summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-func
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2006-07-05 23:46:50 +0000
committerKarl Berry <karl@freefriends.org>2006-07-05 23:46:50 +0000
commitc019dd2804c957c3982731903682dc99178207e4 (patch)
treea10e115e97978170c8082bae0fc0b5a95846a68c /Master/texmf-dist/doc/generic/pst-func
parent1701810d2d2c62e39c9cb8dc3178f5aa1659c607 (diff)
pst-func 0.45
git-svn-id: svn://tug.org/texlive/trunk@1780 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func')
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/Changes24
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/README12
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.bib (renamed from Master/texmf-dist/doc/generic/pst-func/pstricks.bib)12
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdfbin225912 -> 2083694 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex646
5 files changed, 596 insertions, 98 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/Changes b/Master/texmf-dist/doc/generic/pst-func/Changes
index d74ea98c5e8..32a3c0e4b09 100644
--- a/Master/texmf-dist/doc/generic/pst-func/Changes
+++ b/Master/texmf-dist/doc/generic/pst-func/Changes
@@ -1,4 +1,20 @@
..... pst-func.tex
+0.45 2006-04-22 make polarplot and algebraic option work
+ added \psplotImp for plotting implicit
+ defined functions (experimental)
+ accept plotstyle curve for \psBinomialN
+ new option barwidth for \psBinomial
+ new macro \psBinomial and \psBinomialN
+0.44 2006-01-16 new macros \psCumIntegral, \psIntegral
+ \psConv
+0.43 2005-12-19 new macro psSi for the integral sin Si(x)
+ and si(x)=Si(x)-pi/2
+ and Ci(x), the integral cosin
+0.42 2005-12-09 new macro psGaussI for the integral of Gauss
+ use mue as option name instead of xShift (\psGauss}
+0.41 2005-09-23 new macro pstPrintValue
+0.40 2005-04-09 new option xShift instaed of x0 for psPolynomial and Gauss
+0.39 2005-04-09 new option x0 for Gauss
0.38 2004-11-08 change the option Abbreviation to the right one
Derivation
0.37 2004-11-08 changes pstricks object type from closed to open
@@ -10,7 +26,15 @@
..... pst-func.sty
2004-10-18 first version
+ 2006-04-22 add pst-func.pro to the filelist
+
..... pst-func.pro
+0.06 2006-04-16 new subroutine MoverN (binomial coefficient)
+0.05 2005-12-19 new subroutine Si and si for the integral sin
+ new subroutine for the integral cosin
+ new subroutine factorial (recursive)
+0.04 2005-12-05 new subroutine Simpson for the integral of Gaussian curve
+0.03 2005-07-28 add the complex part
0.02 2004-11-08 change Abbreviation to the right name Derivation
0.01 2004-11-04 first version
diff --git a/Master/texmf-dist/doc/generic/pst-func/README b/Master/texmf-dist/doc/generic/pst-func/README
index 9d4d289a60f..0c204bf50f0 100644
--- a/Master/texmf-dist/doc/generic/pst-func/README
+++ b/Master/texmf-dist/doc/generic/pst-func/README
@@ -2,13 +2,13 @@ Save the files pst-func.sty|pro|tex in a directory, which is part of your
local TeX tree. The pro file should go into $TEXMF/dvips/pstricks/
Then do not forget to run texhash to update this tree.
For more information see the documentation of your LATEX distribution
-on installing packages into your LATEX distribution or the
+on installing packages into your local TeX system or read the
TeX Frequently Asked Questions:
(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages).
-pst-func needs pst-plot and pstricks, which should be part of your
-local TeX installation, otherwise get it from a CTAN server, f.ex.
-ftp://ftp.ctan.org
+pst-func needs pst-plot (pstricks-add) and pstricks, which should
+be part of your local TeX installation, otherwise get it from a
+CTAN server, f.ex. ftp://ftp.ctan.org
-The documentation also needs pstricks-add, which is also available from
-CTAN or any mirror.
+PSTricks is PostScript Tricks, the documentation cannot be run
+with pdftex, use the sequence latex->dvips->ps2pdf. \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-func/pstricks.bib b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.bib
index 820a2401c7e..34f2b8aa705 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pstricks.bib
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.bib
@@ -68,7 +68,8 @@
@Book{voss:chaos,
author = {Herbert Vo{\ss}},
- title = {Chaos und {F}raktale selbst programmieren: von {M}andelbrotmengen {\"u}ber {F}arbmanipulationen zur perfekten Darstellung},
+ title = {Chaos und {F}raktale selbst programmieren: von {M}andelbrotmengen
+ {\"u}ber {F}arbmanipulationen zur perfekten Darstellung},
publisher = {{Franzis Verlag}},
year = {1994},
address = {Poing}
@@ -130,3 +131,12 @@
year = 1997
}
+@Book{PSTricks2,
+ author = {Herbert Vo\ss},
+ title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX},
+ edition = {third},
+ publisher = {DANTE -- Lehmanns},
+ year = {2006},
+ address = {Heidelberg/Hamburg}
+}
+
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf
index 3e66c6bbad3..2ec213a7d03 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
index 70fd42cc000..4e3ed6c7a00 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
@@ -1,7 +1,7 @@
\documentclass[a4paper,12pt]{article}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
-\usepackage{geometry}
+\usepackage{pamathx}
\usepackage{url}
\usepackage{amsmath}
\usepackage{tabularx}
@@ -9,25 +9,31 @@
\usepackage{pstricks}
\usepackage{pst-func}
\let\pstFuncFV\fileversion
-\usepackage{pstricks-add}
-\usepackage{pst-example}
+\usepackage{pst-math}
+\usepackage{pstricks-add}% for the alg parser
+\usepackage{showexpl}
+\lstset{pos=t,wide=true}
%
\usepackage{xspace}
\def\PS{PostScript\xspace}
+\def\CMD#1{{\ttfamily\textbackslash #1}}
+\def\dt{\ensuremath{\,\mathrm{d}t}}
%
-\psset{xyLabel=\footnotesize}
+\def\pshlabel{\footnotesize}
+\def\psvlabel{\footnotesize}
\usepackage[colorlinks,linktocpage]{hyperref}
%
\begin{document}
-\title{\texttt{pst-func}\\plotting special mathematical functions\thanks{%
- This document was written with \texttt{Kile: 1.6a (Qt: 3.1.1; KDE: 3.1.1;}
- \protect\url{http://sourceforge.net/projects/kile/}) and the PDF output
- was build with VTeX/Free (\protect\url{http://www.micropress-inc.com/linux})}\\
+\title{\texttt{pst-func}\\plotting special mathematical functions\\
\small v.\pstFuncFV}
-\author{Herbert Voß\thanks{%
+%\thanks{%
+% This document was written with \texttt{Kile: 1.6a (Qt: 3.1.1; KDE: 3.1.1;}
+% \protect\url{http://sourceforge.net/projects/kile/}) and the PDF output
+% was build with VTeX/Free (\protect\url{http://www.micropress-inc.com/linux})}\\
+\author{Herbert Vo\ss\thanks{%
%%JF
%Thanks to: Attila Gati and to John Frampton.
