exch sub %% 2-x*y +4 x dup mul %% 2-x*y 4 x^2 +sub %% 2-x*y 4-x^2 +div %% (2-x*y)/(4-x^2) +\end{verbatim} +\noindent +The following example uses $y_0=1$. + +\begin{verbatim} +\newcommand{\InitCond}{1} +\newcommand{\Func}{x mul 2 exch sub 4 x dup mul sub div} +\newcommand{\FuncAlg}{(2-x*y[0])/(4-x^2)} +\end{verbatim} + +\begin{center} +\bgroup +\psset{xunit=6.4, yunit=9.6, showpoints=false} +\begin{pspicture}(0,1)(2,1.5) \psgrid[griddots=10](0,1)(2,1.5) + { \psset{linewidth=4\pslinewidth,linecolor=lightgray} + \psplot{0}{1.8}{x dup dup mul 4 exch sub sqrt add 2 div} + \psplot{1.8}{2}{x dup dup mul 4 exch sub sqrt add 2 div} } + \def\InitCond{1} + \def\Func{x mul 2 exch sub 4 x dup mul sub div} + \psplotDiffEqn[linecolor=magenta, plotpoints=20]{0}{1.9}{\InitCond}{\Func} + \psplotDiffEqn[linecolor=blue, plotpoints=191]{0}{1.9}{\InitCond}{\Func} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11,% + algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + \psplotDiffEqn[linecolor=Orange, method=rk4, plotpoints=21,% + algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + \psset{linewidth=4\pslinewidth}\small + \rput*(0,1.4){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](0,1.4){Euler order 1 $h=0{,}1$} + \rput*(0,1.35){\psline[linecolor=blue](-.75cm,0)}\rput*[l](0,1.35){Euler order 1 $h=0{,}01$} + \rput*(0,1.3){\psline[linecolor=Orange](-.75cm,0)}\rput*[l](0,1.3){RK order 4 $h=0{,}19$} + \rput*(0,1.25){\psline[linecolor=red](-.75cm,0)}\rput*[l](0,1.25){RK order 4 $h=0{,}095$} + \rput*(0,1.2){\psline[linecolor=lightgray](-.75cm,0)}\rput*[l](0,1.2){exactly} +\end{pspicture} +\egroup +\end{center} + +\begin{lstlisting}[xrightmargin=-1cm,xleftmargin=-1cm] +\psset{xunit=6.4, yunit=9.6, showpoints=false} +\begin{pspicture}(0,1)(2,1.7) \psgrid[subgriddiv=5] + { \psset{linewidth=4\pslinewidth,linecolor=lightgray} + \psplot{0}{1.8}{x dup dup mul 4 exch sub sqrt add 2 div} + \psplot{1.8}{2}{x dup dup mul 4 exch sub sqrt add 2 div} } + \def\InitCond{1} + \def\Func{x mul 2 exch sub 4 x dup mul sub div} + \psplotDiffEqn[linecolor=magenta, plotpoints=20]{0}{1.9}{\InitCond}{\Func} + \psplotDiffEqn[linecolor=blue, plotpoints=191]{0}{1.9}{\InitCond}{\Func} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11,% + algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + \psplotDiffEqn[linecolor=Orange, method=rk4, plotpoints=21,% + algebraic=true]{0}{1.9}{\InitCond}{(2-x*y[0])/(4-x^2)} + \psset{linewidth=4\pslinewidth} + \rput*(0.3,1.6){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](0.3,1.6){\small Euler order 1 $h=0{,}1$} + \rput*(0.3,1.55){\psline[linecolor=blue](-.75cm,0)}\rput*[l](0.3,1.55){\small Euler order 1 $h=0{,}01$} + \rput*(0.3,1.5){\psline[linecolor=Orange](-.75cm,0)}\rput*[l](0.3,1.5){\small RK order 4 $h=0{,}19$} + \rput*(0.3,1.45){\psline[linecolor=red](-.75cm,0)}\rput*[l](0.3,1.45){\small RK order 4 $h=0{,}095$} + \rput*(0.3,1.4){\psline[linecolor=lightgray](-.75cm,0)}\rput*[l](0.3,1.4){\small exactly} +\end{pspicture} +\end{lstlisting} + + +%-------------------------------------------------------------------------------------- +\subsubsection{$y'=-2xy$} +%-------------------------------------------------------------------------------------- + +For $y(-1)=\frac{1}{e}$ we get $y(x)=e^{-x^2}$. + +\begin{center} +\bgroup +\psset{unit=4} +\begin{pspicture}(-1,0)(3,1.1)\psgrid + \psplot[linewidth=4\pslinewidth,linecolor=gray]{-1}{3}{Euler x dup mul neg exp} + \psset{plotpoints=9} + \psplotDiffEqn[linecolor=cyan]{-1}{3}{1 Euler div}{x -2 mul mul} + \psplotDiffEqn[linecolor=yellow, method=rk4]{-1}{3}{1 Euler div}{x -2 mul mul} + \psset{plotpoints=21} + \psplotDiffEqn[linecolor=blue]{-1}{3}{1 Euler div}{x -2 mul mul} + \psplotDiffEqn[linecolor=Orange, method=rk4]{-1}{3}{1 Euler div}{x -2 mul mul} + \psset{linewidth=2\pslinewidth} + \rput*(2,1){\psline[linecolor=Orange](-0.25,0)} + \rput*[l](2,1){RK} + \rput*(2,.9){\psline[linecolor=blue](-0.25,0)} + \rput*[l](2,.9){\textsc{Euler}-1} + \rput*(2,.8){\psline[linecolor=gray](-0.25,0)} + \rput*[l](2,.8){solution} +\end{pspicture} +\egroup +\end{center} + + +\begin{lstlisting} +\psset{unit=4} +\begin{pspicture}(-1,0)(3,1.1)\psgrid + \psplot[linewidth=4\pslinewidth,linecolor=gray]{-1}{3}{Euler x dup mul neg exp} + \psset{plotpoints=9} + \psplotDiffEqn[linecolor=cyan]{-1}{3}{1 Euler div}{x -2 mul mul} + \psplotDiffEqn[linecolor=yellow, method=rk4]{-1}{3}{1 Euler div}{x -2 mul mul} + \psset{plotpoints=21} + \psplotDiffEqn[linecolor=blue]{-1}{3}{1 Euler div}{x -2 mul mul} + \psplotDiffEqn[linecolor=Orange, method=rk4]{-1}{3}{1 Euler div}{x -2 mul mul} + \psset{linewidth=2\pslinewidth} + \rput*(2,1){\psline[linecolor=Orange](-0.25,0)} + \rput*[l](2,1){RK} + \rput*(2,.9){\psline[linecolor=blue](-0.25,0)} + \rput*[l](2,.9){\textsc{Euler}-1} + \rput*(2,.8){\psline[linecolor=gray](-0.25,0)} + \rput*[l](2,.8){solution} +\end{pspicture} +\end{lstlisting} + + +%-------------------------------------------------------------------------------------- +\subsubsection{Spirale of Cornu} +%-------------------------------------------------------------------------------------- + +The integrals of Fresnel : +\begin{align} x & =\int^t_0\cos\frac{\pi t^2}{2}\mathrm{d}t \\ + y & =\int^t_0\sin\frac{\pi t^2}{2}\mathrm{d}t \\ +\intertext{with} + \dot{x} &= \cos\frac{\pi t^2}{2} \\ + \dot{y} & =\sin\frac{\pi t^2}{2} + \end{align} + +\begin{lstlisting} +\psset{unit=8} +\begin{pspicture}(1,1)\psgrid[subgriddiv=5] + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,% + plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)} +\end{pspicture} +\end{lstlisting} + + +\begin{center} +\bgroup +\psset{unit=8} +\begin{pspicture}(1,1)\psgrid[subgriddiv=5] + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,% + plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)} +\end{pspicture} +\egroup +\end{center} + + + + +%-------------------------------------------------------------------------------------- +\subsubsection{Lotka-Volterra} +%-------------------------------------------------------------------------------------- + +The Lotka-Volterra model describes interactions between two species in an ecosystem, a predator and a prey. This represents our first multi-species model. Since we are considering two species, the model will involve two equations, one which describes how the prey population changes and the second which describes how the predator population changes. + +For concreteness let us assume that the prey in our model are rabbits, and that the predators are foxes. If we let $R(t)$ and $F(t)$ represent the number of rabbits and foxes, respectively, that are alive at time t, then the Lotka-Volterra model is: + +\begin{align} +\dot R &= a\cdot R - b\cdot R\cdot F\\ +\dot F &= e\cdot b\cdot R\cdot F - c\cdot F +\end{align} + +where the parameters are defined by: +\begin{description} +\item[a] is the natural growth rate of rabbits in the absence of predation, +\item[c] is the natural death rate of foxes in the absence of food (rabbits), +\item[b] is the death rate per encounter of rabbits due to predation, +\item[e] is the efficiency of turning predated rabbits into foxes. +\end{description} + +The Stella model representing the Lotka-Volterra model will be slightly more complex than the single species models we've dealt with before. The main difference is that our model will have two stocks (reservoirs), one for each species. Each species will have its own birth and death rates. In addition, the Lotka-Volterra model involves four parameters rather than two. All told, the Stella representation of the Lotka-Volterra model will use two stocks, four flows, four converters and many connectors. + +\bgroup +\def\InitCond{ 0 10 10}%% xa ya xl +\def\Faiglelapin{\Vaigle*(y[2]-y[0])/sqrt(y[1]^2+(y[2]-y[0])^2)|% + -\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|% + -\Vlapin} +\def\Vlapin{1} \def\Vaigle{1.6} +\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,% + plotpoints=20,showpoints=true} +\begin{pspicture}(-3,-8.25)(8,10)\psgrid[griddots=10] + \psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=black,method=rk4]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=blue]{0}{10}{\InitCond}{\Faiglelapin} +\end{pspicture}\hfill +\begin{pspicture}(0,-0.25)(10,14)\psgrid + \psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup + mul add sqrt,linecolor=red,method=rk4]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup + mul add sqrt,linecolor=blue]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[plotfuncy=pop Func aload pop pop dup mul exch dup mul add sqrt, + linecolor=yellow]{0}{10}{\InitCond}{\Faiglelapin} +\end{pspicture} +\egroup +\begin{lstlisting}[label={fig:aiglelapin}] +\def\InitCond{ 0 10 10}%% xa ya xl +\def\Faiglelapin{\Vaigle*(y[2]-y[0])/sqrt(y[1]^2+(y[2]-y[0])^2)|% + -\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|% + -\Vlapin} +\def\Vlapin{1} \def\Vaigle{1.6} +\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,% + plotpoints=20,showpoints=true} +\begin{pspicture}(-3,-8)(5,10)\psgrid[griddots=10] + \psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=black,method=rk4]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=blue]{0}{10}{\InitCond}{\Faiglelapin} +\end{pspicture}\hfill +\begin{pspicture}(10,12)\psgrid + \psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup + mul add sqrt,linecolor=red,method=rk4]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup + mul add sqrt,linecolor=blue]{0}{10}{\InitCond}{\Faiglelapin} + \psplotDiffEqn[plotfuncy=pop Func aload pop pop dup mul exch dup mul add sqrt, + linecolor=yellow]{0}{10}{\InitCond}{\Faiglelapin} +\end{pspicture} +\end{lstlisting} + +%-------------------------------------------------------------------------------------- +\subsubsection{$y''=y$} +%-------------------------------------------------------------------------------------- + +Beginning with the initial equation $\displaystyle y(x)=Ae^x+Be^{-x}$ we get the hyperbolic +trigonometrical functions. + +\begin{center} +\bgroup +\def\Funct{exch} \psset{xunit=5cm, yunit=0.75cm} +\begin{pspicture}(0,-0.25)(2,7)\psgrid[subgriddiv=1,griddots=10] + \psplot[linewidth=4\pslinewidth, linecolor=green]{0}{2}{Euler x exp} %%e^x + \psplotDiffEqn[linecolor=magenta, plotpoints=11]{0}{2}{1 1}{\Funct} + \psplotDiffEqn[linecolor=blue, plotpoints=101]{0}{2}{1 1}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11]{0}{2}{1 1}{\Funct} + \psplot[linewidth=4\pslinewidth, linecolor=green]{0}{2}{Euler dup x exp %%ch(x) + exch x neg exp add 2 div} + \psplotDiffEqn[linecolor=magenta, plotpoints=11]{0}{2}{1 0}{\Funct} + \psplotDiffEqn[linecolor=blue, plotpoints=101]{0}{2}{1 0}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11]{0}{2}{1 0}{\Funct} + \psplot[linewidth=4\pslinewidth, linecolor=green]{0}{2}{Euler dup x exp + exch x neg exp sub 2 div} %%sh(x) + \psplotDiffEqn[linecolor=magenta, plotpoints=11]{0}{2}{0 1}{\Funct} + \psplotDiffEqn[linecolor=blue, plotpoints=101]{0}{2}{0 1}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11]{0}{2}{0 1}{\Funct} + \rput*(1.3,.9){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](1.3,.9){\small\textsc{Euler} ordre 1 $h=1$} + \rput*(1.3,.8){\psline[linecolor=blue](-.75cm,0)}\rput*[l](1.3,.8){\small\textsc{Euler} ordre 1 $h=0{,}1$} + \rput*(1.3,.7){\psline[linecolor=red](-.75cm,0)}\rput*[l](1.3,.7){\small RK ordre 4 $h=1$} + \rput*(1.3,.6){\psline[linecolor=green](-.75cm,0)}\rput*[l](1.3,.6){\small solution exacte} +\end{pspicture} +\egroup +\end{center} + +\begin{lstlisting}[label={fig:minusexp}] +\def\Funct{exch} \psset{xunit=5cm, yunit=0.75cm} +\begin{pspicture}(0,-0.25)(2,7)\psgrid[subgriddiv=1,griddots=10] + \psplot[linewidth=4\pslinewidth, linecolor=green]{0}{2}{Euler x exp} %%e^x + \psplotDiffEqn[linecolor=magenta, plotpoints=11]{0}{2}{1 1}{\Funct} + \psplotDiffEqn[linecolor=blue, plotpoints=101]{0}{2}{1 1}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11]{0}{2}{1 1}{\Funct} + \psplot[linewidth=4\pslinewidth, linecolor=green]{0}{2}{Euler dup x exp %%ch(x) + exch x neg exp add 2 div} + \psplotDiffEqn[linecolor=magenta, plotpoints=11]{0}{2}{1 