summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2010-02-11 23:46:22 +0000
committerKarl Berry <karl@freefriends.org>2010-02-11 23:46:22 +0000
commit06f7a405653fe4c505885607d76e5ad98a2b8da5 (patch)
tree8309065c9e891d6b8837cba66cf69d9e930c4e92 /Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
parent9115f9eea3dcb0f57b18a8d194014fd07c282943 (diff)
pstricks-add 0.14 (11feb10)
git-svn-id: svn://tug.org/texlive/trunk@16971 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex5828
1 files changed, 1213 insertions, 4615 deletions
diff --git a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
index 642390ab7f1..72901032fcb 100644
--- a/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
+++ b/Master/texmf-dist/doc/generic/pstricks-add/pstricks-add-doc.tex
@@ -1,4 +1,4 @@
-%% $Id: pstricks-add-doc.tex 149 2009-11-14 09:11:05Z herbert $
+%% $Id: pstricks-add-doc.tex 288 2010-02-11 15:43:29Z herbert $
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
headexclude,footexclude,oneside]{pst-doc}
\listfiles
@@ -6,89 +6,22 @@
\input{pstricks-add-doc.dat}
\usepackage[utf8]{inputenc}
-\usepackage{pst-eucl,pst-fun,multirow}
\usepackage{pstricks-add}
-\usepackage{pifont}
\let\pstricksaddFV\fileversion
+\usepackage{pst-eucl,pst-fun,pst-func,multirow}
+\usepackage{pifont}
\let\belowcaptionskip\abovecaptionskip
%
-\newcommand{\pstEllipse}[5][]{%
- \psset{#1}
- \parametricplot{#4}{#5}{#2\space t cos mul #3\space t sin mul}%
-}
-%
-\newcommand{\pstEllipseWedge}[5][]{%
- \psset{#1}
- \pscustom{%
- \parametricplot{#4}{#5}{#2\space t cos mul #3\space t sin mul}%
- \psline(! #2\space #5\space cos mul #3\space #5\space sin mul)%
- (0,0)%
- (! #2\space #4\space cos mul #3\space #4\space sin mul)%
- }%
-}
-%
\def\textat{\char064}%
\newdimen\fullWidth
\makeatletter
-\renewcommand\ON{%
- \gdef\lst@alloverstyle##1{%
- \fboxrule=0pt
- \fboxsep=0pt
- \fcolorbox{DarkBlue}{DarkBlue}{\textcolor{white}{\bfseries\strut##1}}%
-}}
-\renewcommand\OFF{\xdef\lst@alloverstyle##1{##1}}
-\define@key[psset]{}{PSfont}[Times-Roman]{\def\psk@PSfont{/#1 }}
-\define@key[psset]{}{valuewidth}[10]{\pst@getint{#1}\psk@valuewidth }
-\define@key[psset]{}{fontscale}[10]{\pst@checknum{#1}\psk@fontscale }
-\define@key[psset]{}{decimals}[-1]{\pst@getint{#1}\psk@decimals }
-\psset{PSfont=Times-Roman,fontscale=10,valuewidth=10,decimals=-1}
-\define@key[psset]{}{xShift}[0]{\def\psk@xShift{#1 }}
-\psset{xShift=0}
-%
-\def\psPrintValue{\pst@object{psPrintValue}}
-\def\psPrintValue@i#1{%
- \begin@SpecialObj
- \addto@pscode{
- gsave \psk@PSfont findfont \psk@fontscale scalefont setfont
- #1 \psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul cvi exch div } if
- \psk@valuewidth string cvs \psk@xShift 0 moveto show grestore
- }%
- \end@SpecialObj%
-}
-\renewcommand*\l@section[2]{%
- \ifnum \c@tocdepth >\z@
- \ifnum \lastpenalty<20009
- \addpenalty{\@secpenalty}%
- \fi
- \addvspace{1.0em \@plus\p@}%
- \setlength\@tempdima{2.5em}%
- \if@tocleft
- \ifx\toc@l@number\@empty\else
- \setlength\@tempdima{0\toc@l@number}%
- \fi
- \fi
- \begingroup
- \raggedsectionentry
- \parindent \z@ \advance\rightskip \@pnumwidth
- \parfillskip -\@pnumwidth
- \interlinepenalty\@M
- \leavevmode
- \advance\leftskip \@tempdima \null\nobreak\hskip -\leftskip
- \usekomafont{sectionentry}{#1\nobreak
- \usekomafont{sectionentrypagenumber}{%
- \hfill\nobreak
- \hb@xt@\@pnumwidth{\hss#2}}}\par
- \endgroup
- \ifnum \scr@compatibility>\@nameuse{scr@v@2.96}\relax
- \penalty20008
- \fi
- \fi
-}
-\renewcommand*\l@subsection{\bprot@dottedtocline{2}{1.5em}{3.6em}}
-\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4.5em}}
-\renewcommand*\l@paragraph{\bprot@dottedtocline{4}{7.0em}{5em}}
+\renewcommand*\l@section{\@dottedtocline{1}{2em}{2.3em}}
+\renewcommand*\l@subsection{\@dottedtocline{2}{3.8em}{3.2em}}
+\renewcommand*\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}}
+\renewcommand*\l@paragraph{\@dottedtocline{4}{10em}{5em}}
\makeatother
-\lstset{escapechar=§}
+\lstset{explpreset={pos=l,width=-99pt,overhang=0pt,hsep=\columnsep,vsep=\bigskipamount,rframe={}},
+ escapechar=§}
\def\bgImage{\psset{unit=1.5}
\begin{pspicture}(-3,-3)(3,3)
@@ -124,6 +57,8 @@
\advance\fullWidth by \marginparsep
\advance\fullWidth by \marginparwidth
+\fileversion
+
\begin{abstract}
This version of \verb+pstricks-add+ needs \verb+pstricks.tex+
version >1.04 from June 2004, otherwise the additional macros may
@@ -176,197 +111,10 @@ Timothy Van Zandt
\clearpage
\tableofcontents
-\clearpage
-%--------------------------------------------------------------------------------------
-\part{\texttt{pstricks}}
-%--------------------------------------------------------------------------------------
-
-%--------------------------------------------------------------------------------------
-\section{Numeric functions}
-%--------------------------------------------------------------------------------------
-
-All macros have a \textat{} in their name, because they are
-only for internal use, but it is no problem to use them like other
-macros. One can define another name without a \textat{}:
-\begin{lstlisting}[style=syntax]
-\makeatletter
-\let\pstdivide\pst@divide
-\makeatother
-\end{lstlisting}
-
-or put the macro inside the \Lcs{makeatletter} --
-\Lcs{makeatother} sequence.
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@divide}}
-%--------------------------------------------------------------------------------------
-
-\LPack{pstricks} itself has its own divide macro, called
-\Lcs{pst@divide}, which can divide two lengths and save the
-quotient as a \Index{floating point} number: \index{Division}
-%
-\begin{BDef}
-\Lcs{pst@divide}\Largb{dividend}\Largb{divisor}\Largb{result as a macro}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\makeatletter
-\pst@divide{34pt}{6pt}\quotient \quotient\\
-\pst@divide{-6pt}{34pt}\quotient \quotient
-\makeatother
-\end{LTXexample}
-
-\noindent this gives the output $5.66666$. The result is not a length!
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@mod}}
-%--------------------------------------------------------------------------------------
-\LPack{pstricks-add} defines an additional numeric function for the modulus:
-\index{Modulus}
-
-\begin{BDef}
-\Lcs{pst@mod}\Largb{integer}\Largb{integer}\Largb{result as a macro}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\makeatletter
-\pst@mod{34}{6}\modulo \modulo\\
-\pst@mod{25}{-6}\modulo \modulo
-\makeatother
-\end{LTXexample}
-
-\noindent this gives the output $4$. Using this internal numeric
-function in documents requires a setting inside the
-\verb+makeatletter+ and \verb+makeatother+ environment. It makes
-some sense to define a new macroname in the preamble and use it
-throughout, e.g. \verb+\let\modulo\pst@mod+.
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@max}}
-%--------------------------------------------------------------------------------------
-
-\begin{BDef}
-\Lcs{pst@max}\Largb{integer}\Largb{integer}\Largb{result as count register}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\newcount\maxNo
-\makeatletter
-\pst@max{-34}{-6}\maxNo \the\maxNo\\
-\pst@max{0}{11}\maxNo \the\maxNo
-\makeatother
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@maxdim}}
-%--------------------------------------------------------------------------------------
-
-\begin{BDef}
-\Lcs{pst@maxdim}\Largb{dimension}\Largb{dimension}\Largb{result as a dimension register}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\newdimen\maxDim
-\makeatletter
-\pst@maxdim{34cm}{1234pt}\maxDim \the\maxDim\\
-\pst@maxdim{34cm}{123pt}\maxDim \the\maxDim
-\makeatother
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@mindim}}
-%--------------------------------------------------------------------------------------
-
-\begin{BDef}
-\Lcs{pst@mindim}\Largb{dimension}\Largb{dimension}\Largb{result as dimension register}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\newdimen\minDim
-\makeatletter
-\pst@mindim{34cm}{1234pt}\minDim \the\minDim\\
-\pst@mindim{34cm}{123pt}\minDim \the\minDim
-\makeatother
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@abs}}
-%--------------------------------------------------------------------------------------
-
-\begin{BDef}
-\Lcs{pst@abs}\Largb{integer}\Largb{result as a count register}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\newcount\absNo
-\makeatletter
-\pst@abs{-34}\absNo \the\absNo\\
-\pst@abs{4}\absNo \the\absNo
-\makeatother
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@absdim}}
-%--------------------------------------------------------------------------------------
-\begin{BDef}
-\Lcs{pst@absdim}\Largb{dimension}\Largb{result as a dimension register}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\newdimen\absDim
-\makeatletter
-\pst@absdim{-34cm}\absDim \the\absDim\\
-\pst@absdim{4sp}\absDim \the\absDim
-\makeatother
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pst@int}}
-%--------------------------------------------------------------------------------------
-\begin{BDef}
-\Lcs{pst@int}\Largb{number}\Largb{result as a truncated integer}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\makeatletter
-\pst@int{-34.0}\\
-\pst@int{234.123}
-\makeatother
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{pstFPMul} and \nxLcs{pstFPDiv}}
-%--------------------------------------------------------------------------------------
-Integer multiplication and division:
-
-\begin{BDef}
-\Lcs{pstFPMul}\Largb{result as a truncated integer}\Largb{number}\Largb{number}\\
-\Lcs{pstFPDiv}\Largb{result as a truncated integer}\Largb{number}\Largb{number}
-\end{BDef}
-
-\begin{LTXexample}[width=2cm]
-\makeatletter
-\pstFPMul\Result{-3.405}{0.02345} \Result\quad
-\pstFPDiv\Result{-3.405}{0.02345} \Result\\
-\pstFPMul\Result{0.02345}{-3.405} \Result\quad
-\pstFPDiv\Result{0.02345}{-3.405} \Result\\
-\pstFPMul\Result{234.123}{33} \Result\quad
-\pstFPDiv\Result{234.123}{33} \Result
-\makeatother
-\end{LTXexample}
-
-You can also use the default operations like \nxLcs{pstFPmul}, \nxLcs{pstFPdiv}
-and \Lcs{pstFPadd} (always with a lower case letter!)
-\begin{BDef}
-\Lcs{pstFPadd}\Largb{result}\Largb{number}\Largb{number}\\
-\Lcs{pstFPmul}\Largb{result}\Largb{number}\Largb{number}\\
-\Lcs{pstFPdiv}\Largb{result}\Largb{number}\Largb{number}
-\end{BDef}
+\clearpage
-%--------------------------------------------------------------------------------------
-\subsection{\nxLcs{psGetSlope} and \nxLcs{psGetDistance}}
+\section{\nxLcs{psGetSlope} and \nxLcs{psGetDistance}}
%--------------------------------------------------------------------------------------
\begin{BDef}
@@ -386,36 +134,13 @@ and \Lcs{pstFPadd} (always with a lower case letter!)
\end{LTXexample}
\clearpage
-%--------------------------------------------------------------------------------------
-\section{Dashed Lines}
-%--------------------------------------------------------------------------------------
-Tobias Nähring has implemented an enhanced feature for dashed
-lines. The number of arguments is no longer limited.
-
-\begin{BDef}
-\Lkeyword{dash}=value1\OptArg*{unit} value2\OptArg*{unit} \ldots
-\end{BDef}
-
-\begin{LTXexample}[width=0.4\linewidth]
-\psset{linewidth=2.5pt,unit=0.6}
-\begin{pspicture}(-5,-4)(5,4)
- \psgrid[subgriddiv=0,griddots=10,gridlabels=0pt]
- \psset{linestyle=dashed}
- \pscurve[dash=5mm 1mm 1mm 1mm,linewidth=0.1](-5,4)(-4,3)(-3,4)(-2,3)
- \psline[dash=5mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm](-5,0.9)(5,0.9)
- \psccurve[linestyle=solid](0,0)(1,0)(1,1)(0,1)
- \psccurve[linestyle=dashed,dash=5mm 2mm 0.1 0.2,linetype=0](0,0)(-2.5,0)(-2.5,-2.5)(0,-2.5)
- \pscurve[dash=3mm 3mm 1mm 1mm,linecolor=red,linewidth=2pt](5,-4)(5,2)(4.5,3.5)(3,4)(-5,4)
-\end{pspicture}
-\end{LTXexample}
-\clearpage
%--------------------------------------------------------------------------------------
\section{"`Handmade"' lines :-)}
%--------------------------------------------------------------------------------------
\begin{BDef}
-\Lcs{pslineByHand}\OptArgs\Largr(\coord1)\Largr(\coord2)\Largr(\coord3) \ldots
+\Lcs{pslineByHand}\OptArgs\coord1\coord2\coord3 \ldots
\end{BDef}
\begin{LTXexample}[width=0.4\linewidth]
@@ -449,6 +174,16 @@ lines. The number of arguments is no longer limited.
\end{pspicture}
\end{LTXexample}
+The amplitude and the width can be changed by the optional arguments \Lkeyword{varsteptol} and
+\Lkeyword{VarStepEpsilon}. Both are preset to \verb+VarStepEpsilon=2,varsteptol=0.8+.
+
+
+\begin{LTXexample}[pos=t]
+\begin{pspicture}(\linewidth,3)
+\multido{\rA=0.00+0.25}{12}{%
+ \pslineByHand[linecolor=blue,VarStepEpsilon=4,varsteptol=2](0,\rA)(\linewidth,\rA)}
+\end{pspicture}
+\end{LTXexample}
\clearpage
@@ -505,12 +240,12 @@ only valid if they are part of the \verb+\pscustom+ macro.
\begin{LTXexample}[width=6cm]
+\begin{pspicture}(-1,-1)(3,6)
\def\canne{% Idea by Manuel Luque
\psgrid[subgriddiv=0](-1,0)(1,5)
\pscustom[linewidth=2mm]{\psline(0,4)\psarcn(0.3,4){0.3}{180}{360}}%
\pscircle*(0.6,4){0.1}\pstriangle*(0,0)(0.2,-0.3)}
\def\Object{}
-\begin{pspicture}(-1,-1)(3,6)
\canne
\psrotate(0.3,4){45}{\psset{linecolor=red!50}\canne}
\psrotate(0.3,4){90}{\psset{linecolor=blue!50}\canne}
@@ -521,10 +256,10 @@ only valid if they are part of the \verb+\pscustom+ macro.
\begin{LTXexample}[pos=t]
+\begin{pspicture}(0,-6)(15,5)
\def\majorette{\psline[linewidth=0.5mm](0,2)% Idea by Manuel Luque
\pscircle[fillstyle=solid]{0.1}
\pscircle[fillstyle=solid](0,2){0.1}}
-\begin{pspicture}(0,-6)(15,5)
\psaxes[linewidth=0.5pt]{->}(0,0)(0,-5)(15,5)
\pstVerb{/V0 10 def /Alpha 45 def}% vitesse initiale, angle de lancement
\multido{\nT=0.0+0.05,\iA=0+40}{41}{%
@@ -539,6 +274,7 @@ only valid if they are part of the \verb+\pscustom+ macro.
\end{pspicture}
\end{LTXexample}
+
\clearpage
%--------------------------------------------------------------------------------------
@@ -627,7 +363,7 @@ and can be used by the user for coloring lines or text.
\begin{LTXexample}[width=6cm]
\begin{pspicture}(-3,-3)(3,3)
-\psChart[chartColor=color]{ 45, 90 }{ 1 }{2}
+\psChart[chartColor=color]{45,90}{1}{2}
\ncline[linecolor=-chartFillColor1,
nodesepB=-20pt]{psChartO1}{psChart1}
\rput[l](psChartO1){%
@@ -686,6 +422,7 @@ and can be used by the user for coloring lines or text.
\rput(psChartI4){Car}\rput(psChartI5){Gas}\rput(psChartI6){Food}
\end{pspicture}
%\end{LTXexample}
+\psset{unit=1cm}
\begin{lstlisting}
\psset{unit=1.5}
@@ -736,33 +473,10 @@ and can be used by the user for coloring lines or text.
%--------------------------------------------------------------------------------------
\section{\nxLcs{psbrace}}
%--------------------------------------------------------------------------------------
-\subsection{Syntax}
\begin{BDef}
\LcsStar{psbrace}\OptArgs\Largr{A}\Largr{B}\Largb{text}
\end{BDef}
-
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,4)
-\psgrid[subgriddiv=0,griddots=10]
-\pnode(0,0){A}
-\pnode(4,4){B}
-\psbrace[linecolor=red,ref=lC](A)(B){Text I}
-\psbrace*[linecolor=blue,ref=lC](3,4)(0,1){Text II}
-\psbrace[fillcolor=white](3,0)(3,4){III}
-\end{pspicture}
-\end{LTXexample}
-
-\bigskip
-The option \Lcs{specialCoor} is enabled, so that all types of coordinates
-are possible, (nodename), ($x,y$), ($nodeA|nodeB$), \ldots
-The star version fills the inner of the \Index{brace} with the current linecolor.
-With the fillcolor \verb+white+ or any other background color the brace can
-be "`unfilled"'.
-%--------------------------------------------------------------------------------------
-\subsection{Options}
-%--------------------------------------------------------------------------------------
-
Additional to all other available options from \LPack{pstricks} or the other
related packages, there are two new option, named \Lkeyword{braceWidth} and
\Lkeyword{bracePos}. All important ones are shown in the following graphics
@@ -811,9 +525,25 @@ reference point can be any value of the combination of \Lkeyval{l}
(Baseline) or \Lkeyval{C} (center) or \Lkeyval{t} (top), where the
default is \Lkeyval{c}, the center of the object.
-%--------------------------------------------------------------------------------------
-%\subsection{Examples}
-%--------------------------------------------------------------------------------------
+
+
+\begin{LTXexample}[width=4.5cm]
+\begin{pspicture}(4,4)
+\psgrid[subgriddiv=0,griddots=10]
+\pnode(0,0){A}
+\pnode(4,4){B}
+\psbrace[linecolor=red,ref=lC](A)(B){Text I}
+\psbrace*[linecolor=blue,ref=lC](3,4)(0,1){Text II}
+\psbrace[fillcolor=white](3,0)(3,4){III}
+\end{pspicture}
+\end{LTXexample}
+
+\bigskip
+The option \Lcs{specialCoor} is enabled, so that all types of coordinates
+are possible, (nodename), ($x,y$), ($nodeA|nodeB$), \ldots
+The star version fills the inner of the \Index{brace} with the current linecolor.
+With the fillcolor \verb+white+ or any other background color the brace can
+be "`unfilled"'.
\begin{LTXexample}
\begin{pspicture}(8,2.5)
@@ -891,11 +621,13 @@ default is \Lkeyval{c}, the center of the object.
\end{LTXexample}
+\clearpage
It is also possible to put a vertical brace around a
default paragraph. This works by setting two invisible nodes at
the beginning and the end of the paragraph. Indentation is
possible with a minipage.
+\small
Some nonsense text, which is nothing more than nonsense.
Some nonsense text, which is nothing more than nonsense.
@@ -933,6 +665,8 @@ Some nonsense text, which is nothing more than nonsense.
\noindent\rnode{B}{}\psbrace[linecolor=red](A)(B){}
\end{minipage}
+\normalsize
+
\begin{lstlisting}
Some nonsense text, which is nothing more than nonsense.
Some nonsense text, which is nothing more than nonsense.
@@ -973,6 +707,7 @@ Some nonsense text, which is nothing more than nonsense.
\clearpage
+
%--------------------------------------------------------------------------------------
\section{Random dots}
%--------------------------------------------------------------------------------------
@@ -1037,7 +772,7 @@ name & default\\\hline
\clearpage
%--------------------------------------------------------------------------------------
-\section{Dice}
+\section{\nxLcs{psDice}}
%--------------------------------------------------------------------------------------
\Lcs{psdice} creates the view of a dice. The number on the dice is the only parameter.
The optional parameters, like the color can be used as usual. The macro is a box of
@@ -1084,741 +819,6 @@ the dice $1\mathrm{cm}\times1\mathrm{cm}$.
\clearpage
%--------------------------------------------------------------------------------------
-\section{Arrows}
-%--------------------------------------------------------------------------------------
-\subsection{Definition}
-%--------------------------------------------------------------------------------------
-\LPack{pstricks-add} defines the following "`arrows"':
-
-\begin{center}
- \bgroup
- \def\myline#1{\psline[linecolor=red,linewidth=0.5pt,arrowscale=1.5]{#1}(0,1ex)(1.3,1ex)}%
- \psset{arrowscale=1.5}
- \begin{tabular}{@{} c @{\qquad} p{3cm} l @{}}%
- Value & Example & Name \\[2pt]\hline
- \Lnotation{-} & \myline{-} & None\\
- \Lnotation{<->} & \myline{<->} & Arrowheads.\\
- \Lnotation{>-<} & \myline{>-<} & Reverse arrowheads.\\
- \Lnotation{<{<}-{>}>} & \myline{<<->>} & Double arrowheads.\\
- \Lnotation{{>}>-{<}<} & \myline{>>-<<} & Double reverse arrowheads.\\
- \Lnotation{{|}-{|}} & \myline{|-|} & T-bars, flush to endpoints.\\
- \Lnotation{{|}*-{|}*} & \myline{|*-|*} & T-bars, centered on endpoints.\\
- \Lnotation{[-]} & \myline{[-]} & Square brackets.\\
- \Lnotation{]-[} & \myline{]-[} & Reversed square brackets.\\
- \Lnotation{(-)} & \myline{(-)} & Rounded brackets.\\
- \Lnotation{)-(} & \myline{)-(} & Reversed rounded brackets.\\
- \Lnotation{o-o} & \myline{o-o} & Circles, centered on endpoints.\\
- \Lnotation{*-*} & \myline{*-*} & Disks, centered on endpoints.\\
- \Lnotation{oo-oo} & \myline{oo-oo} & Circles, flush to endpoints.\\
- \Lnotation{**-**} & \myline{**-**} & Disks, flush to endpoints.\\
- \Lnotation{{|}<->{|}} & \myline{|<->|} & T-bars and arrows.\\
- \Lnotation{{|}>-<{|}} & \myline{|>-<|} & T-bars and reverse arrows.\\
- \Lnotation{h-h{|}} & \myline{h-h} & left/right hook arrows.\\
- \Lnotation{H-H{|}} & \myline{H-H} & left/right hook arrows.\\
- \Lnotation{v-v|} & \myline{v-v} & left/right inside vee arrows.\\
- \Lnotation{V-V|} & \myline{V-V} & left/right outside vee arrows.\\
- \Lnotation{f-f|} & \myline{f-f} & left/right inside filled arrows.\\
- \Lnotation{F-F|} & \myline{F-F} & left/right outside filled arrows.\\
- \Lnotation{t-t|} & \myline{t-t} & left/right inside slash arrows.\\[5pt]
- \Lnotation{T-T|} & \myline{T-T} & left/right outside slash arrows.\\
- \end{tabular}
- \egroup
-\end{center}
-
-
-
-You can also mix and match, e.g., \Lnotation{->}, \Lnotation{*-)} and \Lnotation{[->} are all valid values
-of the \Lkeyword{arrows} parameter. The parameter can be set with
-
-\begin{BDef}
-\Lcs{psset}\Largb{arrows=<type>}
-\end{BDef}
-
-\noindent or for some macros with a special option, like\\[5pt]
-\noindent\verb|\psline[<general options>]{<arrow type>}(A)(B)|\\
-\noindent\verb/\psline[linecolor=red,linewidth=2pt]{|->}(0,0)(0,2)/ \ \psline[linecolor=red,linewidth=2pt]{|->}(0,0)(0,2)
-
-\subsection{Multiple arrows}
-There are two new options which are only valid for the arrow type \verb+<<+ or \verb+>>+.
-\verb+nArrow+ sets both, the \verb+nArrowA+ and the \verb+nArrowB+ parameter. The meaning
-is declared in the following tables. Without setting one of these parameters the behaviour
-is like the one described in the old PSTricks manual.
-
-\begin{center}
-\begin{tabular}{@{}lc@{}}%
- Value & Meaning \\[2pt]\hline
- \Lnotation{-{>}>} & \ -A \\
- \Lnotation{{<}<-{>}>} & A-A\\
- \Lnotation{{<}<-} & A-\ \\
- \Lnotation{{>}>-} & B-\ \\
- \Lnotation{-{<}<} & \ -B\\
- \Lnotation{{>}>-{<}<} & B-B\\
- \Lnotation{{>}>-{>}>} & B-A\\
- \Lnotation{{<}<-{<}<} & A-B
- \end{tabular}
-\end{center}
-
-
-
-
-\begin{center}
- \bgroup
- \psset{linecolor=red,linewidth=1pt,arrowscale=2}%
- \begin{tabular}{lp{2.8cm}}%
- Value & Example \\[2pt]\hline
- \verb+\psline{->>}(0,1ex)(2.3,1ex)+ & \psline{->>}(0,1ex)(2.3,1ex) \\
- \verb+\psline[nArrowsA=3]{->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{->>}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=5]{->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{->>}(0,1ex)(2.3,1ex)\\
- \verb+\psline{<<-}(0,1ex)(2.3,1ex)+ & \psline{<<-}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=3]{<<-}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<-}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=5]{<<-}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<-}(0,1ex)(2.3,1ex)\\
- \verb+\psline{<<->>}(0,1ex)(2.3,1ex)+ & \psline{<<->>}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=3]{<<->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<->>}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=5]{<<->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<->>}(0,1ex)(2.3,1ex)\\
- \verb+\psline{<<-|}(0,1ex)(2.3,1ex)+ & \psline{<<-|}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=3]{<<-<<}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<-<<}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=5]{<<-o}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<-o}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=3,nArrowsB=4]{<<-<<}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3,nArrowsB=4]{<<-<<}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=3,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)\\
- \verb+\psline[nArrowsA=1,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=1,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)\\
- \end{tabular}
- \egroup
-\end{center}
-
-
-
-\subsection{\texttt{hookarrow}}
-%\begin{LTXexample}
-\bgroup
-\psset{arrowsize=8pt,arrowlength=1,linewidth=1pt,nodesep=2pt,shortput=tablr}
-\large
-\begin{psmatrix}[colsep=12mm,rowsep=10mm]
- & & $R_2$ \\
- & & 0 & & $R_3$\\
-$e_b:S$ & 1 & & 1 & 0 \\
- & & 0 \\
- & & $R_1$ \\
-\end{psmatrix}
-\ncline{h-}{1,3}{2,3}<{$e_{r2}$}>{$f_{r2}$}
-\ncline{-h}{2,3}{3,2}<{$e_1$}
-\ncline{-h}{3,1}{3,2}^{$e_s$}_{$f_{s}$}
-\ncline{-h}{3,2}{4,3}>{$e_3$}<{$f_3$}
-\ncline{-h}{4,3}{3,4}>{$e_4$}<{$f_4$}
-\ncline{-h}{3,4}{2,3}>{$e_2$}<{$f_2$}
-\ncline{-h}{3,4}{3,5}^{$e_5$}
-\ncline{-h}{3,5}{2,5}<{$e_{r3}$}>{$f_{r3}$}
-\ncline{-h}{4,3}{5,3}<{$e_{r1}$}>{$f_{r1}$}
-%\end{LTXexample}
-\egroup
-
-\begin{lstlisting}
-\psset{arrowsize=8pt,arrowlength=1,linewidth=1pt,nodesep=2pt,shortput=tablr}
-\large
-\begin{psmatrix}[colsep=12mm,rowsep=10mm]
- & & $R_2$ \\
- & & 0 & & $R_3$\\
-$e_b:S$ & 1 & & 1 & 0 \\
- & & 0 \\
- & & $R_1$ \\
-\end{psmatrix}
-\ncline{h-}{1,3}{2,3}<{$e_{r2}$}>{$f_{r2}$}\ncline{-h}{2,3}{3,2}<{$e_1$}
-\ncline{-h}{3,1}{3,2}^{$e_s$}_{$f_{s}$} \ncline{-h}{3,2}{4,3}>{$e_3$}<{$f_3$}
-\ncline{-h}{4,3}{3,4}>{$e_4$}<{$f_4$} \ncline{-h}{3,4}{2,3}>{$e_2$}<{$f_2$}
-\ncline{-h}{3,4}{3,5}^{$e_5$}
-\ncline{-h}{3,5}{2,5}<{$e_{r3}$}>{$f_{r3}$}
-\ncline{-h}{4,3}{5,3}<{$e_{r1}$}>{$f_{r1}$}
-\end{lstlisting}
-
-
-
-\subsection{\texttt{hookrightarrow} and \texttt{hookleftarrow}}
-This is another type of arrow and is abbreviated with \Lnotation{H}.
-The length and width of the hook is set by the new options
-\Lkeyword{hooklength} and \Lkeyword{hookwidth}, which are by default set
-to
-%
-\begin{BDef}
-\Lcs{psset}\Largb{hooklength=3mm,hookwidth=1mm}
-\end{BDef}
-%
-If the line begins with a right hook then the line ends with a left hook and vice versa:
-
-\begin{LTXexample}[width=3cm]
-\begin{pspicture}(3,4)
-\psline[linewidth=5pt,linecolor=blue,hooklength=5mm,hookwidth=-3mm]{H->}(0,3.5)(3,3.5)
-\psline[linewidth=5pt,linecolor=red,hooklength=5mm,hookwidth=3mm]{H->}(0,2.5)(3,2.5)
-\psline[linewidth=5pt,hooklength=5mm,hookwidth=3mm]{H-H}(0,1.5)(3,1.5)
-\psline[linewidth=1pt]{H-H}(0,0.5)(3,0.5)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=7.25cm]
-$\begin{psmatrix}
-E&W_i(X)&&Y\\
-&&W_j(X)
-\psset{arrows=->,nodesep=3pt,linewidth=2pt}
-\everypsbox{\scriptstyle}
-\ncline[linecolor=red,arrows=H->,%
- hooklength=4mm,hookwidth=2mm]{1,1}{1,2}
-\ncline{1,2}{1,4}^{\tilde{t}}
-\ncline{1,2}{2,3}<{W_{ij}}
-\ncline{2,3}{1,4}>{\tilde{s}}
-\end{psmatrix}$
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLkeyword{ArrowInside} Option}
-%--------------------------------------------------------------------------------------
-
-It is now possible to have arrows inside lines and not only at the
-beginning or the end. The new defined options
-
-\psset{arrowscale=2,linecolor=red,unit=1cm,linewidth=1.5pt}
-\begin{longtable}{l|>{\RaggedRight}p{8.5cm}|p{2.2cm}}
-Name & Example & Output\\\hline
-\endfirsthead
-Name & Example & Output\\\hline
-\endhead
-\Lkeyword{ArrowInside} &
- \texttt{\textbackslash psline[ArrowInside=->](0,0)(2,0)} &
- \psline[ArrowInside=->](0,0.1)(2,0.1) \\
-\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsidePos=0.25](0,0)(2,0)}
-& \psline[ArrowInside=->, ArrowInsidePos=0.25](0,0.1)(2,0.1) \\
-\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsidePos=10](0,0)(2,0)}
-& \psline[ArrowInside=->, ArrowInsidePos=10](0,0.1)(2,0.1) \\
-\Lkeyword{ArrowInsideNo} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsideNo=2](0,0)(2,0)}
-& \psline[ArrowInside=->, ArrowInsideNo=2](0,0.1)(2,0.1) \\
-\Lkeyword{ArrowInsideOffset} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsideNo=2,\%}\newline
- \hspace*{20pt}\texttt{ArrowInsideOffset=0.1](0,0)(2,0)}
-& \psline[ArrowInside=->, ArrowInsideNo=2,ArrowInsideOffset=0.1](0,0.1)(2,0.1) \\
-%
-\Lkeyword{ArrowInside} & \texttt{\textbackslash psline[ArrowInside=->]\{->\}(0,0)(2,0)} &
- \psline[ArrowInside=->]{->}(0,0)(2,0)\\
-\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsidePos=0.25]\{->\}(0,0)(2,0)}
- & \psline[ArrowInside=->, ArrowInsidePos=0.25]{->}(0,0)(2,0) \\
-\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsidePos=10]\{->\}(0,0)(2,0)}
- & \psline[ArrowInside=->, ArrowInsidePos=10]{->}(0,0)(2,0) \\
-\Lkeyword{ArrowInsideNo} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsideNo=2]\{->\}(0,0)(2,0)}
- & \psline[ArrowInside=->, ArrowInsideNo=2]{->}(0,0)(2,0) \\
-\Lkeyword{ArrowInsideOffset} & \texttt{\textbackslash psline[ArrowInside=->,\%}
- \hspace*{20pt}\texttt{ArrowInsideNo=2,\%}\newline
- \hspace*{20pt}\texttt{ArrowInsideOffset=0.1]\{->\}(0,0)(2,0)}
- & \psline[ArrowInside=->, ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(0,0)(2,0) \\
-%
-\Lkeyword{ArrowFill} & \texttt{\textbackslash psline[ArrowFill=false,\%}
- \hspace*{20pt}\texttt{arrowinset=0]\{->\}(0,0)(2,0)} &
- \psline[ArrowFill=false,arrowinset=0]{->}(0,0)(2,0)\\
-\Lkeyword{ArrowFill} & \texttt{\textbackslash psline[ArrowFill=false,\%}
- \hspace*{20pt}\texttt{arrowinset=0]\{<<->>\}(0,0)(2,0)} &
- \psline[ArrowFill=false,arrowinset=0]{<<->>}(0,0)(2,0)\\
-\Lkeyword{ArrowFill} & \texttt{\textbackslash psline[ArrowInside=->,\%}\newline
- \hspace*{20pt}\texttt{arrowinset=0,\%}\newline
- \hspace*{20pt}\texttt{ArrowFill=false,\%}\newline
- \hspace*{20pt}\texttt{ArrowInsideNo=2,\%}\newline
- \hspace*{20pt}\texttt{ArrowInsideOffset=0.1]\{->\}(0,0)(2,0)}
- & \psline[ArrowInside=->, ArrowFill=false,ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(0,0)(2,0) \\
-\end{longtable}
-
-\medskip
-Without the default arrow definition there is only the one inside
-the line, defined by the type and the position. The position is
-relative to the length of the whole line. $0.25$ means at $25\%$
-of the line length. The peak of the arrow gets the coordinates
-which are calculated by the macro. If you want arrows with an
-absolute position difference, then choose a value greater than
-\verb|1|, e.\,g. \verb|10| which places an arrow every 10~pt. The
-default unit \verb|pt| cannot be changed.