-Thanks to: Attila Gati, John Frampton and Lars Kotthoff.
+Thanks to: Attila Gati, John Frampton and Lars Kotthoff, Jose-Emilio Vila-Forcen.
}}
\date{\today}
@@ -37,7 +43,7 @@ Thanks to: Attila Gati, John Frampton and Lars Kotthoff.
\clearpage
-\section{\texttt{psPolynomial}}
+\section{\CMD{psPolynomial}}
The polynomial function is defined as
\begin{align}
f(x) &= a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots +a_{n-1}x^{n-1} + a_nx^n\\
@@ -51,16 +57,72 @@ polynomial to calculate the function. The syntax is
\psPolynomial[<options>]{xStart}{xEnd}
\end{verbatim}
+With the option \verb+xShift+ one can do a horizontal shift to the graph of the function. With another
+than the predefined value the macro replaces $x$ by $x-x\mathrm{Shift}$; \verb+xShift=1+
+moves the graph of the polynomial function one unit to the right.
+
+
+\begin{center}
+\bgroup
+\psset{yunit=0.5cm,xunit=1cm}
+\begin{pspicture*}(-3,-5)(5,10)
+ \psaxes[Dy=2]{->}(0,0)(-3,-5)(5,10)
+ \psset{linewidth=1.5pt}
+ \psPolynomial[coeff=6 3 -1,linecolor=red]{-3}{5}
+ \psPolynomial[coeff=2 -1 -1 .5 -.1 .025,linecolor=blue]{-2}{4}
+ \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta]{-2}{4}
+ \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta,xShift=1,linestyle=dashed]{-2}{4}
+ \rput[lb](4,4){\textcolor{red}{$f(x)$}}
+ \rput[lb](4,8){\textcolor{blue}{$g(x)$}}
+ \rput[lb](2,4){\textcolor{magenta}{$h(x)$}}
+\end{pspicture*}
+\egroup
+\end{center}
+
+
+\begin{lstlisting}
+\psset{yunit=0.5cm,xunit=1cm}
+\begin{pspicture*}(-3,-5)(5,10)
+ \psaxes[Dy=2]{->}(0,0)(-3,-5)(5,10)
+ \psset{linewidth=1.5pt}
+ \psPolynomial[coeff=6 3 -1,linecolor=red]{-3}{5}
+ \psPolynomial[coeff=2 -1 -1 .5 -.1 .025,linecolor=blue]{-2}{4}
+ \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta]{-2}{4}
+ \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta,xShift=1,linestyle=dashed]{-2}{4}
+ \rput[lb](4,4){\textcolor{red}{$f(x)$}}
+ \rput[lb](4,8){\textcolor{blue}{$g(x)$}}
+ \rput[lb](2,4){\textcolor{magenta}{$h(x)$}}
+\end{pspicture*}
+\end{lstlisting}
+
+
+The plot is easily clipped using the star version of the
+\verb+pspicture+ environment, so that points whose coordinates
+are outside of the desired range are not plotted.
+The plotted polynomials are:
+\begin{align}
+f(x) & = 6 + 3x -x^2 \\
+g(x) & = 2 -x -x^2 +0.5x^3 -0.1x^4 +0.025x^5\\
+h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6\\
+h^*(x) & = -2 +(x-1) -(x-1)^2 +0.5(x-1)^3 +\nonumber\\
+ & \phantom{ = }+0.1(x-1)^4 +0.025(x-1)^5+0.2(x-1)^6
+\end{align}
+
+
+
+
There are the following new options:
\noindent\medskip
-\begin{tabularx}{\linewidth}{>{\ttfamily}l|>{\ttfamily}l>{\ttfamily}lX@{}}
+{\tabcolsep=2pt
+\begin{tabularx}{\linewidth}{@{}>{\ttfamily}l>{\ttfamily}l>{\ttfamily}lX@{}}
\textrm{Name} & \textrm{Value} & \textrm{Default}\\\hline
coeff & a0 a1 a2 ... & 0 0 1 & The coefficients must have the order $a_0\ a_1\ a_2 \ldots$ and
be separated by \textbf{spaces}. The number of coefficients
is limited only by the memory of the computer ... The default
value of the parameter \verb+coeff+ is \verb+0 0 1+, which gives
the parabola $y=a_0+a_1x+a_2x^2=x^2$.\\
+xShift & <number> & 0 & $(x-xShift)$ for the horizontal shift of the polynomial\\
Derivation & <number> & 0 & the default is the function itself\\
markZeros & false|true & false & dotstyle can be changed\\
epsZero & <value> & 0.1 & The distance between two zeros, important for
@@ -70,51 +132,31 @@ dZero & <value> & 0.1 & When searching for all zero values, the function i
with this step\\
zeroLineTo & <number> & false & plots a line from the zero point to the value of the
zeroLineTo's Derivation of the polynomial function\\
+\end{tabularx}
+}
+
+\noindent
+{\tabcolsep=2pt
+\begin{tabularx}{\linewidth}{@{}>{\ttfamily}l>{\ttfamily}l>{\ttfamily}lX@{}}
+\textrm{Name} & \textrm{Value} & \textrm{Default}\\\hline
zeroLineStyle & <line style> & dashed & the style is one of the for PSTricks valid styles.\\
zeroLineColor & <color> & black & any valid xolor is possible\\
-zeroLineWidth & <width> & 0.5\textbackslash pslinewidth & \\
+zeroLineWidth & <width> & \rlap{0.5\textbackslash pslinewidth} & \\
\end{tabularx}
-
+}
\bigskip
The above parameter are only
valid for the \verb+\psPolynomial+
-macro, but can also be set in the usual way with \verb+\psset+.
