summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2008-11-17 01:24:33 +0000
committerKarl Berry <karl@freefriends.org>2008-11-17 01:24:33 +0000
commit7bd53a20b9a4f0c2696bbe01fda5d72677181f04 (patch)
tree8b1c6cc50c27fb05128ce8b175087fa8324b3f0c /Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
parent4a5b7eaf919cce085598cf22a5715b1f1ce9f8f7 (diff)
pst-func update (14nov08)
git-svn-id: svn://tug.org/texlive/trunk@11314 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex352
1 files changed, 175 insertions, 177 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
index 08a64c173fa..3f7b0a0a456 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
@@ -1,7 +1,7 @@
-\documentclass[dvips,a4paper,english]{article}
-\usepackage[T1]{fontenc}
+%% $Id: pst-func-doc.tex 55 2008-11-14 12:01:12Z herbert $
+\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings
+ headexclude,footexclude,oneside]{pst-doc}
\usepackage[utf8]{inputenc}
-\usepackage{pst-news}
\usepackage{pst-func}
\let\pstFuncFV\fileversion
\usepackage{pst-math}
@@ -12,57 +12,58 @@
\def\psvlabel#1{\footnotesize#1}
%
\begin{document}
-\title{\texttt{pst-func}\\[1cm]
-plotting special mathematical functions\\[5mm]
- {\small v.\pstFuncFV}}
-%\thanks{%
-% This document was written with \texttt{Kile: 1.6a (Qt: 3.1.1; KDE: 3.1.1;}
-% \protect\url{http://sourceforge.net/projects/kile/}) and the PDF output
-% was build with VTeX/Free (\protect\url{http://www.micropress-inc.com/linux})}\\
-\author{Herbert Vo\ss\thanks{%
-Thanks to:
- Jean-C\^ome Charpentier,
- Martin Chicoine,
- Gerry Coombes,
- John Frampton,
- Attila Gati,
- Horst Gierhardt,
- Lars Kotthoff,
- and Jose-Emilio Vila-Forcen.
-}}
-\date{\today}
+\title{\texttt{pst-func}}
+\subtitle{Plotting special mathematical functions; v.\pstFuncFV}
+\author{Herbert Vo\ss}
+\docauthor{}
+\date{\today}
\maketitle
-\vfill
-\begin{center}
-\fbox{\parbox{0.8\textwidth}{%
-\texttt{pst-func} loads by default the following packages: \texttt{pst-plot},
-\texttt{pstricks-add}, \texttt{pst-math}, \texttt{pst-xkey}, and, of course \texttt{pstricks}.
+\tableofcontents
+
+\clearpage
+
+\begin{abstract}
+\noindent
+\LPack{pst-func} loads by default the following packages: \LPack{pst-plot},
+\LPack{pstricks-add}, \LPack{pst-math}, \LPack{pst-xkey}, and, of course \LPack{pstricks}.
All should be already part of your local \TeX\ installation. If not, or in case
of having older versions, go to \url{http://www.CTAN.org/} and load the newest version.
{\itshape If \LPack{pstricks-add} is loaded together with the package \LPack{pst-func} then the \Lkeyword{InsideArrow}
- of the \Lcs{psbezier} macro doesn't work!}}}
+ of the \Lcs{psbezier} macro doesn't work!}
-\end{center}
-\vfill
-\clearpage
-\tableofcontents
+\vfill\noindent
+Thanks to: \\
+Rafal Bartczuk,
+ Jean-C\^ome Charpentier,
+ Martin Chicoine,
+ Gerry Coombes,
+ Denis Girou,
+ John Frampton,
+ Attila Gati,
+ Horst Gierhardt,
+ Christophe Jorssen,
+ Lars Kotthoff,
+ Manuel Luque,
+ Jose-Emilio Vila-Forcen,
+Timothy Van Zandt,
+and last but not least \url{http://mathworld.wolfram.com}
-\clearpage
+\end{abstract}
-\section{\Lcs{psBezier\#}}
+\section{\nxLcs{psBezier\#}}
This macro can plot a B\'ezier spline from order 1 up to 9 which needs
(order+1) pairs of given coordinates.