-
-\medskip
-\noindent
-\begin{tabularx}{\linewidth}{@{\color{red}\vrule width 2pt}lX@{}}
-& The \Lkeyword{ArrowInside} takes only arrow definitions like \Lnotation{->} into account.
-Arrows from right to left (\Lnotation{<-}) are not possible and ignored. If you need
-such arrows, change the order of the pairs of coordinates for the line or curve macro.
-\end{tabularx}
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLkeyword{ArrowFill} Option}
-%--------------------------------------------------------------------------------------
-
-By default all arrows are filled polygons. With the option
-\Lkeyset{ArrowFill=false} there are ''white`` arrows. Only for the
-beginning/end arrows are they empty, the inside arrows are
-overpainted by the line.
-
-
-\psset{arrowscale=1}
-\begin{LTXexample}[width=3.5cm]
-\psset{arrowscale=2.5}
-\psline[linecolor=red,arrowinset=0]{<->}(-1,0)(2,0)
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psset{arrowscale=2.5}
-\psline[linecolor=red,arrowinset=0,ArrowFill=false]{<->}(-1,0)(2,0)
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psset{arrowscale=2.5}
-\psline[linecolor=red,arrowinset=0,arrowsize=0.2,
- ArrowFill=false]{<->}(-1,0)(2,0)
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psline[linecolor=blue,arrowscale=4,
- ArrowFill]{>>->>}(-1,0)(2,0)
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psline[linecolor=blue,arrowscale=4,
- ArrowFill=false]{>>->>}(-1,0)(2,0)
-\rule{3cm}{0pt}\\[30pt]
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psline[linecolor=blue,arrowscale=4,
- ArrowFill]{>|->|}(-1,0)(2,0)
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psline[linecolor=blue,arrowscale=4,
- ArrowFill=false]{>|->|}(-1,0)(2,0)%
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{Examples}
-%--------------------------------------------------------------------------------------
-
-All examples are printed with \verb|\psset{arrowscale=2,linecolor=red}|.
-\subsubsection{\nxLcs{psline}}
-
-\bigskip
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=->]{|<->|}(2,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=-|]{|-|}(2,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=->,ArrowInsideNo=2]{->}(2,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=->,ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(2,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=-*]{->}(0,0)(2,1)(3,0)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=-*,ArrowInsidePos=0.25]{->}(0,0)(2,1)(3,0)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=-*,ArrowInsidePos=0.25,ArrowInsideNo=2]{->}%
- (0,0)(2,1)(3,0)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=->, ArrowInsidePos=0.25]{->}%
- (0,0)(2,1)(3,0)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[linestyle=none,ArrowInside=->,ArrowInsidePos=0.25]{->}%
- (0,0)(2,1)(3,0)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=-<, ArrowInsidePos=0.75]{->}%
- (0,0)(2,1)(3,0)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true,ArrowInside=-*}
-\psline(0,0)(2,1)(3,0)(4,0)(6,2)
-\psset{linestyle=none}
-\psline[ArrowInsidePos=0](0,0)(2,1)(3,0)(4,0)(6,2)
-\psline[ArrowInsidePos=1](0,0)(2,1)(3,0)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,5)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=->,ArrowInsidePos=20](0,0)(3,0)%
- (3,3)(1,3)(1,5)(5,5)(5,0)(7,0)(6,3)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,2)
-\psset{arrowscale=2,ArrowFill=true}
-\psline[ArrowInside=-|]{<->}(0,2)(2,0)(3,2)(4,0)(6,2)
-\end{pspicture}
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsubsection{\nxLcs{pspolygon}}
-%--------------------------------------------------------------------------------------
-% Polygons (\pspolygon macro)
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,3)
-\psset{arrowscale=2}
-\pspolygon[ArrowInside=-|](0,0)(3,3)(6,3)(6,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,3)
-\psset{arrowscale=2}
-\pspolygon[ArrowInside=->,ArrowInsidePos=0.25]%
- (0,0)(3,3)(6,3)(6,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,3)
-\psset{arrowscale=2}
-\pspolygon[ArrowInside=->,ArrowInsideNo=4]%
- (0,0)(3,3)(6,3)(6,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,3)
-\psset{arrowscale=2}
-\pspolygon[ArrowInside=->,ArrowInsideNo=4,%
- ArrowInsideOffset=0.1](0,0)(3,3)(6,3)(6,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,3)
-\psset{arrowscale=2}
- \pspolygon[ArrowInside=-|](0,0)(3,3)(6,3)(6,1)
- \psset{linestyle=none,ArrowInside=-*}
- \pspolygon[ArrowInsidePos=0](0,0)(3,3)(6,3)(6,1)
- \pspolygon[ArrowInsidePos=1](0,0)(3,3)(6,3)(6,1)
- \psset{ArrowInside=-o}
- \pspolygon[ArrowInsidePos=0.25](0,0)(3,3)(6,3)(6,1)
- \pspolygon[ArrowInsidePos=0.75](0,0)(3,3)(6,3)(6,1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\begin{pspicture}(6,5)
-\psset{arrowscale=2}
- \pspolygon[ArrowInside=->,ArrowInsidePos=20]%
- (0,0)(3,0)(3,3)(1,3)(1,5)(5,5)(5,0)(7,0)(6,3)
-\end{pspicture}
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsubsection{\nxLcs{psbezier}}
-%--------------------------------------------------------------------------------------
-% Bezier curves (\psbezier macro)
-
-\resetOptions
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(3,3)
-\psset{arrowscale=2}
- \psbezier[ArrowInside=-|](0,1)(1,0)(2,1)(3,3)
- \psset{linestyle=none,ArrowInside=-o}
- \psbezier[ArrowInsidePos=0.25](0,1)(1,0)(2,1)(3,3)
- \psbezier[ArrowInsidePos=0.75](0,1)(1,0)(2,1)(3,3)
- \psset{linestyle=none,ArrowInside=-*}
- \psbezier[ArrowInsidePos=0](0,1)(1,0)(2,1)(3,3)
- \psbezier[ArrowInsidePos=1](0,1)(1,0)(2,1)(3,3)
-\end{pspicture}
-\end{LTXexample}
-
-
-\resetOptions
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,3)
-\psset{arrowscale=2}
- \psbezier[ArrowInside=->,showpoints=true]%
- {*-*}(0,0)(2,3)(3,0)(4,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,3)
-\psset{arrowscale=2}
- \psbezier[ArrowInside=->,showpoints=true,
- ArrowInsideNo=2](0,0)(2,3)(3,0)(4,2)
-\end{pspicture}
-\end{LTXexample}
-
-
-\resetOptions
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,3)
-\psset{arrowscale=2}
- \psbezier[ArrowInside=->,showpoints=true,
- ArrowInsideNo=2,ArrowInsideOffset=-0.2]%
- {->}(0,0)(2,3)(3,0)(4,2)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=5.5cm]
-\begin{pspicture}(5,3)
-\psset{arrowscale=2}
- \psbezier[ArrowInsideNo=9,ArrowInside=-|,%
- showpoints=true]{*-*}(0,0)(1,3)(3,0)(5,3)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,3)
-\psset{arrowscale=2}
- \psset{ArrowInside=-|}
- \psbezier[ArrowInsidePos=0.25,showpoints=true]{*-*}(2,3)(3,0)(4,2)
- \psset{linestyle=none}
- \psbezier[ArrowInsidePos=0.75](0,0)(2,3)(3,0)(4,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=5.5cm]
-\begin{pspicture}(5,6)
-\psset{arrowscale=2}
- \pnode(3,4){A}\pnode(5,6){B}\pnode(5,0){C}
- \psbezier[ArrowInside=->,%
- showpoints=true](A)(B)(C)
- \psset{linestyle=none,ArrowInside=-<}
- \psbezier[ArrowInsideNo=4](0,0)(A)(B)(C)
- \psset{ArrowInside=-o}
- \psbezier[ArrowInsidePos=0.1](0,0)(A)(B)(C)
- \psbezier[ArrowInsidePos=0.9](0,0)(A)(B)(C)
- \psset{ArrowInside=-*}
- \psbezier[ArrowInsidePos=0.3](0,0)(A)(B)(C)
- \psbezier[ArrowInsidePos=0.7](0,0)(A)(B)(C)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[pos=t]
-\begin{pspicture}(-3,-5)(15,5)
- \psbezier[ArrowInsideNo=19,%
- ArrowInside=->,ArrowFill=false,%
- showpoints=true]{->}(-3,0)(5,-5)(8,5)(15,-5)
-\end{pspicture}
-\end{LTXexample}
-
-
-
-%--------------------------------------------------------------------------------------
-\subsubsection{\nxLcs{pcline}}
-%--------------------------------------------------------------------------------------
-These examples need the package \verb|pst-node|.
-
-% Lines (\pcline macro)
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,1)
-\psset{arrowscale=2}
-\pcline[ArrowInside=->](0,0)(2,1)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,1)
-\psset{arrowscale=2}
-\pcline[ArrowInside=->]{<->}(0,0)(2,1)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,1)
-\psset{arrowscale=2}
-\pcline[ArrowInside=-|,ArrowInsidePos=0.75]{|-|}(0,0)(2,1)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=2.5cm]
-\psset{arrowscale=2}
-\pcline[ArrowInside=->,ArrowInsidePos=0.65]{*-*}(0,0)(2,0)
-\naput[labelsep=0.3]{\large$g$}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=2.5cm]
-\psset{arrowscale=2}
-\pcline[ArrowInside=->,ArrowInsidePos=10]{|-|}(0,0)(2,0)
-\naput[labelsep=0.3]{\large$l$}
-\end{LTXexample}
-
-
-
-%--------------------------------------------------------------------------------------
-\subsubsection{\nxLcs{pccurve}}
-%--------------------------------------------------------------------------------------
-These examples also need the package \verb|pst-node|.
-
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,2)
-\psset{arrowscale=2}
-\pccurve[ArrowInside=->,ArrowInsidePos=0.65,showpoints=true]{*-*}(0,0)(2,2)
-\naput[labelsep=0.3]{\large$h$}
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=2.5cm]
-\begin{pspicture}(2,2)
-\psset{arrowscale=2}
-\pccurve[ArrowInside=->,ArrowInsideNo=3,showpoints=true]{|->}(0,0)(2,2)
-\naput[labelsep=0.3]{\large$i$}
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,4)
-\psset{arrowscale=2}
-\pccurve[ArrowInside=->,ArrowInsidePos=20]{|-|}(0,0)(4,4)
-\naput[labelsep=0.3]{\large$k$}
-\end{pspicture}
-\end{LTXexample}
-
-\clearpage
-
-\subsection{Special arrows \texttt{v--V},\texttt{t--T}, and \texttt{f--F}}
-
-Possible optional arguments are
-
-\psset{linecolor=black}
-
-\begin{center}
-\begin{tabular}{l|l}
-name & meaning\\\hline
-\Lkeyword{veearrowlength} & default is 3mm\\
-\Lkeyword{veearrowangle} & default is 30\\
-\Lkeyword{veearrowlinewidth} & default is 0.35mm\\
-\Lkeyword{filledveearrowlength} & default is 3mm\\
-\Lkeyword{filledveearrowangle} & default is 15\\
-\Lkeyword{filledveearrowlinewidth} & default is 0.35mm\\
-\Lkeyword{tickarrowlength} & default is 1.5mm\\
-\Lkeyword{tickarrowlinewidth} & default is 0.35mm\\
-\end{tabular}
-\end{center}
-
-
-\begin{LTXexample}[width=4cm]
-\psset{unit=5mm}
-\begin{pspicture}(4,6)
- \psset{dimen=middle,arrows=c-c,
- arrowscale=2,linewidth=.25mm}
- \psline[linecolor=red,linewidth=.05mm](0,0)(0,6)
- \psline[linecolor=red,linewidth=.05mm](4,0)(4,6)
- \psline{v-v}(0,6)(4,6)
- \psline{v-V}(0,4)(4,4)
- \psline{V-v}(0,2)(4,2)
- \psline{V-V}(0,0)(4,0)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=4cm]
-\psset{unit=5mm}
-\begin{pspicture}(4,6)
- \psset{dimen=middle,arrows=c-c,
- arrowscale=2,linewidth=.25mm}
- \psline[linecolor=red,linewidth=.05mm](0,0)(0,6)
- \psline[linecolor=red,linewidth=.05mm](4,0)(4,6)
- \psline{f-f}(0,6)(4,6)
- \psline{f-F}(0,4)(4,4)
- \psline{F-f}(0,2)(4,2)
- \psline{F-F}(0,0)(4,0)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=4cm]
-\psset{unit=5mm}
-\begin{pspicture}(4,6)
- \psset{dimen=middle,arrows=c-c,linewidth=.25mm}
- \psline[linecolor=red,linewidth=.05mm](0,0)(0,6)
- \psline[linecolor=red,linewidth=.05mm](4,0)(4,6)
- \psline{t-t}(0,6)(4,6)
- \psline{t-T}(0,4)(4,4)
- \psline{T-t}(0,2)(4,2)
- \psline{T-T}(0,0)(4,0)
-\end{pspicture}
-\end{LTXexample}
-
-\subsection{Special arrow option \texttt{arrowLW}}
-
-Only for the arrowtype \Lnotation{o} and \Lnotation{*} it is possible to
-set the arrowlinewidth with the optional keyword \Lkeyword{arrowLW}.
-When scaling an arrow by the keyword \Lkeyword{arrowscale} the width
-of the borderline is also scaled. With the optional argument
-\Lkeyword{arrowLW} the line width can be set separately and is not
-taken into account by the scaling value.
-
-\begin{LTXexample}[width=4cm]
-\begin{pspicture}(4,6)
-\psline[arrowscale=3,arrows=*-o](0,5)(4,5)
-\psline[arrowscale=3,arrows=*-o,
- arrowLW=0.5pt](0,3)(4,3)
-\psline[arrowscale=3,arrows=*-o,
- arrowLW=0.3333\pslinewidth](0,1)(4,1)
-\end{pspicture}
-\end{LTXexample}
-
-
-\clearpage
-%--------------------------------------------------------------------------------------
\section{\nxLcs{psFormatInt}}
%--------------------------------------------------------------------------------------
There exist some packages and a lot of code to format an integer like $1\,000\,000$
@@ -1838,491 +838,7 @@ has a macro \Lcs{psFormatInt} which can handle both:
With the option \Lkeyword{intSeparator} the symbol can be changed to any any non-number character.
-%--------------------------------------------------------------------------------------
-\section{Color}
-%--------------------------------------------------------------------------------------
-%--------------------------------------------------------------------------------------
-\subsection{Transparent colors}
-%--------------------------------------------------------------------------------------
-
-Transparency is now part of the main \texttt{pstricks} package.
-But pay attention, the names and syntax have changed and you need
-to run \Lprog{ps2pdf} with the option
-\Loption{-dCompatibilityLevel}=1.4.
-
-
-%--------------------------------------------------------------------------------------
-\subsection{,,Manipulating transparent colors''}
-%--------------------------------------------------------------------------------------
-
-\LPack{pstricks-add} supports real transparency and a simulated one with hatch lines:
-\begin{lstlisting}
-\def\defineTColor{\@ifnextchar[{\defineTColor@i}{\defineTColor@i[]}}
-\def\defineTColor@i[#1]#2#3{% transparency "Colors"
- \newpsstyle{#2}{%
- fillstyle=vlines,hatchwidth=0.1\pslinewidth,
- hatchsep=1\pslinewidth,hatchcolor=#3,#1%
- }%
-}
-\defineTColor{TRed}{red}
-\defineTColor{TGreen}{green}
-\defineTColor{TBlue}{blue}
-\end{lstlisting}
-
-There are three predefined "'transparent"` colors \verb+TRed+,
-\verb+TGreen+, \verb+TBlue+. They are used as \PST{} styles and
-not as colors:
-
-\resetOptions
-\bgroup
-\begin{LTXexample}[pos=t,preset=\centering]
-\begin{pspicture}(-3,-5)(5,5)
-\psframe(-1,-3)(5,5) % objet de base
-\psrotate(2,-2){15}{%
- \psframe[style=TRed](-1,-3)(5,5)}
-\psrotate(2,-2){30}{%
- \psframe[style=TGreen](-1,-3)(5,5)}
-\psrotate(2,-2){45}{%
- \psframe[style=TBlue](-1,-3)(5,5)}
-\psframe[linewidth=3pt](-1,-3)(5,5)
-\psdots[dotstyle=+,dotangle=45,dotscale=3](2,-2) % centre de la rotation
-\end{pspicture}
-\end{LTXexample}
-\egroup
-
-%--------------------------------------------------------------------------------------
-\subsection{Calculated colors}
-%--------------------------------------------------------------------------------------
-The \verb+xcolor+ package (version 2.6) has a new feature for defining colors:
-\begin{lstlisting}[style=syntax]
- \definecolor[ps]{<name>}{<model>}{< PS code >}
-\end{lstlisting}
-
-\verb+model+ can be one of the color models, which \PS will
-understand, e.g. \verb+rgb+. With this definition the color is
-calculated on the \PS side.
-\begin{LTXexample}[pos=t,preset=\centering]
-\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}%
-\psset{unit=1bp}
-\begin{pspicture}(0,-30)(400,100)
-\multido{\iLAMBDA=0+1}{400}{%
- \pstVerb{
- \iLAMBDA\space 379 add dup /lambda exch def
- tx@addDict begin wavelengthToRGB end
- }%
- \psline[linecolor=bl](\iLAMBDA,0)(\iLAMBDA,100)%
-}
-\psaxes[yAxis=false,Ox=350,dx=50bp,Dx=50]{->}(-29,-10)(420,100)
-\uput[-90](420,-10){$\lambda$[\textsf{nm}]}
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{center}
-\newcommand{\Touch}{%
-\psframe[linestyle=none,fillstyle=solid,fillcolor=bl,dimen=middle](0.1,0.75)}
-\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}%
-% Echelle 1cm <-> 40 nm
-% 1 nm <-> 0.025 cm
-\psframebox[fillstyle=solid,fillcolor=black]{%
-\begin{pspicture}(-1,-0.5)(12,1.5)
-\multido{\iLAMBDA=380+2}{200}{%
- \pstVerb{
- /lambda \iLAMBDA\space def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! lambda 0.025 mul 9.5 sub 0){\Touch}
-}
-\multido{\n=0+1,\iDiv=380+40}{11}{%
- \psline[linecolor=white](\n,0.1)(\n,-0.1)
- \uput[270](\n,0){\textbf{\white\iDiv}}}
- \psline[linecolor=white]{->}(11,0)
- \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
-\end{pspicture}}
-
-\psframebox[fillstyle=solid,fillcolor=black]{%
-\begin{pspicture}(-1,-0.5)(12,1)
- \pstVerb{
- /lambda 656 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 656 0.025 mul 9.5 sub 0){\Touch}
- \pstVerb{
- /lambda 486 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 486 0.025 mul 9.5 sub 0){\Touch}
- \pstVerb{
- /lambda 434 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 434 0.025 mul 9.5 sub 0){\Touch}
- \pstVerb{
- /lambda 410 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 410 0.025 mul 9.5 sub 0){\Touch}
-\multido{\n=0+1,\iDiv=380+40}{11}{%
- \psline[linecolor=white](\n,0.1)(\n,-0.1)
- \uput[270](\n,0){\textbf{\white\iDiv}}}
- \psline[linecolor=white]{->}(11,0)
- \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
-\end{pspicture}}
-
-\Index{Spectrum} of \Index{hydrogen} emission (Manuel Luque)
-\end{center}
-
-\begin{lstlisting}
-\newcommand{\Touch}{%
-\psframe[linestyle=none,fillstyle=solid,fillcolor=bl,dimen=middle](0.1,0.75)}
-\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}%
-% Echelle 1cm <-> 40 nm
-% 1 nm <-> 0.025 cm
-\psframebox[fillstyle=solid,fillcolor=black]{%
-\begin{pspicture}(-1,-0.5)(12,1.5)
-\multido{\iLAMBDA=380+2}{200}{%
- \pstVerb{
- /lambda \iLAMBDA\space def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! lambda 0.025 mul 9.5 sub 0){\Touch}
-}
-\multido{\n=0+1,\iDiv=380+40}{11}{%
- \psline[linecolor=white](\n,0.1)(\n,-0.1)
- \uput[270](\n,0){\textbf{\white\iDiv}}}
- \psline[linecolor=white]{->}(11,0)
- \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
-\end{pspicture}}
-
-\psframebox[fillstyle=solid,fillcolor=black]{%
-\begin{pspicture}(-1,-0.5)(12,1)
- \pstVerb{
- /lambda 656 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 656 0.025 mul 9.5 sub 0){\Touch}
- \pstVerb{
- /lambda 486 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 486 0.025 mul 9.5 sub 0){\Touch}
- \pstVerb{
- /lambda 434 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 434 0.025 mul 9.5 sub 0){\Touch}
- \pstVerb{
- /lambda 410 def
- lambda
- tx@addDict begin wavelengthToRGB end
- }%
- \rput(! 410 0.025 mul 9.5 sub 0){\Touch}
-\multido{\n=0+1,\iDiv=380+40}{11}{%
- \psline[linecolor=white](\n,0.1)(\n,-0.1)
- \uput[270](\n,0){\textbf{\white\iDiv}}}
- \psline[linecolor=white]{->}(11,0)
- \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
-\end{pspicture}}
-
-Spectrum of hydrogen emission (Manuel Luque)
-\end{lstlisting}
-
-
-
-%--------------------------------------------------------------------------------------
-\subsection{Gouraud shading}
-%--------------------------------------------------------------------------------------
-\begin{quotation}
-\Index{Gouraud} shading is a method used in computer graphics to simulate the differing effects of
-light and colour across the surface of an object. In practice, Gouraud shading is used to
-achieve smooth lighting on low-polygon surfaces without the heavy computational requirements
-of calculating lighting for each pixel. The technique was first presented by Henri Gouraud in 1971.\\
-~\hfill{\small \url{http://www.wikipedia.org}}
-\end{quotation}
-
-PostScript level 3 supports this kind of shading and it can only
-be seen with Acroread 7 or later. The syntax is easy:
-
-\begin{lstlisting}[style=syntax]
- \psGTriangle(x1,y1)(x2,y2)(x3,y3){color1}{color2}{color3}
-\end{lstlisting}
-
-\psset{unit=0.75cm}
-
-\resetOptions
-\begin{LTXexample}[pos=t,preset=\centering]
-\begin{pspicture}(0,-.25)(10,10)
- \psGTriangle(0,0)(5,10)(10,0){red}{green}{blue}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[pos=t,preset=\centering]
-\begin{pspicture}(0,-.25)(10,10)
- \psGTriangle*(0,0)(9,10)(10,3){black}{white!50}{red!50!green!95}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[pos=t,preset=\centering]
-\begin{pspicture}(0,-.25)(10,10)
- \psGTriangle*(0,0)(5,10)(10,0){-red!100!green!84!blue!86}
- {-red!80!green!100!blue!40}
- {-red!60!green!30!blue!100}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[pos=t,preset=\centering]
-\definecolor{rose}{rgb}{1.00, 0.84, 0.88}
-\definecolor{vertpommepasmure}{rgb}{0.80, 1.0, 0.40}
-\definecolor{fushia}{rgb}{0.60, 0.30, 1.0}
-\begin{pspicture}(0,-.25)(10,10)
- \psGTriangle(0,0)(5,10)(10,0){rose}{vertpommepasmure}{fushia}
-\end{pspicture}
-\end{LTXexample}
-
-
-\newpage
-%--------------------------------------------------------------------------------------
-\part{\nxLPack{pst-node}}
-%--------------------------------------------------------------------------------------
-
-%--------------------------------------------------------------------------------------
-\section{Relative nodes with \nxLcs{psGetNodeCenter}}
-%--------------------------------------------------------------------------------------
-The command \Lcs{psGetNodeCenter}\Largb{node} makes sense only at
-the PostScript level. It defines the two variables \Larg{node.x}
-and \Larg{node.y} which can be used to define relative nodes. The
-following example defines the node \verb+MyNode+ and a second one
-relative to the first one, with 4 units left and 4 units up.
-\Larg{node} must be an existing node name.
-
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}[showgrid=true,arrowscale=2](5,5)
-\pnode(4.5,0.5){MyNode}
-\psdot(MyNode)
-\pnode(! \psGetNodeCenter{MyNode}
- MyNode.x 4 sub MyNode.y 4 add){MySecondNode}
-\psdot(MySecondNode)
-\ncline[linecolor=red]{<->}{MyNode}{MySecondNode}
-\end{pspicture}
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\section{\nxLcs{ncdiag} and \nxLcs{pcdiag}}
-%--------------------------------------------------------------------------------------
-With the new option \Lkeyword{lineAngle} the lines drawn by the \Lcs{ncdiag} macro
-can now have a specified gradient. Without this option one has to define the two
-arms (which maybe zero) and PSTricks draws the connection between them. Now there
-is only a static \Lkeyword{armA}, the second one \Lkeyword{armB} is calculated when an angle
-\Lkeyword{lineAngle} is defined. This angle is the gradient of the intermediate line
-between the two arms. The syntax of \Lcs{ncdiag} is
-
-\begin{lstlisting}[style=syntax]
-\ncdiag[<options>]{<Node A>}{<Node B>}
-\pcdiag[<options>](<Node A>)(<Node B>)
-\end{lstlisting}
-
-
-\begin{tabularx}{\linewidth}{l|X}
-name & meaning\\\hline
-\verb|lineAngle| & angle of the intermediate line segment. Default is 0, which is the same
-than using \Lcs{ncdiag} without the \Lkeyword{lineAngle} option.\tabularnewline
-\end{tabularx}
-
-
-\resetOptions
-\begin{LTXexample}[width=5.5cm]
-\begin{pspicture}(5,6)
- \circlenode{A}{A}\quad\circlenode{C}{C}%
- \quad\circlenode{E}{E}
- \rput(0,4){\circlenode{B}{B}}
- \rput(1,5){\circlenode{D}{D}}
- \rput(2,6){\circlenode{F}{F}}
- \psset{arrowscale=2,linearc=0.2,%
- linecolor=red,armA=0.5, angleA=90,angleB=-90}
- \ncdiag[lineAngle=20]{->}{A}{B}
- \ncput*[nrot=:U]{line I}
- \ncdiag[lineAngle=20]{->}{C}{D}
- \ncput*[nrot=:U]{line II}
- \ncdiag[lineAngle=20]{->}{E}{F}
- \ncput*[nrot=:U]{line III}
-\end{pspicture}
-\end{LTXexample}
-
-
-The \Lcs{ncdiag} macro sets the \Lkeyword{armB} dynamically to the calculated value. Any
-user setting of \Lkeyword{armB} is overwritten by the macro. The \Lkeyword{armA} could be set to
-a zero length:
-
-
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,3)
- \rput(0.5,0.5){\circlenode{A}{A}}
- \rput(3.5,3){\circlenode{B}{B}}
- {\psset{linecolor=red,arrows=<-,arrowscale=2}
- \ncdiag[lineAngle=60,%
- armA=0,angleA=0,angleB=180]{A}{B}
- \ncdiag[lineAngle=60,%
- armA=0,angleA=90,angleB=180]{A}{B}}
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,3)
- \rput(1,0.5){\circlenode{A}{A}}
- \rput(4,3){\circlenode{B}{B}}
- {\psset{linecolor=red,arrows=<-,arrowscale=2}
- \ncdiag[lineAngle=60,%
- armA=0.5,angleA=0,angleB=180]{A}{B}
- \ncdiag[lineAngle=60,%
- armA=0,angleA=70,angleB=180]{A}{B}
- \ncdiag[lineAngle=60,%
- armA=0.5,angleA=180,angleB=180]{A}{B}}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=4.5cm]
-\begin{pspicture}(4,5.5)
- \cnode*(0,0){2pt}{A}%
- \cnode*(0.25,0){2pt}{C}%
- \cnode*(0.5,0){2pt}{E}%
- \cnode*(0.75,0){2pt}{G}%
- \cnode*(2,4){2pt}{B}%
- \cnode*(2.5,4.5){2pt}{D}%
- \cnode*(3,5){2pt}{F}%
- \cnode*(3.5,5.5){2pt}{H}%
- {\psset{arrowscale=2,linearc=0.2,%
- linecolor=red,armA=0.5, angleA=90,angleB=-90}
- \pcdiag[lineAngle=20]{->}(A)(B)
- \pcdiag[lineAngle=20]{->}(C)(D)
- \pcdiag[lineAngle=20]{->}(E)(F)
- \pcdiag[lineAngle=20]{->}(G)(H)}
-\end{pspicture}
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\section{\nxLcs{ncdiagg} and \nxLcs{pcdiagg}}
-%--------------------------------------------------------------------------------------
-This is nearly the same as \Lcs{ncdiag} except that
-\Lkeyword{armB}=0 and the \Lkeyword{angleB} value is computed by the
-macro, so that the line ends at the node with an angle like a
-\Lcs{pcdiagg} line. The syntax of \Lcs{ncdiagg}/\Lcs{pcdiagg}
-is
-
-\begin{lstlisting}[style=syntax]
-\ncdiag[<options>]{<Node A>}{<Node B>}
-\pcdiag[<options>](<Node A>)(<Node B>)
-\end{lstlisting}
-
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}(4,6)
- \psset{linecolor=black}
- \circlenode{A}{A}%
- \quad\circlenode{C}{C}%
- \quad\circlenode{E}{E}
- \rput(0,4){\circlenode{B}{B}}
- \rput(1,5){\circlenode{D}{D}}
- \rput(2,6){\circlenode{F}{F}}
- {\psset{arrowscale=2,linearc=0.2,linecolor=red,armA=0.5, angleA=90}
- \ncdiagg[lineAngle=-160]{->}{A}{B}
- \ncput*[nrot=:U]{line I}
- \ncdiagg[lineAngle=-160]{->}{C}{D}
- \ncput*[nrot=:U]{line II}
- \ncdiagg[lineAngle=-160]{->}{E}{F}
- \ncput*[nrot=:U]{line III}}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}(4,6)
- \psset{linecolor=black}
- \cnode*(0,0){2pt}{A}%
- \cnode*(0.25,0){2pt}{C}%
- \cnode*(0.5,0){2pt}{E}%
- \cnode*(0.75,0){2pt}{G}%
- \cnode*(2,4){2pt}{B}%
- \cnode*(2.5,4.5){2pt}{D}%
- \cnode*(3,5){2pt}{F}%
- \cnode*(3.5,5.5){2pt}{H}%
- {\psset{arrowscale=2,linearc=0.2,linecolor=red,armA=0.5, angleA=90}
- \pcdiagg[lineAngle=20]{->}(A)(B)
- \pcdiagg[lineAngle=20]{->}(C)(D)
- \pcdiagg[lineAngle=20]{->}(E)(F)
- \pcdiagg[lineAngle=20]{->}(G)(H)}
-\end{pspicture}
-\end{LTXexample}
-
-The only catch for \Lcs{ncdiagg} is that you need the right
-value for \Lkeyword{lineAngle}. If the node connection is on the wrong
-side of the second node, then choose the corresponding angle,
-e.\,g.: if $20$ is wrong then take $-160$, which differs by $180$.
-
-
-\begin{LTXexample}[width=4cm]
-\begin{pspicture}(4,1.5)
- \circlenode{a}{A}
- \rput[l](3,1){\rnode{b}{H}}
- \ncdiagg[lineAngle=60,angleA=180,armA=.5,nodesepA=3pt,linecolor=blue]{b}{a}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=4cm]
-\begin{pspicture}(4,1.5)
- \circlenode{a}{A}
- \rput[l](3,1){\rnode{b}{H}}
- \ncdiagg[lineAngle=60,armA=.5,nodesepB=3pt,linecolor=blue]{a}{b}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=4cm]
-\begin{pspicture}(4,1.5)
- \circlenode{a}{A}
- \rput[l](3,1){\rnode{b}{H}}
- \ncdiagg[lineAngle=-120,armA=.5,nodesepB=3pt,linecolor=blue]{a}{b}
-\end{pspicture}
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\section{\nxLcs{ncbarr}}
-%--------------------------------------------------------------------------------------
-This has the same behaviour as \Lcs{ncbar}, but has 5 segments
-and all are horizontal ones. This is the reason why \Lkeyword{angleA}
-must be $0$ or alternatively $180$. All other values are set to
-$0$ by the macro. The intermediate horizontal line is symmetrical
-to the distance of the two nodes.
-
-
-\begin{LTXexample}[width=3.5cm]
-\psset{arrowscale=2}%
-\circlenode{X}{X}\\[1cm]
-\circlenode{Y}{Y}
-\ncbarr[angleA=0,arrows=->,arrowscale=2]{X}{Y}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psset{arrowscale=2}%
-\ovalnode{X}{Xxxxx}\\[1cm]
-\circlenode{Y}{Yyyy}
-\ncbarr[angleA=180,arrows=->,arrowscale=2,linecolor=red]{X}{Y}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\psset{arrowscale=2}%
-\ovalnode{X}{Xxxxx}\\[1cm]
-\circlenode{Y}{Yyyy}
-\ncbarr[angleA=20,arm=1cm,arrows=->,arrowscale=2]{X}{Y}
-\end{LTXexample}
+\clearpage
%--------------------------------------------------------------------------------------
\section{\nxLcs{psRelNode} and \nxLcs{psDefPSPNodes}}
@@ -2330,10 +846,11 @@ to the distance of the two nodes.