-
-
-
-
-\begin{Beispiel}
-{\psset{yunit=0.5cm,xunit=1cm}
-\begin{pspicture*}(-3,-5)(5,10)
- \psaxes[Dy=2]{->}(0,0)(-3,-5)(5,10)
- \psset{linewidth=1.5pt}
- \psPolynomial[coeff=6 3 -1,linecolor=red]{-3}{5}
- \psPolynomial[coeff=2 -1 -1 .5 -.1 .025,linecolor=blue]{-2}{4}
- \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta]{-2}{4}
- \rput[lb](4,4){\textcolor{red}{$f(x)$}}
- \rput[lb](4,8){\textcolor{blue}{$g(x)$}}
- \rput[lb](2,4){\textcolor{magenta}{$h(x)$}}
-\end{pspicture*}
-}
-\end{Beispiel}
-
-The plot is easily clipped using the star version of the
-\verb+pspicture+ environment, so that points whose coordinates
-are outside of the desired range are not plotted.
-The plotted polynomials are:
-\begin{align}
-f(x) & = 6 + 3x -x^2 \\
-g(x) & = 2 -x -x^2 +0.5x^3 -0.1x^4 +0.025x^5\\
-h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6
-\end{align}
+macro, except \verb+x0+, which can also be used for the Gauss function. All
+options can be set in the usual way with \verb+\psset+.
\bigskip
-\begin{Beispiel}
+\begin{LTXexample}
\psset{yunit=0.5cm,xunit=2cm}
\begin{pspicture*}(-3,-5)(3,10)
\psaxes[Dy=2]{->}(0,0)(-3,-5)(3,10)
@@ -128,10 +170,10 @@ h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6
\rput[lb](1,1){\textcolor{red}{$h^{\prime}(x)$}}
\rput[lb](-1,6){\textcolor{blue}{$h^{\prime\prime}(x)$}}
\end{pspicture*}
-\end{Beispiel}
-
+\end{LTXexample}
+%$
-\begin{Beispiel}
+\begin{LTXexample}
\psset{yunit=0.5cm,xunit=2cm}
\begin{pspicture*}(-3,-5)(3,10)
\psaxes[Dy=2]{->}(0,0)(-3,-5)(3,10)
@@ -142,13 +184,13 @@ h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6
\psPolynomial[coeff=0 0 0 1,linecolor=cyan,%
linestyle=dotted,Derivation=3]{-2}{4}
\rput[lb](1.8,4){\textcolor{blue}{$f(x)=x^3$}}
- \rput[lb](0.2,8){\textcolor{red}{$f^{\prime}(x)=6x$}}
- \rput[lb](-2,5.5){\textcolor{magenta}{$f^{\prime\prime}(x)=6$}}
+ \rput[lb](0.2,8){\textcolor{red}{$f^{\prime\prime}(x)=6x$}}
+ \rput[lb](-2,5.5){\textcolor{magenta}{$f^{\prime\prime\prime}(x)=6$}}
\end{pspicture*}
-\end{Beispiel}
-
+\end{LTXexample}
+%$
-\begin{Beispiel}
+\begin{LTXexample}
\begin{pspicture*}(-5,-5)(5,5)
\psaxes{->}(0,0)(-5,-5)(5,5)%
\psset{dotscale=2}
@@ -160,9 +202,9 @@ h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6
\psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,%
coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=1]{-4}{3}%
\end{pspicture*}
-\end{Beispiel}
+\end{LTXexample}
-\begin{Beispiel}
+\begin{LTXexample}
\psset{xunit=1.5}
\begin{pspicture*}(-5,-5)(5,5)
\psaxes{->}(0,0)(-5,-5)(5,5)%
@@ -175,11 +217,11 @@ h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6
\psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,%
coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=1]{-4}{3}%
\end{pspicture*}
-\end{Beispiel}
+\end{LTXexample}
-
-\section{\texttt{psFourier}}
+\clearpage
+\section{\CMD{psFourier}}
A Fourier sum has the form:
\begin{align}
@@ -206,7 +248,7 @@ which gives the standard \verb+sin+ function. Note that
%the constant value can only be set with \verb+cosCoeff=<a0>+.
the constant value can only be set with \verb+cosCoeff=a0+.
-\begin{Beispiel}
+\begin{LTXexample}
\begin{pspicture}(-5,-3)(5,5.5)
\psaxes{->}(0,0)(-5,-2)(5,4.5)
\psset{plotpoints=500,linewidth=1pt}
@@ -214,9 +256,9 @@ the constant value can only be set with \verb+cosCoeff=a0+.
\psFourier[cosCoeff=0 0 2, linecolor=magenta]{-4.5}{4.5}
\psFourier[cosCoeff=2 0 2, linecolor=red]{-4.5}{4.5}
\end{pspicture}
-\end{Beispiel}
+\end{LTXexample}
-\begin{Beispiel}
+\begin{LTXexample}
\psset{yunit=0.75}
\begin{pspicture}(-5,-6)(5,7)
\psaxes{->}(0,0)(-5,-6)(5,7)
@@ -225,27 +267,28 @@ the constant value can only be set with \verb+cosCoeff=a0+.