Given a set of $n+1$ control points $P_0$, $P_1$, \ldots, $P_n$, the corresponding \Index{B\'ezier} curve
(or \Index{Bernstein-B\'ezier} curve) is given by
-
+%
\begin{align}
C(t)=\sum_{i=0}^n P_i B_{i,n}(t)
\end{align}
-
+%
Where $B_{i,n}(t)$ is a Bernstein polynomial $B_{i,n}(t)=\binom{n}{i}t^i(1-t)^{n-i}$,
and $t \in [0,1]$.
The Bézier curve starts through the first and last given point and
@@ -76,9 +77,9 @@ by smoothly patching together low-order Bézier curves.
The macro \Lcs{psBezier} (note the upper case B) expects the number of the order
and $n=order+1$ pairs of coordinates:
-\begin{lstlisting}[style=syntax]
-\psBezier#[<options>](x0,y0)(x1,y1)...(xn,yn)
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psBezier}\Larg{\#}\OptArgs\coord0\coord1\coordn
+\end{BDef}
The number of steps between the first and last control points is given
by the keyword \Lkeyword{plotpoints} and preset to 200. It can be
@@ -172,6 +173,7 @@ changed in the usual way.
\section{Polynomials}
\subsection{\Lcs{psPolynomial}}
The polynomial function is defined as
+%
\begin{align}
f(x) &= a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots +a_{n-1}x^{n-1} + a_nx^n\\
f^{\prime}(x) &= a_1 + 2a_2x + 3a_3x^2 + \ldots +(n-1)a_{n-1}x^{n-2} + na_nx^{n-1}\\
@@ -182,9 +184,9 @@ f^{\prime\prime}(x) &= 2a_2 + 6a_3x + \ldots +(n-1)(n-2)a_{n-1}x^{n-3} + n(n-1)a
\noindent so \LPack{pst-func} needs only the \Index{coefficients} of the
polynomial to calculate the function. The syntax is
-\begin{lstlisting}[style=syntax]
-\psPolynomial[<options>]{xStart}{xEnd}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psPolynomial}\OptArgs\Largb{xStart}\Largb{xEnd}
+\end{BDef}
With the option \Lkeyword{xShift} one can do a horizontal shift to the graph of the function. With another
than the predefined value the macro replaces $x$ by $x-x\mathrm{Shift}$; \Lkeyword{xShift}=1
@@ -226,9 +228,10 @@ moves the graph of the polynomial function one unit to the right.
The plot is easily clipped using the star version of the
-\verb+pspicture+ environment, so that points whose coordinates
+\Lenv{pspicture} environment, so that points whose coordinates
are outside of the desired range are not plotted.
The plotted polynomials are:
+%
\begin{align}
f(x) & = 6 + 3x -x^2 \\
g(x) & = 2 -x -x^2 +0.5x^3 -0.1x^4 +0.025x^5\\
@@ -236,10 +239,7 @@ h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6\\
h^*(x) & = -2 +(x-1) -(x-1)^2 +0.5(x-1)^3 +\nonumber\\
& \phantom{ = }+0.1(x-1)^4 +0.025(x-1)^5+0.2(x-1)^6
\end{align}
-
-
-
-
+%
There are the following new options:
\noindent\medskip
@@ -249,7 +249,7 @@ Name & \textrm{Value} & \textrm{Default}\\\hline
\Lkeyword{coeff} & a0 a1 a2 ... & 0 0 1 & The coefficients must have the order $a_0\ a_1\ a_2 \ldots$ and
be separated by \textbf{spaces}. The number of coefficients
is limited only by the memory of the computer ... The default
-value of the parameter \verb+coeff+ is \verb+0 0 1+, which gives
+value of the parameter \Lkeyword{coeff} is \verb+0 0 1+, which gives
the parabola $y=a_0+a_1x+a_2x^2=x^2$.\\
\Lkeyword{xShift} & <number> & 0 & $(x-xShift)$ for the horizontal shift of the polynomial\\
\Lkeyword{Derivation} & <number> & 0 & the default is the function itself\\
@@ -261,15 +261,8 @@ the parabola $y=a_0+a_1x+a_2x^2=x^2$.\\
with this step\\
\Lkeyword{zeroLineTo} & <number> & false & plots a line from the zero point to the value of the
zeroLineTo's Derivation of the polynomial function\\
-\end{tabularx}
-}
-
-\noindent
-{\tabcolsep=2pt
-\begin{tabularx}{\linewidth}{@{}l>{\ttfamily}l>{\ttfamily}lX@{}}
-Name & \textrm{Value} & \textrm{Default}\\\hline
-\Lkeyword{zeroLineStyle} & <line style> & dashed & the style is one of the for PSTricks valid styles.\\
-\Lkeyword{zeroLineColor} & <color> & black & any valid xolor is possible\\
+\Lkeyword{zeroLineStyle} & <line style> & \Lkeyval{dashed} & the style is one of the for \PST valid styles.\\
+\Lkeyword{zeroLineColor} & <color> & \Lkeyval{black} & any valid xolor is possible\\
\Lkeyword{zeroLineWidth} & <width> & \rlap{0.5\textbackslash pslinewidth} & \\
\end{tabularx}
}
@@ -277,7 +270,7 @@ Name & \textrm{Value} & \textrm{Default}\\\hline
\bigskip
-The above parameter are only
+The above parameters are only
valid for the \Lcs{psPolynomial} macro, except \verb+x0+, which can also be used for the Gauss function. All
options can be set in the usual way with \Lcs{psset}.