0}{\Funct} + \psplotDiffEqn[linecolor=blue, plotpoints=101]{0}{2}{1 0}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11]{0}{2}{1 0}{\Funct} + \psplot[linewidth=4\pslinewidth, linecolor=green]{0}{2}{Euler dup x exp + exch x neg exp sub 2 div} %%sh(x) + \psplotDiffEqn[linecolor=magenta, plotpoints=11]{0}{2}{0 1}{\Funct} + \psplotDiffEqn[linecolor=blue, plotpoints=101]{0}{2}{0 1}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=11]{0}{2}{0 1}{\Funct} + \rput*(1.3,.9){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](1.3,.9){\small\textsc{Euler} ordre 1 $h=1$} + \rput*(1.3,.8){\psline[linecolor=blue](-.75cm,0)}\rput*[l](1.3,.8){\small\textsc{Euler} ordre 1 $h=0{,}1$} + \rput*(1.3,.7){\psline[linecolor=red](-.75cm,0)}\rput*[l](1.3,.7){\small RK ordre 4 $h=1$} + \rput*(1.3,.6){\psline[linecolor=green](-.75cm,0)}\rput*[l](1.3,.6){\small solution exacte} +\end{pspicture} +\end{lstlisting} + +%-------------------------------------------------------------------------------------- +\subsubsection{$y''=-y$} +%-------------------------------------------------------------------------------------- +\begin{center} +\bgroup +\def\Funct{exch neg} +\psset{xunit=1, yunit=4} +\def\quatrepi{12.5663706144}%%4pi=12.5663706144 +\begin{pspicture}(0,-1.25)(\quatrepi,1.25)\psgrid[subgriddiv=1,griddots=10] + \psplot[linewidth=4\pslinewidth,linecolor=green]{0}{\quatrepi}{x RadtoDeg cos}%%cos(x) + \psplotDiffEqn[linecolor=blue, plotpoints=201]{0}{3.1415926}{1 0}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=31]{0}{\quatrepi}{1 0}{\Funct} + \psplot[linewidth=4\pslinewidth,linecolor=green]{0}{\quatrepi}{x RadtoDeg sin} %%sin(x) + \psplotDiffEqn[linecolor=blue,plotpoints=201]{0}{3.1415926}{0 1}{\Funct} + \psplotDiffEqn[linecolor=red,method=rk4, plotpoints=31]{0}{\quatrepi}{0 1}{\Funct} + \rput*(3.3,.9){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](3.3,.9){\small Euler order 1 $h=1$} + \rput*(3.3,.8){\psline[linecolor=blue](-.75cm,0)}\rput*[l](3.3,.8){\small Euler order 1 $h=0{,}1$} + \rput*(3.3,.7){\psline[linecolor=red](-.75cm,0)}\rput*[l](3.3,.7){\small RK ordre 4 $h=1$} + \rput*(3.3,.6){\psline[linecolor=green](-.75cm,0)}\rput*[l](3.3,.6){\small solution exacte} +\end{pspicture} +\egroup +\end{center} + +\begin{lstlisting}[label={fig:minusexp2}] +\def\Funct{exch neg} +\psset{xunit=1, yunit=4} +\def\quatrepi{12.5663706144}%%4pi=12.5663706144 +\begin{pspicture}(0,-1.25)(\quatrepi,1.25)\psgrid[subgriddiv=1,griddots=10] + \psplot[linewidth=4\pslinewidth,linecolor=green]{0}{\quatrepi}{x RadtoDeg cos}%%cos(x) + \psplotDiffEqn[linecolor=blue, plotpoints=201]{0}{3.1415926}{1 0}{\Funct} + \psplotDiffEqn[linecolor=red, method=rk4, plotpoints=31]{0}{\quatrepi}{1 0}{\Funct} + \psplot[linewidth=4\pslinewidth,linecolor=green]{0}{\quatrepi}{x RadtoDeg sin} %%sin(x) + \psplotDiffEqn[linecolor=blue,plotpoints=201]{0}{3.1415926}{0 1}{\Funct} + \psplotDiffEqn[linecolor=red,method=rk4, plotpoints=31]{0}{\quatrepi}{0 1}{\Funct} + \rput*(3.3,.9){\psline[linecolor=magenta](-.75cm,0)}\rput*[l](3.3,.9){\small Euler order 1 $h=1$} + \rput*(3.3,.8){\psline[linecolor=blue](-.75cm,0)}\rput*[l](3.3,.8){\small Euler order 1 $h=0{,}1$} + \rput*(3.3,.7){\psline[linecolor=red](-.75cm,0)}\rput*[l](3.3,.7){\small RK ordre 4 $h=1$} + \rput*(3.3,.6){\psline[linecolor=green](-.75cm,0)}\rput*[l](3.3,.6){\small solution exacte} +\end{pspicture} +\end{lstlisting} + +%-------------------------------------------------------------------------------------- +\subsubsection{The mechanical pendulum: $y''=-\frac{g}{l}\sin(y)$}% $ +%-------------------------------------------------------------------------------------- + +Pour des faibles oscillations $\sin(y)\simeq y$: + +\[ y(x)=y_0\cos\left(\sqrt{\frac{g}{l}}x\right) \] + +The function $f$ is writen in PostScript code: + +\begin{verbatim} +exch RadtoDeg sin -9.8 mul %% y' -gsin(y) +\end{verbatim} + +\begin{center} +\bgroup +\def\Func{y[1]|-9.8*sin(y[0])} +\psset{yunit=2,xunit=4,algebraic=true,linewidth=1.5pt} +\begin{pspicture}(0,-2.25)(3,2.25)\psgrid[subgriddiv=2,griddots=10] + \psplot[linewidth=3\pslinewidth, linecolor=Orange]{0}{3}{.1*cos(sqrt(9.8)*x)} + \psset{method=rk4,plotpoints=50,linecolor=blue} + \psplotDiffEqn{0}{3}{.1 0}{\Func} + \psplot[linewidth=3\pslinewidth,linecolor=Orange]{0}{3}{.25*cos(sqrt(9.8)*x)} + \psplotDiffEqn{0}{3}{.25 0}{\Func} + \psplotDiffEqn{0}{3}{.5 0}{\Func} + \psplotDiffEqn{0}{3}{1 0}{\Func} + \psplotDiffEqn[plotpoints=100]{0}{3}{Pi 2 div 0}{\Func} +\end{pspicture} +\egroup +\end{center} + +\begin{lstlisting}[label=fig:second] +\def\Func{y[1]|-9.8*sin(y[0])} +\psset{yunit=2,xunit=4,algebraic=true,linewidth=1.5pt} +\begin{pspicture}(0,-2.25)(3,2.25)\psgrid[subgriddiv=2,griddots=10] + \psplot[linewidth=3\pslinewidth, linecolor=Orange]{0}{3}{.1*cos(sqrt(9.8)*x)} + \psset{method=rk4,plotpoints=50,linecolor=blue} + \psplotDiffEqn{0}{3}{.1 0}{\Func} + \psplot[linewidth=3\pslinewidth,linecolor=Orange]{0}{3}{.25*cos(sqrt(9.8)*x)} + \psplotDiffEqn{0}{3}{.25 0}{\Func} + \psplotDiffEqn{0}{3}{.5 0}{\Func} + \psplotDiffEqn{0}{3}{1 0}{\Func} + \psplotDiffEqn[plotpoints=100]{0}{3}{Pi 2 div 0}{\Func} +\end{pspicture} +\end{lstlisting} + +%-------------------------------------------------------------------------------------- +\subsubsection{$y''=-\frac{y'}{4}-2y$}% $ +%-------------------------------------------------------------------------------------- + +Pour $y_0=5$ et $y'_0=0$ la solution est : + +\[ +5e^{-\frac{x}{8}}\left(\cos\left(\omega x\right)+\frac{\sin(\omega x)}{8\omega}\right) +\mbox{ avec } \omega=\frac{\sqrt{127}}{8} +\] + +\iffalse +La fonction $f$ est d�rite par le code PostScript suivant : + +\begin{verbatim} +dup %% y y' y' +3 1 roll %% y' y y' +-4 div %% y' y y'/-4 +exch %% y' y'/-4 y +2 mul %% y' y'/-4 2y +sub %% y' y'/-4-2y +\end{verbatim} + +\fi +\begin{center} +\bgroup +\psset{xunit=.6,yunit=0.8,plotpoints=500} +\begin{pspicture}(0,-4.25)(26,5.25) + \psgrid[subgriddiv=0,gridcolor=lightgray,linewidth=1.5pt] + \psplot[plotpoints=200,linewidth=4\pslinewidth,linecolor=gray]{0}{26}{% + Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul} + \psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0} + {dup 3 1 roll -4 div exch 2 mul sub} + \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]} + \psset{method=rk4, plotpoints=50} + \psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{% + dup 3 1 roll -4 div exch 2 mul sub} + \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]} +\end{pspicture} +\egroup +\end{center} + +\begin{lstlisting} +\psset{xunit=.6,yunit=0.8,plotpoints=500} +\begin{pspicture}(0,-4.25)(26,5.25) + \psgrid[subgriddiv=0,gridcolor=lightgray,linewidth=1.5pt] + \psplot[plotpoints=200,linewidth=4\pslinewidth,linecolor=gray]{0}{26}{% + Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul} + \psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0} + {dup 3 1 roll -4 div exch 2 mul sub} + \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]} + \psset{method=rk4, plotpoints=50} + \psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{% + dup 3 1 roll -4 div exch 2 mul sub} + \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0}{y[1]|-y[1]/4-2*y[0]} +\end{pspicture} +\end{lstlisting} +%-------------------------------------------------------------------------------------- +\subsubsection{Gravitation example of second order} +%-------------------------------------------------------------------------------------- + +\[ +\left\{ +\begin{array}[m]{l} + x''_1=\displaystyle\frac{M_2}{r^2}\cos(\theta)\\ + y''_1=\displaystyle\frac{M_2}{r^2}\sin(\theta)\\ + x''_2=\displaystyle\frac{M_1}{r^2}\cos(\theta)\\ + y''_2=\displaystyle\frac{M_1}{r^2}\sin(\theta)\\ +\end{array} +\right. +\mbox{ avec } +\left\{ +\begin{array}[m]{l} + r^2=(x_1-x_2)^2+(y_1-y_2)^2\\ + \cos(\theta)=\displaystyle\frac{(x_1-x_2)}{r}\\ + \sin(\theta)=\displaystyle\frac{(y_1-y_2)}{r}\\ +\end{array} +\right. +\mbox{ +\begin{pspicture}[shift=.5](5,4)\psset{arrowscale=2} + \psframe[linewidth=.75\pslinewidth](5,4) + \pstGeonode[PosAngle={-90,90}](1,1){M1}(4,3){M2} + \pstHomO[HomCoef=.33, PointSymbol=none]{M1}{M2}{F1} + \psline[arrows=->](M1)(F1) + \pstHomO[HomCoef=.33, PointSymbol=none]{M2}{M1}{F2} + \psline[arrows=->, arrowscale=2](M2)(F2) + \pstGeonode[PointSymbol=none](M2|M1){A} + \psline[linewidth=.5\pslinewidth](M1)(A) + \pstMarkAngle{A}{M1}{M2}{$\theta$} + \ncline[linewidth=.5\pslinewidth, offset=.5, arrows=<->]{M1}{M2} + \ncput*{$r$} +\end{pspicture}% +} +\] + + +\begin{table}[htbp] +\centering + \caption{PostScript code for the gravitation examples}\label{intgravcode} +\small\ttfamily + \begin{tabularx}{\linewidth}{XX} \hline + & x1 y1 x'1 y'1 x2 y2 x'2 y'2\\ + /yp2 exch def /xp2 exch def /ay2 exch def /ax2 exch def&mise en variables\\ + /yp1 exch def /xp1 exch def /ay1 exch def /ax1 exch def&mise en variables\\ + /ro2 ax2 ax1 sub dup mul ay2 ay1 sub dup mul add def&calcul de r*r\\ + xp1 yp1&\\ + ax2 ax1 sub ro2 sqrt div ro2 div&calcul de x''1\\ + ay2 ay1 sub ro2 sqrt div ro2 div&calcul de y''1\\ + xp2 yp2&\\ + 3 index -20 mul&calcul de x''2=-20x''1\\ + 3 index -20 mul&calcul de y''2=-20y''1\\\hline + \end{tabularx} +\end{table} + +\def\Grav{% + /yp2 exch def /xp2 exch def /ay2 exch def /ax2 exch def + /yp1 exch def /xp1 exch def /ay1 exch def /ax1 exch def + /ro2 ax2 ax1 sub dup mul ay2 ay1 sub dup mul add def + xp1 yp1 + ax2 ax1 sub ro2 sqrt div ro2 div + ay2 ay1 sub ro2 sqrt div ro2 div + xp2 yp2 + 3 index -20 mul + 3 index -20 mul} +\def\GravAlg{% + y[2]|y[3]|% + (y[4]-y[0])/((y[4]-y[0])^2+(y[5]-y[1])^2)^1.5|% + (y[5]-y[1])/((y[4]-y[0])^2+(y[5]-y[1])^2)^1.5|% + y[6]|y[7]|% + 20*(y[0]-y[4])/((y[4]-y[0])^2+(y[5]-y[1])^2)^1.5|% + 20*(y[1]-y[5])/((y[4]-y[0])^2+(y[5]-y[1])^2)^1.5} + %% 0 1 2 3 4 5 6 7 + %% x1 y1 x'1 y'1 x2 y2 x'2 y'2 +\def\InitCond{ 1 1 .1 0 -1 -1 -2 0} + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(-3,-2.5)(2,2.25) + \psgrid[subgriddiv=0,gridcolor=lightgray,linewidth=1.5pt] + \psset{method=rk4,plotpoints=200,whichord=1} + \psplotDiffEqn[whichabs=0,linecolor=blue]{0}{8}{\InitCond}{\Grav} + \psplotDiffEqn[whichabs=4,whichord=5,linecolor=red]{0}{8}{\InitCond}{\Grav} + \psplotDiffEqn[whichabs=4,linecolor=Orange,algebraic]{0}{8}{\InitCond}{\GravAlg} + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=yellow,algebraic]{0}{8}{\InitCond}{\GravAlg} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(-4,-2.5)(1,1.25) + \psgrid[subgriddiv=0,gridcolor=lightgray] + \psplotDiffEqn[linecolor=red,method=rk4,plotpoints=200,linewidth=1.5pt,% + plotfuncx=y dup 4 get exch 0 get sub, + plotfuncy=dup 5 get exch 1 get sub ]{0}{8}{\InitCond}{\Grav} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(0,-0.5)(8,8) + \psset{yunit=0.8,method=rk4,plotpoints=200,linewidth=1.5pt} + \psgrid[subgriddiv=0,gridcolor=lightgray](8,9) + \psplotDiffEqn[linecolor=red,plotfuncy=dup 6 get dup mul exch 7 get dup mul add sqrt]{0}{8}{\InitCond}{\Grav} + \psplotDiffEqn[linecolor=blue,plotfuncy=dup 2 get dup mul exch 3 get dup mul add sqrt]{0}{8}{\InitCond}{\Grav} +\end{pspicture} +\end{LTXexample} + +\newpage +%-------------------------------------------------------------------------------------- +\subsubsection{Gravitation: two stars and more} +%-------------------------------------------------------------------------------------- + +\iffalse +L'exemple le plus complexe dans l'�riture de $f$, mais aussi dans l'�uilibrage de +la simulation\footnote{n'h�itez pas �modifier des param�res, ajouter des astres, + et vous verrez que le syst�e solaire est miraculeux : il est stable !