\psFourier[sinCoeff= -1 1 -1 1 -1 1 -1 1,%
linecolor=blue,linewidth=1.5pt]{-4.5}{4.5}
\end{pspicture}
-\end{Beispiel}
+\end{LTXexample}
-\begin{Beispiel}
+\begin{LTXexample}
\begin{pspicture}(-5,-5)(5,5.5)
\psaxes{->}(0,0)(-5,-5)(5,5)
\psset{plotpoints=500,linewidth=1.5pt}
-\psFourier[sinCoeff=-.5 1 1 1 1 ,sinCoeff=-.5 1 1 1 1 1,%
+\psFourier[sinCoeff=-.5 1 1 1 1 ,cosCoeff=-.5 1 1 1 1 1,%
linecolor=blue]{-4.5}{4.5}
\end{pspicture}
-\end{Beispiel}
+\end{LTXexample}
-\section{\texttt{psBessel}}
-The Bessel function of order $n$ is defined as
+\clearpage
+\section{\CMD{psBessel}}
+The Bessel function of order $n$ is defined as
\begin{align}
-J_n(x) &=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\mathrm{d}t\\
+J_n(x) &=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\dt\\
&=\sum_{k=0}^{\infty}\frac{(-1)^k \left(\frac{x}{2}\right)^{n+2k}}{k!\Gamma(n+k+1)}
\end{align}
\noindent The syntax of the macro is
\begin{verbatim}
-\psBessel[options]{order}{xStart}{xEnd}
+\psBessel[options]{order}{xStart}{xEnd}
\end{verbatim}
There are two special parameters for the Bessel function, and also the
@@ -283,14 +326,14 @@ In particular, note that the default for
time consuming at this setting, it can be decreased in the usual
way, at the cost of some reduction in graphics resolution.
-\begin{Beispiel}
+\begin{LTXexample}
{
\psset{xunit=0.25,yunit=5}
\begin{pspicture}(-13,-.85)(13,1.25)
\rput(13,0.8){%
- $\displaystyle J_n(x)=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\mathrm{d}t$%
+ $\displaystyle J_n(x)=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\dt$%
}
-\psaxes[Dy=0.2,Dx=4,xyLabel=\footnotesize]{->}(0,0)(-30,-.8)(30,1.2)
+\psaxes[Dy=0.2,Dx=4]{->}(0,0)(-30,-.8)(30,1.2)
\psset{linewidth=1pt}
\psBessel[linecolor=red]{0}{-28}{28}%
\psBessel[linecolor=blue]{1}{-28}{28}%
@@ -298,33 +341,34 @@ way, at the cost of some reduction in graphics resolution.
\psBessel[linecolor=magenta]{3}{-28}{28}%
\end{pspicture}
}
-\end{Beispiel}
+\end{LTXexample}
-\begin{Beispiel}
+\begin{LTXexample}
{
\psset{xunit=0.25,yunit=2.5}
-\begin{pspicture}(-13,-.85)(13,2)
+\begin{pspicture}(-13,-1.5)(13,3)
\rput(13,0.8){%
$\displaystyle f(t) = 2.3 \cdot J_0 + 1.2\cdot \sin t + 0.37$%
}
-\psaxes[Dy=0.2,Dx=4,xyLabel=\footnotesize]{->}(0,0)(-30,-.8)(30,1.2)
+\psaxes[Dy=0.8,dy=2cm,Dx=4]{->}(0,0)(-30,-1.5)(30,3)
\psset{linewidth=1pt}
\psBessel[linecolor=red,constI=2.3,constII={t k sin 1.2 mul 0.37 add}]{0}{-28}{28}%
\end{pspicture}
}
-\end{Beispiel}
+\end{LTXexample}
-
-\section{\texttt{psGauss}}
-The Gauss function is defined as
+\clearpage
+\section{\CMD{psGauss} and \CMD{psGaussI}}
+The Gauss function is defined as
\begin{align}
-f(x) &= \dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{x^2}{2\sigma{}^2}}
+f(x) &= \dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{\left(x-\mu\right)^2}{2\sigma{}^2}}
\end{align}
-\noindent The syntax of the macro is
+\noindent The syntax of the macros is
\begin{verbatim}
\psGauss[options]{xStart}{xEnd}
+\psGaussI[options]{xStart}{xEnd}
\end{verbatim}
%%JF
@@ -334,33 +378,453 @@ f(x) &= \dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{x^2}{2\sigma{}^2}}
%\noindent where the only new parameter is \verb+sigma=<value>+, with
%the default of \verb+0.5+ and can also be set in the usual way with
%\verb+\psset+. It is only valid for the \verb+psGauss+-macro.
-\noindent where the only new parameter is \verb+sigma=<value>+,
+\noindent where the only new parameter are \verb+sigma=<value>+ and \verb+mue=<value>+ for the
+horizontal shift,
which can also be set in the usual way with \verb+\psset+. It is
-significant only for the \verb+psGauss+-macro. The default is
-\verb+0.5+.
+significant only for the \verb+psGauss+- and \verb+\psGaussI+-macro. The default is
+\verb+sigma=0.5+ and \verb+mue=0+. The integral is caclulated wuth the Simson algorithm
+and has one special option, called \verb+Simpson+, which defines the number of intervalls per step
+and is predefined with 5.