@@ -366,9 +359,9 @@ The envelope $f_n(x)$ of the Bernstein polynomials $B_{i,n}(x)$ for $i=0,1,\ldot
is given by \[f_n(x)=\frac{1}{\sqrt{\pi n\cdot x(1-x)}}\]
illustrated below for $n=20$.
-\begin{lstlisting}[style=syntax]
-\psBernstein[<options>](tStart,tEnd)(i,n)
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psBernstein}\OptArgs\Largr{tStart,tEnd}\Largr{i,n}
+\end{BDef}
The (\Lkeyword{tStart}, \Lkeyword{tEnd}) are \emph{optional} and preset by \verb=(0,1)=. The only new optional
argument is the boolean key \Lkeyword{envelope}, which plots the envelope curve instead
@@ -443,6 +436,7 @@ of the Bernstein polynomial.
\section{\Lcs{psFourier}}
A Fourier sum has the form:
+%
\begin{align}
s(x) = \frac{a_0}{2} & + a_1\cos{\omega x} + a_2\cos{2\omega x} +
a_3\cos{3\omega x} +
@@ -450,16 +444,17 @@ s(x) = \frac{a_0}{2} & + a_1\cos{\omega x} + a_2\cos{2\omega x} +
& + b_1\sin{\omega x} + b_2\sin{2\omega x} + b_3\sin{3\omega x} +
\ldots + b_m\sin{m\omega x}
\end{align}
-
+%
\noindent The macro \Lcs{psFourier} plots \Index{Fourier sums}. The
syntax is similiar to \Lcs{psPolynomial}, except that there are
two kinds of coefficients:
-\begin{lstlisting}[style=syntax]
-\psFourier[cosCoeff=a0 a1 a2 ..., sinCoeff=b1 b2 ...]{xStart}{xEnd}
-\end{lstlisting}
-The coefficients must have the orders $a_0\ a_1\ a_2\ \ldots$
-and $b_1\ b_2\ b_3\ \ldots$ and be separated by
+\begin{BDef}
+\Lcs{psFourier}\OptArgs\Largb{xStart}\Largb{xEnd}
+\end{BDef}
+
+The coefficients must have the orders $cosCoeff=a_0\ a_1\ a_2\ \ldots$
+and $sinCoeff=b_1\ b_2\ b_3\ \ldots$ and be separated by
\textbf{spaces}. The default is \Lkeyword{cosCoeff}=0,\Lkeyword{sinCoeff}=1,
which gives the standard \verb+sin+ function. Note that
%%JF, I think it is better without the angle brackets, but
@@ -501,32 +496,27 @@ the constant value can only be set with \Lkeyword{cosCoeff}=\verb+a0+.
\clearpage
\section{\Lcs{psBessel}}
The Bessel function of order $n$ is defined as
+%
\begin{align}
J_n(x) &=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\dt\\
&=\sum_{k=0}^{\infty}\frac{(-1)^k \left(\frac{x}{2}\right)^{n+2k}}{k!\Gamma(n+k+1)}
\end{align}
-
+%
\noindent The syntax of the macro is
-\begin{lstlisting}[style=syntax]
-\psBessel[options]{order}{xStart}{xEnd}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psBessel}\OptArgs\Largb{order}\Largb{xStart}\Largb{xEnd}
+\end{BDef}
There are two special parameters for the Bessel function, and also the
settings of many \LPack{pst-plot} or \LPack{pstricks} parameters
affect the plot.