With these macros it is possible to put a node relative to a given line or given
\Lenv{pspicture}-environment. In the frist case the parameters are
the angle and the length factor:
-\begin{lstlisting}[style=syntax]
-\psRelNode(<P0>)(<P1>){<length factor>}{<end node name>}
-\psRelLine[<options>](<P0>)(<P1>){<length factor>}{<end node name>}
-\end{lstlisting}
+
+\begin{BDef}
+\Lcs{psRelNode}\Largs{P0}\Largs{P1}\Largb{length factor}\Largb{end node name}\\
+\Lcs{psDefPSPNodes}
+\end{BDef}
The length factor relates to the distance $\overline{P_0P_1}$ and
the end node name must be a valid nodename and shouldn't contain
@@ -2350,8 +867,7 @@ the mathematical one, which respect the scaling factors
\end{tabularx}
\begin{LTXexample}[width=7cm]
-\begin{pspicture}(7,6)
- \psgrid[gridwidth=0pt,gridcolor=gray,gridlabels=0pt,subgriddiv=2]
+\begin{pspicture}[showgrid](7,6)
\pnode(3,3){A}\pnode(4,2){B}
\psline[nodesep=-3,linewidth=0.5pt](A)(B)
\multido{\iA=0+30}{12}{%
@@ -2390,9 +906,6 @@ and can be modified in the same way.
%I guess you modified the family to have the pstricks-add one so the
%\xkvview would have to be adapted.
-
-
-
%--------------------------------------------------------------------------------------
\section{\nxLcs{psRelLine}}
%--------------------------------------------------------------------------------------
@@ -2618,2415 +1131,9 @@ There is no special parameter here.
\end{LTXexample}
\clearpage
-%--------------------------------------------------------------------------------------
-\section{\nxLcs{psLNode} and \nxLcs{psLCNode}}
-%--------------------------------------------------------------------------------------
-\Lcs{psLNode} interpolates the Line $\overline{AB}$ by the given value and sets a node at this
-point. The syntax is
-%
-\begin{lstlisting}[style=syntax]
-\psLNode(P1)(P2){value}{Node name}
-\end{lstlisting}
-
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}(5,5)
-\psgrid[subgriddiv=0,griddots=10]
-\psset{linecolor=red}
-\psline{o-o}(1,1)(5,5)
-\psLNode(1,1)(5,5){0.75}{PI}
-\qdisk(PI){4pt}
-\psset{linecolor=blue}
-\psline{o-o}(4,3)(2,5)
-\psLNode(4,3)(2,5){-0.5}{PII}
-\qdisk(PII){4pt}
-\end{pspicture}
-\end{LTXexample}
-
-
-\bigskip
-The \Lcs{psLCNode} macro builds the linear combination of the two given
-vectors and stores the end of
-the new vector as a node. All vectors start at $(0,0)$, so a \verb+\rput+ maybe appropriate.
-The syntax is
-%
-\begin{lstlisting}[style=syntax]
-\psLCNode(P1){value 1}(P2){value 2}{Node name}
-\end{lstlisting}
-
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}(5,5)
-\psgrid[subgriddiv=0,griddots=10]
-\psset{linecolor=black}
-\psline[linestyle=dashed]{->}(3,1.5)
-\psline[linestyle=dashed]{->}(0.375,1.5)
-\psset{linecolor=red}
-\psline{->}(2,1)\psline{->}(0.5,2)
-\psLCNode(2,1){1.5}(0.5,2){0.75}{PI}
-\psline[linewidth=2pt]{->}(PI)
-\psset{linecolor=black}
-\psline[linestyle=dashed](3,1.5)(PI)
-\psline[linestyle=dashed](0.375,1.5)(PI)
-\end{pspicture}
-\end{LTXexample}
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\section{\nxLcs{nlput} and \nxLcs{psLDNode}}
-%--------------------------------------------------------------------------------------
-\Lcs{ncput} allows you to set a label relative to the first node
-of the last node connection. With \Lcs{nlput} this can be done
-absolute to a given node. The syntax is different to the other
-node connection macros. It uses internally the macro
-\Lcs{psLDNode} which places a node absolute to two given points,
-starting from the first one.
-
-\begin{lstlisting}[style=syntax]
-\nlput[options](A)(B){distance}{text}
-\psLDNode[options](A)(B){distance}{node name}
-\end{lstlisting}
-
-
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}(5,2)
-\pnode(0,0){A}
-\pnode(5,2){B}
-\ncline{A}{B}
-\psLDNode(A)(B){1.5cm}{KN}\qdisk(KN){2pt}
-\nlput[nrot=:U](A)(B){1cm}{Test}
-\nlput[nrot=:D](A)(B){2cm}{Test}
-\nlput[nrot=:U](A)(B){3cm}{Test}
-\nlput(A)(B){4cm}{Test}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\part{\nxLPack{pst-plot}}
-%--------------------------------------------------------------------------------------
-\section{New syntax}
-There is now a new optional argument for \Lcs{psplot} and \Lcs{parametricplot} to pass
-additional \PS commands into the code. This makes the use of \Lcs{pstVerb} in most cases superfluous.
-\begin{BDef}
-\Lcs{psplot}\OptArgs\Largb{x0}\Largb{x1}\OptArg{PS commands}\Largb{function}\\
-\Lcs{parametricplot}\OptArgs\Largb{t0}\Largb{t1}\OptArg{PS commands}\Largb{x(t) y(t)}
-\end{BDef}
-
-
-\begin{LTXexample}[pos=t,wide]
-\begin{pspicture}(0,-0.5)(12,5)
- \psaxes[Dx=100,dx=1,Dy=0.00075,dy=1]{->}(0,0)(12,5)
- \psplot[linecolor=red, plotstyle=curve,linewidth=2pt,plotpoints=200]{0}{11}%
- [ /const1 3.3 10 8 neg exp mul def /s 10 def /const2 6.04 10 6 neg exp mul def ]%
- { const1 x 100 mul dup mul mul Euler const2 neg x 100 mul dup mul mul exp mul 2000 mul}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-
-\section{New or extended options}
-%--------------------------------------------------------------------------------------
-
-The axes macro has now two additional optional arguments for placing labels at
-the end of the axes:
-
-\begin{lstlisting}[style=syntax]
-\psaxes[settings]{arrows}(x0,y0)(x1,y1)(x2,y2)[Xlabel,Xangle][Ylabel,Yangle]
-\end{lstlisting}
-
-It has now four optional arguments, one for the setting, one for
-the arrows, one for the x-label and one for the y-label. If you
-want only a y-label, then leave the x one empty. A missing y-label
-is possible. The following examples show how it can be used.
-
-The option \Lkeyset{tickstyle=full}|\Lkeyval{top}|\Lkeyval{bottom} no longer works in the
-usual way. Only the additional value \Lkeyval{inner} is valid for
-\LPack{pstricks-add}, because everything can be set by the
-\Lkeyword{ticksize} option. When using the \Lkeyword{comma} or
-\Lkeyword{trigLabels} option, the macros \Lcs{pshlabel} and
-\Lcs{psvlabel} shouldn't be redefined, because the package does
-it itself internally in these cases. However, if you need a
-redefinition, then do it for \Lcs{pst@@hlabel} and
-\Lcs{pst@@vlabel} with
-
-\begin{lstlisting}[style=syntax]
-\makeatletter
-\def\ps@@hlabel#1{...}
-\def\ps@@vlabel#1{...}
-\makeatother
-\end{lstlisting}
-
-
-{
-\ttfamily
-\rowcolors{1}{blue!20}{red!30}
-\begin{longtable}{lll}
-\caption{All new parameters for \texttt{pst-plot}}\\
-\rowcolor{white}\textrm{\bfseries Name} & \textrm{\bfseries Type} & \textrm{\bfseries Default}\\\hline
-\endfirsthead
-\rowcolor{white}\textrm{\bfseries Name} & \textrm{\bfseries Type} & \textrm{\bfseries Default}\\\hline
-\endhead
-\Lkeyword{axesstyle} & <\Lkeyval{none}|\Lkeyval{axes}|\Lkeyval{frame}|\Lkeyval{polar}> & axes\\
-\Lkeyword{labels} & <\Lkeyval{all}|\Lkeyval{x}|\Lkeyval{y}|\Lkeyval{none}> & all\\%ok
-\Lkeyword{xlabelPos} & <\Lkeyval{bottom},\Lkeyval{axis},\Lkeyval{top}>& \Lkeyval{bottom}\\
-\Lkeyword{ylabelPos} & <\Lkeyval{left},\Lkeyval{axis},\Lkeyval{right}>& left\\
-\Lkeyword{xlabelFactor} & <anything> & \{\textbackslash\@ empty\}\\
-\Lkeyword{ylabelFactor} & <anything> & \{\textbackslash\@ empty\}\\
-\Lkeyword{labelFontSize} & <fontsize macro> & \{\} \\
-\Lkeyword{trigLabels} & false|true & false\\
-\Lkeyword{trigLabelBase} & <number> & 0\\
-\Lkeyword{algebraic} & false|true & false\\ %ok
-\Lkeyword{decimalSeparator} & <character> & .\\ %ok
-\Lkeyword{comma} & false|true & false\\ %ok
-\Lkeyword{xAxis} & false|true & true\\%ok
-\Lkeyword{yAxis} & false|true & true\\%ok
-\Lkeyword{xyAxes} & false|true & true\\%ok
-\Lkeyword{xDecimals} & <number> or empty & \{\}\\%ok
-\Lkeyword{yDecimals} & <number> or empty & \{\}\\%ok
-\Lkeyword{xyDecimals} & <number> or empty & \{\}\\%ok
-%\Lkeyword{xLabel} & <anything> & \{\}\\%ok
-%\Lkeyword{yLabel} & <anything> & \{\}\\%ok
-%\Lkeyword{xyLabel} & <anything> & \{\}\\%ok
-\Lkeyword{ticks} & <all|x|y|none> & all\\%ok
-\Lkeyword{tickstyle} & \Lkeyval{full}|\Lkeyval{top}|\Lkeyval{bottom}|\Lkeyval{inner} & full\\%ok
-\Lkeyword{subticks} & <number> & 0\\
-\Lkeyword{xsubticks} & <number> & 0\\
-\Lkeyword{ysubticks} & <number> & 0\\
-\Lkeyword{ticksize} & <length [length]> & -4pt 4pt\\
-\Lkeyword{subticksize} & <number> & 0.75\\
-\Lkeyword{tickwidth} & <length> & 0.5\verb+\pslinewidth+\\
-\Lkeyword{subtickwidth} & <length> & 0.25\verb+\pslinewidth+\\
-\Lkeyword{tickcolor} & <color> & black\\
-\Lkeyword{xtickcolor} & <color> & black\\
-\Lkeyword{ytickcolor} & <color> & black\\
-\Lkeyword{subtickcolor} & <color> & darkgray\\
-\Lkeyword{xsubtickcolor} & <color> & darkgray\\
-\Lkeyword{ysubtickcolor} & <color> & darkgray\\
-\Lkeyword{ticklinestyle} & \Lkeyval{solid} | \Lkeyval{dashed} | \Lkeyval{dotted} | \Lkeyval{none} & solid\\
-\Lkeyword{subticklinestyle} & solid | dashed | dotted | none & solid\\
-\Lkeyword{xlogBase} & <number> or empty & \{\}\\
-\Lkeyword{ylogBase} & <number> or empty & \{\}\\
-\Lkeyword{xylogBase} & <number> or empty & \{\}\\
-\Lkeyword{logLines} & <none|x|y|all> & none\\
-\Lkeyword{yMaxValue} & <real> & -1\\
-\Lkeyword{ignoreLines} & <number> & 0\\
-\Lkeyword{nStep} & <number> & 1\\
-\Lkeyword{nStart} & <number> & 0\\
-\Lkeyword{nEnd} & <number> or empty & \{\}\\
-\Lkeyword{xStep} & <number> & 0\\
-\Lkeyword{yStep} & <number> & 0\\
-\Lkeyword{xStart} & <number> or empty & \{\}\\
-\Lkeyword{yStart} & <number> or empty & \{\}\\
-\Lkeyword{xEnd} & <number> or empty & \{\}\\
-\Lkeyword{yEnd} & <number> or empty & \{\}\\
-\Lkeyword{plotNo} & <number> & 1\\
-\Lkeyword{plotNoMax} & <number> & 1\\
-\Lkeyword{xAxisLabel} & <anything> & \{\textbackslash\@ empty\}\\
-\Lkeyword{yAxisLabel} & <anything> & \{\textbackslash\@ empty\}\\
-\Lkeyword{xAxisLabelPos} & <(x,y)> or empty & \{\textbackslash\@ empty\}\\
-\Lkeyword{yAxisLabelPos} & <(x,y)> or empty & \{\textbackslash\@ empty\}\\
-\Lkeyword{llx} & <length> & 0pt\\
-\Lkeyword{lly} & <length> & 0pt\\
-\Lkeyword{urx} & <length> & 0pt\\
-\Lkeyword{ury} & <length> & 0pt\\
-\Lkeyword{polarplot} & false|true & false\\
-\Lkeyword{ChangeOrder} & false|true & false\\
-\end{longtable}
-}
-
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLkeyword{axesstyle}}
-%--------------------------------------------------------------------------------------
-There is a new axes style \Lkeyval{polar} which plots a polar coordinate system.
-
-Syntax:
-\begin{lstlisting}[style=syntax]
-\psplot[axesstyle=polar](Rx,Ry)
-\psplot[axesstyle=polar](...)(Rx,Ry)
-\psplot[axesstyle=polar](...)(...)(Rx,Ry)
-\end{lstlisting}
-
-Important is the fact, that only one pair of coordinates is taken into account for
-the radius. It is \emph{always} the last pair in a sequence of allowed coordinates
-for the \Lcs{psaxes} macro. The other ones are ignored; they are not valid for the
-polar coordinate system.
-
-\resetOptions%
-\begin{LTXexample}[wide=true,pos=t]
-%\usepackage{pstricks-add}
-
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psaxes[axesstyle=polar](3,3)
-\psplot[polarplot,algebraic,linecolor=blue,linewidth=2pt,
- plotpoints=2000]{0}{TwoPi 4 mul}{2*(sin(x)-x)/(cos(x)+x)}
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psaxes[axesstyle=polar,subticklinestyle=dashed,subticks=2,
- labelFontSize=\scriptstyle](3,3)
-\psplot[polarplot,algebraic,linecolor=red,linewidth=2pt,
- plotpoints=2000]{0}{TwoPi}{6*sin(x)*cos(x)}
-\end{pspicture}
-\end{LTXexample}
-
-All valid optional arguments for the axes are also possible for the polar style, if they make sense \ldots\ :-)
-Important are the \Lkeyword{Dy} option, it defines the angle interval and \Lkeyword{subticks}, for
-the intermediate circles and lines. The number can be different for the circles (\Lkeyword{ysubticks}) and the
-lines (\Lkeyword{xsubticks}).
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{xyAxes}, \texttt{xAxis} and \texttt{yAxis}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-xyAxes=true|false
-xAxis=true|false
-yAxis=true|false
-\end{lstlisting}
-
-Sometimes there is only a need for one axis with ticks. In this
-case you can set one of the preceding options to false. The
-\Lkeyword{xyAxes} only makes sense when you want to set both x and y
-to true with only one command, back to the default, because with
-\Lkeyword{xyAxes}=\false you get nothing with the \Lcs{psaxes} macro.
-
-
-\resetOptions%
-\begin{LTXexample}
-\begin{pspicture}(5,1)
-\psaxes[yAxis=false,linecolor=blue]{->}(0,0.5)(5,0.5)
-\end{pspicture}
-\begin{pspicture}(1,5)
-\psaxes[xAxis=false,linecolor=red]{->}(0.5,0)(0.5,5)
-\end{pspicture}
-\begin{pspicture}(1,5)
-\psaxes[xAxis=false,linecolor=red,
- ylabelPos=right]{->}(0.5,0)(0.5,5)
-\end{pspicture}\\[0.5cm]
-\begin{pspicture}(5,1)
-\psaxes[yAxis=false,linecolor=blue,
- xlabelPos=top]{->}(0,0.5)(5,0.5)
-\end{pspicture}
-\end{LTXexample}
-
-As seen in the example, a single y axis gets the labels on the left side. This can be
-changed with the option \Lkeyword{ylabelPos} or with \Lkeyword{xlabelPos} for the
-$x$-axis.
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{labels}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-labels=all|x|y|none
-\end{lstlisting}
-
-This option is also already in the \LPack{pst-plot} package and
-only mentioned here for completeness.
-
-\begin{LTXexample}[width=3.5cm]
-\psset{ticksize=6pt}
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[labels=all,subticks=5]{->}(0,0)(-1,-1)(2,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[labels=y,subticks=5]{->}(0,0)(-1,-1)(2,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[labels=x,subticks=5]{->}(0,0)(2,2)(-1,-1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[labels=none,subticks=5]{->}(0,0)(2,2)(-1,-1)
-\end{pspicture}
-\end{LTXexample}
-
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{xlabelPos} and \texttt{ylabelPos}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-xlabelPos=bottom|axis|top
-ylabelPos=left|axis|right
-\end{lstlisting}
-
-By default the labels for ticks are placed at the bottom (x axis)
-and left (y-axis). If both axes are drawn in the negative
-direction the default is top (x axis) and right (y axis). It be
-changed with the two options \Lkeyword{xlabelPos} and
-\Lkeyword{ylabelPos}. With the value \Lkeyval{axis} the user can
-place the labels depending on the value of \Lkeyword{labelsep}, which is taken into account for \texttt{axis}.
-
-\resetOptions%
-\bigskip
-\begin{LTXexample}[width=9cm]
-\begin{pspicture}(3,3)
-\psaxes{->}(3,3)
-\end{pspicture}\hspace{2cm}
-\begin{pspicture}(3,-3)
-\psaxes[xlabelPos=top]{->}(3,-3)
-\end{pspicture}
-\end{LTXexample}
-
-\vspace{1cm}
-\begin{LTXexample}[width=9cm]
-\begin{pspicture}(-3,-3)
-\psaxes{->}(-3,-3)
-\end{pspicture}\hspace{2cm}
-\begin{pspicture}(3,3)
-\psaxes[labelsep=0pt,
- ylabelPos=axis,
- xlabelPos=axis]{->}(3,3)
-\end{pspicture}
-\end{LTXexample}
-
-\vspace{1cm}
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}(-1,1)(3,-3)
-\psaxes[xlabelPos=top,
- xticksize=0 20pt,
- yticksize=-20pt 0]{->}(3,-3)
-\end{pspicture}
-\end{LTXexample}
-
-
-
-
-%--------------------------------------------------------------------------------------
-\subsection{Changing the label font size with \texttt{labelFontSize} and \texttt{mathLabel}}
-%--------------------------------------------------------------------------------------
-
-This option sets the horizontal \textbf{and} vertical font size
-for the labels depending on the option \Lkeyword{mathLabel} for the
-text or the math mode. It will be overwritten when another package
-or a user defines
-\begin{lstlisting}[style=syntax]
-\def\pshlabel#1{\labelFontSize ...}
-\def\psvlabel#1{\labelFontSize ...}
-\def\pshlabel#1{$\labelFontSize ...$}% for mathLabel=true (default)
-\def\psvlabel#1{$\labelFontSize ...$}% for mathLabel=true (default)
-\end{lstlisting}
-in another way. Note that for \Lkeyword{mathLabel}=\true the font size
-must be set by one of the mathematical styles \Lcs{textstyle},
-\Lcs{displaystyle}, \Lcs{scriptstyle}, or \Lcs{scriptscriptstyle}.
-
-\begin{LTXexample}[width=6cm]
-\psset{mathLabel=false}
-\begin{pspicture}(-0.25,-0.25)(5,2.25)
-\psaxes{->}(5,2.25)[$x$,0][$y$,90]
-\end{pspicture}\\[20pt]
-\begin{pspicture}(-0.25,-0.25)(5,2.25)
-\psaxes[labelFontSize=\footnotesize]{->}(5,2.25)
-\end{pspicture}\\[20pt]
-\begin{pspicture}(-0.25,-0.25)(5,2.25)
-\psaxes[labelFontSize=\footnotesize]{->}(5,2.25)
-\end{pspicture}\\[20pt]
-\end{LTXexample}
-
-\begin{LTXexample}[width=6cm]
-\begin{pspicture}(-0.25,-0.25)(5,2.25)
-\psaxes[labelFontSize=\scriptstyle]{->}(5,2.25)[\textbf{x},-90][\textbf{y},0]
-\end{pspicture}\\[20pt]
-\psset{mathLabel=true}
-\begin{pspicture}(-0.25,-0.25)(5,2.25)
-\psaxes[labelFontSize=\scriptscriptstyle]{->}(5,2.25)
-\end{pspicture}\\[20pt]
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{xlabelFactor} and \texttt{ylabelFactor}}
-%--------------------------------------------------------------------------------------
-When having big numbers as data records then it makes sense to
-write the values as ${<number>\cdot 10^{<exp>}}$. These new
-options allow you to define the additional part of the value, but
-it must be set in math mode when using math operators!
-
-\resetOptions
-\begin{LTXexample}[pos=t]
-\readdata{\data}{demo1.data}
-\pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op}
-\psset{llx=-1cm,lly=-1cm}
-\psgraph[ylabelFactor=\cdot 10^6,Dx=5,Dy=100](0,0)(25,750){8cm}{5cm}
- \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data}
-\endpsgraph
-\pstScalePoints(1,1){}{}% reset
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\nxLkeyword{decimalSeparator} and \nxLkeyword{comma}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-comma=false|true
-decimalSeparator=<charactor>
-\end{lstlisting}
-Setting the option \Lkeyword{comma} to true gives labels with a comma as a decimal separator instead
-of the dot. \Lkeyword{comma} and \verb|comma=true| is the same. The optional argument
-\Lkeyword{decimalSeparator} allows an individual setting for languages with a different
-character than a dot or a comma. The character has to set into braces, if it is an
-active, e.\,g. \Lkeyword{decimalSeparator}=\Largb{,}.
-
-\resetOptions
-\medskip
-\begin{LTXexample}[width=5.5cm]
-\begin{pspicture}(-0.5,-0.5)(5,5.5)
-\psaxes[Dx=1.5,comma,Dy=0.75,dy=0.75]{->}(5,5)
-\psplot[linecolor=red,linewidth=3pt]{0}{4.5}%
- {x RadtoDeg cos 2 mul 2.5 add}
-\psline[linestyle=dashed](0,2.5)(4.5,2.5)
-\end{pspicture}
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{xyDecimals}, \texttt{xDecimals} and \texttt{yDecimals}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-xyDecimals=<number>
-xDecimals=<any>
-yDecimals=<any>
-\end{lstlisting}
-By default the labels of the axes get numbers with or without
-decimals, depending on the numbers. With these options
-\verb|??Decimals| it is possible to determine the decimals, where
-the option \Lkeyword{xyDecimals} sets this identical for both axes.
-The default setting \verb|{}| means, that you'll get the standard
-behaviour.
-
-
-\begin{LTXexample}[width=6cm]
-\begin{pspicture}(-1.5,-0.5)(5,3.75)
- \psaxes[xyDecimals=2]{->}(0,0)(4.5,3.5)
-\end{pspicture}
-\end{LTXexample}
-
-
-\begin{LTXexample}[pos=t]
-\psset{xunit=10cm,yunit=0.01cm,labelFontSize=\scriptstyle}
-\begin{pspicture}(-0.1,-150)(1.5,550.0)
- \psaxes[Dx=0.25,Dy=100,ticksize=-4pt 0,comma=true,xDecimals=3,yDecimals=1]{->}%
- (0,0)(0,-100)(1.4,520)[\textbf{Amp\`ere},-90][\textbf{Voltage},0]
-\end{pspicture}
-\end{LTXexample}
-
-\resetOptions
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{trigLabels} and \texttt{trigLabelBase} -- axis with trigonmetrical units}
-%--------------------------------------------------------------------------------------
-With the option \Lkeyword{trigLabels}=\true\ the labels on the x axis
-are trigonometrical ones. The option \Lkeyword{trigLabelBase} set the
-denominator of fraction. The default value of 0 is the same as no
-fraction. The following constants are defined in the package:
-\begin{lstlisting}[style=syntax]
-\def§\ON§\psPiFour§\OFF§{12.566371}
-\def§\ON§\psPiTwo§\OFF§{6.283185}
-\def§\ON§\psPi§\OFF§{3.14159265}
-\def§\ON§\psPiH§\OFF§{1.570796327}
-\newdimen\pstRadUnit
-\newdimen\pstRadUnitInv
-§\ON§\pstRadUnit§\OFF§=1.047198cm % this is pi/3
-§\ON§\pstRadUnitInv§\OFF§=0.95493cm % this is 3/pi
-\end{lstlisting}
-
-
-
-Because it is a bit complicated to set the right values, we show
-some more examples here.
-
-For \textbf{all} following examples in this section we did a
-global
-
-\lstinline[frame=single]|\psset{trigLabels=true,labelFontSize=\scriptstyle}|.
-
-
-\psset{trigLabels,labelFontSize=\scriptstyle} Translating the
-decimal ticks to trigonometrical ones makes no real sense, because
-every 1 xunit (1cm) is a tick and the last one is at 6cm.
-
-\clearpage
-\begin{minipage}{0.45\fullWidth}
-\begin{pspicture}[trigLabels=true](-0.5,-1.25)(6.5,1.25)%
- \pnode(5,0){A}%
- \psaxes{->}(0,0)(-0.5,-1.25)(\psPiTwo,1.25)%
-\end{pspicture}
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)%
- \pnode(5,0){A}%
- \psaxes{->}(0,0)(-.5,-1.25)(\psPiTwo,1.25)
-\end{pspicture}
-\end{lstlisting}
-\end{minipage}
-
-\begin{minipage}{0.45\fullWidth}
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)%
- \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)(\psPiTwo,1.25)
-\end{pspicture}
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)%
- \psaxes[§\ON§trigLabelBase=3§\OFF§]{->}(0,0)(-0.5,-1.25)(\psPiTwo,1.25)
-\end{pspicture}
-\end{lstlisting}
-\end{minipage}
-
-Modifying the ticks to have the last one exactly at the end is
-possible with a different dx value ($\frac{\pi}{3}\approx 1.047$):
-
-
-\begin{minipage}{0.45\fullWidth}
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode(\psPiTwo,0){C}%
- \psaxes[dx=\pstRadUnit]{->}(0,0)(-0.5,-1.25)(\psPiTwo,1.25)
-\end{pspicture}%
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode(\psPiTwo,0){C}%
- \psaxes[§\ON§dx=\pstRadUnit§\OFF§]{->}(0,0)(-0.5,-1.25)(\psPiTwo,1.25)
-\end{pspicture}%
-\end{lstlisting}
-\end{minipage}
-
-
-\begin{minipage}{0.45\fullWidth}
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode(5,0){B}%
- \psaxes[dx=\pstRadUnit,trigLabelBase=3]{->}(0,0)(-0.5,-1.25)(\psPiTwo,1.25)
-\end{pspicture}%
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode(5,0){B}%
- \psaxes[dx=\pstRadUnit,§\ON§trigLabelBase=3§\OFF§] {->}(0,0)(-0.5,-1.25)(\psPiTwo,1.25)
-\end{pspicture}%
-\end{lstlisting}
-\end{minipage}
-
-\ncline[linestyle=dashed,linewidth=0.4pt]{A}{B}
-
-Set everything globally in radian units. Now 6 units on the
-$x$-axis are $6\pi$. Using \Lkeyword{trigLabelBase}=3 reduces this
-value to $2\pi$, a.s.o.
-
-\bigskip
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode(6,0){D}%
- \psaxes{->}(0,0)(-0.5,-1.25)(6.5,1.25)%
-\end{pspicture}%
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{§\ON§xunit=\pstRadUnit§\OFF§}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode(6,0){D}%
- \psaxes{->}(0,0)(-0.5,-1.25)(6.5,1.25)%
-\end{pspicture}%
-\end{lstlisting}
-\end{minipage}
-\ncline[linestyle=dashed,linewidth=0.4pt]{C}{D}
-
-
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
-\end{pspicture}%
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{§\ON§xunit=\pstRadUnit§\OFF§}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[§\ON§trigLabelBase=3§\OFF§]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
-\end{pspicture}%
-\end{lstlisting}
-\end{minipage}
-
-
-
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[trigLabelBase=4]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
-\end{pspicture}%
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{§\ON§xunit=\pstRadUnit§\OFF§}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[§\ON§trigLabelBase=4§\OFF§]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
-\end{pspicture}%
-\end{lstlisting}
-\end{minipage}
-
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[trigLabelBase=6]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
-\end{pspicture}%
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{§\ON§xunit=\pstRadUnit§\OFF§}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[§\ON§trigLabelBase=6§\OFF§]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
-\end{pspicture}%
-\end{lstlisting}
-\end{minipage}
-
-
-
-The best way seems to be to set the $x$-unit to
-\Lcs{pstRadUnit}. Plotting a function doesn't consider the value
-for \Lkeyword{trigLabelBase}, it has to be done by the user. The first
-example sets the unit locally for the \Lcs{psplot} back to 1cm,
-which is needed, because we use this unit on the PostScript side.
-
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.4,-1.25)(6.5,1.25)
- \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[xunit=1cm,linecolor=red,linewidth=1.5pt]{0}{\psPiTwo}{x RadtoDeg sin}
-\end{pspicture}
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[§\ON§xunit=1cm§\OFF§,linecolor=red,linewidth=1.5pt]{0}{§\ON§\psPiTwo§\OFF§}{x RadtoDeg sin}
-\end{pspicture}
-\end{lstlisting}
-\end{minipage}
-
-
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.4,-1.25)(6.5,1.25)
- \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[linecolor=red,linewidth=1.5pt]{0}{6}{x Pi 3 div mul RadtoDeg sin}
-\end{pspicture}
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[linecolor=red,linewidth=1.5pt]{0}{6}{x §\ON§Pi 3 div mul §\OFF§RadtoDeg sin}
-\end{pspicture}
-\end{lstlisting}
-\end{minipage}
-
-
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.4,-1.25)(6.5,1.25)
- \psaxes[dx=1.5]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[xunit=.5cm,linecolor=red,linewidth=1.5pt]{0}{\psPiFour}{x RadtoDeg sin}
-\end{pspicture}
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[§\ON§dx=1.5§\OFF§]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[§\ON§xunit=0.5cm§\OFF§,linecolor=red,linewidth=1.5pt]{0}{§\ON§\psPiFour§\OFF§}{x RadtoDeg sin}
-\end{pspicture}
-\end{lstlisting}
-\end{minipage}
-
-
-\begin{minipage}{0.45\fullWidth}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.4,-1.25)(6.5,1.25)
- \psaxes[dx=0.75,trigLabelBase=2]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[xunit=.5cm,linecolor=red,linewidth=1.5pt]{0}{\psPiFour}{x RadtoDeg sin}
-\end{pspicture}
-\end{minipage}%
-\begin{minipage}{0.55\fullWidth}
-\begin{lstlisting}
-\psset{xunit=\pstRadUnit}%
-\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
- \psaxes[§\ON§dx=0.75§\OFF§,§\ON§trigLabelBase=2§\OFF§]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
- \psplot[§\ON§xunit=0.5cm§\OFF§,linecolor=red,linewidth=1.5pt]{0}{\psPiFour}{x RadtoDeg sin}
-\end{pspicture}
-\end{lstlisting}
-\end{minipage}
-
-
-It is also possible to set the $x$ unit and $dx$ value to get the
-labels right. But this needs some more understanding as to how it
-really works. A \Lkeyword{xunit}=1.570796327 sets the unit to $\pi/2$
-and a \Lkeyword{dx}=0.666667 then puts at every $2/3$ of the unit a
-tick mark and a label. The length of the $x$-axis is 6.4 units
-which is $6.4\cdot 1.570796327cm\approx 10cm$. The function then
-is plotted from $0$ to $3\pi=9.424777961$.
-
-
-
-
-\begin{center}
-\psset{unit=1cm}
-\begin{pspicture}(-0.5,-1.25)(10,1.25)
- \psaxes[xunit=\psPiH,showorigin=false,trigLabelBase=3,dx=0.666667]{->}(0,0)(-0.5,-1.25)(6.4,1.25)
- \psplot[linecolor=red,linewidth=1.5pt]{0}{9.424777961}{%
- x RadtoDeg dup sin exch 1.1 mul cos add}
-\end{pspicture}
-\end{center}
-\begin{lstlisting}
-\begin{pspicture}(-0.5,-1.25)(10,1.25)
- \psaxes[§\ON§xunit=\psPiH§\OFF§,§\ON§trigLabelBase=3§\OFF§,§\ON§dx=0.666667§\OFF§]{->}(0,0)(-0.5,-1.25)(6.4,1.25)
- \psplot[linecolor=red,linewidth=1.5pt]{0}{§\ON§9.424777961§\OFF§}{%
- x RadtoDeg dup sin exch 1.1 mul cos add}
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\psset{unit=1cm}
-\begin{pspicture}(-0.5,-1.25)(10,1.25)
- \psaxes[xunit=\psPi,dx=0.25]{->}(0,0)(-0.25,-1.25)(3.2,1.25)
- \psplot[xunit=0.25,plotpoints=500,linecolor=red,linewidth=1.5pt]{0}{37.70}{%
- x RadtoDeg dup sin exch 1.1 mul cos add}
-\end{pspicture}
-\end{center}
-\begin{lstlisting}
-\psset{§\ON§unit=1cm§\OFF§}
- \psplot[§\ON§xunit=0.25§\OFF§,§\ON§plotpoints=500§\OFF§,linecolor=red,linewidth=1.5pt]{0}{37.70}{%
- x RadtoDeg dup sin exch 1.1 mul cos add}
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{center}
-\psset{unit=1cm}
-\begin{pspicture}(-0.5,-2)(10,2)
- \psplot[xunit=0.0625,linecolor=red,linewidth=1.5pt,plotpoints=5000]{0}{150.80}{%
- x RadtoDeg dup sin exch 1.1 mul cos add}
- \psaxes[xunit=\psPi,dx=0.5,Dx=8,subticks=2]{->}(0,0)(-0.1,-2)(3.2,2)
-\end{pspicture}
-\end{center}
-\begin{lstlisting}
-\psset{§\ON§unit=1cm§\OFF§}
-\begin{pspicture}(-0.5,-1.25)(10,1.25)
- \psplot[§\ON§xunit=0.0625§\OFF§,linecolor=red,linewidth=1.5pt,%
- §\ON§plotpoints=5000§\OFF§]{0}{150.80}%
- {x RadtoDeg dup sin exch 1.1 mul cos add}
- \psaxes[§\ON§xunit=\psPi§\OFF§,§\ON§dx=0.5§\OFF§,§\ON§Dx=8§\OFF§]{->}(0,0)(-0.25,-1.25)(3.2,1.25)
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{center}
-\psset{unit=1cm}
-\begin{pspicture}(-7,-1.5)(7,1.5)
- \psaxes[trigLabels=true,xunit=\psPi]{->}(0,0)(-2.2,-1.5)(2.2,1.5)
- \psplot[linecolor=red,linewidth=1.5pt]{-7}{7}{x RadtoDeg sin}
-\end{pspicture}
-\end{center}
-\begin{lstlisting}
-\begin{pspicture}(-7,-1.5)(7,1.5)
- \psaxes[trigLabels=true,§\ON§xunit=\psPi§\OFF§]{->}(0,0)(-2.2,-1.5)(2.2,1.5)
- \psplot[linecolor=red,linewidth=1.5pt]{-7}{7}{x RadtoDeg sin}
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{center}
-\psset{unit=1cm}
-\begin{pspicture}(-7,-1.5)(7,1.5)
- \psaxes[trigLabels=true,
- trigLabelBase=2,dx=\psPiH,xunit=\psPi]{->}(0,0)(-2.2,-1.5)(2.2,1.5)
- \psplot[linecolor=red,linewidth=1.5pt]{-7}{7}{x RadtoDeg sin}
-\end{pspicture}
-\end{center}
-\begin{lstlisting}
-\begin{pspicture}(-7,-1.5)(7,1.5)
- \psaxes[trigLabels=true,
- trigLabelBase=2,dx=\psPiH,xunit=\psPi]{->}(0,0)(-2.2,-1.5)(2.2,1.5)
- \psplot[linecolor=red,linewidth=1.5pt]{-7}{7}{x RadtoDeg sin}
-\end{pspicture}
-\end{lstlisting}
-
-
-\psset{trigLabels=false}
-
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{ticks}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-ticks=all|x|y|none
-\end{lstlisting}
-
-This option is also already in the \verb+pst-plot+ package and
-only mentioned here for some completeness.