-\begin{Beispiel}
+\bgroup
\psset{yunit=4cm,xunit=3}
-\begin{pspicture}(-2,0)(2,1)
+\begin{pspicture}(-2,-0.2)(2,1.4)
% \psgrid[griddots=10,gridlabels=0pt, subgriddiv=0]
- \psaxes[xyLabel=\footnotesize,Dy=0.25]{->}(0,0)(-2,0)(2,1)
+ \psaxes[Dy=0.25]{->}(0,0)(-2,0)(2,1.25)
\uput[-90](6,0){x}\uput[0](0,1){y}
\rput[lb](1,0.75){\textcolor{red}{$\sigma =0.5$}}
\rput[lb](1,0.5){\textcolor{blue}{$\sigma =1$}}
- \rput[lb](-2,0.5){$f(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{x^2}{2\sigma{}^2}}$}
+ \rput[lb](-2,0.5){$f(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{(x-\mu)^2}{2\sigma{}^2}}$}
\psGauss[linecolor=red, linewidth=2pt]{-1.75}{1.75}%
+ \psGaussI[linewidth=1pt,yunit=0.75]{-2}{2}%
+ \psGauss[linecolor=cyan, mue=0.5, linewidth=2pt]{-1.75}{1.75}%
\psGauss[sigma=1, linecolor=blue, linewidth=2pt]{-1.75}{1.75}
\end{pspicture}
-\end{Beispiel}
+\egroup
+
+
+\begin{lstlisting}[xrightmargin=-1cm]
+\psset{yunit=4cm,xunit=3}
+\begin{pspicture}(-2,-0.5)(2,1.25)
+% \psgrid[griddots=10,gridlabels=0pt, subgriddiv=0]
+ \psaxes[Dy=0.25]{->}(0,0)(-2,0)(2,1.25)
+ \uput[-90](6,0){x}\uput[0](0,1){y}
+ \rput[lb](1,0.75){\textcolor{red}{$\sigma =0.5$}}
+ \rput[lb](1,0.5){\textcolor{blue}{$\sigma =1$}}
+ \rput[lb](-2,0.5){$f(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{(x-x_0)^2}{2\sigma{}^2}}$}
+ \psGauss[linecolor=red, linewidth=2pt]{-1.75}{1.75}%
+ \psGaussI[linewidth=1pt,yunit=0.75cm]{-2}{2}%
+ \psGauss[linecolor=cyan, mue=0.5, linewidth=2pt]{-1.75}{1.75}%
+ \psGauss[sigma=1, linecolor=blue, linewidth=2pt]{-1.75}{1.75}
+\end{pspicture}
+\end{lstlisting}
+
+
+\clearpage
+\section{\CMD{psSi}, \CMD{pssi} and \CMD{psCi}}
+The integral sin and cosin are defined as
+\begin{align}
+\mathrm{Si}(x) &= \int_0^x\dfrac{\sin t}{t}\dt\\
+\mathrm{si}(x) &= - \int_x^{\infty}\dfrac{\sin t}{t}\dt=\mathrm{Si}(x)-\frac{\pi}{2}\\
+\mathrm{Ci}(x) &= -\int_x^{\infty}\dfrac{\cos t}{t}\dt=\gamma+\ln x +\int_0^{x}\dfrac{\cos t -1}{t}\dt
+\end{align}
+%
+\noindent The syntax of the macros is
+\begin{verbatim}
+\psSi[options]{xStart}{xEnd}
+\pssi[options]{xStart}{xEnd}
+\psCi[options]{xStart}{xEnd}
+\end{verbatim}
+
+
+\begin{LTXexample}[pos=t]
+\def\pshlabel#1{\footnotesize#1} \def\psvlabel#1{\footnotesize#1}
+\psset{xunit=0.5}
+\begin{pspicture}(-15,-4.5)(15,2)
+ \psaxes[dx=1cm,Dx=2]{->}(0,0)(-15.1,-4)(15,2)
+ \psplot[plotpoints=1000]{-14.5}{14.5}{ x RadtoDeg sin x div }
+ \psSi[plotpoints=1500,linecolor=red,linewidth=1pt]{-14.5}{14.5}
+ \pssi[plotpoints=1500,linecolor=blue,linewidth=1pt]{-14.5}{14.5}
+ \rput(-5,1.5){\color{red}$Si(x)=\int\limits_{0}^x \frac{\sin(t)}{t}\dt$}
+ \rput(8,-1.5){\color{blue}$si(x)=-\int\limits_{x}^{\infty} \frac{\sin(t)}{t}\dt=Si(x)-\frac{\pi}{2}$}
+ \rput(8,.5){$f(x)= \frac{\sin(t)}{t}$}
+\end{pspicture}
+\end{LTXexample}
+
+
+
+\begin{LTXexample}[pos=t]
+\def\pshlabel#1{\footnotesize#1} \def\psvlabel#1{\footnotesize#1}
+\psset{xunit=0.5}
+\begin{pspicture*}(-15,-4.2)(15,4.2)
+ \psaxes[dx=1cm,Dx=2]{->}(0,0)(-15.1,-4)(15,4)
+ \psplot[plotpoints=1000]{-14.5}{14.5}{ x RadtoDeg cos x Div }
+ \psCi[plotpoints=500,linecolor=red,linewidth=1pt]{-11.5}{11.5}
+ \psci[plotpoints=500,linecolor=blue,linewidth=1pt]{-11.5}{11.5}
+ \rput(-8,1.5){\color{red}$Ci(x)=-\int\limits_{x}^{\infty} \frac{\cos(t)}{t}\dt$}
+ \rput(8,1.5){\color{blue}$ci(x)=-Ci(x)+\ln(x)+\gamma$}
+\end{pspicture*}
+\end{LTXexample}
+
+
+\clearpage
+\section{\CMD{psIntegral}, \CMD{psCumIntegral} and \CMD{psConv}}
+These new macros\footnote{Created by Jose-Emilio Vila-Forcen}
+allows to plot the result of an integral using the Simpson numerical integration rule.
+The first one is the result of the integral of a function with two variables, and
+the integral is performed over one of them. The second one is the cumulative
+integral of a function (similar to \verb+\psGaussI+ but valid for all functions). The third
+one is the result of a convolution. They are defined as:
+\begin{align}
+\text{psIntegral}(x) &= \int_a^b f(x,t)dt \\
+\text{psCumIntegral}(x) &= \int_{\text{xStart}}^{x} f(t)dt \\
+\text{psConv}(x) & = \int_a^b f(t)g(x-t)dt
+\end{align}
+In the first one, the integral is performed from $a$ to $b$ and the function $f$ depends
+on two parameters. In the second one, the function $f$ depends on only one parameter, and the
+integral is performed from the minimum value specified for $x$ (\verb|xStart|) and the current
+value of $x$ in the plot. The third one uses the \CMD{psIntegral} macro to perform an approximation
+to the convolution, where the integration is performed from $a$ to $b$.
+
+The syntax of these macros is:
+\begin{verbatim}
+\psIntegral[<options>]{xStart}{xEnd}(a,b){ function }
+\psCumIngegral[<options>]{xStart}{xEnd}{ function }
+\psConv[<options>]{xStart}{xEnd}(a,b){ function f }{ function g }
+\end{verbatim}
+
+In the first macro, the function should be created such that it accepts two values: \verb|<x t function>|
+should be a value. For the second and the third functions, they only need to accept one
+parameter: \verb|<x function>| should be a value.
+
+There are no new parameters for these functions. The two most important ones are \verb-plotpoints-,
+which controls the number of points of the plot (number of divisions on $x$ for the plot) and
+\verb-Simpson-, which controls the precision of the integration (a larger number means a smallest
+step). The precision and the smoothness of the plot depend strongly on these two parameters.