-
-\begin{lstlisting}[style=syntax]
-\def\psset@constI#1{\edef\psk@constI{#1}}
-\def\psset@constII#1{\edef\psk@constII{#1}}
-\psset{constI=1,constII=0}
-\end{lstlisting}
-
These two ,,constants`` have the following meaning:
+%
\[
f(t) = constI \cdot J_n + constII
\]
-
+%
\noindent
where \Lkeyword{constI} and \Lkeyword{constII} must be real PostScript expressions, e.g.:
@@ -538,11 +528,11 @@ The Bessel function is plotted with the parametricplot macro, this is the
reason why the variable is named \verb+t+. The internal procedure \verb+k+
converts the value t from radian into degrees. The above setting is
the same as
+%
\[
f(t) = 2.3 \cdot J_n + 1.2\cdot \sin t + 0.37
\]
-
-
+%
In particular, note that the default for
\Lkeyword{plotpoints} is $500$. If the plotting computations are too
time consuming at this setting, it can be decreased in the usual
@@ -585,6 +575,7 @@ way, at the cost of some reduction in graphics resolution.
\clearpage
\section{\Lcs{psSi}, \Lcs{pssi} and \Lcs{psCi}}
The integral sin and cosin are defined as
+%
\begin{align}
\mathrm{Si}(x) &= \int_0^x\dfrac{\sin t}{t}\dt\\
\mathrm{si}(x) &= - \int_x^{\infty}\dfrac{\sin t}{t}\dt=\mathrm{Si}(x)-\frac{\pi}{2}\\
@@ -593,11 +584,11 @@ The integral sin and cosin are defined as
%
\noindent The syntax of the macros is
-\begin{lstlisting}[style=syntax]
-\psSi[options]{xStart}{xEnd}
-\pssi[options]{xStart}{xEnd}
-\psCi[options]{xStart}{xEnd}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psSi}\OptArgs\Largb{xStart}\Largb{xEnd}\\
+\Lcs{pssi}\OptArgs\Largb{xStart}\Largb{xEnd}\\
+\Lcs{psCi}\OptArgs\Largb{xStart}\Largb{xEnd}
+\end{BDef}
\begin{LTXexample}[pos=t]
@@ -638,11 +629,13 @@ The first one is the result of the integral of a function with two variables, an
the integral is performed over one of them. The second one is the cumulative
integral of a function (similar to \Lcs{psGaussI} but valid for all functions). The third
one is the result of a convolution. They are defined as:
+%
\begin{align}
\text{psIntegral}(x) &= \int_a^b f(x,t)\mathrm{d}t \\
\text{psCumIntegral}(x) &= \int_{\text{xStart}}^{x} f(t)\mathrm{d}t \\
\text{psConv}(x) & = \int_a^b f(t)g(x-t)\mathrm{d}t
\end{align}
+%
In the first one, the integral is performed from $a$ to $b$ and the function $f$ depends
on two parameters. In the second one, the function $f$ depends on only one parameter, and the
integral is performed from the minimum value specified for $x$ (\Lkeyword{xStart}) and the current
@@ -651,11 +644,11 @@ to the convolution, where the integration is performed from $a$ to $b$.
The syntax of these macros is:
-\begin{lstlisting}[style=syntax]
-\psIntegral[<options>]{xStart}{xEnd}(a,b){ function }
-\psCumIngegral[<options>]{xStart}{xEnd}{ function }
-\psConv[<options>]{xStart}{xEnd}(a,b){ function f }{ function g }
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psIntegral}\OptArgs\Largb{xStart}\Largb{xEnd}\Largr{a,b}\Largb{ function }\\
+\Lcs{psCumIngegral}\OptArgs\Largb{xStart}\Largb{xEnd}\Largb{ function }\\
+\Lcs{psConv}\OptArgs\Largb{xStart}\Largb{xEnd}\Largr{a,b}\Largb{ function f }\Largb{ function g }
+\end{BDef}
In the first macro, the function should be created such that it accepts two values: \verb|<x t function>|
should be a value. For the second and the third functions, they only need to accept one
@@ -726,10 +719,10 @@ f(x) &= \dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{\left(x-\mu\right)^2}{2\sigma{}
%
\noindent The syntax of the macros is
-\begin{lstlisting}[style=syntax]
-\psGauss[options]{xStart}{xEnd}
-\psGaussI[options]{xStart}{xEnd}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psGauss}\OptArgs\Largb{xStart}\Largb{xEnd}\\
+\Lcs{psGaussI}\OptArgs\Largb{xStart}\Largb{xEnd}
+\end{BDef}
\noindent where the only new parameter are \Lkeyword{sigma}=<value>+ and \Lkeyword{mue}=<value>+ for the
horizontal shift,
@@ -779,12 +772,12 @@ where $(N; n)$ is a binomial coefficient and $P$ the probability.