-
-\begin{LTXexample}[width=3.5cm]
-\psset{ticksize=6pt}
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=all,subticks=5]{->}(0,0)(-1,-1)(2,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=y,subticks=5]{->}(0,0)(-1,-1)(2,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=x,subticks=5]{->}(0,0)(2,2)(-1,-1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=none,subticks=5]{->}(0,0)(2,2)(-1,-1)
-\end{pspicture}
-\end{LTXexample}
-
-Single ticks with labels can be set with the two macros \Lcs{psxTick} and \Lcs{psyTick}:
-%
-\begin{lstlisting}[style=syntax]
-\psxTick[options](x value){label}
-\psyTick[options](y value){label}
-\end{lstlisting}
-
-
-\begin{LTXexample}[width=.5\linewidth]
-\begin{psgraph}[Dx=2,Dy=2](0,0)(-4,-2.2)(4,2.2){.5\textwidth}{!}
- \psxTick[linecolor=red](1.5){x_0}
- \psyTick[linecolor=blue](1.7){y_0}
-\end{psgraph}
-\end{LTXexample}
-
-
-% full= 0, top=1, bottom=-1, inner=2 => -1 0 1 2
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{tickstyle}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-tickstyle=full|top|bottom|inner
-\end{lstlisting}
-
-The value \Lkeyval{inner} (not available with the basic \LPack{pstricks} package) is
-only valid for the axes style \Lkeyval{frame}.
-
-\medskip
-\begin{LTXexample}[pos=t]
-\psset{subticks=10}
-\begin{pspicture}(-1,-1)(3,3) \psaxes[tickstyle=full]{->}(3,3) \end{pspicture}
-\begin{pspicture}(-1,-1)(3,3) \psaxes[tickstyle=top]{->}(3,3) \end{pspicture}
-\begin{pspicture}(-1,-1)(3,3) \psaxes[tickstyle=bottom]{->}(3,3)\end{pspicture}
-\begin{pspicture}(-1,-1)(3,3)
- \psaxes[axesstyle=frame, tickstyle=inner, ticksize=0 4pt]{->}(3,3)
-\end{pspicture}
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{ticksize}, \texttt{xticksize}, \texttt{yticksize}}
-%--------------------------------------------------------------------------------------
-
-With this new option the recent \Lkeyword{tickstyle} option of
-\LPack{pst-plot} is obsolete and no longer supported by \LPack{pstricks-add}.
-
-Syntax:
-\begin{lstlisting}[style=syntax]
-ticksize=value[unit]
-ticksize=value[unit] value[unit]
-xticksize=value[unit]
-xticksize=value[unit] value[unit]
-yticksize=value[unit]
-yticksize=value[unit] value[unit]
-\end{lstlisting}
-
-\Lkeyword{ticksize} sets both values. The first one is left/below and the optional second
-one is right/above of the coordinate axis. The old setting \Lkeyset{tickstyle=bottom} is
-now easy to realize, e.g.: \Lkeyword{ticksize}=-6pt 0, or vice versa, if the coordinates
-are set from positive to negative values.
-
-\medskip
-\begin{LTXexample}[width=6cm]
-\psset{arrowscale=2}
-\begin{pspicture}(-1.5,-1.5)(4,3.5)
- \psaxes[ticksize=0.5cm]{->}(0,0)(-1.5,-1.5)(4,3.5)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=6cm]
-\psset{arrowscale=2}
-\begin{pspicture}(-1.5,-1.5)(4,3.5)
- \psaxes[xticksize=-10pt 0,yticksize=0 10pt]%
- {->}(0,0)(-1.5,-1.5)(4,3.5)
-\end{pspicture}
-\end{LTXexample}
-
-A grid is also possible by setting the values to the max/min coordinates.
-
-\begin{LTXexample}[width=6cm]
-\psset{arrowscale=2}
-\begin{pspicture}(-.5,-.5)(5,4.5)
- \psaxes[ticklinestyle=dashed,
- ticksize=0 4cm]{->}(0,0)(-.5,-.5)(5,4.5)
-\end{pspicture}
-\end{LTXexample}
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{subticks}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-subticks=<number>
-\end{lstlisting}
-
-By default \Lkeyword{subticks} cannot have labels.
-
-\begin{LTXexample}[width=3.5cm]
-\psset{ticksize=6pt}
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=all,subticks=5]{->}(0,0)(-1,-1)(2,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=y,subticks=5]{->}(0,0)(-1,-1)(2,2)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=x,subticks=5]{->}(0,0)(2,2)(-1,-1)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\begin{pspicture}(-1,-1)(2,2)
-\psaxes[ticks=none,subticks=5]{->}(0,0)(2,2)(-1,-1)
-\end{pspicture}
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{subticksize}, \texttt{xsubticksize}, \texttt{ysubticksize}}
-%--------------------------------------------------------------------------------------
-
-Syntax:
-\begin{lstlisting}[style=syntax]
-subticksize=value
-xsubticksize=value
-ysubticksize=value
-\end{lstlisting}
-
-\Lkeyword{subticksize} sets both values, which are relative to the ticksize length and
-can have any number. 1 sets it to the same length as the main ticks.
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\psset{yunit=1.5cm,xunit=3cm}
-\begin{pspicture}(-1.25,-4.75)(3.25,.75)
- \psaxes[xticksize=-4.5 0.5,ticklinestyle=dashed,subticks=5,xsubticksize=1,%
- ysubticksize=0.75,xsubticklinestyle=dotted,xsubtickwidth=1pt,
- subtickcolor=gray]{->}(0,0)(-1,-4)(3.25,0.5)
-\end{pspicture}
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{tickcolor}, \texttt{subtickcolor}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-tickcolor=<color>
-xtickcolor=<color>
-ytickcolor=<color>
-subtickcolor=<color>
-xsubtickcolor=<color>
-ysubtickcolor=<color>
-\end{lstlisting}
-
-\Lkeyword{tickcolor} and \Lkeyword{subtickcolor} set both for the $x$- and the $y$-Axis.
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\begin{pspicture}(0,-0.75)(10,1)
-\psaxes[yAxis=false,labelFontSize=\scriptstyle,ticksize=0 10mm,subticks=10,subticksize=0.75,
- tickcolor=red,subtickcolor=blue,tickwidth=1pt,subtickwidth=0.5pt](10.01,0)
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[width=5cm]
-\begin{pspicture}(5,-0.75)(10,1)
-\psaxes[yAxis=false,labelFontSize=\scriptstyle,ticksize=0 -10mm,subticks=10,subticksize=0.75,
- tickcolor=red,subtickcolor=blue,tickwidth=1pt,subtickwidth=0.5pt,Ox=5](5,0)(5,0)(10.01,0)
-\end{pspicture}
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{ticklinestyle} and \texttt{subticklinestyle}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{lstlisting}[style=syntax]
-ticklinestyle=solid|dashed|dotted|none
-xticklinestyle=solid|dashed|dotted|none
-yticklinestyle=solid|dashed|dotted|none
-subticklinestyle=solid|dashed|dotted|none
-xsubticklinestyle=solid|dashed|dotted|none
-ysubticklinestyle=solid|dashed|dotted|none
-\end{lstlisting}
-
-\Lkeyword{ticklinestyle} and \Lkeyword{subticklinestyle} set both values
-for the x and y axis. The value \Lkeyval{none} doesn't really makes
-sense, because it is the same as \verb+[sub]ticklines=0+
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\psset{unit=4cm}
-\pspicture(-0.15,-0.15)(2.5,1)
- \psaxes[axesstyle=frame,logLines=y,xticksize=0 1,xsubticksize=1,ylogBase=10,
- tickcolor=red,subtickcolor=blue,tickwidth=1pt,subticks=20,xsubticks=10,
- xticklinestyle=dashed,xsubticklinestyle=dashed](2.5,1)
-\endpspicture
-\end{LTXexample}
-
-
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{logLines}}
-%--------------------------------------------------------------------------------------
-Syntax:
-\begin{BDef}
-logLines=all|x|y
-\end{BDef}
-
-By default the option \Lkeyword{logLines} sets the ticksize to the maximal length for x, y, or both.
-It can be changed, when \emph{after} the option \Lkeyword{logLines} the ticksize is set.
-
-\begin{LTXexample}[pos=t]
-\pspicture(-1,-1)(5,5)
- \psaxes[subticks=5,xylogBase=10,logLines=all](5,5)
-\endpspicture\hspace{1cm}
-\pspicture(-1,-1)(5,5)
- \psaxes[subticks=10,axesstyle=frame,xylogBase=10,logLines=all,ticksize=0 5pt,tickstyle=inner](5,5)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\psset{unit=4cm}
-\pspicture(-0.15,-0.15)(2.5,2)
- \psaxes[axesstyle=frame,logLines=y,xticksize=max,xsubticksize=1,ylogBase=10,
- tickcolor=red,subtickcolor=blue,tickwidth=1pt,subticks=20,xsubticks=10](2.5,2)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\psset{unit=4}
-\pspicture(-0.5,-0.3)(3,1.2)
- \psaxes[axesstyle=frame,tickstyle=inner,logLines=x,xlogBase=10,Dy=0.5,tickcolor=red,
- subtickcolor=blue,tickwidth=1pt,ysubticks=5,xsubticks=10](3,1)
-\endpspicture
-\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{xylogBase}, \texttt{xlogBase} and \texttt{ylogBase}}
-%--------------------------------------------------------------------------------------
-There are additional options \Lkeyword{xylogBase}, \Lkeyword{xlogBase},
-\Lkeyword{ylogBase} to get one or both axes with \Index{logarithmic label}s. For an
-interval of [$10^{-3} ... 10^2$] choose a \verb|pstricks| interval
-of [-3,2]. \verb|pstricks| takes $0$ as the origin of this axes,
-which is wrong if we want to have a logarithmic axes. With the
-options \Lkeyword{Oy} and \Lkeyword{Ox} we can set the origin to $-3$, so
-that the first label gets $10^{-3}$. If this is not done by the
-user then \verb|pstricks-add| does it by default. An alternative
-is to set these parameters to empty values \verb|Ox={},Oy={}|, in
-this case \verb|pstricks-add| does nothing.
-
-
-%------------------------------------------------------------------------------------
-\subsubsection{\texttt{xylogBase}}
-%------------------------------------------------------------------------------------
-This mode in math is also called double logarithmic. It is a
-combination of the two foregoing modes and the function is now
-$y=\log x$ and is shown in the following example.
-
-\medskip
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
- \psplot[linewidth=2pt,linecolor=red]{0.001}{3}{x log}
- \psaxes[xylogBase=10,Oy=-3,Ox=-3]{->}(-3,-3)(3.5,3.5)
- \uput[-90](3.5,-3){x}
- \uput[180](-3,3.5){y}
- \rput(2.5,1){$y=\log x$}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-%--------------------------------------------------------------------------------------------
-\subsubsection{\texttt{ylogBase}}
-%--------------------------------------------------------------------------------------------
-The values for the \Lcs{psaxes} y-coordinate are now the
-exponents to the base $10$ and for the right function to the base
-$e$: $10^{-3} \ldots 10^1$ which corresponds to the given
-y-interval $-3\ldots 1.5$, where only integers as exponents are
-possible. These logarithmic labels have no effect on the
-internally used units. To draw the logarithm function we have to
-use the math function
-\[y=\log\{\log x\}\]
-\[y=\ln\{\ln x\}\]
-with an drawing interval of $1.001\ldots 6$.
-
-\medskip
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-0.5,-3.5)(6.5,1.5)
- \psaxes[ylogBase=10,Oy=-3]{->}(0,-3)(6.5,1.5)
- \uput[-90](6.5,-3){x}
- \uput[0](0,1.4){y}
- \rput(5,1){$y=\log x$}
- \psplot[linewidth=2pt,%
- plotpoints=100,linecolor=red]{1.001}{6}{x log log} % log(log(x))
-\end{pspicture}
-\end{LTXexample}
-
-\medskip
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-0.5,-3.5)(6.5,1.5)
- \psplot[linewidth=2pt,plotpoints=100,linecolor=red]%
- {1.04}{6}[ /ln {log 0.4343 div} def ]{x ln ln} % log(x)
- \psaxes[ylogBase=e,Oy=-3]{->}(0,-3)(6.5,1.5)
- \uput[-90](6.5,-3){x}
- \uput[0](0,1.5){y}
- \rput(5,1){$y=\ln x$}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-\medskip
-\begin{LTXexample}[width=7cm]
- \begin{pspicture}(-0.5,1.75)(6.5,4.5)
- \psaxes[ylogBase=10,Oy=2]{->}(0,2)(0,2)(6.5,4.5)
- \end{pspicture}
-\end{LTXexample}
-
-
-
-\medskip
-\begin{LTXexample}[width=7cm]
- \begin{pspicture}(-0.5,-0.25)(6.5,4.5)
- \psplot{0}{6}{x x cos add log} % x + cox(x)
- \psplot[linecolor=red]{0}{6}{x 3 exp x cos add log} % x^3 + cos(x)
- \psplot[linecolor=cyan]{0}{6}{x 5 exp x cos add log} % x^5 + cos(x)
- \psaxes[ylogBase=10]{->}(6.5,4.5)
- \end{pspicture}
-\end{LTXexample}
-
-
-
-\medskip
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-0.5,-1.25)(6.5,4.5)
- \psplot{0}{6}{x x cos add log} % x + cox(x)
- \psplot[linecolor=red]{0}{6}{x 3 exp x cos add log} % x^3 + cos(x)
- \psplot[linecolor=cyan]{0}{6}{x 5 exp x cos add log} % x^5 + cos(x)
- \psaxes[ylogBase=10]{->}(0,-1)(0,-1)(6.5,4.5)
-\end{pspicture}
-\end{LTXexample}
-
-
-
-\medskip
-\begin{LTXexample}[width=4cm]
-\begin{pspicture}(2.5,1.75)(6.5,4.5)
- \psplot[linecolor=cyan]{3}{6}{x 5 exp x cos add log} % x^5 + cos(x)
- \psaxes[ylogBase=10,Ox=3,Oy=2]{->}(3,2)(3,2)(6.5,4.5)
-\end{pspicture}
-\end{LTXexample}
-
-
-
-
-
-%--------------------------------------------------------------------------------------
-\subsubsection{\texttt{xlogBase}}
-%--------------------------------------------------------------------------------------
-Now we have to use the easy math function $y=x$ because the x axis is still $\log x$.
-\xLkeyword{xlogBase}
-
-\medskip
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
- \psplot[linewidth=2pt,linecolor=red]{-3}{3}{x} % log(x)
- \psplot[linewidth=2pt,linecolor=blue]{-1.3}{1.5}{x 0.4343 div} % ln(x)
- \psaxes[xlogBase=10,Oy=-3,Ox=-3]{->}(-3,-3)(3.5,3.5)
- \uput[-90](3.5,-3){x}
- \uput[180](-3,3.5){y}
- \rput(2.5,1){$y=\log x$}
- \rput[lb](0,-1){$y=\ln x$}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{center}
-\psset{yunit=3cm,xunit=2cm}
-\begin{pspicture}(-1.25,-1.25)(4.25,1.5)
- \uput[-90](4.25,-1){x}
- \uput[0](-1,1.25){y}
- \rput(0,1){$y=\sin x$}
- \psplot[linewidth=2pt,plotpoints=5000,linecolor=red]{-1}{3.5}{10 x exp sin }
- \psaxes[xlogBase=10,Oy=-1,Ox=-1]{->}(-1,-1)(4.25,1.25)
- \psline[linestyle=dashed](!0 1)(!90 log 1)(!90 log 0)
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}
-\psset{yunit=3cm,xunit=2cm}
-\begin{pspicture}(-1.25,-1.25)(4.25,1.5)
- \uput[-90](4.25,-1){x}
- \uput[0](-1,1.25){y}
- \rput(0,1){$y=\sin x$}
- \psplot[linewidth=2pt,plotpoints=5000,linecolor=red]{-1}{3.5}{10 x exp sin }
- \psaxes[xlogBase=10,Ox=-1,Oy=-1]{->}(-1,-1)(4.25,1.25)
- \psline[linestyle=dashed](-1,0)(4,0)
- \psline[linestyle=dashed](!-1 1)(!90 log 1)(!90 log -1)
- \psline[linestyle=dashed](!90 log 1)(!180 log 1)(!180 log -1)
-\end{pspicture}
-\end{lstlisting}
-
-
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-3.5,-2.5)(3.5,2.5)
- \psaxes[xlogBase=10]{->}(0,0)(-3.5,-2.5)(3.5,2.5)
- \psplot{-2.5}{2.5}{10 x exp log}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-\medskip
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-3.5,-2.5)(3.5,2.5)
- \psaxes[xlogBase=10,Ox={},Oy={}]{->}(0,0)(-3.5,-2.5)(3.5,2.5)
- \psplot{-2.5}{2.5}{10 x exp log}
-\end{pspicture}
-\end{LTXexample}
-
-
-%------------------------------------------------------------------------------------
-\subsubsection{No logstyle (\texttt{xylogBase=\{\}})}
-%------------------------------------------------------------------------------------
-This is only a demonstration that the default option \xLkeyword{xylogBase}=\{\} still works ... :-)
-
-\medskip
-\begin{LTXexample}[width=7cm]
-\begin{pspicture}(-3.5,-0.5)(3.5,2.5)
- \psplot[linewidth=2pt,linecolor=red,xylogBase={}]{0.5}{3}{x log} % log(x)
- \psaxes{->}(0,0)(-3.5,0)(3.5,2.5)
- \uput[-90](3.5,0){x}
- \uput[180](0,2.5){y}
- \rput(2.5,1){$y=\log x$}
-\end{pspicture}
-\end{LTXexample}
-
-
-\newpage
-%--------------------------------------------------------------------------------------
-\subsection{\texttt{subticks}, \texttt{tickwidth} and \texttt{subtickwidth}}
-%--------------------------------------------------------------------------------------
-
-
-\begin{center}
-{\psset{arrowscale=3,arrows=-D>,yAxis=false}
- \psaxes[subticks=8](0,0)(-5,-1)(5,1)\\[1cm]
- \psaxes[subticks=4,ticksize=-4pt 0,xlabelPos=top](0,0)(5,1)(-5,-1)\\
- \psaxes[subticks=4,ticksize=-10pt 0](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=10,ticksize=0 -10pt](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=4,ticksize=0 10pt,xlabelPos=bottom](0,0)(5,5)(-5,-5)\\[1cm]
- \psaxes[subticks=4,ticksize=0 -10pt,xlabelPos=top](0,0)(5,5)(-5,-5)\\[0.25cm]
- \psaxes[subticks=0](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=0,tickcolor=red,linecolor=blue,xlabelPos=top](0,0)(5,5)(-5,-5)\\
- \psaxes[subticks=5,tickwidth=2pt,subtickwidth=1pt](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=0,tickcolor=red,xlabelPos=top](0,0)(5,5)(-5,-5)}
-\end{center}
-\begin{lstlisting}[xrightmargin=-1.75cm]
-\psset{arrowscale=3,arrows=-D>,yAxis=false}
- \psaxes[subticks=8](0,0)(-5,-1)(5,1)\\[1cm]
- \psaxes[subticks=4,ticksize=-4pt 0,xlabelPos=top](0,0)(5,1)(-5,-1)\\
- \psaxes[subticks=4,ticksize=-10pt 0](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=10,ticksize=0 -10pt](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=4,ticksize=0 10pt,xlabelPos=bottom](0,0)(5,5)(-5,-5)\\[1cm]
- \psaxes[subticks=4,ticksize=0 -10pt,xlabelPos=top](0,0)(5,5)(-5,-5)\\[0.25cm]
- \psaxes[subticks=0](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=0,tickcolor=red,linecolor=blue,xlabelPos=top](0,0)(5,5)(-5,-5)\\
- \psaxes[subticks=5,tickwidth=2pt,subtickwidth=1pt](0,0)(-5,-5)(5,5)\\[1cm]
- \psaxes[subticks=0,tickcolor=red,xlabelPos=top](0,0)(5,5)(-5,-5)}
-\end{lstlisting}
-
-\clearpage
-\vspace*{4cm}
-\begin{center}
-\psset{arrowscale=3,xAxis=false}
-\psaxes[subticks=8]{->}(0,0)(-5,-5)(5,5)\hspace{2em}
-\psaxes[subticks=4,ylabelPos=right,ylabelPos=left]{->}(0,0)(5,5)(-5,-5)\hspace{4em}
-\psaxes[subticks=4,ticksize=0 4pt]{->}(0,0)(-5,-5)(5,5)\hspace{3em}
-\psaxes[subticks=4,ticksize=-4pt 0]{->}(0,0)(-5,-5)(5,5)\hspace{1em}
-\psaxes[subticks=4,ticksize=0 4pt,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)\hspace{3em}
-\psaxes[subticks=4,ticksize=-4pt 0,linecolor=red,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)\hspace{5em}
-\psaxes[subticks=0]{->}(0,0)(-5,-5)(5,5)\hspace{1em}
-\psaxes[subticks=0,tickcolor=red,linecolor=blue,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)\hspace{5em}
-\psaxes[subticks=5,tickwidth=2pt,subtickwidth=1pt]{->}(0,0)(-5,-5)(5,5)\hspace{1em}
-\psaxes[subticks=5,tickcolor=red,tickwidth=2pt,%
- ticksize=10pt,subtickcolor=blue,subticksize=0.75,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)
-\end{center}
-
-\vspace*{5cm}
-\begin{lstlisting}[xrightmargin=-1.75cm]
-\psset{arrowscale=3,xAxis=false}
-\psaxes[subticks=8]{->}(0,0)(-5,-5)(5,5)\hspace{2em}
-\psaxes[subticks=4,ylabelPos=right,ylabelPos=left]{->}(0,0)(5,5)(-5,-5)\hspace{4em}
-\psaxes[subticks=4,ticksize=0 4pt]{->}(0,0)(-5,-5)(5,5)\hspace{3em}
-\psaxes[subticks=4,ticksize=-4pt 0]{->}(0,0)(-5,-5)(5,5)\hspace{1em}
-\psaxes[subticks=4,ticksize=0 4pt,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)\hspace{3em}
-\psaxes[subticks=4,ticksize=-4pt 0,linecolor=red,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)\hspace{5em}
-\psaxes[subticks=0]{->}(0,0)(-5,-5)(5,5)\hspace{1em}
-\psaxes[subticks=0,tickcolor=red,linecolor=blue,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)\hspace{5em}
-\psaxes[subticks=5,tickwidth=2pt,subtickwidth=1pt]{->}(0,0)(-5,-5)(5,5)\hspace{1em}
-\psaxes[subticks=5,tickcolor=red,tickwidth=2pt,%
- ticksize=10pt,subtickcolor=blue,subticksize=0.75,ylabelPos=right]{->}(0,0)(5,5)(-5,-5)
-\end{lstlisting}
-
-\begin{LTXexample}[width=5.5cm]
-\pspicture(5,5.5)
-\psaxes[subticks=4,ticksize=6pt,subticksize=0.5,%
- tickcolor=red,subtickcolor=blue]{->}(5.4,5)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=5.5cm]
-\pspicture(5,5.5)
- \psaxes[subticks=5,ticksize=0 6pt,subticksize=0.5]{->}(5.4,5)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=5.5cm]
-\pspicture(5,5.5)
- \psaxes[subticks=5,ticksize=-6pt 0,subticksize=0.5]{->}(5.4,5)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\pspicture(-3,-3)(3,3.5)
- \psaxes[subticks=5,ticksize=0 6pt,subticksize=0.5]{->}(0,0)(3,3)(-3,-3)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=6.5cm]
-\pspicture(0,0.5)(-3,-3)
- \psaxes[subticks=5,ticksize=-6pt 0,subticksize=0.5,linecolor=red]{->}(-3,-3)
-\endpspicture
-\end{LTXexample}
-
-
-
-\begin{LTXexample}[width=5.5cm]
-\psset{axesstyle=frame}
-\pspicture(5,5.5)
- \psaxes[subticks=4,tickcolor=red,subtickcolor=blue](5,5)
-\endpspicture
-\end{LTXexample}
-
-\vspace{1cm}
-\begin{LTXexample}[width=5.5cm]
-\pspicture(5,5.5)
- \psaxes[subticks=5,subticksize=1,subtickcolor=lightgray](5,5)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=5.5cm]
-\pspicture(5,5.5)
- \psaxes[subticks=2,subticksize=1,subtickcolor=lightgray](5,5)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\pspicture(3,4.5)
- \psaxes[subticks=5,ticksize=-7pt 0](3,4)
-\endpspicture
-\end{LTXexample}
-
-
-\begin{LTXexample}[width=3.5cm]
-\pspicture(0,1)(-3,-4)
- \psaxes[subticks=5](-3,-4)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\pspicture(3,4.5)
- \psaxes[axesstyle=axes,subticks=5](3,4)
-\endpspicture
-\end{LTXexample}
-
-\begin{LTXexample}[width=3.5cm]
-\pspicture(0,1)(-3,-4)
- \psaxes[axesstyle=axes,subticks=5,%
- ticksize=0 10pt](-3,-4)
-\endpspicture
-\end{LTXexample}
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\subsection[\texttt{algebraic}]{\texttt{algebraic}%\footnote{This part is adapted
-% from the package \texttt{pst-eqdf}, written by Dominique Rodriguez.}
-}
-%--------------------------------------------------------------------------------------
-By default the function in \Lcs{psplot} has to be described in
-Reversed Polish Notation. The option \Lkeyword{algebraic} allows you
-to do this in the common algebraic notation. E.g.:
-
-\begin{tabular}{l|l}
-RPN & algebraic\\\hline
-\verb+x ln+ & \verb+ln(x)+\\
-\verb+x cos 2.71 x neg 10 div exp mul+ & \verb+cos(x)*2.71^(-x/10)+\\
-\verb+1 x div cos 4 mul+ & \verb+4*cos(1/x)+\\
-\verb+t cos t sin+ & \verb+cos(t)|sin(t)+
-\end{tabular}
-
-Setting the option \Lkeyword{algebraic} to \verb+true+, allow the user
-to describe all expression to be written in the classical
-algebraic notation (infix notation). The four arithmetic
-operations are obviously defined \verb$+-*/$, and also the
-exponential operator \verb$^$. The natural priorities are used :
-$3+4\times 5^5=3+(4\times (5^5))$, and by default the computation
-is done from left to right. The following functions are defined :
-
-\medskip
-\begin{tabular}{ll}
-\verb$sin$, \verb$cos$, \verb$tan$, \verb$acos$, \verb$asin$ & in radians\\
-\verb$log$, \verb$ln$\\
-\verb$ceiling$, \verb$floor$, \verb$truncate$, \verb$round$\\
-\verb$sqrt$ & square root\\
-\verb$abs$ & absolute value\\
-\verb$fact$ & for the factorial\\
-\verb$Sum$ & for building sums\\
-\verb$IfTE$ & for an easy case structure
-\end{tabular}
-
-\medskip
-These options can be used with \textbf{all} plot macros.
-
-{\bfseries Using the option \Lkeyword{algebraic} implies that all
-angles have to be in radians! }
-
-For the \Lcs{parametricplot} the two parts must be divided by the \Lnotation{|} character:
-
-\begin{LTXexample}[width=2cm]
-\begin{pspicture}(-0.5,-0.5)(0.5,0.5)
-\parametricplot[algebraic,linecolor=red]{-3.14}{3.14}{cos(t)|sin(t)}
-\end{pspicture}
-\end{LTXexample}
-
-\resetOptions
-\bigskip
-%\begin{LTXexample}[pos=t]
-\psset{lly=-0.5cm}
-\psgraph[trigLabels,dx=\psPi,dy=0.5,Dy=0.5]{->}(0,0)(-10,-1)(10,1){\linewidth}{6cm}
- \psset{algebraic,plotpoints=1000}
- \psplot[linecolor=yellow,linewidth=2pt]{-10}{10}{0.75*sin(x)*cos(x/2)}
- \psplot[linecolor=red,showpoints=true,plotpoints=101]{-10}{10}{0.75*sin(x)*cos(x/2)}
-\endpsgraph
-%\end{LTXexample}
-
-\bigskip
-\begin{lstlisting}
-\psset{lly=-0.5cm}
-\psgraph[trigLabels,dx=\psPi,dy=0.5,Dy=0.5]{->}(0,0)(-10,-1)(10,1){\linewidth}{6cm}
- \psset{algebraic,plotpoints=1000}
- \psplot[linecolor=yellow,linewidth=2pt]{-10}{10}{0.75*sin(x)*cos(x/2)}
- \psplot[linecolor=red,showpoints=true,plotpoints=101]{-10}{10}{0.75*sin(x)*cos(x/2)}
-\endpsgraph
-\end{lstlisting}
-
-
-\bigskip
-%\begin{LTXexample}[pos=t]
-\bgroup
-\psset{lly=-0.5cm}
-\psgraph(0,-5)(18,3){15cm}{5cm}
- \psset{algebraic,plotpoints=501}
- \psplot[linecolor=yellow, linewidth=4\pslinewidth]{0.01}{18}{ln(x)}
- \psplot[linecolor=red]{0.01}{18}{ln(x)}
- \psplot[linecolor=yellow,linewidth=4\pslinewidth]{0}{18}{3*cos(x)*2.71^(-x/10)}
- \psplot[linecolor=blue,showpoints=true,plotpoints=51]{0}{18}{3*cos(x)*2.71^(-x/10)}
-\endpsgraph
-\egroup
-%\end{LTXexample}
-
-
-\bigskip
-\begin{lstlisting}
-\psset{lly=-0.5cm}
-\psgraph(0,-5)(18,3){15cm}{5cm}
- \psset{algebraic,plotpoints=501}
- \psplot[linecolor=yellow, linewidth=4\pslinewidth]{0.01}{18}{ln(x)}
- \psplot[linecolor=red]{0.01}{18}{ln(x)}
- \psplot[linecolor=yellow,linewidth=4\pslinewidth]{0}{18}{3*cos(x)*2.71^(-x/10)}
- \psplot[linecolor=blue,showpoints=true,plotpoints=51]{0}{18}{3*cos(x)*2.71^(-x/10)}
-\endpsgraph
-\end{lstlisting}
-
-
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\subsubsection{Using the \texttt{Sum} function}
-%--------------------------------------------------------------------------------------
-
-\begin{BDef}
-\Lcs{Sum}\Largr{<index name>,<start>,<step>,<end>,<function>}
-\end{BDef}
-
-Let's plot the first development of cosine with polynomials:
-$\displaystyle\sum_{n=0}^{+\infty}\frac{(-1)^nx^{2n}}{n!}$.
-
-\begin{center}
-\bgroup
-\psset{algebraic, plotpoints=501, yunit=3}
-\def\getColor#1{\ifcase#1 black\or red\or magenta\or yellow\or green\or Orange\or blue\or
- DarkOrchid\or BrickRed\or Rhodamine\or OliveGreen\fi}
-\begin{pspicture}(-7,-1.5)(7,1.5)
- \psclip{\psframe(-7,-1.5)(7,1.5)}
- \psplot{-7}{7}{cos(x)}
- \multido{\n=1+1}{10}{%
- \psplot[linewidth=1pt,linecolor=\getColor{\n}]{-7}{7}{%
- Sum(ijk,0,1,\n,(-1)^ijk*x^(2*ijk)/fact(2*ijk))}}
- \endpsclip
- \psaxes(0,0)(-7,-1.5)(7,1.5)
-\end{pspicture}
-\egroup
-\end{center}
-\begin{lstlisting}
-\psset{algebraic, plotpoints=501, yunit=3}
-\def\getColor#1{\ifcase#1 black\or red\or magenta\or yellow\or green\or Orange\or blue\or
- DarkOrchid\or BrickRed\or Rhodamine\or OliveGreen\fi}
-\begin{pspicture}(-7,-1.5)(7,1.5)
- \psclip{\psframe(-7,-1.5)(7,1.5)}
- \psplot{-7}{7}{cos(x)}
- \multido{\n=1+1}{10}{%
- \psplot[linewidth=1pt,linecolor=\getColor{\n}]{-7}{7}{%
- Sum(ijk,0,1,\n,(-1)^ijk*x^(2*ijk)/fact(2*ijk))}}
- \endpsclip
- \psaxes(0,0)(-7,-1.5)(7,1.5)
-\end{pspicture}
-\end{lstlisting}
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\subsubsection{Using the \texttt{IfTE} function}
-%--------------------------------------------------------------------------------------
-\begin{BDef}
-\Lps{IfTE}\Largr{<condition>,<true part>,<false part>}
-\end{BDef}
-
-Nesting of several \Lps{IfTE} is possible and seen in the
-following examples. A classic example is a piece-wise linear
-function.