+
+\bigskip
+\begin{LTXexample}
+%\usepackage{pst-math}
+\psset{xunit=0.5cm,yunit=2cm}
+\begin{pspicture}[linewidth=1pt](-10,-.5)(10,2)
+ \psaxes[dx=1cm,Dx=2]{->}(0,0)(-10,0)(10,2)
+ \psCumIntegral[plotpoints=200,Simpson=10]{-10}{10}{0 1 GAUSS}
+ \psIntegral[plotpoints=200,Simpson=10,linecolor=red]{-10}{10}(-4,6){1 GAUSS}
+ \psIntegral[plotpoints=200,Simpson=100,linecolor=green]{.1}{10}(-3,3){0 exch GAUSS}
+\end{pspicture}
+\end{LTXexample}
+
+In the example, the cumulative integral of a Gaussian is presented in black. In red, a
+Gaussian is varying its mean from -10 to 10, and the result is the integral from -4 to 6.
+Finally, in green it is presented the integral of a Gaussian from -3 to 3, where the
+variance is varying from .1 to 10.
+
+\begin{LTXexample}
+\psset{xunit=1cm,yunit=4cm}
+\begin{pspicture}[linewidth=1pt](-5,-.2)(5,1.1)
+ \psaxes[dx=1cm,Dx=1,Dy=0.5]{->}(0,0)(-5,0)(5,1.1)
+ \psplot[linecolor=blue,plotpoints=200]{-5}{5}{x abs 2 le {0.25}{0} ifelse}
+ \psplot[linecolor=green,plotpoints=200]{-5}{5}{x abs 1 le {.5}{0} ifelse}
+ \psConv[plotpoints=100,Simpson=1000,linecolor=red]{-5}{5}(-10,10)%
+ {abs 2 le {0.25}{0} ifelse}{abs 1 le {.5} {0} ifelse}
+\end{pspicture}
+\end{LTXexample}
+
+In the second example, a convolution is performed using two rectangle functions.
+The result (in red) is a trapezoid function.
+
+\clearpage
+
+\section{\CMD{psBinomial} and \CMD{psBinomialN}}
+
+These two macros plot binomial distribution, \CMD{psBinomialN} the normalized one. It is always
+done in the $x$-Intervall $[0;1]$.
+Rescaling to another one can be done by setting the \verb+xunit+ option
+to any other value.
+
+The binomial distribution gives the discrete probability distribution $P_p(n|N)$ of obtaining
+exactly $n$ successes out of $N$ Bernoulli trials (where the result of each
+Bernoulli trial is true with probability $p$ and false with probability
+$q=1-p$. The binomial distribution is therefore given by
+
+\begin{align}
+P_p(n|N) &= \binom{N}{n}p^nq^{N-n} \\
+ &= \frac{N!}{n!(N-n)!}p^n(1-p)^{N-n},
+\end{align}
+where $(N; n)$ is a binomial coefficient and $P$ the probability.
+
+The syntax is quite easy:
+\begin{verbatim}
+\psBinomial[<options>]{N}{probability p}
+\psBinomialN[<options>]{N}{probability p}
+\end{verbatim}
+
+There is a restriction in using the value for N. It depends to the probability, but in general
+one should expect problems with $N>100$. PostScript cannot handle such small values and there will
+be no graph printed. This happens on PostScript side, so \TeX\ doesn't report any problem in
+the log file. The valid options for the macros are \verb+markZeros+ to draw rectangles instead
+of a continous line and \verb+printValue+ for printing the $y$-values on top of the lines,
+rotated by 90\textdegree. For this option all other options from section~\ref{sec:printValue}
+for the macro \verb+\psPrintValue+ are valid, too. The only special option is \verb+barwidth+,
+which is a factor (no dimension) and set by default to 1. This option is only valid for
+the macro \CMD{psBinomial} and not for the normalized one!
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{xunit=1cm,yunit=5cm}%
+\begin{pspicture}(-1,-0.15)(7,0.55)%
+\psaxes[Dy=0.2,dy=0.2\psyunit]{->}(0,0)(-1,0)(7,0.5)
+\uput[-90](7,0){$k$} \uput[90](0,0.5){$P(X=k)$}
+\psBinomial[markZeros,printValue,fillstyle=vlines]{6}{0.4}
+\end{pspicture}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{xunit=1cm,yunit=10cm}%
+\begin{pspicture}(-1,-0.1)(8,0.6)%
+\psaxes[Dy=0.2,dy=0.2\psyunit]{->}(0,0)(-1,0)(8,0.5)
+\uput[-90](8,0){$k$} \uput[90](0,0.5){$P(X=k)$}
+\psBinomial[linecolor=red,markZeros,printValue,fillstyle=solid,
+ fillcolor=blue,barwidth=0.2]{7}{0.6}
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{xunit=0.25cm,yunit=10cm}
+\begin{pspicture*}(-1,-0.1)(61,0.52)
+\psaxes[Dx=5,dx=5\psxunit,Dy=0.2,dy=0.2\psyunit]{->}(60,0.5)
+\uput[-90](60,0){$k$} \uput[0](0,0.5){$P(X=k)$}
+\psBinomial[markZeros,linecolor=red]{4}{.5}
+\psset{linewidth=1pt}
+\psBinomial[linecolor=green]{5}{.5}
+\psBinomial[linecolor=blue]{10}{.5}
+\psBinomial[linecolor=red]{20}{.5}
+\psBinomial[linecolor=magenta]{50}{.5}
+\psBinomial[linecolor=cyan]{75}{.5}
+\end{pspicture*}
+\end{LTXexample}
+
+The default binomial distribution has the mean of $\mu=E(X)=N\cdot p$ and a variant of $\sigma^2=\mu\cdot(1-p)$.
+The normalized distribution has a mean of $0$. Instead of $P(X=k)$ we use $P(Z=z)$ with $Z=\dfrac{X-E(X)}{\sigma(X)}$
+and $P\leftarrow P\cdot\sigma$.