The syntax is quite easy:
-\begin{lstlisting}[style=syntax]
-\psBinomial[<options>]{N}{probability p}
-\psBinomial[<options>]{m,N}{probability p}
-\psBinomial[<options>]{m,n,N}{probability p}
-\psBinomialN[<options>]{N}{probability p}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psBinomial}\OptArgs\Largb{N}\Largb{probability p}\\
+\Lcs{psBinomial}\OptArgs\Largb{m,N}\Largb{probability p}\\
+\Lcs{psBinomial}\OptArgs\Largb{m,n,N}\Largb{probability p}\\
+\Lcs{psBinomialN}\OptArgs\Largb{N}\Largb{probability p}
+\end{BDef}
\begin{itemize}
\item with one argument $N$ the sequence $0\ldots N$ is calculated and plotted
@@ -896,7 +889,7 @@ P(k) &= P(k-1)\cdot\frac{N-k+1}{k}\cdot\frac{p}{1-p}
-For the normalized distribution the plotstyle can be set to \Lkeyval{curve} (\Lkeyword{plotstyle}=\Lkeyval{curve}),
+For the normalized distribution the plotstyle can be set to \Lkeyval{curve} (\Lkeyset{plotstyle=curve}),
then the binomial distribution looks like a normal distribution. This option is only
valid vor \Lcs{psBinomialN}. The option \Lkeyword{showpoints} is valid if \Lkeyval{curve} was chosen.
@@ -970,10 +963,10 @@ approaches (with $p=\frac{\lambda}{n}$)
which is known as the Poisson distribution and has the follwing syntax:
-\begin{lstlisting}[style=syntax]
-\psPoisson[settings]{N}{lambda}
-\psPoisson[settings]{M,N}{lambda}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psPoisson}\OptArgs\Largb{N}\Largb{lambda}\\
+\Lcs{psPoisson}\OptArgs\Largb{M,N}\Largb{lambda}
+\end{BDef}
in which \texttt{M} is an optional argument with a default of 0.
@@ -1024,9 +1017,9 @@ f(x)=\frac{\beta(\beta x)^{\alpha-1}e^{-\beta x}}{\Gamma(\alpha)} \qquad
%
and has the syntax
-\begin{lstlisting}[style=syntax]
-\psGammaDist[options]{x0}{x1}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psGammaDist}\OptArgs\Largb{x0}\Largb{x1}
+\end{BDef}
\begin{LTXexample}[pos=t,preset=\centering]
\psset{xunit=1.2cm,yunit=10cm,plotpoints=200}
@@ -1041,7 +1034,7 @@ and has the syntax
\clearpage
\subsection{$\chi^2$-distribution}
The $\chi^2$-distribution is a continuous probability distribution. It
-usually arises when a k-dimensional vector's orthogonal components are
+usually arises when a $k$-dimensional vector's orthogonal components are
independent and each follow a standard normal distribution.
The length of the vector will then have a $\chi^2$-distribution.
@@ -1063,9 +1056,9 @@ is distributed according to chi^2 with r=sum_(j==1)^(k)r_j degrees of freedom.
The $\chi^2$ with parameter $\nu$ is the same as a Gamma distribution
with $\alpha=\nu/2$ and $\beta=1/2$ and the syntax
-\begin{lstlisting}[style=syntax]
-\psChiIIDist[options]{x0}{x1}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psChiIIDist}\OptArgs\Largb{x0}\Largb{x1}
+\end{BDef}
\begin{LTXexample}[pos=t,preset=\centering]
\psset{xunit=1.2cm,yunit=10cm,plotpoints=200}
@@ -1078,37 +1071,33 @@ The $\chi^2$ with parameter $\nu$ is the same as a Gamma distribution
\iffalse
The cumulative distribution function is
+%
\begin{align*}
D_r(\chi^2) &= int_0^{\chi^2}\frac{t^{r/2-1}e^{-t/2}\mathrm{d}t}{\Gamma(1/2r)2^{r/2}} \\
-
&= 1-\frac{\Gamma(1/2r,1/2\chi^2)}{\Gamma(1/2r)}
\end{align*}
\fi
-%The $\chi^2_\nu$-distribution has mode $\nu-2$ for $\nu\geq2$.