-
-\begin{center}
-\begin{pspicture}(-7.5,-2.5)(7.5,6)
- \psaxes{->}(0,0)(-7,-2)(7.5,6)[x,-90][y,0]
- \psset{algebraic=true, plotpoints=21,linewidth=2pt}
- \psplot[linecolor=blue]{-7.5}{7.5}{IfTE(x<-6,8+x,IfTE(x<0,-x/3,IfTE(x<3,2*x,9-x)))}
- \psplot[linecolor=red, plotpoints=101]{-7.5}{7.5}{%
- IfTE(2*x<-2^2*sqrt(9),7+x,IfTE(x<0,x^2/18-1,IfTE(x<3,2*x^2/3-1,8-x)))}%
-\end{pspicture}
-\end{center}
-
-
-\begin{lstlisting}
-\begin{pspicture}(-7.5,-2.5)(7.5,6)
- \psaxes{->}(0,0)(-7,-2)(7.5,6)[x,-90][y,0]
- \psset{algebraic=true, plotpoints=21,linewidth=2pt}
- \psplot[linecolor=blue]{-7.5}{7.5}{IfTE(x<-6,8+x,IfTE(x<0,-x/3,IfTE(x<3,2*x,9-x)))}
- \psplot[linecolor=red, plotpoints=101]{-7.5}{7.5}{%
- IfTE(2*x<-2^2*sqrt(9),7+x,IfTE(x<0,x^2/18-1,IfTE(x<3,2*x^2/3-1,8-x)))}%
-\end{pspicture}
-\end{lstlisting}
-
-When you program a piece-wise defined function you must take care
-that a plotting point must be put at each point where the
-description changes. Use \Lkeyword{showpoints}=true to see what's
-going on when there is a problem. You are on the safe side when
-you choose a big number for \Lkeyword{plotpoints}.
-
-\clearpage
-
-
-\begin{center}
-\psset{unit=0.75}
-\begin{pspicture}(-8,-8)(8,8)
- \psaxes{->}(0,0)(-8,-8)(8,8)[x,-90][y,0]
- \psset{plotpoints=1000,linewidth=1pt}
- \psplot[algebraic]{-8}{8}{ceiling(x)}
- \psplot[algebraic, linecolor=yellow]{-8}{8}{rand/(2^31-1)+x}
- \psplot[algebraic, linecolor=red]{-8}{8}{floor(x)}
- \psplot[algebraic, linecolor=blue]{-8}{8}{round(x)}
- \psplot[algebraic, linecolor=green]{-8}{8}{truncate(x)}
- \psplot[algebraic, linecolor=cyan]{-8}{8}{div(mul(4,x),7)}
- \psplot[algebraic, linecolor=gray]{-8}{8}{abs(x)+abs(x-3)-abs(5-5*x/7)}
- \psplot[algebraic, linecolor=gray]{-8}{8}{abs(3*cos(x)+1)}
- \psplot[algebraic, linecolor=magenta]{-8}{8}{floor(8*cos(x))}
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=0.75}
-\begin{pspicture}(-8,-8)(8,8)
- \psaxes{->}(0,0)(-8,-8)(8,8)[x,-90][y,0]
- \psset{plotpoints=1000,linewidth=1pt}
- \psplot[algebraic, linecolor=yellow]{-8}{8}{rand/(2^31-1)+x}
- \psplot[algebraic]{-8}{8}{ceiling(x)}
- \psplot[algebraic, linecolor=red]{-8}{8}{floor(x)}
- \psplot[algebraic, linecolor=blue]{-8}{8}{round(x)}
- \psplot[algebraic, linecolor=green]{-8}{8}{truncate(x)}
- \psplot[algebraic, linecolor=cyan]{-8}{8}{div(mul(4,x),7)}
- \psplot[algebraic, linecolor=gray]{-8}{8}{abs(x)+abs(x-3)-abs(5-5*x/7)}
- \psplot[algebraic, linecolor=gray]{-8}{8}{abs(3*cos(x)+1)}
- \psplot[algebraic, linecolor=magenta]{-8}{8}{floor(8*cos(x))}
-\end{pspicture}
-\end{lstlisting}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{Plot style \texttt{bar} and option \texttt{barwidth}}
-%--------------------------------------------------------------------------------------
-This option allows you to draw bars for the data records. The
-width of the bars is controlled by the option \Lkeyword{barwidth},
-which is set by default to value of \verb+0.25cm+, which is the
-total width.
-
-\def\barData{
-0 0.03
-1 0.11
-2 0.28
-3 0.84
-4 6.70
-5 8.55
-6 8.77
-7 11.09
-8 7.18
-9 6.20
-10 5.78
-11 4.19
-12 2.37
-13 2.26
-14 1.68
-15 1.03
-16 1.37
-17 1.34
-18 0.92
-19 0.67
-20 0.87
-21 1.20
-22 1.98
-23 3.99
-24 5.08
-25 5.17
-26 5.78
-27 4.44
-28 0.11
-}
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\psset{xunit=.44cm,yunit=.3cm}
-\begin{pspicture}(-2,-3)(29,13)
- \psaxes[axesstyle=axes,Ox=1466,Oy=0,Dx=4,Dy=2,xticksize=-6pt 0,
- ylabelFactor={\,\%}]{-}(29,12)
- \listplot[shadow=true,linecolor=blue,plotstyle=bar,barwidth=0.3cm,
- fillcolor=red,fillstyle=solid]{\barData}
- \rput{90}(-3,6.25){Amount}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\psset{xunit=.44cm,yunit=.3cm}
-\begin{pspicture}(-2,-3)(29,13)
- \psaxes[axesstyle=axes,Ox=1466,Oy=0,Dx=4,Dy=2,ticksize=-4pt 0,
- ylabelFactor={\,\%}]{-}(29,12)
- \listplot[linecolor=blue,plotstyle=bar,barwidth=0.3cm,
- fillcolor=red,fillstyle=crosshatch]{\barData}
- \rput{90}(-3,6.25){Amount}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\psset{xunit=.44cm,yunit=.3cm}
-\begin{pspicture}(-2,-3)(29,13)
- \psaxes[axesstyle=axes,Ox=1466,Oy=0,Dx=4,Dy=2,ticksize=-4pt 0,
- ylabelFactor={\,\%}]{-}(29,12)
- \listplot[linecolor=blue,plotstyle=bar,barwidth=0.3cm,
- fillcolor=red,fillstyle=vlines]{\barData}
- \listplot[showpoints=true]{\barData}
- \rput{90}(-3,6.25){Amount}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-%------------------------------------------------------------------------------------
-\subsection{New options \nxLkeyword{yMaxValue}}
-%------------------------------------------------------------------------------------
-With the new optional argument \Lkeyword{yMaxValue} one can control the behaviour
-of discontinued functions, like the tangent function. If \Lkeyword{yMaxValue} is set
-to a negative value, then the internal if clause is disabled, the function is plotted
-in the usual way as known from \LPack{pst-plot}.
-
-
-\psset{unit=1cm}
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\begin{pspicture}(-6.5,-7)(6.5,7.5)
-\multido{\rA=-4.71239+\psPiH}{7}{%
- \psline[linecolor=black!20,linestyle=dashed](\rA,-6.5)(\rA,6.5)}
-\psaxes[trigLabelBase=2,dx=\psPiH,
- xunit=\psPi,trigLabels]{->}(0,0)(-1.7,-6.5)(1.77,6.5)[$x$,0][$y$,-90]
-\psset{algebraic,plotpoints=200,plotstyle=line}
-\psclip{\psframe[linestyle=none](-4.55,-6.5)(5.55,6.5)}
- \psplot[yMaxValue=10,linewidth=1.6pt,linecolor=red]{-4.55}{4.55}{(x)/(sin(2*x))}
-\endpsclip
-\psplot[linestyle=dashed,linecolor=blue!30]{-4.8}{4.8}{x}
-\psplot[linestyle=dashed,linecolor=blue!30]{-4.8}{4.8}{-x}
-\rput(0,0.5){$\times$}
-\end{pspicture}
-\end{LTXexample}
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\begin{pspicture}(-6.5,-7)(6.5,7.5)
-\psaxes[trigLabelBase=2,dx=\psPiH,
- xunit=\psPi,trigLabels]{->}(0,0)(-1.7,-6.5)(1.77,6.5)[$x$,0][$y$,90]
-\psset{algebraic}
-\psplot[yMaxValue=6,linewidth=1.6pt,plotpoints=2000,
- linecolor=red]{-4.55}{4.55}{tan(x)}
-\end{pspicture}
-\end{LTXexample}
-
-\psset{unit=1cm}
-
-
-\clearpage
-
-%------------------------------------------------------------------------------------
-\subsection{New options for \nxLcs{readdata}}
-%------------------------------------------------------------------------------------
-
-
-By default the macro \verb|\readdata| reads every data record,
-which could be annoying when you have some text lines at top of
-your data files or when there are more than 10000 records to read.
-
-
-\verb|pstricks-add| defines two additional keys \Lkeyword{ignoreLines}
-and \Lkeyword{nStep}, which allows you to ignore preceding lines, e.g.
-\Lkeyword{ignoreLines}=2, or to read only a selected part of the data
-records, e.g. \verb|nStep=10|, only every 10\textsuperscript{th}
-record is saved.
-
-\begin{lstlisting}
-\readdata[ignoreLines=2]{\dataA}{stressrawdata.data}
-\readdata[nStep=10]{\dataA}{stressrawdata.data}
-\end{lstlisting}
-
-The default value for \Lkeyword{ignoreLines} is $0$ and for \Lkeyword{nStep} is $1$.
-the following data file has two text lines which shall be ignored by the \Lcs{readdata} macro:
-
-\begin{LTXexample}[width=4cm]
-\begin{filecontents*}{pstricks-add-data9.data}
-some nonsense in this line ---time forcex forcey
-0 0.2
-1 1
-2 4
-\end{filecontents*}
-\readdata[ignoreLines=2]{\data}{pstricks-add-data9.data}
-\pspicture(2,4)
- \listplot[showpoints=true]{\data}
- \psaxes{->}(2,4)
-\endpspicture
-\end{LTXexample}
-
-
-%--------------------------------------------------------------------------------------
-\subsection{New options for \texttt{\textbackslash listplot}}
-%--------------------------------------------------------------------------------------
-By default the plot macros \Lcs{dataplot}, \Lcs{fileplot} and \Lcs{listplot} plot every
-data record. The package \verb|pst-plot-add| defines additional keys
-\Lkeyword{nStep}, \Lkeyword{nStart}, \Lkeyword{nEnd}, and \Lkeyword{xStep}, \Lkeyword{xStart},
-\Lkeyword{xEnd}, which allows
-to plot only a selected part of the data records, e.g. \verb|nStep=10|. These "`n"'
-options mark the number of the record to be plot ($0,1,2,...$) and the "`x"' ones the x-values of the data records.
-
-
-\begin{center}
-\begin{tabular}{l|l}
-Name & Default setting\\\hline
-\Lkeyword{nStart} & \verb|1|\\
-\Lkeyword{nEnd} & \verb|{}|\\
-\Lkeyword{nStep} & \verb|1|\\
-\Lkeyword{xStart} & \verb|{}|\\
-\Lkeyword{xEnd} & \verb|{}|\\
-\Lkeyword{yStart} & \verb|{}|\\
-\Lkeyword{yEnd} & \verb|{}|\\
-\Lkeyword{xStep} & \verb|0|\\
-\Lkeyword{plotNo} & \verb|1|\\
-\Lkeyword{plotNoMax} & \verb|1|\\
-\Lkeyword{ChangeOrder} & \false\\
-(\Lkeyword{plotstyle})& \Lkeyval{line}
-\end{tabular}
-\end{center}
-
-These new options are only available
-for the \Lcs{listplot} macro, which is not a real limitation, because all data records can be read
-from a file with the \Lcs{readdata} macro (see example files or \cite{dtk02.2:jackson.voss:plot-funktionen}):
-\begin{lstlisting}[style=syntax]
-\readdata[nStep=10]{\data}{/home/voss/data/data1.data}
-\end{lstlisting}
-
-The use \Lkeyword{nStep} and \Lkeyword{xStep} options only make real sense
-when also using the option \Lkeyset{plotstyle=dots}. Otherwise the
-coordinates are connected by a line as usual. Also the
-\Lkeyword{xStep} option needs increasing x values. Note that
-\Lkeyword{nStep} can be used for \Lcs{readdata} and for
-\Lcs{listplot}. If used in both macros then the effect is
-multiplied, e.g. \Lcs{readdata} with \Lkeyword{nStep}=5 and
-\Lcs{listplot} with \Lkeyword{nStep}=10 means, that only every
-50\textsuperscript{th} data record is read and plotted.
-
-When both, \verb|x/yStart/End| are defined then the values are also compared with
-both values.
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{nStep/xStep}}
-%--------------------------------------------------------------------------------------
-
-The datafile \verb|data.data| contains $1000$ data records. The thin blue line is the plot
-of all records with the plotstyle option \Lkeyval{curve}.
-
-\resetOptions
-\begin{LTXexample}[preset=\centering,pos=t]
-\readdata{\data}{data.data}
-\psset{xunit=12.5cm,yunit=0.2mm}
-\begin{pspicture}(-0.080,-30)(1,270)
-\pstScalePoints(1,1){1000 div}{1000 div}
-\psaxes[Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
- subticks=10,ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)
-\listplot[nStep=50,linewidth=3pt,linecolor=red,plotstyle=dots]{\data}
-\listplot[linewidth=1pt,linecolor=blue]{\data}
-\end{pspicture}
-\end{LTXexample}
-
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{nStart/xStart}}
-%--------------------------------------------------------------------------------------
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\readdata{\data}{data.data}
-\psset{xunit=12.5cm,yunit=0.2mm}
-\begin{pspicture}(-0.080,-30)(1,270)
-\pstScalePoints(1,1){1000 div}{1000 div}
-\psaxes[Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
- subticks=10,ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)
-\listplot[nStart=200,linewidth=3pt,
- linecolor=blue,plotstyle=dots]{\data}
-\listplot[linewidth=1pt,linecolor=blue]{\data}
-\end{pspicture}
-\end{LTXexample}
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{nEnd/xEnd}}
-%--------------------------------------------------------------------------------------
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\readdata{\data}{data.data}
-\psset{xunit=12.5cm,yunit=0.2mm}
-\begin{pspicture}(-0.080,-30)(1,270)
-\pstScalePoints(1,1){1000 div}{1000 div}
-\psaxes[axesstyle=frame,Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
- subticks=10,ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)
-\listplot[nStart=200,linewidth=3pt,
- linecolor=blue]{\data}
-\listplot[linewidth=1pt,linecolor=blue]{\data}
-\end{pspicture}
-\end{LTXexample}
-
-
-\clearpage
-
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for all new options}
-%--------------------------------------------------------------------------------------
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\readdata{\data}{data.data}
-\psset{xunit=12.5cm,yunit=0.2mm}
-\begin{pspicture}(-0.080,-30)(1,270)
-\pstScalePoints(1,1){1000 div}{1000 div}
-\psaxes[axesstyle=frame,Dx=200,dx=2.5cm,Dy=100,,ticksize=0 5pt,tickstyle=inner,
- ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)
-\listplot[nStart=200, nEnd=800, nStep=50,
- linewidth=3pt,linecolor=blue,plotstyle=dots]{\data}
-\end{pspicture}
-\end{LTXexample}
-
-\clearpage
-
-
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{xStart}}
-%--------------------------------------------------------------------------------------
-
-This example shows the use of the same plot with different units
-and different \Lkeyword{xStart} value. The blue curve is the original
-plot of the data records. To show the important part of the curve
-there is another one plotted with a greater \Lkeyword{yunit} and a
-start value of \Lkeyword{xStart}=0.35. This makes it possible to have
-a kind of zoom to the original graphic.
-
-\begin{center}
-\psset{xunit=10cm, yunit=0.01cm}
-\readdata{\data}{data3.data}
-\begin{pspicture}(-0.1,-100)(1.5,700.0)
- \psaxes[Dx=0.25,Dy=100,dy=100\psyunit,ticksize=-4pt 0,%
- labelFontSize={\scriptstyle}]{->}(0,0)(0,-100)(1.4,520)
- \uput[0](1.4,0){\textsf{t [s]}}
- \rput(-0.125,200){\psrotateleft{\small flow [ml/s]}}
- \listplot[linewidth=2pt, linecolor=blue]{\data}
- \rput(0.4,300){
- \pscustom[yunit=0.04cm, linewidth=1pt]{%
- \listplot[xStart=0.355]{\data}
- \psline(1,-2.57)(1,0)(0.355,0)
- \fill[fillstyle=hlines,fillcolor=gray,hatchwidth=0.4pt,hatchsep=1.5pt,hatchcolor=red]%
- \psline[linewidth=0.5pt]{->}(0.7,0)(1.05,0)
- }%
- }
- \psline[linewidth=.01]{->}(0.75,300)(0.4,20)
- \psline[linewidth=.01]{->}(1,290)(1.1,440)
- \rput(1.1,470){\footnotesize leak volume}
- \psline[linewidth=.01]{->}(0.78,200)(1,100)
- \rput[l](1.02,100){\footnotesize closing volume}
-\end{pspicture}
-\end{center}
-
-
-\begin{lstlisting}
-\psset{xunit=10cm, yunit=0.01cm}
-\readdata{\data}{data3.data}
-\begin{pspicture}(-0.1,-100)(1.5,700.0)
- \psaxes[Dx=0.25,Dy=100,dy=100\psyunit,ticksize=-4pt 0,%
- labelFontSize={\scriptstyle}]{->}(0,0)(0,-100)(1.4,520)
- \uput[0](1.4,0){\textsf{t [s]}}
- \rput(-0.125,200){\psrotateleft{\small flow [ml/s]}}
- \listplot[linewidth=2pt, linecolor=blue]{\data}
- \rput(0.4,300){
- \pscustom[yunit=0.04cm, linewidth=1pt]{%
- \listplot[xStart=0.355]{\data}
- \psline(1,-2.57)(1,0)(0.355,0)
- \fill[fillstyle=hlines,fillcolor=gray,hatchwidth=0.4pt,hatchsep=1.5pt,hatchcolor=red]%
- \psline[linewidth=0.5pt]{->}(0.7,0)(1.05,0)
- }%
- }
- \psline[linewidth=.01]{->}(0.75,300)(0.4,20)
- \psline[linewidth=.01]{->}(1,290)(1.1,440)
- \rput(1.1,470){\footnotesize leak volume}
- \psline[linewidth=.01]{->}(0.78,200)(1,100)
- \rput[l](1.02,100){\footnotesize closing volume}
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\resetOptions
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{yStart}/\texttt{yEnd}}
-%--------------------------------------------------------------------------------------
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\readdata{\data}{data.data}
-\psset{xunit=12.5cm,yunit=0.2mm}
-\begin{pspicture}(-0.080,-30)(1,270)
-\pstScalePoints(1,1){1000 div}{1000 div}
-\psaxes[axesstyle=frame,Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
- ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)
- \psset{linewidth=0.1pt, linestyle=dashed,linecolor=red}
- \psline(0,40)(1,40)
- \psline(0,175)(1,175)
- \listplot[yStart=40000, yEnd=175000,linewidth=3pt,linecolor=blue,plotstyle=dots]{\data}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{plotNo/plotNoMax}}
-%--------------------------------------------------------------------------------------
-By default the plot macros expect \verb+x|y+ data records, but
-when having data files with multiple values for y, like:
-\begin{lstlisting}[style=syntax]
-x y1 y2 y3 y4 ... yMax
-x y1 y2 y3 y4 ... yMax
-...
-\end{lstlisting}
-
-you can select the y value which should be plotted. The option \Lkeyword{plotNo} marks the plotted
-value (default $1$) and the option \Lkeyword{plotNoMax} tells \LPack{pst-plot} how many $y$ values are
-present. There are no real restrictions in the maximum number for \Lkeyword{plotNoMax}.
-
-We have the following data file:
-\begin{lstlisting}[style=syntax]
-[% file data.data
-0 0 3.375 0.0625
-10 5.375 7.1875 4.5
-20 7.1875 8.375 6.25
-30 5.75 7.75 6.6875
-40 2.1875 5.75 5.9375
-50 -1.9375 2.1875 4.3125
-60 -5.125 -1.8125 0.875
-70 -6.4375 -5.3125 -2.6875
-80 -4.875 -7.1875 -4.875
-90 0 -7.625 -5.625
-100 5.5 -6.3125 -5.8125
-110 6.8125 -2.75 -4.75
-120 5.25 2.875 -0.75
-]%
-\end{lstlisting}
-
-\noindent which holds data records for multiple plots (\verb+x y1 y2 y3+). This can be plotted
-without any modification to the data file:
-
-\begin{LTXexample}[preset=\centering,pos=t]
-\readdata\Data{dataMul.data}
-\psset{xunit=0.1cm, yunit=0.5cm,lly=-0.5cm}
-\begin{pspicture}(0,-7.5)(150,10)
-\psaxes[Dx=10,Dy=2.5]{->}(0,0)(0,-7.5)(150,7.5)[$\mathbf{x}$,-90][$\mathbf{y}$,0]
-\psset{linewidth=2pt,plotstyle=curve}
-\listplot[linecolor=green,plotNo=1,plotNoMax=3]{\Data}
-\listplot[linecolor=red,plotNo=2,plotNoMax=3]{\Data}
-\listplot[linecolor=blue,plotNo=3,plotNoMax=3]{\Data}
-\end{pspicture}
-\end{LTXexample}
-
-\clearpage
-
-
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{changeOrder}}
-%--------------------------------------------------------------------------------------
-It is only possible to fill the region between two listplots with
-\Lcs{pscustom} if one of them has the values in reverse order.
-Otherwise we do not get a closed path. With the option
-\Lkeyword{ChangeOrder} the values are used in reverse order:
-
-\begin{LTXexample}[pos=t,preset=\centering]
-\begin{filecontents*}{test.data}
- 0 3 8
- 2 4 7
- 5 5 5.5
- 7 3.5 5
- 10 2 9
-\end{filecontents*}
-\psset{lly=-.5cm}
-\begin{psgraph}[axesstyle=frame,ticklinestyle=dotted,ticksize=0 10](0,0)(10,10){4in}{2in}%
- \readdata{\data}{test.data}%
- \pscustom[fillstyle=solid,fillcolor=blue!40]{%
- \listplot[plotNo=2,plotNoMax=2]{\data}%
- \listplot[plotNo=1,plotNoMax=2,ChangeOrder]{\data}}
-\end{psgraph}
-\end{LTXexample}
-
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\subsubsection{Example for \texttt{plotstyle}}
-%--------------------------------------------------------------------------------------
-The \Lkeyword{plotstyle} option is defined in the package \LPack{pst-plot}, but its value
-\Lkeyval{LSM} (\textbf{L}east \textbf{S}quare \textbf{Method}) is only valid for the
-\LPack{pstricks-add} package. Instead of plotting the data records as dots or a line,
-the \Lcs{listplot} macro calculates the values for a line $y=v\cdot x+u$ which fits
-best all data records.
-
-\bgroup
-\centering
-\begin{filecontents*}{LSM.data}
-0 1 1 3 2.8 4 3 2.9 2 5 4 4 5 5.5 6 8.2 8 7
-\end{filecontents*}
-\psset{lly=-.5cm}
-\readdata{\data}{LSM.data}
-\begin{psgraph}[arrows=->](0,0)(0,0)(8,8){.5\textwidth}{!}
- \listplot[plotstyle=dots]{\data}
- \listplot[plotstyle=LSM,linecolor=red]{\data}
-\end{psgraph}
-\egroup
-
-
-\begin{lstlisting}
-\begin{filecontents*}{LSM.data}
-0 1 1 3 2.8 4 3 2.9 2 5 4 4 5 5.5 6 8.2 8 7
-\end{filecontents*}
-\psset{lly=-.5cm}
-\readdata{\data}{LSM.data}
-\begin{psgraph}[arrows=->](0,0)(0,0)(8,8){.5\textwidth}{!}
- \listplot[plotstyle=dots]{\data}
- \listplot[§\ON§plotstyle§\OFF§=§\ON§LSM§\OFF§,linecolor=red]{\data}
-\end{psgraph}
-\end{lstlisting}
-
-
-The macro looks for the lowest and biggest x-value and draws the
-line for this interval. It is possible to pass other values to the
-macro by setting the \Lkeyword{xStart} and/or \Lkeyword{xEnd} options.
-They are preset with an empty value \verb+{}+.
-
-\bgroup
-\centering
-\begin{filecontents*}{LSM.data}
-0 1 1 3 2.8 4 3 2.9 2 5 4 4 5 5.5 6 8.2 8 7
-\end{filecontents*}
-\readdata{\data}{LSM.data}
-\psset{lly=-1.75cm}
-\begin{psgraph}[arrows=->](0,0)(0,0)(8,8){.5\textwidth}{!}
- \listplot[plotstyle=dots]{\data}
- \listplot[PstDebug=1,plotstyle=LSM,xStart=-0.5,xEnd=8.5,linecolor=red]{\data}
-\end{psgraph}
-\egroup
-
-\begin{lstlisting}
-\begin{filecontents*}{LSM.data}
-0 1 1 3 2.8 4 3 2.9 2 5 4 4 5 5.5 6 8.2 8 7
-\end{filecontents*}
-\readdata{\data}{LSM.data}
-\psset{lly=-1.75cm}
-\begin{psgraph}[arrows=->](0,0)(0,0)(8,8){.5\textwidth}{!}
- \listplot[plotstyle=dots]{\data}
- \listplot[§\ON§PstDebug§\OFF§=1,plotstyle=§\ON§LSM§\OFF§,§\ON§xStart§\OFF§=-0.5,§\ON§xEnd§\OFF§=8.5,linecolor=red]{\data}
-\end{psgraph}
-\end{lstlisting}
-
-
-With \Lkeyword{PstDebug}=1 one gets the equation $y=v\cdot x+u$
-printed, beginning at the position (0|-50pt). This cannot be
-changed, because it is only for some kind of debugging. Pay
-attention for the correct \Lkeyword{xStart} and \Lkeyword{xEnd} values,
-when you use the \Lcs{pstScalePoints} Macro. In the following
-example we use an x-interval from 0 to 3 to plot the values; first
-we subtract 0.003 from all x-values and then scale them with
-10000. This is not taken into account for the \Lkeyword{xStart} and
-\Lkeyword{xEnd} values.
-
-
-\bgroup
-\centering
-\begin{filecontents*}{LSM.data}
-0.003298697 1.397785583
-0.003193358 1.615489564
-0.003094538 2.044019006
-0.003001651 2.259240127
-\end{filecontents*}
-\readdata{\data}{LSM.data}
-\pstScalePoints(10000,1){ 0.003 sub }{}
-\psset{lly=-1.75cm}
-\psgraph[arrows=->,Ox=0.0030,Dx=0.0001,dx=\psxunit](0,0)(3.2,3){10cm}{5cm}
- \listplot[showpoints=true,linewidth=1pt,linecolor=blue]{\data}
- \listplot[PstDebug=1,plotstyle=LSM,linewidth=0.1pt,linestyle=dashed,%
- xStart=-0.25,xEnd=3.3]{\data}
-\endpsgraph
-\egroup
-
-\begin{lstlisting}
-\begin{filecontents*}{LSM.data}
-0.003298697 1.397785583
-0.003193358 1.615489564
-0.003094538 2.044019006
-0.003001651 2.259240127
-\end{filecontents*}
-\readdata{\data}{LSM.data}
-§\ON§\pstScalePoints§\OFF§(10000,1){ 0.003 sub }{}
-\psset{lly=-1.75cm}
-\psgraph[arrows=->,Ox=0.0030,Dx=0.0001,dx=\psxunit](0,0)(3.2,3){10cm}{5cm}
- \listplot[showpoints=true,linewidth=1pt,linecolor=blue]{\data}
- \listplot[PstDebug=1,plotstyle=§\ON§LSM§\OFF§,linewidth=0.1pt,linestyle=dashed,%
- xStart=-0.25,xEnd=3.3]{\data}
-\endpsgraph
-\end{lstlisting}
-
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\section{Polar plots}
-%--------------------------------------------------------------------------------------
-
-With the option \Lkeyword{polarplot}=\false|\true\ it is possible to use \Lcs{psplot}
-in polar mode:
-\begin{BDef}
-\Lcs{psplot}\OptArg{polarplot=true,...}\Largb{<start angle>}\Largb{<end angle>}\%\\
- \OptArg{PS command}\Largb{<r(alpha)>}
-\end{BDef}
-
-The equation in PostScript code is interpreted as a function $r=f(\alpha)$, e.g. for the
-circle with radius 1 as $r=\sqrt{\sin^2x+\cos^2x}$, or $r=a*\dfrac{sin(x)*cos(x)}{(sin(x)^3+cos(x)^3)}$
-for the following examples:
-
-\begin{lstlisting}[style=syntax]
-x sin dup mul x cos dup mul add sqrt
-\end{lstlisting}
-
-
-\medskip
-\resetOptions
-\begin{LTXexample}[pos=t]
-\psset{plotpoints=200,unit=0.75}
-\begin{pspicture*}(-5,-5)(5.1,5.1)
- \psaxes[arrowlength=1.75,ticksize=2pt,labelFontSize=\scriptstyle,
- linewidth=0.2mm]{->}(0,0)(-4.99,-4.99)(5,5)[x,-90][y,180]
- \rput[Br](-.15,-.35){$0$} \psset{linewidth=.35mm,polarplot}
- \psplot[linecolor=red]{140}{310}{3 neg x sin mul x cos mul x sin 3 exp x cos 3 exp add div}
- \psplot[linecolor=cyan]{140}{310}{6 x sin mul x cos mul x sin 3 exp x cos 3 exp add div}
- \psplot[linecolor=blue,algebraic]{2.44}{5.41}{-8*sin(x)*cos(x)/(sin(x)^3+cos(x)^3)}
-\end{pspicture*}
-\end{LTXexample}
-
-
-
-\medskip
-\resetOptions
-\begin{LTXexample}[pos=t]
-\psset{unit=0.5cm}
-\begin{pspicture}(-6,-6)(6,6)
-\psaxes[axesstyle=polar,labelFontSize=\scriptstyle,linewidth=0.2mm]{->}(6,6)
-\psset{linewidth=3pt,polarplot,plotpoints=500,plotstyle=curve}
-\psclip{\pscircle[linestyle=none]{6}}
- \psplot[linecolor=red]{140}{310}{3 neg x sin mul x cos mul x sin 3 exp x cos 3 exp add div}
- \psplot[linecolor=cyan]{140}{310}{6 x sin mul x cos mul x sin 3 exp x cos 3 exp add div}
- \psplot[linecolor=blue,algebraic]{2.44}{5.41}{-8*sin(x)*cos(x)/(sin(x)^3+cos(x)^3)}
-\endpsclip
-\end{pspicture}
-\end{LTXexample}
-
-
-\medskip
-\resetOptions
-\begin{LTXexample}[width=5cm]
-\psset{plotpoints=200,unit=1}
-\begin{pspicture}(-2.5,-2.5)(2.5,2.5)% Ulrich Dirr
- \psaxes[arrowlength=1.75,%
- ticksize=2pt,linewidth=0.17mm]{->}%
- (0,0)(-2.5,-2.5)(2.5,2.5)[$x$,-90][$y$,180]
- \rput[Br](-.15,-.35){$0$}
- \psset{linewidth=.35mm,plotstyle=curve,polarplot=true}
- \psplot[linecolor=red]{0}{360}{x cos 2 mul x sin mul}
- \psplot[linecolor=green]{0}{360}{x cos 3 mul x sin mul}
- \psplot[linecolor=blue]{0}{360}{x cos 4 mul x sin mul}
-\end{pspicture}
-\end{LTXexample}
-
-
-
-\medskip
-\begin{LTXexample}[width=8cm]
-\psset{plotpoints=200,unit=0.5}
-\begin{pspicture}(-8.5,-8.5)(9,9)% Ulrich Dirr
-\psaxes[Dx=2,dx=2,Dy=2,dy=2,arrowlength=1.75,
- ticksize=2pt,linewidth=0.17mm]{->}(0,0)(-8.5,-8.5)(9,9)
-\rput[Br](9,-.7){$x$}
-\rput[tr](-.3,9){$y$}
-\rput[Br](-.3,-.7){$0$}
-%
-\psset{linewidth=.35mm,plotstyle=curve,polarplot=true}
-\psplot[linecolor=blue]{0}{720}{8 2.5 x mul sin mul}
-\end{pspicture}
-\end{LTXexample}
-
-
-\resetOptions
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\section{\nxLcs{pstScalePoints}}
-%--------------------------------------------------------------------------------------
-The syntax is
-\begin{BDef}
-\Lcs{pstScalePoints}\Largr{xScale,xScale}\Largb{xPS}\Largb{yPS}
-\end{BDef}
-
-\verb+xScale,yScale+ are decimal values used as scaling factors,
-the \verb+xPs+ and \verb+yPS+ are additional PostScript code
-applied to the x- and y-values of the data records. This macro is
-only valid for the \Lcs{listplot} macro!
-
-\resetOptions
-\begin{LTXexample}[width=6cm]
-\def\data{%
- 0 0 1 3 2 4 3 1
- 4 2 5 3 6 6 }
-\begin{pspicture}(-0.5,-1)(6,6)
- \psaxes{->}(0,0)(6,6)
- \listplot[showpoints=true,%
- linecolor=red]{\data}
- \pstScalePoints(1,0.5){}{3 add}
- \listplot[showpoints=true,%
- linecolor=blue]{\data}
-\end{pspicture}
-\end{LTXexample}
-\bigskip
-\Lcs{pstScalePoints}\Largr{1,0.5}\Largb{}\Largb{3 add} means that \textbf{first} the value $3$ is added
-to the $y$ values and \textbf{second} this value is scaled with the factor $0.5$.
-As seen for the blue line for $x=0$ we get $y(0)=(0+3)\cdot 0.5=1.5$.
-
-Changes with \Lcs{pstScalePoints} are always global to all following \Lcs{listplot}
-macros. This is the reason why it is a good idea to reset the values at the end of the
-\Lenv{pspicture} environment.
-
-
-\clearpage
-%--------------------------------------------------------------------------------------
-\part{New commands and environments}
%--------------------------------------------------------------------------------------
-
-%--------------------------------------------------------------------------------------
-\section[\texttt{psCancel} environment]{\texttt{psCancel} environment\footnotemark}
+\section[\nxLenv{psCancel} environment]{\nxLenv{psCancel} environment\footnotemark}
%--------------------------------------------------------------------------------------
\footnotetext{Thanks to by Stefano Baroni} This macro works like
the \Lcs{cancel} macro from the package of the same name but it
@@ -5115,364 +1222,6 @@ objects. Lines can also be transparent when the option
\clearpage
%--------------------------------------------------------------------------------------
-\section{\texttt{psgraph} environment}
-%--------------------------------------------------------------------------------------
-This new environment \Lenv{psgraph} does the scaling, it expects as parameter the values (without units!) for the
-coordinate system and the values of the physical width and height (with units!). The syntax is:
-
-\begin{BDef}
-\Lcs{psgraph}\OptArgs\Largb{<arrows>}\%\\
-\qquad\Largr{xOrig,yOrig}\Largr{xMin,yMin}\Largr{xMax,yMax}\Largb{xLength}\Largb{yLength}\\
-\ldots\\
-\Lcs{endpsgraph}\\[10pt]
-\LBEG{psgraph}\OptArgs\Largb{<arrows>}\%\\
-\qquad\Largr{xOrig,yOrig}\Largr{xMin,yMin}\Largr{xMax,yMax}\Largb{xLength}\Largb{yLength}\\
-\ldots\\
-\LEND{psgraph}
-\end{BDef}
-
-where the options are valid \textbf{only} for the the \verb+\psaxes+ macro. The first
-two arguments have the usual \verb+PSTricks+ behaviour.