+The macros use the rekursive definition of the binomial distribution:
+%
+\begin{align}
+P(k) &= P(k-1)\cdot\frac{N-k+1}{k}\cdot\frac{p}{1-p}
+\end{align}
+
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{xunit=1cm,yunit=5cm}%
+\begin{pspicture}(-3,-0.15)(4,0.55)%
+\psaxes[Dy=0.2,dy=0.2\psyunit]{->}(0,0)(-3,0)(4,0.5)
+\uput[-90](4,0){$z$} \uput[0](0,0.5){$P(Z=z)$}
+\psBinomialN[markZeros,fillstyle=vlines]{6}{0.4}
+\end{pspicture}
+\end{LTXexample}
+
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{yunit=10}
+\begin{pspicture*}(-8,-0.07)(8.1,0.55)
+\psaxes[Dy=0.2,dy=0.2\psyunit]{->}(0,0)(-8,0)(8,0.5)
+\uput[-90](8,0){$z$} \uput[0](0,0.5){$P(Z=z)$}
+\psBinomialN{125}{.5}
+\psBinomialN[markZeros,linewidth=1pt,linecolor=red]{4}{.5}
+\end{pspicture*}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{yunit=10}
+\begin{pspicture*}(-8,-0.07)(8.1,0.52)
+\psaxes[Dy=0.2,dy=0.2\psyunit]{->}(0,0)(-8,0)(8,0.5)
+\uput[-90](8,0){$z$} \uput[0](0,0.5){$P(Z=z)$}
+\psBinomialN[markZeros,linecolor=red]{4}{.5}
+\psset{linewidth=1pt}
+\psBinomialN[linecolor=green]{5}{.5}\psBinomialN[linecolor=blue]{10}{.5}
+\psBinomialN[linecolor=red]{20}{.5} \psBinomialN[linecolor=gray]{50}{.5}
+\end{pspicture*}
+\end{LTXexample}
+
+For the normalized distribution the plotstyle can be set to \verb+curve+ (\verb+plotstyle=curve+),
+then the binomial distribution looks like a normal distribution. This option is only
+valid vor \CMD{psBinomialN}. The option \verb+showpoints+ is valid if \verb+curve+ was chosen.
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{xunit=1cm,yunit=10cm}%
+\begin{pspicture*}(-4,-0.06)(4.1,0.57)%
+\psaxes[Dy=0.2,dy=0.2\psyunit]{->}(0,0)(-4,0)(4,0.5)%
+\uput[-90](4,0){$z$} \uput[90](0,0.5){$P(Z=z)$}%
+\psBinomialN[linecolor=red,fillstyle=vlines,showpoints=true,markZeros]{36}{0.5}%
+\psBinomialN[linecolor=blue,showpoints=true,plotstyle=curve]{36}{0.5}%
+\end{pspicture*}
+\end{LTXexample}
+
+\begin{LTXexample}[pos=t,preset=\centering]
+\psset{xunit=1cm,yunit=10cm}%
+\begin{pspicture*}(-4,-0.06)(4.2,0.57)%
+\psaxes[Dy=0.2,dy=0.2\psyunit]{->}(0,0)(-4,0)(4,0.5)%
+\uput[-90](4,0){$z$} \uput[90](0,0.5){$P(Z=z)$}%
+\psBinomialN[linecolor=red]{10}{0.6}%
+\psBinomialN[linecolor=blue,showpoints=true,plotstyle=curve]{10}{0.6}%
+\end{pspicture*}
+\end{LTXexample}
+
+
+\clearpage
+\section{\CMD{psplotImp} -- plotting implicit defined functions}
+This macro is still experimental! For a given area, the macro calculates in a
+first step row by row for every pixel (1pt) the function $f(x,y)$ and checks for an
+changing of the value from $f(x,y)<0$ to $f(x,y)>0$ or vice versa. If this happens,
+then the pixel must be a part of the curve of the function $f(x,y)=0$. In a second step the same is
+done column by column. This will take some time because an area of $400\times 300$
+pixel needs $120$ thousand calculations of the function value. The user still defines
+this area in his own coordinates, the translation into pixel (pt) is done internally by the
+macro.
+
+\begin{verbatim}
+\psplotImp[<options>](xMin,yMin)(xMax,yMax){<function f(x,y)>}
+\end{verbatim}
+
+The function must be of $f(x,y)=0$ and described in PostScript code, or alternatively with
+the option \verb+algebraic+ (\verb+pstricks-add+) in an algebraic form. No other value names than $x$ and $y$
+are possible. In general a starred \verb+pspicture+ environment maybe a good choice here.
+The given area for \verb+\psplotImp+ should be \textbf{greater} than the given \verb+pspicture+ area.
+
+\begin{LTXexample}[preset=\centering]
+\begin{pspicture*}(-3,-3.2)(3.5,3.5)
+\psaxes{->}(0,0)(-3,-3)(3.2,3)%
+\psplotImp[linewidth=2pt,linecolor=red](-5,-2.1)(5,2.1){%
+ x dup mul y dup mul add 4 sub }% circle r=2
+\uput[45](0,2){$x^2+y^2-4=0$}
+\psplotImp[linewidth=2pt,linecolor=blue,algebraic]%
+ (-5,-3)(4,2.4){ (x+1)^2+y^2-4 }% circle r=2
+\end{pspicture*}
+\end{LTXexample}
+
+\begin{LTXexample}[preset=\centering]
+\begin{pspicture*}(-3,-2.2)(3.5,2.5)
+\psaxes{->}(0,0)(-3,-2)(3.2,2)%
+\psplotImp[linewidth=2pt,linecolor=blue](-5,-2.2)(5,2.4){%
+ /xqu x dup mul def
+ /yqu y dup mul def
+ xqu yqu add dup mul 2 dup add 2 mul xqu yqu sub mul sub }
+\uput*[0](-3,2){$\left(x^2+y^2\right)^2-8(x^2-y^2)=0$}
+\psplotImp[linewidth=1pt,linecolor=red,algebraic](-5,-2.2)(5,2.4){% Lemniskate a =2
+ (x^2+y^2)^2-4*(x^2-y^2) }
+\end{pspicture*}
+\end{LTXexample}
+
+\begin{LTXexample}[preset=\centering]
+\begin{pspicture*}(-3,-3.2)(3.5,3.5)
+\psaxes{->}(0,0)(-3,-3)(3.2,3)%
+\psplotImp[linewidth=2pt,linecolor=green](-6,-6)(4,2.4){%
+ x 3 exp y 3 exp add 4 x y mul mul sub }
+\uput*[45](-2.5,2){$\left(x^3+y^3\right)-4xy=0$}
+\end{pspicture*}
+\end{LTXexample}
+
+
+\begin{LTXexample}[preset=\centering]
+\begin{pspicture*}(-5,-3.2)(5.5,4.5)
+\psaxes{->}(0,0)(-5,-3)(5.2,4)%
+\psplotImp[algebraic,linecolor=red](-6,-4)(5,4){ y*cos(x*y)-0.2 }
+\psplotImp[algebraic,linecolor=blue](-6,-4)(5,4){ y*cos(x*y)-1.2 }
+\end{pspicture*}
+\end{LTXexample}
+
+
+
+Using the \verb+polarplot+ option implies using the variables $r$ and $phi$ for describing
+the function, $y$ and $x$ are not respected in this case. Using the \verb+algebraic+ option
+for polar plots are also possible (see next example).