\clearpage
\subsection{Student's $t$-distribution}
-A \Index{statistical distribution} published by \Index{William Gosset} in 1908 under his %. His employer, Guinness Breweries,
-%required him to publish under a
-pseudonym %, so he chosed
-,,Student``.
-%Given N independent measurements x_i, let
-%t=(x^_-mu)/(s/sqrt(N)),
-The $t$-distribution with parameter $\nu$ has the \Index{density function}
+A \Index{statistical distribution} published by \Index{William Gosset} in 1908 under his
+pseudonym ,,Student``. The $t$-distribution with parameter $\nu$ has the \Index{density function}
+%
\[
f(x)=\frac1{\sqrt{\nu\pi}}\cdot
\frac{\Gamma[(\nu+1)/2]}{\Gamma(\nu/2)}\cdot\frac1{[1+(x^2/\nu)]^{(\nu+1)/2}} \qquad
-\text{for $-\infty<x<\infty$ and $\nu>0$}\]
+\text{for $-\infty<x<\infty$ and $\nu>0$}
+\]
%
and the following syntax
-\begin{lstlisting}[style=syntax]
-\psTDist[options]{x0}{x1}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psTDist}\OptArgs\Largb{x0}\Largb{x1}
+\end{BDef}
\begin{LTXexample}[pos=t,preset=\centering]
@@ -1138,9 +1127,9 @@ f_{n,m}(x)=\frac{\Gamma[(\mu+\nu)/2]}{\Gamma(\mu/2)\Gamma(\nu/2)}\cdot
%
and the syntax
-\begin{lstlisting}[style=syntax]
-\psFDist[options]{x0}{x1}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psFDist}\OptArgs\Largb{x0}\Largb{x1}
+\end{BDef}
%
The default settings are $\mu=1$ and $\nu=1$.
@@ -1178,9 +1167,9 @@ P(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}(1-x)^{\beta-1}x^
%
and has the syntax (with a default setting of $\alpha=1$ and $\beta=1$):
-\begin{lstlisting}[style=syntax]
-\psBetaDist[options]{x0}{x1}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psBetaDist}\OptArgs\Largb{x0}\Largb{x1}
+\end{BDef}
%
@@ -1205,9 +1194,9 @@ P(x)=\frac{x^s}{e^{x-mu}-1}\qquad\text{with $s\in\mathbb{Z}$ and $\mu\in\mathbb{
%
and has the syntax (with a default setting of $s=1$ and $\mu=1$):
-\begin{lstlisting}[style=syntax]
-\psBoseEInsteinDist[options]{x0}{x1}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psBoseEinsteinDist}\OptArgs\Largb{x0}\Largb{x1}
+\end{BDef}
\fi
@@ -1255,9 +1244,9 @@ If $r$ is a rational, then a \Index{superellipse} is algebraic. However, for irr
it is transcendental. For even integers $r=n$, the curve becomes closer to a
rectangle as $n$ increases. The syntax of the \Lcs{psLame} macro is:
-\begin{lstlisting}[style=syntax]
-\psLame[settings]{r}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psLame}\OptArgs\Largb{r}
+\end{BDef}
It is internally plotted as a \Index{parametric plot} with $0\le\alpha\le360$. Available keywords
are \Lkeyword{radiusA} and \Lkeyword{radiusB}, both are preset to 1, but can have any valid value
@@ -1278,24 +1267,25 @@ and unit.
\clearpage
-\section{\Lcs{psThomae} -- the popcorn function}
+\section{\nxLcs{psThomae} -- the popcorn function}
\Index{Thomae's function}, also known as the \Index{popcorn function},
the \Index{raindrop function}, the \Index{ruler function} or the
\Index{Riemann function}, is a modification of the \Index{Dirichlet} function.