-\begin{itemize}
- \item if \verb+(xOrig,yOrig)+ is missing, it is substituted to \verb+(xMin,xMax)+;
- \item if \verb+(xOrig,yOrig)+ \textbf{and} \verb+(xMin,yMin)+ are missing, they are both
- substituted to \verb+(0,0)+.
-\end{itemize}
-
-The y-length maybe given as !, when the macro uses the same unit
-as for the x-axis.
-
-%-----------------------------------------------------------------------------
-
-\begin{center}
-\readdata{\data}{demo1.data}
-\pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op}
-\psset{llx=-1cm,lly=-1cm}
-\begin{psgraph}[axesstyle=frame,xticksize=0 759,yticksize=0 25,%
- subticks=0,ylabelFactor=\cdot 10^6,
- Dx=5,dy=100\psyunit,Dy=100](0,0)(25,750){10cm}{6cm} % parameters
- \listplot[linecolor=red,linewidth=2pt,showpoints=true]{\data}
-\end{psgraph}
-\end{center}
-
-\resetOptions
-\begin{lstlisting}
-\readdata{\data}{demo1.data}
-\pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op}
-\psset{llx=-1cm,lly=-1cm}
-§\ON§\begin{psgraph}§\OFF§[axesstyle=frame,xticksize=0 759,yticksize=0 25,%
- subticks=0,ylabelFactor=\cdot 10^6,
- Dx=5,dy=100\psyunit,Dy=100](0,0)(25,750){10cm}{6cm} % parameters
- \listplot[linecolor=red,linewidth=2pt,showpoints=true]{\data}
-§\ON§\end{psgraph}§\OFF§
-\end{lstlisting}
-
-%-----------------------------------------------------------------------------
-
-In the following example, the y unit gets the same value as the one for the x-axis.
-\begin{center}
-\psset{llx=-1cm,lly=-0.5cm,ury=0.5cm}
-\begin{psgraph}(0,0)(5,3){6cm}{!} % x-y-axis with same unit
- \psplot[linecolor=red,linewidth=1pt]{0}{5}{x dup mul 10 div}
-\end{psgraph}
-\end{center}
-
-\begin{lstlisting}
-\psset{llx=-1cm,lly=-0.5cm,ury=0.5cm}
-\begin{psgraph}(0,0)(5,3){6cm}§\ON§{!}§\OFF§ % x-y-axis with same unit
- \psplot[linecolor=red,linewidth=1pt]{0}{5}{x dup mul 10 div}
-\end{psgraph}
-\end{lstlisting}
-
-%-----------------------------------------------------------------------------
-
-\begin{center}
-\readdata{\data}{demo1.data}
-\psset{xAxisLabel=x-Axis,yAxisLabel=y-Axis,llx=-.5cm,lly=-1cm,lly=-1cm,ury=0.5cm,
- xAxisLabelPos={c,-1},yAxisLabelPos={-7,c}}
-\pstScalePoints(1,0.00000001){}{}
-\begin{psgraph}[axesstyle=frame,xticksize=0 7.5,yticksize=0 25,subticksize=1,
- ylabelFactor=\cdot 10^8,Dx=5,Dy=1,xsubticks=2](0,0)(25,7.5){5.5cm}{5cm}
- \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data}
-\end{psgraph}
-\end{center}
-\resetOptions
-
-\begin{lstlisting}
-\readdata{\data}{demo1.data}
-\psset{§\ON§xAxisLabel§\OFF§=x-Axis,§\ON§yAxisLabel§\OFF§=y-Axis,llx=-.5cm,lly=-1cm,ury=0.5cm,
- §\ON§xAxisLabelPos§\OFF§={c,-1},§\ON§yAxisLabelPos§\OFF§={-7,c}}
-\pstScalePoints(1,0.00000001){}{}
-\begin{psgraph}[axesstyle=frame,xticksize=0 7.5,yticksize=0 25,subticksize=1,
- §\ON§ylabelFactor§\OFF§=\cdot 10^8,Dx=5,Dy=1,xsubticks=2](0,0)(25,7.5){5.5cm}{5cm}
- \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data}
-\end{psgraph}
-\end{lstlisting}
-
-%-----------------------------------------------------------------------------
-
-\begin{LTXexample}[pos=t,preset=\centering]
-\readdata{\data}{demo1.data}
-\psset{llx=-0.5cm,lly=-1cm}
-\pstScalePoints(1,0.000001){}{}
-\psgraph[arrows=->,Dx=5,dy=200\psyunit,Dy=200,subticks=5,ticksize=-10pt 0,
- tickwidth=0.5pt,subtickwidth=0.1pt](0,0)(25,750){5.5cm}{5cm}
-\listplot[linecolor=red,linewidth=2pt,showpoints=true,plotstyle=LineToYAxis]{\data}
-\endpsgraph
-\end{LTXexample}
-
-%-----------------------------------------------------------------------------
-
-\resetOptions
-\begin{center}
-\readdata{\data}{demo1.data}
-\pstScalePoints(1,0.2){}{log}
-\psset{lly=-0.75cm}
-\psgraph[ylogBase=10,Dx=5,Dy=1,subticks=5](0,0)(25,2){12cm}{4cm}
- \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data}
-\endpsgraph
-\end{center}
-
-
-
-
-\begin{lstlisting}
-\readdata{\data}{demo1.data}
-\pstScalePoints(1,0.2){}{log}
-\psset{lly=-0.75cm}
-\psgraph[§\ON§ylogBase§\OFF§=10,Dx=5,Dy=1,subticks=5](0,0)(25,2){12cm}{4cm}
- \listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data}
-\endpsgraph
-\end{lstlisting}
-
-%-----------------------------------------------------------------------------
-
-\resetOptions
-\begin{LTXexample}[pos=t,preset=\centering]
-\readdata{\data}{demo0.data}
-\psset{lly=-0.75cm,ury=0.5cm}
-\pstScalePoints(1,1){}{log}
-\begin{psgraph}[arrows=->,Dx=0.5,ylogBase=10,Oy=-1,xsubticks=10,%
- ysubticks=2](0,-3)(3,1){12cm}{4cm}
- \psset{Oy=-2}% must be global
- \listplot[linecolor=red,linewidth=2pt,showpoints=true,
- plotstyle=LineToXAxis]{\data}
-\end{psgraph}
-\end{LTXexample}
-
-
-\resetOptions
-\begin{LTXexample}[pos=t,preset=\centering]
-\psset{lly=-0.75cm,ury=0.5cm}
-\readdata{\data}{demo0.data}
-\pstScalePoints(1,1){}{log}
-\psgraph[arrows=->,Dx=0.5,ylogBase=10,Oy=-1,subticks=4](0,-3)(3,1){6cm}{3cm}
- \listplot[linecolor=red,linewidth=2pt,showpoints=true,plotstyle=LineToXAxis]{\data}
-\endpsgraph
-\end{LTXexample}
-
-
-
-%-----------------------------------------------------------------------------
-\resetOptions
-\begin{center}
-\readdata{\data}{demo2.data}%
-\readdata{\dataII}{demo3.data}%
-\pstScalePoints(1,1){1989 sub}{}
-\psset{llx=-0.5cm,lly=-1cm, xAxisLabel=Year,yAxisLabel=Whatever,%
- xAxisLabelPos={c,-0.4in},yAxisLabelPos={-0.4in,c}}
-\psgraph[axesstyle=frame,Dx=2,Ox=1989,subticks=2](0,0)(12,6){4in}{2in}%
- \listplot[linecolor=red,linewidth=2pt]{\data}
- \listplot[linecolor=blue,linewidth=2pt]{\dataII}
- \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}
-\endpsgraph
-\end{center}
-
-\begin{lstlisting}
-\readdata{\data}{demo2.data}%
-\readdata{\dataII}{demo3.data}%
-\pstScalePoints(1,1){1989 sub}{}
-\psset{llx=-0.5cm,lly=-1cm, §\ON§xAxisLabel§\OFF§=Year,§\ON§yAxisLabel§\OFF§=Whatever,%
- §\ON§xAxisLabelPos§\OFF§={c,-0.4in},§\ON§yAxisLabelPos§\OFF§={-0.4in,c}}
-\psgraph[axesstyle=frame,Dx=2,Ox=1989,subticks=2](0,0)(12,6){4in}{2in}%
- \listplot[linecolor=red,linewidth=2pt]{\data}
- \listplot[linecolor=blue,linewidth=2pt]{\dataII}
- \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}
-\endpsgraph
-\end{lstlisting}
-%-----------------------------------------------------------------------------
-
-\resetOptions
-%\begin{LTXexample}[pos=t,preset=\centering]
-\begin{center}
-\readdata{\data}{demo2.data}%
-\readdata{\dataII}{demo3.data}%
-\psset{llx=-0.5cm,lly=-0.75cm,plotstyle=LineToXAxis}
-\pstScalePoints(1,1){1989 sub}{2 sub}
-\begin{psgraph}[axesstyle=frame,Dx=2,Ox=1989,Oy=2,subticks=2](0,0)(12,4){6in}{3in}
- \listplot[linecolor=red,linewidth=12pt]{\data}
- \listplot[linecolor=blue,linewidth=12pt]{\dataII}
- \listplot[linecolor=cyan,linewidth=12pt,yunit=0.5]{\dataII}
-\end{psgraph}
-\end{center}
-%\end{LTXexample}
-
-\begin{lstlisting}
-\readdata{\data}{demo2.data}%
-\readdata{\dataII}{demo3.data}%
-\psset{llx=-0.5cm,lly=-0.75cm,plotstyle=LineToXAxis}
-\pstScalePoints(1,1){1989 sub}{2 sub}
-\begin{psgraph}[axesstyle=frame,Dx=2,Ox=1989,Oy=2,subticks=2](0,0)(12,4){6in}{3in}
- \listplot[linecolor=red,linewidth=12pt]{\data}
- \listplot[linecolor=blue,linewidth=12pt]{\dataII}
- \listplot[linecolor=cyan,linewidth=12pt,yunit=0.5]{\dataII}
-\end{psgraph}
-\end{lstlisting}
-
-%\newpage
-An example with ticks on every side of the frame and filled areas:
-
-\resetOptions
-\begin{center}
-\def\data{0 0 1 4 1.5 1.75 2.25 4 2.75 7 3 9}
-\psset{lly=-0.5cm}
-\begin{psgraph}[axesstyle=none,ticks=none](0,0)(3.0,9.0){12cm}{5cm}
- \pscustom[fillstyle=solid,fillcolor=red!40,linestyle=none]{%
- \listplot{\data}
- \psline(3,9)(3,0)}
- \pscustom[fillstyle=solid,fillcolor=blue!40,linestyle=none]{%
- \listplot{\data}
- \psline(3,9)(0,9)}
- \listplot[linewidth=2pt]{\data}
- \psaxes[axesstyle=frame,ticksize=0 5pt,xsubticks=20,ysubticks=4,
- tickstyle=inner,dy=2,Dy=2,tickwidth=1.5pt,subtickcolor=black](0,0)(3,9)
- \rput*(2.5,3){level 1}\rput*(1,7){level 2}
-\end{psgraph}
-\end{center}
-
-\begin{lstlisting}
-\def\data{0 0 1 4 1.5 1.75 2.25 4 2.75 7 3 9}
-\psset{lly=-0.5cm}
-\begin{psgraph}[axesstyle=none,ticks=none](0,0)(3.0,9.0){12cm}{5cm}
- \pscustom[fillstyle=solid,fillcolor=red!40,linestyle=none]{%
- \listplot{\data}
- \psline(3,9)(3,0)}
- \pscustom[fillstyle=solid,fillcolor=blue!40,linestyle=none]{%
- \listplot{\data}
- \psline(3,9)(0,9)}
- \listplot[linewidth=2pt]{\data}
- \psaxes[axesstyle=frame,ticksize=0 5pt,xsubticks=20,ysubticks=4,
- tickstyle=inner,dy=2,Dy=2,tickwidth=1.5pt,subtickcolor=black](0,0)(3,9)
- \rput*(2.5,3){level 1}\rput*(1,7){level 2}
-\end{psgraph}
-\end{lstlisting}
-
-
-%-------------------------------------------------------------------------------------------
-\subsection{The new options}
-%-------------------------------------------------------------------------------------------
-
-\begin{center}
-\begin{tabular}{@{} l>{\tt}ll @{}}
-\textrm{name} & \textrm{default} & meaning\\\hline
-\Lkeyword{xAxisLabel} & x & label for the x-axis\\
-\Lkeyword{yAxisLabel} & y & label for the y-axis\\
-\Lkeyword{xAxisLabelPos} & \{\} & where to put the x-label\\
-\Lkeyword{yAxisLabelPos} & \{\} & where to put the y-label\\
-\Lkeyword{llx} & 0pt & trim for the lower left x\\
-\Lkeyword{lly} & 0pt & trim for the lower left y\\
-\Lkeyword{urx} & 0pt & trim for the upper right x\\
-\Lkeyword{ury} & 0pt & trim for the upper right y
-\end{tabular}
-\end{center}
-
-There is one restriction in using the trim parameters, they must
-been set \textbf{before} \Lcs{psgraph} is called. They are
-redundant when used as parameters of \Lcs{psgraph} itself. The
-\verb+?AxisLabelPos+ options can use the letter \Lnotation{c} for
-centering an x-axis or y-axis label. The \Lnotation{c} is a replacement for
-the x or y value. When using values with units, the position is
-always measured from the origin of the coordinate system, which
-can be outside the visible \Lenv{pspicture} environment
-
-\medskip
-\resetOptions
-\begin{center}
-\readdata{\data}{demo2.data}%
-\readdata{\dataII}{demo3.data}%
-\psset{llx=-1cm,lly=-1.25cm,urx=0.5cm,ury=0.1in,xAxisLabel=Year,%
- yAxisLabel=Whatever,xAxisLabelPos={c,-0.4in},%
- yAxisLabelPos={-0.4in,c}}
-\pstScalePoints(1,1){1989 sub}{}
-\psframebox[linestyle=dashed,boxsep=0pt]{%
-\begin{psgraph}[axesstyle=frame,Ox=1989,subticks=2](0,0)(12,6){0.8\linewidth}{2.5in}%
- \listplot[linecolor=red,linewidth=2pt]{\data}%
- \listplot[linecolor=blue,linewidth=2pt]{\dataII}%
- \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}%
-\end{psgraph}%
-}
-\end{center}
-
-
-\begin{lstlisting}
-\readdata{\data}{demo2.data}%
-\readdata{\dataII}{demo3.data}%
-\psset{llx=-1cm,lly=-1.25cm,urx=0.5cm,ury=0.1in,xAxisLabel=Year,%
- yAxisLabel=Whatever,xAxisLabelPos={c,-0.4in},%
- yAxisLabelPos={-0.4in,c}}
-\pstScalePoints(1,1){1989 sub}{}
-\psframebox[linestyle=dashed,boxsep=0pt]{%
-\begin{psgraph}[axesstyle=frame,Ox=1989,subticks=2](0,0)(12,6){0.8\linewidth}{2.5in}%
- \listplot[linecolor=red,linewidth=2pt]{\data}%
- \listplot[linecolor=blue,linewidth=2pt]{\dataII}%
- \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}%
-\end{psgraph}%
-}
-\end{lstlisting}
-
-
-\pstScalePoints(1,1){}{}% reset
-
-
-%--------------------------------------------------------------------------------------
-\subsection{Problems}
-%--------------------------------------------------------------------------------------
-Floating point operations in \TeX\ are a real mess, which causes a
-lot of problems when there are very small or very big units. With
-the options of \LPack{pst-plot} it is possible to choose normal
-units (whatever this may be ...), and plot the data as usual.
-
-\begin{LTXexample}[pos=t]
-\begin{filecontents*}{test.data}
-3.2345 34.5
-3.2364 65.4
-3.2438 50.2
-\end{filecontents*}
-
-\psset{lly=-0.5cm,llx=-1cm}
-\readdata{\data}{test.data}
-\pstScalePoints(1,1){3.23 sub 100 mul}{}
-\begin{psgraph}[Ox=3.23,Dx=0.01,dx=\psxunit,Dy=10](0,0)(3,70){0.8\linewidth}{5cm}%
- \listplot[showpoints=true,plotstyle=curve]{\data}
-\end{psgraph}
-\end{LTXexample}
-
-This example shows some important facts:
-\begin{itemize}
-\item \verb+3.23 sub 100 mul+: the x values are now $0.45; 0.64; 1.38$
-\item \verb+Ox=3.23+: the origin of the x axis is set to $3.23$
-\item \verb+Dx=0.01+: the increment of the labels
-\item \verb+dx=\psxunit+: uses the calculated unit value to get every unit a label
-\item \verb+Dy=10+: increase the y labels by 10
-\end{itemize}
-
-Using the internal \Lcs{psxunit} one can have dynamical x-units,
-depending on the linewidth of the document.
-
-\resetOptions
-
-\clearpage
-%--------------------------------------------------------------------------------------
\section{\nxLcs{psStep}}
%--------------------------------------------------------------------------------------
\Lcs{psStep} calculates a step function for the upper or lower
@@ -5491,13 +1240,13 @@ with \Lkeyword{lower} as the default setting. The syntax of the function is
(x1,x2) is the given interval for the step wise calculated
function, n is the number of the rectangles and \Larg{function} is
-the mathematical function in postfix or algebraic notation (with
+the mathematical function in postfix or algebraic=true notation (with
\Lkeyset{algebraic=true}).
\begin{LTXexample}[pos=t,preset=\centering]
\begin{pspicture}(-0.5,-0.5)(10,3)
\psaxes[labelFontSize=\scriptstyle]{->}(10,3)
- \psplot[plotpoints=100,linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)}
+ \psplot[plotpoints=100,linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)}
\psStep[linecolor=magenta,StepType=upper,fillstyle=hlines](0,9){9}{x sqrt}
\psStep[linecolor=blue,fillstyle=vlines](0,9){9}{x sqrt }
\end{pspicture}
@@ -5507,8 +1256,8 @@ the mathematical function in postfix or algebraic notation (with
\psset{plotpoints=200}
\begin{pspicture}(-0.5,-2.25)(10,3)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-2.25)(10,3)
- \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*sin(x)}
- \psStep[algebraic,linecolor=magenta,StepType=upper](0,9){20}{sqrt(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*sin(x)}
+ \psStep[algebraic=true,linecolor=magenta,StepType=upper](0,9){20}{sqrt(x)*sin(x)}
\psStep[linecolor=blue,linestyle=dashed](0,9){20}{x sqrt x RadtoDeg sin mul}
\end{pspicture}
\end{LTXexample}
@@ -5517,9 +1266,9 @@ the mathematical function in postfix or algebraic notation (with
\psset{yunit=1.25cm,plotpoints=200}
\begin{pspicture}(-0.5,-1.5)(10,1.5)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5)
- \psStep[algebraic,StepType=Riemann,fillstyle=solid,fillcolor=black!10](0,10){50}%
+ \psStep[algebraic=true,StepType=Riemann,fillstyle=solid,fillcolor=black!10](0,10){50}%
{sqrt(x)*cos(x)*sin(x)}
- \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)}
\end{pspicture}
\end{LTXexample}
@@ -5528,9 +1277,9 @@ the mathematical function in postfix or algebraic notation (with
\psset{yunit=1.25cm,plotpoints=200}
\begin{pspicture}(-0.5,-1.5)(10,1.5)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5)
- \psStep[algebraic,StepType=infimum,fillstyle=solid,fillcolor=black!10](0,10){50}%
+ \psStep[algebraic=true,StepType=infimum,fillstyle=solid,fillcolor=black!10](0,10){50}%
{sqrt(x)*cos(x)*sin(x)}
- \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)}
\end{pspicture}
\end{LTXexample}
@@ -5538,19 +1287,19 @@ the mathematical function in postfix or algebraic notation (with
\psset{yunit=1.25cm,plotpoints=200}
\begin{pspicture}(-0.5,-1.5)(10,1.5)
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-1.5)(10,1.5)
- \psStep[algebraic,StepType=supremum,fillstyle=solid,fillcolor=black!10](0,10){50}%
+ \psStep[algebraic=true,StepType=supremum,fillstyle=solid,fillcolor=black!10](0,10){50}%
{sqrt(x)*cos(x)*sin(x)}
- \psplot[linewidth=1.5pt,algebraic]{0}{10}{sqrt(x)*cos(x)*sin(x)}
+ \psplot[linewidth=1.5pt,algebraic=true]{0}{10}{sqrt(x)*cos(x)*sin(x)}
\end{pspicture}
\end{LTXexample}
\begin{LTXexample}[pos=t,preset=\centering]
\psset{unit=1.5cm,plotpoints=200}
\begin{pspicture}[plotpoints=200](-0.5,-3)(10,2.5)
- \psStep[algebraic,fillstyle=solid,fillcolor=yellow](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
- \psStep[algebraic,StepType=Riemann,fillstyle=solid,fillcolor=blue](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
+ \psStep[algebraic=true,fillstyle=solid,fillcolor=yellow](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
+ \psStep[algebraic=true,StepType=Riemann,fillstyle=solid,fillcolor=blue](0.001,9.5){40}{2*sqrt(x)*cos(ln(x))*sin(x)}
\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(0,-2.75)(10,2.5)
- \psplot[algebraic,linecolor=white]{0.001}{9.75}{2*sqrt(x)*cos(ln(x))*sin(x)}
+ \psplot[algebraic=true,linecolor=white]{0.001}{9.75}{2*sqrt(x)*cos(ln(x))*sin(x)}
\uput[90](6,1.2){$f(x)=2\cdot\sqrt{x}\cdot\cos{(\ln{x})}\cdot\sin{x}$}
\end{pspicture}
\end{LTXexample}
@@ -5558,11 +1307,11 @@ the mathematical function in postfix or algebraic notation (with
\clearpage
%--------------------------------------------------------------------------------------
-\section{Plotting tangent lines}
+\section{Tangent lines}
There are two macros for plotting a tangent line or the tangent normal line.
The first one is \Lcs{psTangentLine} which expects three pairs of coordinates,
a $x$ and a $dx$ value. The second one is \Lcs{psplotTangent} which expects
-a function for the curve.
+a function for the curve. \xLkeyword{Tnormal}
\subsection{\nxLcs{psTangentLine} and option \nxLkeyword{Tnormal}}
@@ -5628,7 +1377,7 @@ The macro expects three parameters:
postfix (PostScript) notation
\end{description}
-The following examples show the use of the algebraic option together with the Derive option.
+The following examples show the use of the algebraic=true option together with the Derive option.
Remember that using the \Lkeyword{algebraic} option implies that the angles have to be in the
radian unit!
@@ -5636,7 +1385,7 @@ radian unit!
\bgroup
\def\F{x RadtoDeg dup dup cos exch 2 mul cos add exch 3 mul cos add}
\def\Fp{x RadtoDeg dup dup sin exch 2 mul sin 2 mul add exch 3 mul sin 3 mul add neg}
-\psset{plotpoints=1001,algebraic=false}
+\psset{plotpoints=1001}
\begin{pspicture}(-7.5,-2.5)(7.5,4)%X\psgrid
\psaxes{->}(0,0)(-7.5,-2)(7.5,3.5)
\psplot[linewidth=3\pslinewidth]{-7}{7}{\F}
@@ -5669,10 +1418,10 @@ The star version plots only the tangent line in the positive $x$-direction:
\def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)}
\begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid
\psaxes{->}(0,0)(-7.5,-2)(7.5,3.5)
- \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg}
- \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic]{\n}{1}{\Falg}}
+ \psplot[linewidth=1.5pt,algebraic=true,plotpoints=500]{-7.5}{7.5}{\Falg}
+ \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic=true]{\n}{1}{\Falg}}
\multido{\n=0+1}{8}{\psplotTangent*[linecolor=magenta,%
- arrows=->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}}
+ arrows=->,arrowscale=2,algebraic=true,Derive={\Fpalg}]{\n}{1}{\Falg}}
\end{pspicture}
\egroup
\end{center}
@@ -5681,10 +1430,10 @@ The star version plots only the tangent line in the positive $x$-direction:
\def\Falg{cos(x)+cos(2*x)+cos(3*x)} \def\Fpalg{-sin(x)-2*sin(2*x)-3*sin(3*x)}
\begin{pspicture}(-7.5,-2.5)(7.5,4)%\psgrid
\psaxes{->}(0,0)(-7.5,-2)(7.5,3.5)
- \psplot[linewidth=1.5pt,algebraic,plotpoints=500]{-7.5}{7.5}{\Falg}
- \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic]{\n}{1}{\Falg}}
+ \psplot[linewidth=1.5pt,algebraic=true,plotpoints=500]{-7.5}{7.5}{\Falg}
+ \multido{\n=-7+1}{8}{\psplotTangent*[linecolor=red,arrows=->,arrowscale=2,algebraic=true]{\n}{1}{\Falg}}
\multido{\n=0+1}{8}{\psplotTangent*[linecolor=magenta,%
- arrows=->,arrowscale=2,algebraic,Derive={\Fpalg}]{\n}{1}{\Falg}}
+ arrows=->,arrowscale=2,algebraic=true,Derive={\Fpalg}]{\n}{1}{\Falg}}
\end{pspicture}
\end{lstlisting}
@@ -5695,9 +1444,9 @@ the perpendicular line to the tangent.
\begin{pspicture}(-0.5,-0.5)(7.25,7.25)
\def\Func{10 x div}
\psaxes[arrowscale=1.5]{->}(7,7)
- \psplot[linewidth=2pt,algebraic]{1.5}{5}{10/x}
- \psplotTangent[linewidth=.5\pslinewidth,linecolor=red,algebraic]{3}{2}{10/x}
- \psplotTangent[linewidth=.5\pslinewidth,linecolor=blue,algebraic,Derive=(x*x)/10]{3}{2}{10/x}
+ \psplot[linewidth=2pt,algebraic=true]{1.5}{5}{10/x}
+ \psplotTangent[linewidth=.5\pslinewidth,linecolor=red,algebraic=true]{3}{2}{10/x}
+ \psplotTangent[linewidth=.5\pslinewidth,linecolor=blue,algebraic=true,Derive=(x*x)/10]{3}{2}{10/x}
\psline[linestyle=dashed](!0 /x 3 def \Func)(!3 /x 3 def \Func)(3,0)
\end{pspicture}
\end{LTXexample}
@@ -5705,7 +1454,6 @@ the perpendicular line to the tangent.
By setting the optional argument \Lkeyword{Tnormal} one can plot the
normal of the tangent line. It always starts at the given point.
-%\resetOptions
\begin{LTXexample}[width=8cm,wide]
\begin{pspicture}(-0.5,-0.5)(7.25,7.25)
\def\Func{10 x div}
@@ -5718,10 +1466,6 @@ normal of the tangent line. It always starts at the given point.
\end{LTXexample}
-%--------------------------------------------------------------------------------------
-\subsection{A \nxLkeyword{polarplot} example}
-%--------------------------------------------------------------------------------------
-
Let's work with the classical \Index{cardioid}: $r=2(1+\cos(\theta))$ and
$\displaystyle \frac{d r}{d\theta}=-2\sin(\theta)$. The \Lkeyword{Derive}
option always expects the $\frac{d r}{d\theta}$ value and uses
@@ -5755,25 +1499,20 @@ where $x=r\cdot\cos\theta$ and $y=r\cdot\sin\theta$
\begin{LTXexample}[width=6cm,wide]
\begin{pspicture}(-1,-3)(5,3)%\psgrid[subgridcolor=lightgray]
\psaxes{->}(0,0)(-1,-3)(5,3)
- \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,algebraic,plotpoints=500]{0}{6.289}{2*(1+cos(x))}
+ \psplot[polarplot,linewidth=3\pslinewidth,linecolor=blue,algebraic=true,plotpoints=500]{0}{6.289}{2*(1+cos(x))}
\multido{\r=0.000+0.314}{21}{%
- \psplotTangent[polarplot,Derive=-2*sin(x),algebraic,linecolor=red,arrows=<->]{\r}{1.5}{2*(1+cos(x))} }
+ \psplotTangent[polarplot,Derive=-2*sin(x),algebraic=true,linecolor=red,arrows=<->]{\r}{1.5}{2*(1+cos(x))} }
\end{pspicture}
\end{LTXexample}
-
-%--------------------------------------------------------------------------------------
-\subsection{A \nxLcs{parametricplot} example}
-%--------------------------------------------------------------------------------------
-
Let's work with a \Index{Lissajou curve}:
$\displaystyle\left\{\begin{array}{l}x=3.5\cos(2t)\\y=3.5\sin(6t)\end{array}\right.$
whose derivative is :
$\displaystyle\left\{\begin{array}{l}x=-7\sin(2t)\\y=21\cos(6t)\end{array}\right.$
The parameter must be the letter $t$ instead of $x$ and when using
-the \Lkeyword{algebraic} option you must separate the two equations by
+the \Lkeyword{algebraic=true} option you must separate the two equations by
a \Lnotation{|} (see example).
\begin{LTXexample}[pos=t,wide]
@@ -5788,25 +1527,22 @@ a \Lnotation{|} (see example).
\end{pspicture}\hfill%
\def\LissaAlg{3.5*cos(2*t)|3.5*sin(6*t)} \def\LissaAlgDer{-7*sin(2*t)|21*cos(6*t)}%
\begin{pspicture}(-4,-4)(4,6)
- \parametricplot[algebraic,plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\LissaAlg}
+ \parametricplot[algebraic=true,plotpoints=500,linewidth=3\pslinewidth]{0}{3.141592}{\LissaAlg}
\multido{\r=0.000+0.314}{11}{%
- \psplotTangent[algebraic,linecolor=red,arrows=<->]{\r}{1.5}{\LissaAlg} }
+ \psplotTangent[algebraic=true,linecolor=red,arrows=<->]{\r}{1.5}{\LissaAlg} }
\multido{\r=0.157+0.314}{11}{%
- \psplotTangent[algebraic,linecolor=blue,arrows=<->,%
+ \psplotTangent[algebraic=true,linecolor=blue,arrows=<->,%
Derive=\LissaAlgDer]{\r}{1.5}{\LissaAlg} }
\end{pspicture}
\end{LTXexample}
-
-\resetOptions
-
\clearpage
\section{Successive derivatives of a function}
The new PostScript function \Lps{Derive} has been added for
plotting successive derivatives of a function. It must be used
-with the \Lkeyword{algebraic} option. This function has two arguments:
+with the \Lkeyword{algebraic=true} option. This function has two arguments:
\begin{enumerate}
\item a positive integer which defines the order of the derivative; obviously $0$ means the
@@ -5834,20 +1570,16 @@ the cosine.
\begin{pspicture}[showgrid=true](0,-1.2)(7,1.5)
\psclip{\psframe[linestyle=none](0,-1.1)(7,1.1)}
\multido{\in=0+1}{16}{%
- \psplot[linewidth=1pt,algebraic,linecolor=\getColor{\in}]{0}{7}
+ \psplot[linewidth=1pt,algebraic=true,linecolor=\getColor{\in}]{0}{7}
{Derive(\in,1-x^2/2+x^4/24-x^6/720+x^8/40320-x^10/3628800+x^12/479001600-x^14/87178291200)}}
\endpsclip
\end{pspicture}
\end{LTXexample}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% \subsection{Other examples}
-
-
\begin{LTXexample}[width=3.5cm]
\begin{pspicture}[shift=-2.5,showgrid=true,linewidth=1pt](0,-2)(3,3)
- \psplot[algebraic]{.001}{3}{x*ln(x)} % f(x)
- \psplot[algebraic,linecolor=red]{.05}{3}{Derive(1,x*ln(x))} % f'(x)=1+ln(x)
+ \psplot[algebraic=true]{.001}{3}{x*ln(x)} % f(x)
+ \psplot[algebraic=true,linecolor=red]{.05}{3}{Derive(1,x*ln(x))} % f'(x)=1+ln(x)
\end{pspicture}
\end{LTXexample}
@@ -5890,7 +1622,6 @@ and $f''(x_{n+1})$ are computed and the smaller is used as
$M_2(f)$, and then the step is approximated. This means that the
step is constant for second order polynomials.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The cosine}
Different value for the tolerance from $0.01$ to $0.000\,1$, a factor $10$ between
@@ -5899,7 +1630,7 @@ magenta the default variable step behavior.
\begin{center}
\bgroup
-\psset{algebraic, VarStep=true, unit=2, showpoints=true, linecolor=red}
+\psset{algebraic=true, VarStep=true, unit=2, showpoints=true, linecolor=red}
\begin{pspicture}(-0,-1)(3.14,2)\psgrid
\psplot[VarStepEpsilon=.01]{0}{3.14}{cos(x)}
\psplot[VarStepEpsilon=.001]{0}{3.14}{cos(x)+.15}
@@ -5911,7 +1642,7 @@ magenta the default variable step behavior.
\end{center}
\begin{lstlisting}
-\psset{algebraic, VarStep=true, unit=2, showpoints=true, linecolor=red}
+\psset{algebraic=true, VarStep=true, unit=2, showpoints=true, linecolor=red}
\begin{pspicture}[showgrid=true](-0,-1)(3.14,2)
\psplot[VarStepEpsilon=.01]{0}{3.14}{cos(x)}
\psplot[VarStepEpsilon=.001]{0}{3.14}{cos(x)+.15}
@@ -5922,15 +1653,13 @@ magenta the default variable step behavior.
\end{lstlisting}
-\clearpage
\subsection{The Napierian Logarithm}
-A really classic example which gives a bad beginning, the
-tolerance is set to $0.001$.
+A really classic example which gives a bad beginning, the tolerance is set to $0.001$.
\begin{center}
\bgroup
-\psset{algebraic, VarStep=true, linecolor=red, showpoints=true}
+\psset{algebraic=true, VarStep=true, linecolor=red, showpoints=true}
\begin{pspicture}[showgrid=true](0,-5)(16,4)
\psplot[VarStep=false, linecolor=black]{.01}{16}{ln(x)+1}
\psplot[linecolor=magenta]{.51}{16}{ln(x-1/2)+1/2}
@@ -5941,7 +1670,7 @@ tolerance is set to $0.001$.