+
+\begin{LTXexample}[preset=\centering]
+\begin{pspicture*}(-3,-2.5)(3.75,2.75)\psaxes{->}(0,0)(-3,-2.5)(3.2,2.5)%
+\psplotImp[linewidth=2pt,linecolor=cyan,polarplot](-6,-3)(4,2.4){ r 2 sub }% circle r=2
+\uput*[45](0.25,2){$f(r,\phi)=r-2=0$}
+\psplotImp[polarplot,algebraic](-6,-3)(4,2.4){ r-1 }% circle r=1
+\end{pspicture*}
+\end{LTXexample}
+
+\begin{LTXexample}[preset=\centering]
+\begin{pspicture*}(-5,-2.2)(5.5,3.5)
+\pscircle(0,0){1}%
+\psaxes{->}(0,0)(-5,-2)(5.2,3)%
+\multido{\rA=0.01+0.2}{5}{%
+\psplotImp[linewidth=1pt,linecolor=blue,polarplot](-6,-6)(5,2.4){%
+ r dup mul 1.0 r div sub phi sin dup mul mul \rA\space sub }}%
+\uput*[45](0,2){$f(r,\phi)=\left(r^2-\frac{1}{r}\right)\cdot\sin^2\phi=0$}
+\end{pspicture*}
+\end{LTXexample}
+
+\begin{LTXexample}[preset=\centering]
+\begin{pspicture*}(-4,-3.2)(4.5,4.5)
+\psaxes{->}(0,0)(-4,-3)(4.2,4)%
+\psplotImp[algebraic,polarplot,linecolor=red](-5,-4)(5,4){ r+cos(phi/r)-2 }
+\end{pspicture*}
+\end{LTXexample}
+
+\clearpage
+
+\section{\CMD{psPrintValue}}\label{sec:printValue}
+This new macro allows to print single values of a math function. It has the syntax
+\begin{verbatim}
+\psPrintValue[<options>]{<PostScript code>}
+\end{verbatim}
+
+Important is the fact, that \CMD{psPrintValue} works on \PS\ side. For \TeX\ it is only a box of
+zero dimension. This is the reason why you have to put it into a box, which reserves horizontal
+space.
+
+There are the following new options:
+
+\noindent\medskip
+\begin{tabularx}{\linewidth}{>{\ttfamily}l|>{\ttfamily}l>{\ttfamily}lX@{}}
+\textrm{Name} & \textrm{Value} & \textrm{Default}\\\hline
+PSfont & PS font name & Times & only valid \PS font names are possible, e.g. \texttt{Times-Roman}, \texttt{Helvetica}, \texttt{Courier}, \texttt{AvantGard}, \texttt{Bookman}\\
+fontscale & <number> & 10 & the font scale in pt\\
+valuewidth & <number> & 10 & the width of the string for the converted
+ real number; if it is too small, no value is printed\\
+\end{tabularx}
+
+\begin{center}
+\psset{fontscale=12}
+\makebox[2em]{x(deg)} \makebox[5em]{$\sin x$} \makebox[5em]{$\cos x$}
+\makebox[5em]{$\sqrt x$}\makebox[7em]{$\sin x+\cos x$}\makebox[6em]{$\sin^2 x+\cos^2 x$}\\[3pt]
+\multido{\iA=0+10}{18}{
+ \makebox[1em]{\iA}
+ \makebox[5em]{\psPrintValue[PSfont=Helvetica]{\iA\space sin}}
+ \makebox[5em]{\psPrintValue[PSfont=Courier,fontscale=10]{\iA\space cos}}
+ \makebox[5em]{\psPrintValue[valuewidth=15,linecolor=blue,PSfont=AvantGarde]{\iA\space sqrt}}
+ \makebox[7em]{\psPrintValue[PSfont=Times-Italic]{\iA\space dup sin exch cos add}}
+ \makebox[6em]{\psPrintValue[PSfont=Palatino-Roman]{\iA\space dup sin dup mul exch cos dup mul add}}\\}
+\end{center}
+
+\bigskip
+
+\begin{lstlisting}
+\psset{fontscale=12}
+\makebox[2em]{x(deg)} \makebox[5em]{$\sin x$} \makebox[5em]{$\cos x$}
+\makebox[5em]{$\sqrt x$}\makebox[7em]{$\sin x+\cos x$}\makebox[6em]{$\sin^2 x+\cos^2 x$}\\[3pt]
+\multido{\iA=0+10}{18}{
+ \makebox[1em]{\iA}
+ \makebox[5em]{\psPrintValue[PSfont=Helvetica]{\iA\space sin}}
+ \makebox[5em]{\psPrintValue[PSfont=Courier,fontscale=10]{\iA\space cos}}
+ \makebox[5em]{\psPrintValue[valuewidth=15,linecolor=blue,PSfont=AvantGarde]{\iA\space sqrt}}
+ \makebox[7em]{\psPrintValue[PSfont=Times-Italic]{\iA\space dup sin exch cos add}}
+ \makebox[6em]{\psPrintValue[PSfont=Palatino-Roman]{\iA\space dup sin dup mul exch cos dup mul add}}\\}
+\end{lstlisting}
+
\section{Credits}
-Denis Girou | Manuel Luque | Timothy Van Zandt
+Denis Girou | Manuel Luque | Timothy Van Zandt
\nocite{*}
\bibliographystyle{plain}
-\bibliography{pstricks}
+\bibliography{pst-func-doc}
\end{document}