}. $f$ est +g��ique : elle peut traiter un nombre d'astres quelconques chacun ayant sa propre +masse. Dans cette section on va en faire interagir quatre. Cela donne pour le moteur +d'affichage un syst�e de 16 �uations du premier ordre �r�oudre, et le r�ultat +est remarquable. + +\fi + x1 y1 x'1 y'1 x2 y2 x'2 y'2 x3 y3 x'3 y'3 x4 y4 x'4 y'4 + \def\InitCond{ 1 1 0 0 -1 -1 -2 2 3 3 2.86 -2.86 5.5 -3.5 -2.1 -2.1} + \def\tMAX{10} + \newcommand{\MunMdeux}{40} + \newcommand{\MdeuxMtrois}{40} + \psset{unit=1, showpoints=false, plotpoints=400}%%plotpoints=375} + \newcommand{\Test}{ + %% masses des astres + /Weigth [ 40 1 1 2 ] def + /NbAstor Weigth length def + /ABVect { 3 -1 roll exch sub 3 1 roll sub exch } def + %% calculs des distances entre masses + 1 1 NbAstor 1 sub { + dup /i exch def 1 add 1 NbAstor { + /j exch def + y i 1 sub 4 mul get y j 1 sub 4 mul get sub dup mul + y i 1 sub 4 mul 1 add get y j 1 sub 4 mul 1 add get sub dup mul add + } for + } for + NbAstor dup 1 sub mul 2 div cvi array astore /ro2 exch def + %% calculs des forces + 1 1 NbAstor { + /i exch def + y i 1 sub 4 mul 4 getinterval aload pop 4 2 roll + /xf 0 def /yf 0 def + 1 1 NbAstor { + dup i eq + { pop } + { /j exch def + 2 copy y j 1 sub 4 mul 2 getinterval aload pop ABVect + Weigth j 1 sub get + ro2 i j 2 copy lt { exch } if dup + dup 1 sub dup NbAstor mul 3 1 roll mul 2 div sub 3 1 roll sub add 1 sub + cvi get dup sqrt mul div exch 1 index mul 3 1 roll mul exch + yf add /yf exch def xf add /xf exch def } ifelse + } for pop pop xf neg yf neg + } for + NbAstor 4 mul array astore + } + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(-9,-6.25)(6,6) + \psgrid[subgriddiv=0,gridcolor=lightgray](-9,-6)(6,6) + \psset{buildvector=true,method=rk4,linewidth=1.5pt} + \psplotDiffEqn[whichabs=0,whichord=1,linecolor=blue]{0}{\tMAX}{\InitCond}{\Test} + \psplotDiffEqn[whichabs=4,whichord=5,linecolor=red]{0}{\tMAX}{\InitCond}{\Test} + \psplotDiffEqn[whichabs=4,whichord=5,linecolor=Orange,method=adams]{0}{\tMAX}{\InitCond}{\Test} + \psplotDiffEqn[whichabs=8,whichord=9,linecolor=magenta]{0}{\tMAX}{\InitCond}{\Test} + \psplotDiffEqn[whichabs=12,whichord=13,linecolor=green]{0}{\tMAX}{\InitCond}{\Test} + \psplotDiffEqn[whichabs=12,whichord=13,linecolor=yellow,method=adams]{0}{\tMAX}{\InitCond}{\Test} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[pos=t,preset=\centering] +\begin{pspicture}(-10,-7.25)(5,5) + \psgrid[subgriddiv=0,gridcolor=lightgray](-10,-7)(5,5) + \psset{buildvector=true,method=rk4,linewidth=1.5pt} + \psplotDiffEqn[linecolor=red,plotfuncx=y dup 4 get exch 0 get sub , + plotfuncy=dup 5 get exch 1 get sub ]{0}{\tMAX}{\InitCond}{\Test} + \psplotDiffEqn[linecolor=magenta,plotfuncx=y dup 8 get exch 0 get sub , + plotfuncy=dup 9 get exch 1 get sub ]{0}{\tMAX}{\InitCond}{\Test} + \psplotDiffEqn[linecolor=green,plotfuncx=y dup 12 get exch 0 get sub , + plotfuncy=dup 13 get exch 1 get sub ]{0}{\tMAX}{\InitCond}{\Test} +\end{pspicture} +\end{LTXexample} + + +%-------------------------------------------------------------------------------------- +\subsection{\CMD{resetOptions}} +%-------------------------------------------------------------------------------------- + +Sometimes it is difficult to know what options which are changed inside a long document +are different to the default one. With this +macro all options depending to \verb+pst-plot+ can be reset. This depends to all +options of the packages \verb+pstricks+, \verb+pst-plot+ and \verb+pst-node+. + + +%-------------------------------------------------------------------------------------- +\section{Credits} +%-------------------------------------------------------------------------------------- +{Hendri Adriaens | } +{Ulrich Dirr | } +{Hubert G\"a\ss lein |} +{Denis Girou | } +{Peter Hutnick | } +{Christophe Jorssen | } +{Manuel Luque | } +{Jens-Uwe Morawski |} +{Tobias N\"ahring |} +{Rolf Niepraschk |} +{Dominique Rodriguez |} +{Arnaud Schmittbuhl |} +{Timothy Van Zandt} + + + +\nocite{*} +\bibliographystyle{plain} +\bibliography{pstricks} + + +%-------------------------------------------------------------------------------------- +\section{Change log} +%-------------------------------------------------------------------------------------- + +See file Changes + +%\clearpage +%\section{The code} + +%\lstinputlisting{pstricks-add.tex} diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks.bib b/Master/texmf-dist/doc/generic/pstricks-add/pstricks.bib new file mode 100644 index 00000000000..f99ba002003 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks.bib @@ -0,0 +1,139 @@ +%% -*-bibtex-*- +@STRING{tugboat = {TUGboat} } +@STRING{beiprogramm = {{\TeX}-Beiprogramm} } +@STRING{bretter = {Bretter, die die Welt bedeuten} } +@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } +@STRING{editorial = {Editorial} } +@STRING{fremdebuehne = {Von fremden B{\"u}hnen} } +@STRING{fundus = {Aus dem Fundus} } +@STRING{hinterbuehne = {Hinter der B{\"u}hne} } +@STRING{leserbrief = {Leserbrief(e)} } +@STRING{magazin = {Magazin} } +@STRING{rezension = {Rezensionen} } +@STRING{schonimmer = {Was Sie schon immer {\"u}ber {\TeX} wissen wollten \dots} } +@STRING{theaterkasse = {Von der Theaterkasse} } +@STRING{theatertage = {{\TeX}-Theatertage} } + +@Article{ dtk02.2:jackson.voss:plot-funktionen, + author = {Laura E. Jackson and Herbert Vo{\ss}}, + title = {Die Plot-Funktionen von {\texttt{pst-plot}}}, + journal = dtk, + year = 2002, + volume = {2/02}, + altvolume = 2, + altnumber = 14, + month = jun, + pages = {27--34}, + annote = bretter, + keywords = {}, + abstract = { Im letzten Heft wurden die mathematischen Funktionen von + \PS~im Zusammenhang mit dem {\LaTeX}-Paket + \texttt{pst-plot} zum Zeichnen von Funktionen beschrieben + und durch Beispiele erl{\"a}utert. In diesem Teil werden + die bislang nur erw{\"a}hnten Plot-Funktionen f{\"u}r + externe Daten behandelt. } +} + +@Article{ dtk02.1:voss:mathematischen, + author = {Herbert Vo{\ss}}, + title = {Die mathematischen {F}unktionen von {P}ost{S}cript}, + journal = dtk, + year = 2002, + volume = {1/02}, + altvolume = 1, + altnumber = 14, + month = mar, + pages = {}, + annote = bretter, + keywords = {}, + abstract = { \PS, faktisch genauso alt wie {\TeX}, ist im + Verh{\"a}ltnis dazu allgemein noch weniger bekannt, wenn es + darum geht zu beurteilen, was es denn nun im eigentlichen + Sinne ist. Au{\ss}erdem wird h{\"a}ufig vergessen, dass + sich mit den \PS-Funktionen viele Dinge erledigen lassen, + bei denen sonst auf externe Programme zur{\"u}ckgegriffen + wird. Dies wird im Folgenden f{\"u}r die mathematischen + Funktionen im Zusammenhang mit dem Paket \texttt{pst-plot} + gezeigt. } +} + +@Book{companion, + author = {Michel Goosens and Frank Mittelbach and Alexander + Samarin}, + title = {The {\LaTeX} {G}raphics {C}ompanion}, + publisher = {{Addison-Wesley Publishing Company}}, + year = {1997}, + address = {Reading, Mass.} +} + +@Book{voss:chaos, + author = {Herbert Vo{\ss}}, + title = {Chaos und {F}raktale selbst programmieren: von {M}andelbrotmengen {\"u}ber {F}arbmanipulationen zur perfekten Darstellung}, + publisher = {{Franzis Verlag}}, + year = {1994}, + address = {Poing} +} + +@Article{girou:01:, + author = {Denis Girou}, + title = {Pr\'esentation de {PST}ricks}, + journal = {Cahier {GUT}enberg}, + year = 1994, + volume = {16}, + month = apr, + pages = {21-70} +} + +@Article{girou:02:, + author = {{Timothy van} Zandt and Denis Girou}, + title = {Inside {PST}ricks}, + journal = TUGboat, + year = 1994, + volume = {15}, + month = sep, + pages = {239-246} +} + +@Book{PostScript, + Author = {Kollock, Nikolai G.}, + Title = {PostScript richtig eingesetzt: vom {K}onzept zum + praktischen {E}insatz}, + Publisher = {IWT}, + Address = {Vaterstetten}, + year = 1989, +} + +@Manual{pstricks, + Title = {PSTricks - {\PS} macros for generic {\TeX}}, + Author = {{Timothy van} Zandt}, + Organization = {}, + Address = {\url{http://www.tug.org/application/PSTricks}}, + Note = {}, + year = 1993 +} + +@Manual{pst-plot, + Title = {\texttt{pst-plot}: Plotting two dimensional functions and data}, + Author = {{Timothy van} Zandt}, + Organization = {}, + Address = {\url{CTAN:graphics/pstricks/generic/pst-plot.tex}}, + Note = {}, + year = 1999 +} + +@Manual{multido, + Title = {\texttt{multido.tex} - a loop macro, that supports fixed-point addition}, + Author = {{Timothy van} Zandt}, + Organization = {}, + Address = {\url{CTAN:/graphics/pstricks/generic/multido.tex}}, + Note = {}, + year = 1997 +} + +@MISC{xkeyval, + author = {Hendri Adriaens}, + title = {xkeyval package}, + howpublished = {\url{CTAN:/macros/latex/contrib/xkeyval}}, + year = 2004 +} + |