\end{center}
\begin{lstlisting}
-\psset{algebraic, VarStep=true, linecolor=red, showpoints=true}
+\psset{algebraic=true, VarStep=true, linecolor=red, showpoints=true}
\begin{pspicture}[showgrid=true](0,-5)(16,4)
\psplot[VarStep=false, linecolor=black]{.01}{16}{ln(x)+1}
\psplot[linecolor=magenta]{.51}{16}{ln(x-1/2)+1/2}
@@ -5957,7 +1686,7 @@ Impossible to draw, but let's try!
\begin{center}
\bgroup
-\psset{xunit=64,algebraic,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
+\psset{xunit=64,algebraic=true,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
\begin{pspicture}[showgrid=true](0,-1)(.5,1)
\psplot[VarStepEpsilon=.0001]{.01}{.25}{sin(1/x)}
\end{pspicture}\\
@@ -5974,7 +1703,7 @@ Impossible to draw, but let's try!
\end{center}
\begin{lstlisting}
-\psset{xunit=64,algebraic,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
+\psset{xunit=64,algebraic=true,VarStep,linecolor=red,showpoints=true,linewidth=1pt}
\begin{pspicture}[showgrid=true](0,-1)(.5,1)
\psplot[VarStepEpsilon=.0001]{.01}{.25}{sin(1/x)}
\end{pspicture}\\
@@ -6003,7 +1732,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
-\psset{xunit=3, algebraic, VarStep, showpoints=true}
+\psset{xunit=3, algebraic=true, VarStep, showpoints=true}
\begin{pspicture}[showgrid=true](0,-2)(5,6)
\psplot[VarStepEpsilon=.0005, linecolor=red]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)}
\psplot[linecolor=magenta]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)+.5}
@@ -6013,7 +1742,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{center}
\begin{lstlisting}
-\psset{xunit=3, algebraic, VarStep, showpoints=true}
+\psset{xunit=3, algebraic=true, VarStep, showpoints=true}
\begin{pspicture}[showgrid=true](0,-2)(5,6)
\psplot[VarStepEpsilon=.0005, linecolor=red]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)}
\psplot[linecolor=magenta]{.1}{5}{x-x^2/10+ln(x)+cos(2*x)+sin(x^2)+.5}
@@ -6027,7 +1756,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{center}
\bgroup
-\psset{algebraic, showpoints=true, unit=0.75}
+\psset{algebraic=true, showpoints=true, unit=0.75}
\begin{pspicture}(-5,-4)(9,6)
\psplot[linecolor=black]{-5}{1.8}{(x-1)/(x-2)}
\psplot[VarStep=true, VarStepEpsilon=.001, linecolor=red]{2.2}{9}{(x-1)/(x-2)}
@@ -6037,7 +1766,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{center}
\begin{lstlisting}
-\psset{algebraic, showpoints=true, unit=0.75}
+\psset{algebraic=true, showpoints=true, unit=0.75}
\begin{pspicture}(-5,-4)(9,6)
\psplot[linecolor=black]{-5}{1.8}{(x-1)/(x-2)}
\psplot[VarStep=true, VarStepEpsilon=.001, linecolor=red]{2.2}{9}{(x-1)/(x-2)}
@@ -6047,71 +1776,6 @@ Just appreciate the difference between the normal behavior and the plotting with
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\subsection{Successive derivatives of a polynomial}
-
-\begin{center}
-\bgroup
-\psset{unit=2, algebraic=true, VarStep=true, showpoints=true, VarStepEpsilon=.001}
-\def\getColor#1{\ifcase#1 Tan\or RedOrange\or magenta\or yellow\or green\or Orange\or blue\or
- DarkOrchid\or BrickRed\or Rhodamine\or OliveGreen\or Goldenrod\or Mahogany\or
- OrangeRed\or CarnationPink\or RoyalPurple\or Lavender\fi}
-\begin{pspicture}[showgrid=true](0,-1.2)(7,1.5)
- \psclip{\psframe[linestyle=none](0,-1.1)(7,1.1)}
- \multido{\in=0+1}{16}{%
- \psplot[algebraic=true, linecolor=\getColor{\in}]{0.1}{7}
- {Derive(\in,Sum(i,0,1,7,(-1)^i*x^(2*i)/Fact(2*i)))}}
- \endpsclip
-\end{pspicture}
-\egroup
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=2, algebraic=true, VarStep=true, showpoints=true, VarStepEpsilon=.001}
-\def\getColor#1{\ifcase#1 Tan\or RedOrange\or magenta\or yellow\or green\or Orange\or blue\or
- DarkOrchid\or BrickRed\or Rhodamine\or OliveGreen\or Goldenrod\or Mahogany\or
- OrangeRed\or CarnationPink\or RoyalPurple\or Lavender\fi}
-\begin{pspicture}[showgrid=true](0,-1.2)(7,1.5)
- \psclip{\psframe[linestyle=none](0,-1.1)(7,1.1)}
- \multido{\in=0+1}{16}{%
- \psplot[algebraic=true, linecolor=\getColor{\in}]{0.1}{7}
- {Derive(\in,Sum(i,0,1,7,(-1)^i*x^(2*i)/Fact(2*i)))}}
- \endpsclip
-\end{pspicture}
-\end{lstlisting}
-
-
-\clearpage
-\subsection{The variable step algorithm together with the \texttt{IfTE} primitive}
-
-\begin{center}
-\bgroup
-\psset{unit=1.5, algebraic, VarStep, showpoints=true, VarStepEpsilon=.001}
-\begin{pspicture}[showgrid=true](-7,-2)(2,4)
- \psplot{-7}{2}{IfTE(x<-5,-(x+5)^3/2,IfTE(x<0,0,x^2))}
- \psplot{-7}{2}{5*x/9+26/9}
- \psplot[linecolor=blue]{-7}{2}{(x+7)^30/9^30*4.5-1/2}
- \psplot[linecolor=red]{-6.9}{2}
- {IfTE(x<-6,ln(x+7),IfTE(x<-3,x+6,IfTE(x<0.1415926,sin(x+3)+3,3.1415926-x)))}
-\end{pspicture}
-\egroup
-\end{center}
-
-\begin{lstlisting}
-\psset{unit=1.5, algebraic, VarStep, showpoints=true, VarStepEpsilon=.001}
-\begin{pspicture}[showgrid=true](-7,-2)(2,4)
- \psplot{-7}{2}{IfTE(x<-5,-(x+5)^3/2,IfTE(x<0,0,x^2))}
- \psplot{-7}{2}{5*x/9+26/9}
- \psplot[linecolor=blue]{-7}{2}{(x+7)^30/9^30*4.5-1/2}
- \psplot[linecolor=red]{-6.9}{2}
- {IfTE(x<-6,ln(x+7),IfTE(x<-3,x+6,IfTE(x<0.1415926,sin(x+3)+3,3.1415926-x)))}
-\end{pspicture}
-\end{lstlisting}
-
-
-
\clearpage
\subsection{Using \nxLcs{parametricplot}}
@@ -6185,12 +1849,12 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{xunit=.5}
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic,linecolor=red,VarStep, showpoints=true,
+\parametricplot[algebraic=true,linecolor=red,VarStep, showpoints=true,
VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
%
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false,
+\parametricplot[algebraic=true,linecolor=blue,VarStep, showpoints=false,
VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
\egroup
@@ -6199,20 +1863,17 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{xunit=.5}
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic,linecolor=red,VarStep, showpoints=true,
+\parametricplot[algebraic=true,linecolor=red,VarStep, showpoints=true,
VarStepEpsilon=.01]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
%
\begin{pspicture}[showgrid=true](0,0)(12.566,2)
-\parametricplot[algebraic,linecolor=blue,VarStep, showpoints=false,
+\parametricplot[algebraic=true,linecolor=blue,VarStep, showpoints=false,
VarStepEpsilon=.001]{0}{12.566}{t+cos(-t-Pi/2)|1+sin(-t-Pi/2)}
\end{pspicture}
\end{lstlisting}
-\resetOptions
-
-
\section{New math functions and their derivatives}
\subsection{The inverse sine and its derivative}
@@ -6221,7 +1882,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,-2)(1,2)
- \psplot[linecolor=blue,algebraic]{-1}{1}{asin(x)}
+ \psplot[linecolor=blue,algebraic=true]{-1}{1}{asin(x)}
\end{pspicture}
\hspace{1em}
\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
@@ -6233,7 +1894,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,4)
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
@@ -6243,10 +1904,10 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,-2)(1,2)
- \psplot[linecolor=blue,algebraic]{-1}{1}{asin(x)}
+ \psplot[linecolor=blue,algebraic=true]{-1}{1}{asin(x)}
\end{pspicture}
\hspace{1em}
-\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,-2)(1,2)
\psplot[linecolor=blue]{-.999}{.999}{asin(x)}
\end{pspicture}
@@ -6255,7 +1916,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=red]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,4)
\psplot[linecolor=red]{-.97}{.97}{Derive(1,asin(x))}
\end{pspicture}
@@ -6268,10 +1929,10 @@ Just appreciate the difference between the normal behavior and the plotting with
\bgroup
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
- \psplot[linecolor=blue,algebraic]{-1}{1}{acos(x)}
+ \psplot[linecolor=blue,algebraic=true]{-1}{1}{acos(x)}
\end{pspicture}
\hspace{1em}
-\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
\psplot[linecolor=blue]{-.999}{.999}{acos(x)}
\end{pspicture}
@@ -6280,7 +1941,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,-4)(1,-1)
\psplot[linecolor=blue]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
@@ -6290,10 +1951,10 @@ Just appreciate the difference between the normal behavior and the plotting with
\begin{lstlisting}
\psset{unit=1.5}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
- \psplot[linecolor=blue,algebraic]{-1}{1}{acos(x)}
+ \psplot[linecolor=blue,algebraic=true]{-1}{1}{acos(x)}
\end{pspicture}
\hspace{1em}
-\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,0)(1,3)
\psplot[linecolor=blue]{-.999}{.999}{acos(x)}
\end{pspicture}
@@ -6302,7 +1963,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psplot[linecolor=red]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
\hspace{1em}
-\psset{algebraic, VarStep, VarStepEpsilon=.0001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.0001, showpoints=true}
\begin{pspicture}[showgrid=true](-1,-4)(1,-1)
\psplot[linecolor=red]{-.97}{.97}{Derive(1,acos(x))}
\end{pspicture}
@@ -6321,7 +1982,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{pspicture}
\hspace{1em}
\begin{pspicture}[showgrid=true](-4,-2)(4,2)
-\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=blue]{-4}{4}{atg(x)}
\psplot[linecolor=red]{-4}{4}{Derive(1,atg(x))}
\end{pspicture}
@@ -6336,7 +1997,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{pspicture}
\hspace{1em}
\begin{pspicture}[showgrid=true](-4,-2)(4,2)
-\psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
+\psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=blue]{-4}{4}{atg(x)}
\psplot[linecolor=red]{-4}{4}{Derive(1,atg(x))}
\end{pspicture}
@@ -6434,7 +2095,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psaxes{->}(0,0)(-7,-3)(7,3)
\end{pspicture}\\[\baselineskip]
\begin{pspicture}(-7,-3)(7,3)
- \psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
+ \psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)}
\psplot[linecolor=blue,linewidth=1pt]{1.001}{7}{Argch(x)}
\psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)}
@@ -6452,7 +2113,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\psaxes{->}(0,0)(-7,-3)(7,3)
\end{pspicture}\\[\baselineskip]
\begin{pspicture}(-7,-3)(7,3)
- \psset{algebraic, VarStep, VarStepEpsilon=.001, showpoints=true}
+ \psset{algebraic=true, VarStep, VarStepEpsilon=.001, showpoints=true}
\psplot[linecolor=red,linewidth=1pt]{-7}{7}{Argsh(x)}
\psplot[linecolor=blue,linewidth=1pt]{1.001}{7}{Argch(x)}
\psplot[linecolor=green,linewidth=1pt]{-.99}{.99}{Argth(x)}
@@ -6500,6 +2161,7 @@ Just appreciate the difference between the normal behavior and the plotting with
\end{pspicture}
\end{lstlisting}
+
\clearpage
%--------------------------------------------------------------------------------------
\section[\nxLcs{psplotDiffEqn} -- solving diffential equations]%
@@ -6553,7 +2215,7 @@ The new options are:
in the same way;
\end{description}
-\item \Lkeyword{algebraic}: algebraic description for $f$, \Lkeyword{buildvector}
+\item \Lkeyword{algebraic=true}: algebraic=true description for $f$, \Lkeyword{buildvector}
parameter is useless when activating this option.
\end{itemize}
@@ -6744,7 +2406,6 @@ the algortihm.
-
\clearpage
\subsection{Equation of second order}
@@ -6905,7 +2566,7 @@ stars} \egroup
%--------------------------------------------------------------------------------------
For the initial value $y(0)=1$ we have the solution $y(x)=e^x$. $y$ is always
-on the stack, so we have to do nothing. Using the \Lkeyword{algebraic} option, we write it
+on the stack, so we have to do nothing. Using the \Lkeyword{algebraic=true} option, we write it
as \verb$y[0]$. The following example shows different solutions depending to the number of plotpoints
with $y_0=1$:
@@ -7097,7 +2758,7 @@ The integrals of \Index{Fresnel}:
\begin{lstlisting}
\psset{unit=8}
\begin{pspicture}(1,1)\psgrid[subgriddiv=5]
- \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,%
+ \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic=true,%
plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)}
\end{pspicture}
\end{lstlisting}
@@ -7107,7 +2768,7 @@ The integrals of \Index{Fresnel}:
\bgroup
\psset{unit=8}
\begin{pspicture}(1,1)\psgrid[subgriddiv=5]
- \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic,%
+ \psplotDiffEqn[whichabs=0,whichord=1,linecolor=red,method=rk4,algebraic=true,%
plotpoints=500,showpoints=true]{0}{10}{0 0}{cos(Pi*x^2/2)|sin(Pi*x^2/2)}
\end{pspicture}
\egroup
@@ -7156,7 +2817,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](-3,-3)(10,10)
\psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin}
@@ -7171,7 +2832,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](-3,-3)(10,10)
\psplotDiffEqn[plotfuncy=pop 0,whichabs=2,linecolor=red]{0}{10}{\InitCond}{\Faiglelapin}
@@ -7187,7 +2848,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](0,-0.25)(10,14)
\psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup
@@ -7206,7 +2867,7 @@ converters and many connectors.
-\Vaigle*y[1]/sqrt(y[1]^2+(y[2]-y[0])^2)|%
-\Vlapin}
\def\Vlapin{1} \def\Vaigle{1.6}
-\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic,%
+\psset{unit=.7,subgriddiv=0,gridcolor=lightgray,method=adams,algebraic=true,%
plotpoints=20,showpoints=true}
\begin{pspicture}[showgrid=true](10,12)
\psplotDiffEqn[plotfuncy=dup 1 get dup mul exch dup 0 get exch 2 get sub dup
@@ -7388,7 +3049,7 @@ For $y_0=5$ and $y'_0=0$ the solution is:
Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul}
\psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0}
{dup 3 1 roll -4 div exch 2 mul sub}
- \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
+ \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
\psset{method=rk4, plotpoints=50}
\psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{%
dup 3 1 roll -4 div exch 2 mul sub}
@@ -7405,7 +3066,7 @@ For $y_0=5$ and $y'_0=0$ the solution is:
Euler x -8 div exp x 127 sqrt 8 div mul RadtoDeg dup cos 5 mul exch sin 127 sqrt div 5 mul add mul}
\psplotDiffEqn[linecolor=red,linewidth=5\pslinewidth]{0}{26}{5 0}
{dup 3 1 roll -4 div exch 2 mul sub}
- \psplotDiffEqn[linecolor=black,algebraic]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
+ \psplotDiffEqn[linecolor=black,algebraic=true]{0}{26}{5 0} {y[1]|-y[1]/4-2*y[0]}
\psset{method=rk4, plotpoints=50}
\psplotDiffEqn[linecolor=blue,linewidth=5\pslinewidth]{0}{26}{5 0}{%
dup 3 1 roll -4 div exch 2 mul sub}
@@ -7413,117 +3074,75 @@ For $y_0=5$ and $y'_0=0$ the solution is:
\end{pspicture}
\end{lstlisting}
-%--------------------------------------------------------------------------------------
-\clearpage
-\section{\nxLcs{psBoxplot}}
-%--------------------------------------------------------------------------------------
-
-A box-and-whisker plot (often called simply a box plot) is a histogram-like method of
-displaying data, invented by John.\,Tukey. The box-and-whisker plot is a box with
-ends at the quartiles $Q_1$ and $Q_3$ and has a statistical median M as a horizontal line in
-the box. The "`whiskers"* are lines to the farthest points that are not outliers (i.e.,
-that are within 3/2 times the interquartile range of $Q_1$ and $Q_3$). Then, for every point
-more than 3/2 times the interquartile range from the end of a box, is a dot.
-
-The only special optional arguments, beside all other which are valid for drawing lines
-and filling areas, are \Lkeyword{IQLfactor}, \Lkeyword{barwidth}, and
-\Lkeyword{arrowlength}, where the latter is a factor
-which is multiplied with the barwidth for the line ends.
-The \Lkeyword{IQLfactor}, preset to 1.5, defines the area for the outliers.
-%\begin{LTXexample}[pos=t,preset=\centering]
-\begin{pspicture}(-1,-1)(12,14)
-\psset{yunit=0.1,fillstyle=solid}
-\savedata{\data}[100 90 120 115 120 110 100 110 100 90 100 100 120 120 120]
-\rput(1,0){\psBoxplot[fillcolor=red!30]{\data}}
-\rput(1,105){2001}
-\savedata{\data}[90 120 115 116 115 110 90 130 120 120 120 85 100 130 130]
-\rput(3,0){\psBoxplot[arrowlength=0.5,fillcolor=blue!30]{\data}}
-\rput(3,107){2008}
-\savedata{\data}[35 70 90 60 100 60 60 80 80 60 50 55 90 70 70]
-\rput(5,0){\psBoxplot[barwidth=40pt,arrowlength=1.2,fillcolor=red!30]{\data}}
-\rput(5,65){2001}
-\savedata{\data}[60 65 60 75 75 60 50 90 95 60 65 45 45 60 90]
-\rput(7,0){\psBoxplot[barwidth=40pt,fillcolor=blue!30]{\data}}
-\rput(7,65){2008}
-\savedata{\data}[20 20 25 20 15 20 20 25 30 20 20 20 30 30 30]
-\rput(9,0){\psBoxplot[fillcolor=red!30]{\data}}
-\rput(9,22){2001}
-\savedata{\data}[20 30 20 35 35 20 20 60 50 20 35 15 30 20 40]
-\rput(11,0){\psBoxplot[fillcolor=blue!30,linestyle=dashed]{\data}}
-\rput(11,25){2008}
-\psaxes[dy=1cm,Dy=10](0,0)(12,130)
-\end{pspicture}
-%\end{LTXexample}
+\clearpage
+\subsection{Save final state of a equation}
+With the macros \Lcs{BeginSaveFinalState} and \Lcs{EndSaveFinalState} the
+end values of a differential equation
+can be saved and then used with the optional argument \Lkeyword{GetFinalState}
+as starting values for another equation.
\begin{lstlisting}
-\begin{pspicture}(-1,-1)(12,14)
-\psset{yunit=0.1,fillstyle=solid}
-\savedata{\data}[100 90 120 115 120 110 100 110 100 90 100 100 120 120 120]
-\rput(1,0){\psBoxplot[fillcolor=red!30]{\data}}
-\rput(1,105){2001}
-\savedata{\data}[90 120 115 116 115 110 90 130 120 120 120 85 100 130 130]
-\rput(3,0){\psBoxplot[arrowlength=0.5,fillcolor=blue!30]{\data}}
-\rput(3,107){2008}
-\savedata{\data}[35 70 90 60 100 60 60 80 80 60 50 55 90 70 70]
-\rput(5,0){\psBoxplot[barwidth=40pt,arrowlength=1.2,fillcolor=red!30]{\data}}
-\rput(5,65){2001}
-\savedata{\data}[60 65 60 75 75 60 50 90 95 60 65 45 45 60 90]
-\rput(7,0){\psBoxplot[barwidth=40pt,fillcolor=blue!30]{\data}}
-\rput(7,65){2008}
-\savedata{\data}[20 20 25 20 15 20 20 25 30 20 20 20 30 30 30]
-\rput(9,0){\psBoxplot[fillcolor=red!30]{\data}}
-\rput(9,22){2001}
-\savedata{\data}[20 30 20 35 35 20 20 60 50 20 35 15 30 20 40]
-\rput(11,0){\psBoxplot[fillcolor=blue!30,linestyle=dashed]{\data}}
-\rput(11,25){2008}
-\psaxes[dy=1cm,Dy=10](0,0)(12,130)
+\psset{unit=10cm,linewidth=2pt}
+\begin{pspicture}(1,1)\psgrid[subgridcolor=black!20,subgriddiv=20]
+\BeginSaveFinalState
+ \psplotDiffEqn[
+ whichabs=0,whichord=1,linecolor=red,method=rk4,
+ plotpoints=10,showpoints=true]{0}{1}{0 0}{
+ pop pop
+ x dup mul 2 div 180 mul cos %% dx/dt
+ x dup mul 2 div 180 mul sin %% dy/dt
+ }
+ \psplotDiffEqn[GetFinalState,
+ whichabs=0,whichord=1,linecolor=blue,method=rk4,%SaveFinalState,
+ plotpoints=10,showpoints=true]{1}{2}{0 0}{
+ pop pop
+ x dup mul 2 div 180 mul cos %% dx/dt
+ x dup mul 2 div 180 mul sin %% dy/dt
+ }
+ \psplotDiffEqn[GetFinalState,
+ whichabs=0,whichord=1,linecolor=cyan,method=rk4,%SaveFinalState,
+ plotpoints=19,showpoints=true]{2}{3}{0 0 }{
+ pop pop
+ x dup mul 2 div 180 mul cos %% dx/dt
+ x dup mul 2 div 180 mul sin %% dy/dt
+ }
+\EndSaveFinalState
\end{pspicture}
\end{lstlisting}
-The next example uses an external file for the data, which must first be read by the
-macro \Lcs{readdata}. The next one creates a horizontal boxplot by rotating
-the output with $-90$ degrees.
-
-\begin{filecontents}{boxplot.data}
-2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
-\end{filecontents}
-
-
-%\begin{LTXexample}[pos=t]
-\readdata{\data}{boxplot.data}
-\begin{pspicture}(-1,-1)(2,10)
-\psset{yunit=0.25,fillstyle=solid}
-\savedata{\data}[2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32]
-\rput(1,0){\psBoxplot[fillcolor=blue!30]{\data}}
-\psaxes[dy=1cm,Dy=4](0,0)(2,35)
-\end{pspicture}
-%
-\begin{pspicture}(-1,-1)(11,2)
-\psset{xunit=0.25,fillstyle=solid}
-\savedata{\data}[2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32]
-\rput{-90}(0,1){\psBoxplot[yunit=0.25,fillcolor=blue!30]{\data}}
-\psaxes[dx=1cm,Dx=4](0,0)(35,2)
+\bigskip
+\begin{center}
+\psset{unit=6cm,linewidth=2pt}
+\begin{pspicture}(1,1)\psgrid[subgridcolor=black!20,subgriddiv=20]
+\BeginSaveFinalState
+ \psplotDiffEqn[
+ whichabs=0,whichord=1,linecolor=red,method=rk4,
+ plotpoints=10,showpoints=true]{0}{1}{0 0}{
+ pop pop
+ x dup mul 2 div 180 mul cos %% dx/dt
+ x dup mul 2 div 180 mul sin %% dy/dt
+ }
+ \psplotDiffEqn[GetFinalState,
+ whichabs=0,whichord=1,linecolor=blue,method=rk4,%SaveFinalState,
+ plotpoints=10,showpoints=true]{1}{2}{0 0}{
+ pop pop
+ x dup mul 2 div 180 mul cos %% dx/dt
+ x dup mul 2 div 180 mul sin %% dy/dt
+ }
+ \psplotDiffEqn[GetFinalState,
+ whichabs=0,whichord=1,linecolor=cyan,method=rk4,%SaveFinalState,
+ plotpoints=19,showpoints=true]{2}{3}{0 0 }{
+ pop pop
+ x dup mul 2 div 180 mul cos %% dx/dt
+ x dup mul 2 div 180 mul sin %% dy/dt
+ }
+\EndSaveFinalState
\end{pspicture}
-%\end{LTXexample}
+\end{center}
-\begin{lstlisting}
-\readdata{\data}{boxplot.data}
-\begin{pspicture}(-1,-1)(2,10)
-\psset{yunit=0.25,fillstyle=solid}
-\savedata{\data}[2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32]
-\rput(1,0){\psBoxplot[fillcolor=blue!30]{\data}}
-\psaxes[dy=1cm,Dy=4](0,0)(2,35)
-\end{pspicture}
-%
-\begin{pspicture}(-1,-1)(11,2)
-\psset{xunit=0.25,fillstyle=solid}
-\savedata{\data}[2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32]
-\rput{-90}(0,1){\psBoxplot[yunit=0.25,fillcolor=blue!30]{\data}}
-\psaxes[dx=1cm,Dx=4](0,0)(35,2)
-\end{pspicture}
-\end{lstlisting}
+\psset{unit=1cm,linewidth=0.75pt}
%--------------------------------------------------------------------------------------
@@ -7610,7 +3229,10 @@ in the range of the wavelength. The smallest value of the data array
is set to red and the biggest value is set to violett. All other values
are substituted by the corresponding color of the wavlength.
\Lkeyword{colorType}=2 ist the same, but vice versa
-with the color, from violet to red. The following examples uses a 200$\times$200
+with the color, from violet to red. \Lkeyword{colorType}=3 is the grayscale
+image and \Lkeyword{colorType}=4 the same invers.
+
+The following examples use a 200$\times$200
matrix data, which is saved as /dotmatrix [...] in the file \LFile{pstricks-add-doc.dat}.
\begin{LTXexample}[pos=t,preset=\centering]
@@ -7625,57 +3247,1035 @@ matrix data, which is saved as /dotmatrix [...] in the file \LFile{pstricks-add-
\end{pspicture}
\end{LTXexample}
+\begin{LTXexample}[pos=t,preset=\centering]
+\begin{pspicture}(10,10)
+ \psMatrixPlot[colorType=3,xStep=0.05,yStep=0.05]{200}{200}{dotmatrix.data}
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\begin{pspicture}(10,10)
+ \psMatrixPlot[colorType=4,xStep=0.05,yStep=0.05]{200}{200}{dotmatrix.data}
+\end{pspicture}
+\end{LTXexample}
\egroup
+
%--------------------------------------------------------------------------------------
+\section{Dashed Lines}
+%--------------------------------------------------------------------------------------
+Tobias Nähring has implemented an enhanced feature for dashed
+lines. The number of arguments is no longer limited.
+
+\begin{BDef}
+\Lkeyword{dash}=value1\OptArg*{unit} value2\OptArg*{unit} \ldots
+\end{BDef}
+
+\begin{LTXexample}[width=0.4\linewidth]
+\psset{linewidth=2.5pt,unit=0.6}
+\begin{pspicture}(-5,-4)(5,4)
+ \psgrid[subgriddiv=0,griddots=10,gridlabels=0pt]
+ \psset{linestyle=dashed}
+ \pscurve[dash=5mm 1mm 1mm 1mm,linewidth=0.1](-5,4)(-4,3)(-3,4)(-2,3)
+ \psline[dash=5mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm 1mm](-5,0.9)(5,0.9)
+ \psccurve[linestyle=solid](0,0)(1,0)(1,1)(0,1)
+ \psccurve[linestyle=dashed,dash=5mm 2mm 0.1 0.2,linetype=0](0,0)(-2.5,0)(-2.5,-2.5)(0,-2.5)
+ \pscurve[dash=3mm 3mm 1mm 1mm,linecolor=red,linewidth=2pt](5,-4)(5,2)(4.5,3.5)(3,4)(-5,4)
+\end{pspicture}
+\end{LTXexample}
+
+
+
\clearpage
-\section{\nxLcs{psforeach} and \nxLcs{psForeach}}
%--------------------------------------------------------------------------------------
+\section{Arrows}
+%--------------------------------------------------------------------------------------
+\subsection{Definition}
+%--------------------------------------------------------------------------------------
+\LPack{pstricks-add} defines the following "`arrows"':
+
+\begin{center}
+ \bgroup
+ \def\myline#1{\psline[linecolor=red,linewidth=0.5pt,arrowscale=1.5]{#1}(0,1ex)(1.3,1ex)}%
+ \psset{arrowscale=1.5}
+ \begin{tabular}{@{} c @{\qquad} p{3cm} l @{}}%
+ Value & Example & Name \\[2pt]\hline
+ \Lnotation{-} & \myline{-} & None\\
+ \Lnotation{<->} & \myline{<->} & Arrowheads.\\
+ \Lnotation{>-<} & \myline{>-<} & Reverse arrowheads.\\
+ \Lnotation{<{<}-{>}>} & \myline{<<->>} & Double arrowheads.\\
+ \Lnotation{{>}>-{<}<} & \myline{>>-<<} & Double reverse arrowheads.\\
+ \Lnotation{{|}-{|}} & \myline{|-|} & T-bars, flush to endpoints.\\
+ \Lnotation{{|}*-{|}*} & \myline{|*-|*} & T-bars, centered on endpoints.\\
+ \Lnotation{[-]} & \myline{[-]} & Square brackets.\\
+ \Lnotation{]-[} & \myline{]-[} & Reversed square brackets.\\
+ \Lnotation{(-)} & \myline{(-)} & Rounded brackets.\\
+ \Lnotation{)-(} & \myline{)-(} & Reversed rounded brackets.\\
+ \Lnotation{o-o} & \myline{o-o} & Circles, centered on endpoints.\\
+ \Lnotation{*-*} & \myline{*-*} & Disks, centered on endpoints.\\
+ \Lnotation{oo-oo} & \myline{oo-oo} & Circles, flush to endpoints.\\
+ \Lnotation{**-**} & \myline{**-**} & Disks, flush to endpoints.\\
+ \Lnotation{{|}<->{|}} & \myline{|<->|} & T-bars and arrows.\\
+ \Lnotation{{|}>-<{|}} & \myline{|>-<|} & T-bars and reverse arrows.\\
+ \Lnotation{h-h{|}} & \myline{h-h} & left/right hook arrows.\\
+ \Lnotation{H-H{|}} & \myline{H-H} & left/right hook arrows.\\
+ \Lnotation{v-v|} & \myline{v-v} & left/right inside vee arrows.\\
+ \Lnotation{V-V|} & \myline{V-V} & left/right outside vee arrows.\\
+ \Lnotation{f-f|} & \myline{f-f} & left/right inside filled arrows.\\
+ \Lnotation{F-F|} & \myline{F-F} & left/right outside filled arrows.\\
+ \Lnotation{t-t|} & \myline{t-t} & left/right inside slash arrows.\\[5pt]
+ \Lnotation{T-T|} & \myline{T-T} & left/right outside slash arrows.\\
+ \end{tabular}
+ \egroup
+\end{center}
-The macro \Lcs{psforeach} allows a loop with an individual increment.
+
+
+You can also mix and match, e.g., \Lnotation{->}, \Lnotation{*-)} and \Lnotation{[->} are all valid values
+of the \Lkeyword{arrows} parameter. The parameter can be set with
\begin{BDef}
-\Lcs{psforeach}\Largb{variable}\Largb{value list}\Largb{action}\\
-\Lcs{psForeach}\Largb{variable}\Largb{value list}\Largb{action}
+\Lcs{psset}\Largb{arrows=<type>}
\end{BDef}
-With \Lcs{psforeach} the \Larg{action} is done inside a group and for \Lcs{psForeach} not.
-This maybe useful when using the macro to create tabular cells, which are
-alread grouped itself.
+\noindent or for some macros with a special option, like\\[5pt]
+\noindent\verb|\psline[<general options>]{<arrow type>}(A)(B)|\\
+\noindent\verb/\psline[linecolor=red,linewidth=2pt]{|->}(0,0)(0,2)/ \ \psline[linecolor=red,linewidth=2pt]{|->}(0,0)(0,2)
-\begin{LTXexample}
-\begin{pspicture}[showgrid=true](5,5)
- \psforeach{\nA}{0, 1, 1.5, 3, 5}{%
- \psdot[dotscale=3](\nA,\nA)}
+\subsection{Multiple arrows}
+There are two new options which are only valid for the arrow type \verb+<<+ or \verb+>>+.
+\verb+nArrow+ sets both, the \verb+nArrowA+ and the \verb+nArrowB+ parameter. The meaning
+is declared in the following tables. Without setting one of these parameters the behaviour
+is like the one described in the old PSTricks manual.
+
+\begin{center}
+\begin{tabular}{@{}lc@{}}%
+ Value & Meaning \\[2pt]\hline
+ \Lnotation{-{>}>} & \ -A \\
+ \Lnotation{{<}<-{>}>} & A-A\\
+ \Lnotation{{<}<-} & A-\ \\
+ \Lnotation{{>}>-} & B-\ \\
+ \Lnotation{-{<}<} & \ -B\\
+ \Lnotation{{>}>-{<}<} & B-B\\
+ \Lnotation{{>}>-{>}>} & B-A\\
+ \Lnotation{{<}<-{<}<} & A-B
+ \end{tabular}
+\end{center}
+
+
+
+
+\begin{center}
+ \bgroup
+ \psset{linecolor=red,linewidth=1pt,arrowscale=2}%
+ \begin{tabular}{lp{2.8cm}}%
+ Value & Example \\[2pt]\hline
+ \verb+\psline{->>}(0,1ex)(2.3,1ex)+ & \psline{->>}(0,1ex)(2.3,1ex) \\
+ \verb+\psline[nArrowsA=3]{->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{->>}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=5]{->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{->>}(0,1ex)(2.3,1ex)\\
+ \verb+\psline{<<-}(0,1ex)(2.3,1ex)+ & \psline{<<-}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=3]{<<-}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<-}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=5]{<<-}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<-}(0,1ex)(2.3,1ex)\\
+ \verb+\psline{<<->>}(0,1ex)(2.3,1ex)+ & \psline{<<->>}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=3]{<<->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<->>}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=5]{<<->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<->>}(0,1ex)(2.3,1ex)\\
+ \verb+\psline{<<-|}(0,1ex)(2.3,1ex)+ & \psline{<<-|}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=3]{<<-<<}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3]{<<-<<}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=5]{<<-o}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=5]{<<-o}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=3,nArrowsB=4]{<<-<<}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3,nArrowsB=4]{<<-<<}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=3,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=3,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)\\
+ \verb+\psline[nArrowsA=1,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)+ & \psline[nArrowsA=1,nArrowsB=4]{>>->>}(0,1ex)(2.3,1ex)\\
+ \end{tabular}
+ \egroup
+\end{center}
+
+
+
+\subsection{\texttt{hookarrow}}
+%\begin{LTXexample}
+\bgroup
+\psset{arrowsize=8pt,arrowlength=1,linewidth=1pt,nodesep=2pt,shortput=tablr}
+\large
+\begin{psmatrix}[colsep=12mm,rowsep=10mm]
+ & & $R_2$ \\
+ & & 0 & & $R_3$\\
+$e_b:S$ & 1 & & 1 & 0 \\
+ & & 0 \\
+ & & $R_1$ \\
+\end{psmatrix}
+\ncline{h-}{1,3}{2,3}<{$e_{r2}$}>{$f_{r2}$}
+\ncline{-h}{2,3}{3,2}<{$e_1$}
+\ncline{-h}{3,1}{3,2}^{$e_s$}_{$f_{s}$}
+\ncline{-h}{3,2}{4,3}>{$e_3$}<{$f_3$}
+\ncline{-h}{4,3}{3,4}>{$e_4$}<{$f_4$}
+\ncline{-h}{3,4}{2,3}>{$e_2$}<{$f_2$}
+\ncline{-h}{3,4}{3,5}^{$e_5$}
+\ncline{-h}{3,5}{2,5}<{$e_{r3}$}>{$f_{r3}$}
+\ncline{-h}{4,3}{5,3}<{$e_{r1}$}>{$f_{r1}$}
+%\end{LTXexample}
+\egroup
+
+\begin{lstlisting}
+\psset{arrowsize=8pt,arrowlength=1,linewidth=1pt,nodesep=2pt,shortput=tablr}
+\large
+\begin{psmatrix}[colsep=12mm,rowsep=10mm]
+ & & $R_2$ \\
+ & & 0 & & $R_3$\\
+$e_b:S$ & 1 & & 1 & 0 \\
+ & & 0 \\
+ & & $R_1$ \\
+\end{psmatrix}
+\ncline{h-}{1,3}{2,3}<{$e_{r2}$}>{$f_{r2}$}\ncline{-h}{2,3}{3,2}<{$e_1$}
+\ncline{-h}{3,1}{3,2}^{$e_s$}_{$f_{s}$} \ncline{-h}{3,2}{4,3}>{$e_3$}<{$f_3$}
+\ncline{-h}{4,3}{3,4}>{$e_4$}<{$f_4$} \ncline{-h}{3,4}{2,3}>{$e_2$}<{$f_2$}
+\ncline{-h}{3,4}{3,5}^{$e_5$}
+\ncline{-h}{3,5}{2,5}<{$e_{r3}$}>{$f_{r3}$}
+\ncline{-h}{4,3}{5,3}<{$e_{r1}$}>{$f_{r1}$}
+\end{lstlisting}
+
+
+
+\subsection{\texttt{hookrightarrow} and \texttt{hookleftarrow}}
+This is another type of arrow and is abbreviated with \Lnotation{H}.
+The length and width of the hook is set by the new options
+\Lkeyword{hooklength} and \Lkeyword{hookwidth}, which are by default set
+to
+%
+\begin{BDef}
+\Lcs{psset}\Largb{hooklength=3mm,hookwidth=1mm}
+\end{BDef}
+%
+If the line begins with a right hook then the line ends with a left hook and vice versa:
+
+\begin{LTXexample}[width=3cm]
+\begin{pspicture}(3,4)
+\psline[linewidth=5pt,linecolor=blue,hooklength=5mm,hookwidth=-3mm]{H->}(0,3.5)(3,3.5)
+\psline[linewidth=5pt,linecolor=red,hooklength=5mm,hookwidth=3mm]{H->}(0,2.5)(3,2.5)
+\psline[linewidth=5pt,hooklength=5mm,hookwidth=3mm]{H-H}(0,1.5)(3,1.5)
+\psline[linewidth=1pt]{H-H}(0,0.5)(3,0.5)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=7.25cm]
+$\begin{psmatrix}
+E&W_i(X)&&Y\\
+&&W_j(X)
+\psset{arrows=->,nodesep=3pt,linewidth=2pt}
+\everypsbox{\scriptstyle}
+\ncline[linecolor=red,arrows=H->,%
+ hooklength=4mm,hookwidth=2mm]{1,1}{1,2}
+\ncline{1,2}{1,4}^{\tilde{t}}
+\ncline{1,2}{2,3}<{W_{ij}}
+\ncline{2,3}{1,4}>{\tilde{s}}
+\end{psmatrix}$
+\end{LTXexample}
+
+
+%--------------------------------------------------------------------------------------
+\subsection{\nxLkeyword{ArrowInside} Option}
+%--------------------------------------------------------------------------------------
+
+It is now possible to have arrows inside lines and not only at the
+beginning or the end. The new defined options
+
+\psset{arrowscale=2,linecolor=red,unit=1cm,linewidth=1.5pt}
+\begin{longtable}{l|>{\RaggedRight}p{8.5cm}|p{2.2cm}}
+Name & Example & Output\\\hline
+\endfirsthead
+Name & Example & Output\\\hline
+\endhead
+\Lkeyword{ArrowInside} &
+ \texttt{\textbackslash psline[ArrowInside=->](0,0)(2,0)} &
+ \psline[ArrowInside=->](0,0.1)(2,0.1) \\
+\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsidePos=0.25](0,0)(2,0)}
+& \psline[ArrowInside=->, ArrowInsidePos=0.25](0,0.1)(2,0.1) \\
+\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsidePos=10](0,0)(2,0)}
+& \psline[ArrowInside=->, ArrowInsidePos=10](0,0.1)(2,0.1) \\
+\Lkeyword{ArrowInsideNo} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsideNo=2](0,0)(2,0)}
+& \psline[ArrowInside=->, ArrowInsideNo=2](0,0.1)(2,0.1) \\
+\Lkeyword{ArrowInsideOffset} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsideNo=2,\%}\newline
+ \hspace*{20pt}\texttt{ArrowInsideOffset=0.1](0,0)(2,0)}
+& \psline[ArrowInside=->, ArrowInsideNo=2,ArrowInsideOffset=0.1](0,0.1)(2,0.1) \\
+%
+\Lkeyword{ArrowInside} & \texttt{\textbackslash psline[ArrowInside=->]\{->\}(0,0)(2,0)} &
+ \psline[ArrowInside=->]{->}(0,0)(2,0)\\
+\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsidePos=0.25]\{->\}(0,0)(2,0)}
+ & \psline[ArrowInside=->, ArrowInsidePos=0.25]{->}(0,0)(2,0) \\
+\Lkeyword{ArrowInsidePos} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsidePos=10]\{->\}(0,0)(2,0)}
+ & \psline[ArrowInside=->, ArrowInsidePos=10]{->}(0,0)(2,0) \\
+\Lkeyword{ArrowInsideNo} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsideNo=2]\{->\}(0,0)(2,0)}
+ & \psline[ArrowInside=->, ArrowInsideNo=2]{->}(0,0)(2,0) \\
+\Lkeyword{ArrowInsideOffset} & \texttt{\textbackslash psline[ArrowInside=->,\%}
+ \hspace*{20pt}\texttt{ArrowInsideNo=2,\%}\newline
+ \hspace*{20pt}\texttt{ArrowInsideOffset=0.1]\{->\}(0,0)(2,0)}
+ & \psline[ArrowInside=->, ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(0,0)(2,0) \\
+%
+\Lkeyword{ArrowFill} & \texttt{\textbackslash psline[ArrowFill=false,\%}
+ \hspace*{20pt}\texttt{arrowinset=0]\{->\}(0,0)(2,0)} &
+ \psline[ArrowFill=false,arrowinset=0]{->}(0,0)(2,0)\\
+\Lkeyword{ArrowFill} & \texttt{\textbackslash psline[ArrowFill=false,\%}
+ \hspace*{20pt}\texttt{arrowinset=0]\{<<->>\}(0,0)(2,0)} &
+ \psline[ArrowFill=false,arrowinset=0]{<<->>}(0,0)(2,0)\\
+\Lkeyword{ArrowFill} & \texttt{\textbackslash psline[ArrowInside=->,\%}\newline
+ \hspace*{20pt}\texttt{arrowinset=0,\%}\newline
+ \hspace*{20pt}\texttt{ArrowFill=false,\%}\newline
+ \hspace*{20pt}\texttt{ArrowInsideNo=2,\%}\newline
+ \hspace*{20pt}\texttt{ArrowInsideOffset=0.1]\{->\}(0,0)(2,0)}
+ & \psline[ArrowInside=->, ArrowFill=false,ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(0,0)(2,0) \\
+\end{longtable}
+
+\medskip
+Without the default arrow definition there is only the one inside
+the line, defined by the type and the position. The position is
+relative to the length of the whole line. $0.25$ means at $25\%$
+of the line length. The peak of the arrow gets the coordinates
+which are calculated by the macro. If you want arrows with an
+absolute position difference, then choose a value greater than
+\verb|1|, e.\,g. \verb|10| which places an arrow every 10~pt. The
+default unit \verb|pt| cannot be changed.
+
+\medskip
+\noindent
+\begin{tabularx}{\linewidth}{@{\color{red}\vrule width 2pt}lX@{}}
+& The \Lkeyword{ArrowInside} takes only arrow definitions like \Lnotation{->} into account.
+Arrows from right to left (\Lnotation{<-}) are not possible and ignored. If you need
+such arrows, change the order of the pairs of coordinates for the line or curve macro.
+\end{tabularx}
+
+%--------------------------------------------------------------------------------------
+\subsection{\nxLkeyword{ArrowFill} Option}
+%--------------------------------------------------------------------------------------
+
+By default all arrows are filled polygons. With the option
+\Lkeyset{ArrowFill=false} there are ''white`` arrows. Only for the
+beginning/end arrows are they empty, the inside arrows are
+overpainted by the line.
+
+
+\psset{arrowscale=1}
+\begin{LTXexample}[width=3.5cm]
+\psset{arrowscale=2.5}
+\psline[linecolor=red,arrowinset=0]{<->}(-1,0)(2,0)
+\end{LTXexample}
+
+\begin{LTXexample}[width=3.5cm]
+\psset{arrowscale=2.5}
+\psline[linecolor=red,arrowinset=0,ArrowFill=false]{<->}(-1,0)(2,0)
+\end{LTXexample}
+
+\begin{LTXexample}[width=3.5cm]
+\psset{arrowscale=2.5}
+\psline[linecolor=red,arrowinset=0,arrowsize=0.2,
+ ArrowFill=false]{<->}(-1,0)(2,0)
+\end{LTXexample}
+
+\begin{LTXexample}[width=3.5cm]
+\psline[linecolor=blue,arrowscale=4,
+ ArrowFill]{>>->>}(-1,0)(2,0)
+\end{LTXexample}
+
+\begin{LTXexample}[width=3.5cm]
+\psline[linecolor=blue,arrowscale=4,
+ ArrowFill=false]{>>->>}(-1,0)(2,0)
+\rule{3cm}{0pt}\\[30pt]
+\end{LTXexample}
+
+\begin{LTXexample}[width=3.5cm]
+\psline[linecolor=blue,arrowscale=4,
+ ArrowFill]{>|->|}(-1,0)(2,0)
+\end{LTXexample}
+
+\begin{LTXexample}[width=3.5cm]
+\psline[linecolor=blue,arrowscale=4,
+ ArrowFill=false]{>|->|}(-1,0)(2,0)%
+\end{LTXexample}
+
+
+%--------------------------------------------------------------------------------------
+\subsection{Examples}
+%--------------------------------------------------------------------------------------
+
+All examples are printed with \verb|\psset{arrowscale=2,linecolor=red}|.
+\subsubsection{\nxLcs{psline}}
+
+\bigskip
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=->]{|<->|}(2,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=-|]{|-|}(2,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=->,ArrowInsideNo=2]{->}(2,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=->,ArrowInsideNo=2,ArrowInsideOffset=0.1]{->}(2,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=-*]{->}(0,0)(2,1)(3,0)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=-*,ArrowInsidePos=0.25]{->}(0,0)(2,1)(3,0)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=-*,ArrowInsidePos=0.25,ArrowInsideNo=2]{->}%
+ (0,0)(2,1)(3,0)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=->, ArrowInsidePos=0.25]{->}%
+ (0,0)(2,1)(3,0)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[linestyle=none,ArrowInside=->,ArrowInsidePos=0.25]{->}%
+ (0,0)(2,1)(3,0)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=-<, ArrowInsidePos=0.75]{->}%
+ (0,0)(2,1)(3,0)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true,ArrowInside=-*}
+\psline(0,0)(2,1)(3,0)(4,0)(6,2)
+\psset{linestyle=none}
+\psline[ArrowInsidePos=0](0,0)(2,1)(3,0)(4,0)(6,2)
+\psline[ArrowInsidePos=1](0,0)(2,1)(3,0)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,5)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=->,ArrowInsidePos=20](0,0)(3,0)%
+ (3,3)(1,3)(1,5)(5,5)(5,0)(7,0)(6,3)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,2)
+\psset{arrowscale=2,ArrowFill=true}
+\psline[ArrowInside=-|]{<->}(0,2)(2,0)(3,2)(4,0)(6,2)
+\end{pspicture}
+\end{LTXexample}
+
+%--------------------------------------------------------------------------------------
+\subsubsection{\nxLcs{pspolygon}}
+%--------------------------------------------------------------------------------------
+% Polygons (\pspolygon macro)
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,3)
+\psset{arrowscale=2}
+\pspolygon[ArrowInside=-|](0,0)(3,3)(6,3)(6,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,3)
+\psset{arrowscale=2}
+\pspolygon[ArrowInside=->,ArrowInsidePos=0.25]%
+ (0,0)(3,3)(6,3)(6,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,3)
+\psset{arrowscale=2}
+\pspolygon[ArrowInside=->,ArrowInsideNo=4]%
+ (0,0)(3,3)(6,3)(6,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,3)
+\psset{arrowscale=2}
+\pspolygon[ArrowInside=->,ArrowInsideNo=4,%
+ ArrowInsideOffset=0.1](0,0)(3,3)(6,3)(6,1)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,3)
+\psset{arrowscale=2}
+ \pspolygon[ArrowInside=-|](0,0)(3,3)(6,3)(6,1)
+ \psset{linestyle=none,ArrowInside=-*}
+ \pspolygon[ArrowInsidePos=0](0,0)(3,3)(6,3)(6,1)
+ \pspolygon[ArrowInsidePos=1](0,0)(3,3)(6,3)(6,1)
+ \psset{ArrowInside=-o}
+ \pspolygon[ArrowInsidePos=0.25](0,0)(3,3)(6,3)(6,1)
+ \pspolygon[ArrowInsidePos=0.75](0,0)(3,3)(6,3)(6,1)
+\end{pspicture}
+\end{LTXexample}
+
+\psset{linestyle=solid}
+
+\begin{LTXexample}[width=6.5cm]
+\begin{pspicture}(6,5)
+\psset{arrowscale=2}
+ \pspolygon[ArrowInside=->,ArrowInsidePos=20]%
+ (0,0)(3,0)(3,3)(1,3)(1,5)(5,5)(5,0)(7,0)(6,3)
+\end{pspicture}
+\end{LTXexample}
+
+
+%--------------------------------------------------------------------------------------
+\subsubsection{\nxLcs{psbezier}}
+%--------------------------------------------------------------------------------------
+% Bezier curves (\psbezier macro)
+
+
+\begin{LTXexample}[width=3.5cm]
+\begin{pspicture}(3,3)
+\psset{arrowscale=2}
+ \psbezier[ArrowInside=-|](0,1)(1,0)(2,1)(3,3)
+ \psset{linestyle=none,ArrowInside=-o}
+ \psbezier[ArrowInsidePos=0.25](0,1)(1,0)(2,1)(3,3)
+ \psbezier[ArrowInsidePos=0.75](0,1)(1,0)(2,1)(3,3)
+ \psset{linestyle=none,ArrowInside=-*}
+ \psbezier[ArrowInsidePos=0](0,1)(1,0)(2,1)(3,3)
+ \psbezier[ArrowInsidePos=1](0,1)(1,0)(2,1)(3,3)
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\resetOptions
+\begin{LTXexample}[width=4.5cm]
+\begin{pspicture}(4,3)
+\psset{arrowscale=2}
+\psbezier[ArrowInside=->,showpoints]%
+ {*-*}(0,0)(2,3)(3,0)(4,2)
+\end{pspicture}
+\end{LTXexample}
+
+
+
+
+\begin{LTXexample}[width=4.5cm]
+\begin{pspicture}(4,3)
+\psset{arrowscale=2}
+ \psbezier[ArrowInside=->,showpoints=true,
+ ArrowInsideNo=2](0,0)(2,3)(3,0)(4,2)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=4.5cm]
+\begin{pspicture}(4,3)
+\psset{arrowscale=2}
+ \psbezier[ArrowInside=->,showpoints=true,
+ ArrowInsideNo=2,ArrowInsideOffset=-0.2]%
+ {->}(0,0)(2,3)(3,0)(4,2)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=5.5cm]
+\begin{pspicture}(5,3)
+\psset{arrowscale=2}
+ \psbezier[ArrowInsideNo=9,ArrowInside=-|,%
+ showpoints=true]{*-*}(0,0)(1,3)(3,0)(5,3)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=4.5cm]
+\begin{pspicture}(4,3)
+\psset{arrowscale=2}
+ \psset{ArrowInside=-|}
+ \psbezier[ArrowInsidePos=0.25,showpoints=true]{*-*}(2,3)(3,0)(4,2)
+ \psset{linestyle=none}
+ \psbezier[ArrowInsidePos=0.75](0,0)(2,3)(3,0)(4,2)
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[width=5.5cm]
+\begin{pspicture}(5,6)
+\psset{arrowscale=2}
+ \pnode(3,4){A}\pnode(5,6){B}\pnode(5,0){C}
+ \psbezier[ArrowInside=->,%
+ showpoints=true](A)(B)(C)
+ \psset{linestyle=none,ArrowInside=-<}
+ \psbezier[ArrowInsideNo=4](0,0)(A)(B)(C)
+ \psset{ArrowInside=-o}
+ \psbezier[ArrowInsidePos=0.1](0,0)(A)(B)(C)
+ \psbezier[ArrowInsidePos=0.9](0,0)(A)(B)(C)
+ \psset{ArrowInside=-*}
+ \psbezier[ArrowInsidePos=0.3](0,0)(A)(B)(C)
+ \psbezier[ArrowInsidePos=0.7](0,0)(A)(B)(C)
\end{pspicture}
\end{LTXexample}
+\psset{linestyle=solid}
+
\begin{LTXexample}[pos=t]
-%\usepackage{pst-func}
-\makeatletter
-\newcommand*\InitToks{\toks@={}}
-\newcommand\AddToks[1]{\toks@=\expandafter{\the\toks@ #1}}
-\newcommand*\PrintToks{\the\toks@}
-\newcommand*{\makeTable}[4][5mm]{%
- \begingroup
- \InitToks%
- \AddToks{\begin{tabular}{|*{#2}{>{\RaggedLeft}p{#1}|}@{}l@{}}\cline{1-#2}}
- \psForeach{\iA}{#3}{\expandafter\AddToks\expandafter{\iA & }}
- \AddToks{\\\cline{1-#2}}%
- \psForeach{\iA}{#3}{\expandafter\AddToks\expandafter{\expandafter%
- \psPrintValue\expandafter{\iA\space /x ED #4} & }}
- \AddToks{\\\cline{1-#2}\end{tabular}}%
- \PrintToks
- \endgroup
+\begin{pspicture}(-3,-5)(15,5)
+ \psbezier[ArrowInsideNo=19,%
+ ArrowInside=->,ArrowFill=false,%
+ showpoints=true]{->}(-3,0)(5,-5)(8,5)(15,-5)
+\end{pspicture}
+\end{LTXexample}
+
+
+
+%--------------------------------------------------------------------------------------
+\subsubsection{\nxLcs{pcline}}
+%--------------------------------------------------------------------------------------
+These examples need the package \verb|pst-node|.
+
+% Lines (\pcline macro)
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,1)
+\psset{arrowscale=2}
+\pcline[ArrowInside=->](0,0)(2,1)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,1)
+\psset{arrowscale=2}
+\pcline[ArrowInside=->]{<->}(0,0)(2,1)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,1)
+\psset{arrowscale=2}
+\pcline[ArrowInside=-|,ArrowInsidePos=0.75]{|-|}(0,0)(2,1)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=2.5cm]
+\psset{arrowscale=2}
+\pcline[ArrowInside=->,ArrowInsidePos=0.65]{*-*}(0,0)(2,0)
+\naput[labelsep=0.3]{\large$g$}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=2.5cm]
+\psset{arrowscale=2}
+\pcline[ArrowInside=->,ArrowInsidePos=10]{|-|}(0,0)(2,0)
+\naput[labelsep=0.3]{\large$l$}
+\end{LTXexample}
+
+
+
+%--------------------------------------------------------------------------------------
+\subsubsection{\nxLcs{pccurve}}
+%--------------------------------------------------------------------------------------
+These examples also need the package \verb|pst-node|.
+
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,2)
+\psset{arrowscale=2}
+\pccurve[ArrowInside=->,ArrowInsidePos=0.65,showpoints=true]{*-*}(0,0)(2,2)
+\naput[labelsep=0.3]{\large$h$}
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=2.5cm]
+\begin{pspicture}(2,2)
+\psset{arrowscale=2}
+\pccurve[ArrowInside=->,ArrowInsideNo=3,showpoints=true]{|->}(0,0)(2,2)
+\naput[labelsep=0.3]{\large$i$}
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=4.5cm]
+\begin{pspicture}(4,4)
+\psset{arrowscale=2}
+\pccurve[ArrowInside=->,ArrowInsidePos=20]{|-|}(0,0)(4,4)
+\naput[labelsep=0.3]{\large$k$}
+\end{pspicture}
+\end{LTXexample}
+
+\clearpage
+
+\subsection{Special arrows \texttt{v--V},\texttt{t--T}, and \texttt{f--F}}
+
+Possible optional arguments are
+
+\psset{linecolor=black}
+
+\begin{center}
+\begin{tabular}{l|l}
+name & meaning\\\hline
+\Lkeyword{veearrowlength} & default is 3mm\\
+\Lkeyword{veearrowangle} & default is 30\\
+\Lkeyword{veearrowlinewidth} & default is 0.35mm\\
+\Lkeyword{filledveearrowlength} & default is 3mm\\
+\Lkeyword{filledveearrowangle} & default is 15\\
+\Lkeyword{filledveearrowlinewidth} & default is 0.35mm\\
+\Lkeyword{tickarrowlength} & default is 1.5mm\\
+\Lkeyword{tickarrowlinewidth} & default is 0.35mm\\
+\end{tabular}
+\end{center}
+
+
+\begin{LTXexample}[width=4cm]
+\psset{unit=5mm}
+\begin{pspicture}(4,6)
+ \psset{dimen=middle,arrows=c-c,
+ arrowscale=2,linewidth=.25mm}
+ \psline[linecolor=red,linewidth=.05mm](0,0)(0,6)
+ \psline[linecolor=red,linewidth=.05mm](4,0)(4,6)
+ \psline{v-v}(0,6)(4,6)
+ \psline{v-V}(0,4)(4,4)
+ \psline{V-v}(0,2)(4,2)
+ \psline{V-V}(0,0)(4,0)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=4cm]
+\psset{unit=5mm}
+\begin{pspicture}(4,6)
+ \psset{dimen=middle,arrows=c-c,
+ arrowscale=2,linewidth=.25mm}
+ \psline[linecolor=red,linewidth=.05mm](0,0)(0,6)
+ \psline[linecolor=red,linewidth=.05mm](4,0)(4,6)
+ \psline{f-f}(0,6)(4,6)
+ \psline{f-F}(0,4)(4,4)
+ \psline{F-f}(0,2)(4,2)
+ \psline{F-F}(0,0)(4,0)
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[width=4cm]
+\psset{unit=5mm}
+\begin{pspicture}(4,6)
+ \psset{dimen=middle,arrows=c-c,linewidth=.25mm}
+ \psline[linecolor=red,linewidth=.05mm](0,0)(0,6)
+ \psline[linecolor=red,linewidth=.05mm](4,0)(4,6)
+ \psline{t-t}(0,6)(4,6)
+ \psline{t-T}(0,4)(4,4)
+ \psline{T-t}(0,2)(4,2)
+ \psline{T-T}(0,0)(4,0)
+\end{pspicture}
+\end{LTXexample}
+
+\subsection{Special arrow option \texttt{arrowLW}}
+
+Only for the arrowtype \Lnotation{o} and \Lnotation{*} it is possible to
+set the arrowlinewidth with the optional keyword \Lkeyword{arrowLW}.
+When scaling an arrow by the keyword \Lkeyword{arrowscale} the width
+of the borderline is also scaled. With the optional argument
+\Lkeyword{arrowLW} the line width can be set separately and is not
+taken into account by the scaling value.
+
+\begin{LTXexample}[width=4cm]
+\begin{pspicture}(4,6)
+\psline[arrowscale=3,arrows=*-o](0,5)(4,5)
+\psline[arrowscale=3,arrows=*-o,
+ arrowLW=0.5pt](0,3)(4,3)
+\psline[arrowscale=3,arrows=*-o,
+ arrowLW=0.3333\pslinewidth](0,1)(4,1)
+\end{pspicture}
+\end{LTXexample}
+
+
+
+%--------------------------------------------------------------------------------------
+\section{Transparent colors}
+%--------------------------------------------------------------------------------------
+
+Transparency is now part of the main \texttt{pstricks} package.
+But pay attention, the names and syntax have changed and you need
+to run \Lprog{ps2pdf} with the option
+\Loption{-dCompatibilityLevel}=1.4.
+
+
+%--------------------------------------------------------------------------------------
+\section{,,Manipulating transparent colors''}
+%--------------------------------------------------------------------------------------
+
+\LPack{pstricks-add} supports real transparency and a simulated one with hatch lines:
+\begin{lstlisting}
+\def\defineTColor{\@ifnextchar[{\defineTColor@i}{\defineTColor@i[]}}
+\def\defineTColor@i[#1]#2#3{% transparency "Colors"
+ \newpsstyle{#2}{%
+ fillstyle=vlines,hatchwidth=0.1\pslinewidth,
+ hatchsep=1\pslinewidth,hatchcolor=#3,#1%
+ }%
}
-\makeatother
+\defineTColor{TRed}{red}
+\defineTColor{TGreen}{green}
+\defineTColor{TBlue}{blue}
+\end{lstlisting}
+
+There are three predefined "'transparent"` colors \verb+TRed+,
+\verb+TGreen+, \verb+TBlue+. They are used as \PST{} styles and
+not as colors:
+
+\bgroup
+\begin{LTXexample}[pos=t,preset=\centering]
+\begin{pspicture}(-3,-5)(5,5)
+\psframe(-1,-3)(5,5) % objet de base
+\psrotate(2,-2){15}{%
+ \psframe[style=TRed](-1,-3)(5,5)}
+\psrotate(2,-2){30}{%
+ \psframe[style=TGreen](-1,-3)(5,5)}
+\psrotate(2,-2){45}{%
+ \psframe[style=TBlue](-1,-3)(5,5)}
+\psframe[linewidth=3pt](-1,-3)(5,5)
+\psdots[dotstyle=+,dotangle=45,dotscale=3](2,-2) % centre de la rotation
+\end{pspicture}
+\end{LTXexample}
+\egroup
+
+%--------------------------------------------------------------------------------------
+\section{Calculated colors}
+%--------------------------------------------------------------------------------------
+The \verb+xcolor+ package (version 2.6) has a new feature for defining colors:
+\begin{lstlisting}[style=syntax]
+ \definecolor[ps]{<name>}{<model>}{< PS code >}
+\end{lstlisting}
+
+\verb+model+ can be one of the color models, which \PS will
+understand, e.g. \verb+rgb+. With this definition the color is
+calculated on the \PS side.
+\begin{LTXexample}[pos=t,preset=\centering]
+\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}%
+\psset{unit=1bp}
+\begin{pspicture}(0,-30)(400,100)
+\multido{\iLAMBDA=0+1}{400}{%
+ \pstVerb{
+ \iLAMBDA\space 379 add dup /lambda exch def
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \psline[linecolor=bl](\iLAMBDA,0)(\iLAMBDA,100)%
+}
+\psaxes[yAxis=false,Ox=350,dx=50bp,Dx=50]{->}(-29,-10)(420,100)
+\uput[-90](420,-10){$\lambda$[\textsf{nm}]}
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{center}
+\newcommand{\Touch}{%
+\psframe[linestyle=none,fillstyle=solid,fillcolor=bl,dimen=middle](0.1,0.75)}
+\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}%
+% Echelle 1cm <-> 40 nm
+% 1 nm <-> 0.025 cm
+\psframebox[fillstyle=solid,fillcolor=black]{%
+\begin{pspicture}(-1,-0.5)(12,1.5)
+\multido{\iLAMBDA=380+2}{200}{%
+ \pstVerb{
+ /lambda \iLAMBDA\space def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! lambda 0.025 mul 9.5 sub 0){\Touch}
+}
+\multido{\n=0+1,\iDiv=380+40}{11}{%
+ \psline[linecolor=white](\n,0.1)(\n,-0.1)
+ \uput[270](\n,0){\textbf{\white\iDiv}}}
+ \psline[linecolor=white]{->}(11,0)
+ \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
+\end{pspicture}}
+
+\psframebox[fillstyle=solid,fillcolor=black]{%
+\begin{pspicture}(-1,-0.5)(12,1)
+ \pstVerb{
+ /lambda 656 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 656 0.025 mul 9.5 sub 0){\Touch}
+ \pstVerb{
+ /lambda 486 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 486 0.025 mul 9.5 sub 0){\Touch}
+ \pstVerb{
+ /lambda 434 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 434 0.025 mul 9.5 sub 0){\Touch}
+ \pstVerb{
+ /lambda 410 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 410 0.025 mul 9.5 sub 0){\Touch}
+\multido{\n=0+1,\iDiv=380+40}{11}{%
+ \psline[linecolor=white](\n,0.1)(\n,-0.1)
+ \uput[270](\n,0){\textbf{\white\iDiv}}}
+ \psline[linecolor=white]{->}(11,0)
+ \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
+\end{pspicture}}
+
+\Index{Spectrum} of \Index{hydrogen} emission (Manuel Luque)
+\end{center}
+
+\begin{lstlisting}
+\newcommand{\Touch}{%
+\psframe[linestyle=none,fillstyle=solid,fillcolor=bl,dimen=middle](0.1,0.75)}
+\definecolor[ps]{bl}{rgb}{tx@addDict begin Red Green Blue end}%
+% Echelle 1cm <-> 40 nm
+% 1 nm <-> 0.025 cm
+\psframebox[fillstyle=solid,fillcolor=black]{%
+\begin{pspicture}(-1,-0.5)(12,1.5)
+\multido{\iLAMBDA=380+2}{200}{%
+ \pstVerb{
+ /lambda \iLAMBDA\space def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! lambda 0.025 mul 9.5 sub 0){\Touch}
+}
+\multido{\n=0+1,\iDiv=380+40}{11}{%
+ \psline[linecolor=white](\n,0.1)(\n,-0.1)
+ \uput[270](\n,0){\textbf{\white\iDiv}}}
+ \psline[linecolor=white]{->}(11,0)
+ \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
+\end{pspicture}}
+
+\psframebox[fillstyle=solid,fillcolor=black]{%
+\begin{pspicture}(-1,-0.5)(12,1)
+ \pstVerb{
+ /lambda 656 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 656 0.025 mul 9.5 sub 0){\Touch}
+ \pstVerb{
+ /lambda 486 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 486 0.025 mul 9.5 sub 0){\Touch}
+ \pstVerb{
+ /lambda 434 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 434 0.025 mul 9.5 sub 0){\Touch}
+ \pstVerb{
+ /lambda 410 def
+ lambda
+ tx@addDict begin wavelengthToRGB end
+ }%
+ \rput(! 410 0.025 mul 9.5 sub 0){\Touch}
+\multido{\n=0+1,\iDiv=380+40}{11}{%
+ \psline[linecolor=white](\n,0.1)(\n,-0.1)
+ \uput[270](\n,0){\textbf{\white\iDiv}}}
+ \psline[linecolor=white]{->}(11,0)
+ \uput[270](11,0){\textbf{\white$\lambda$(nm)}}
+\end{pspicture}}
+
+Spectrum of hydrogen emission (Manuel Luque)
+\end{lstlisting}
+
+
+
+%--------------------------------------------------------------------------------------
+\section{Gouraud shading}
+%--------------------------------------------------------------------------------------
+\begin{quotation}
+\Index{Gouraud} shading is a method used in computer graphics to simulate the differing effects of
+light and colour across the surface of an object. In practice, Gouraud shading is used to
+achieve smooth lighting on low-polygon surfaces without the heavy computational requirements
+of calculating lighting for each pixel. The technique was first presented by Henri Gouraud in 1971.\\
+~\hfill{\small \url{http://www.wikipedia.org}}
+\end{quotation}
+
+PostScript level 3 supports this kind of shading and it can only
+be seen with Acroread 7 or later. The syntax is easy:
+
+\begin{lstlisting}[style=syntax]
+ \psGTriangle(x1,y1)(x2,y2)(x3,y3){color1}{color2}{color3}
+\end{lstlisting}
+
+\psset{unit=0.75cm}
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\begin{pspicture}(0,-.25)(10,10)
+ \psGTriangle(0,0)(5,10)(10,0){red}{green}{blue}
+\end{pspicture}
+\end{LTXexample}
-\sffamily
-\psset{decimals=2,valuewidth=7,xShift=-20}
-$y=2^x$\\
-\makeTable[1cm]{6}{2,4,6,8,10,12}{2 x exp}
+\begin{LTXexample}[pos=t,preset=\centering]
+\begin{pspicture}(0,-.25)(10,10)
+ \psGTriangle*(0,0)(9,10)(10,3){black}{white!50}{red!50!green!95}
+\end{pspicture}
\end{LTXexample}
+\begin{LTXexample}[pos=t,preset=\centering]
+\begin{pspicture}(0,-.25)(10,10)
+ \psGTriangle*(0,0)(5,10)(10,0){-red!100!green!84!blue!86}
+ {-red!80!green!100!blue!40}
+ {-red!60!green!30!blue!100}
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\definecolor{rose}{rgb}{1.00, 0.84, 0.88}
+\definecolor{vertpommepasmure}{rgb}{0.80, 1.0, 0.40}
+\definecolor{fushia}{rgb}{0.60, 0.30, 1.0}
+\begin{pspicture}(0,-.25)(10,10)
+ \psGTriangle(0,0)(5,10)(10,0){rose}{vertpommepasmure}{fushia}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\appendix
%--------------------------------------------------------------------------------------
@@ -7690,8 +4290,6 @@ This refers to all options of the packages \LPack{pstricks},
\LPack{pst-plot} and \LPack{pst-node}.
-\appendix
-
%--------------------------------------------------------------------------------------
\section{PostScript}