This real-valued function $f(x)$ is defined as follows:
-
+%
\[ f(x)=\begin{cases}
\frac{1}{q}\mbox{ if }x=\frac{p}{q}\mbox{ is a rational number}\\
0\mbox{ if }x\mbox{ is irrational}
\end{cases}
\]
+%
It is assumed here that $\mathop{gcd}(p,q) = 1$ and $q > 0$ so that the function is well-defined
and nonnegative. The syntax is:
-\begin{lstlisting}[style=syntax]
-\psThomae[options](x0,x1){points}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psThomae}\OptArgs\Largr{x0,x1}\Largb{points}
+\end{BDef}
\verb+(x0,x1)+ is the plotted interval, both values must be grater zero and $x_1>x_0$.
The plotted number of points is the third parameter.
@@ -1310,33 +1300,39 @@ The plotted number of points is the third parameter.
\clearpage
-\section{\Lcs{psplotImp} -- plotting implicit defined functions}
-This macro is still experimental! For a given area, the macro calculates in a
-first step row by row for every pixel (1pt) the function $f(x,y)$ and checks for an
+\section{\nxLcs{psplotImp} -- plotting implicit defined functions}
+For a given area, the macro calculates in a
+first step row by row for every pixel (1pt) the function $f(x,y)$ and checks for a
changing of the value from $f(x,y)<0$ to $f(x,y)>0$ or vice versa. If this happens,
-then the pixel must be a part of the curve of the function $f(x,y)=0$. In a second step the same is
-done column by column. This will take some time because an area of $400\times 300$
+then the pixel must be part of the curve of the function $f(x,y)=0$. In a second step the same is
+done column by column. This may take some time because an area of $400\times 300$
pixel needs $120$ thousand calculations of the function value. The user still defines
this area in his own coordinates, the translation into pixel (pt) is done internally by the
-macro.
+macro itself.
+The only special keyword is \Lkeyword{stepFactor} which is preset to 0.67 and controls the horizontal
+and vertical step width.
-\begin{lstlisting}[style=syntax]
-\psplotImp[<options>](xMin,yMin)(xMax,yMax){<function f(x,y)>}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psplotImp}\OptArgs\Largr{xMin,yMin}\Largr{xMax,yMax}\Largb{function f(x,y)}
+\end{BDef}
The function must be of $f(x,y)=0$ and described in \PS code, or alternatively with
-the option \\Lkeyword{algebraic} (\LPack{pstricks-add}) in an algebraic form. No other value names than $x$ and $y$
-are possible. In general a starred \verb+pspicture+ environment maybe a good choice here.
-The given area for \Lcs{psplotImp} should be \textbf{greater} than the given \Lenv{pspicture} area.
+the option \Lkeyword{algebraic} (\LPack{pstricks-add}) in an algebraic form. No other value names than $x$ and $y$
+are possible. In general, a starred \Lenv{pspicture*} environment maybe a good choice here.
+
+\medskip
+\noindent
+\begin{tabularx}{\linewidth}{!{\color{Orange!85!Red}\vrule width 5pt} X @{}}
+The given area for \Lcs{psplotImp} should be \textbf{greater} than the given \Lenv{pspicture} area
+(see examples).
+\end{tabularx}
\begin{LTXexample}[preset=\centering]
\begin{pspicture*}(-3,-3.2)(3.5,3.5)
\psaxes{->}(0,0)(-3,-3)(3.2,3)%
-\psplotImp[linewidth=2pt,linecolor=red](-5,-2.1)(5,2.1){%
- x dup mul y dup mul add 4 sub }% circle r=2
+\psplotImp[linewidth=2pt,linecolor=red](-5,-2.1)(5,2.1){ x dup mul y dup mul add 4 sub }
\uput[45](0,2){$x^2+y^2-4=0$}
-\psplotImp[linewidth=2pt,linecolor=blue,algebraic]%
- (-5,-3)(4,2.4){ (x+1)^2+y^2-4 }% circle r=2
+\psplotImp[linewidth=2pt,linecolor=blue,algebraic](-5,-3)(4,2.4){ (x+1)^2+y^2-4 }
\end{pspicture*}
\end{LTXexample}
@@ -1406,15 +1402,15 @@ for polar plots are also possible (see next example).
\clearpage
-\section{\Lcs{psVolume} -- Rotating functions around the x-axis}
+\section{\nxLcs{psVolume} -- Rotating functions around the x-axis}
This macro shows the behaviour of a \Index{rotated function} around the x-axis.
-\begin{lstlisting}[style=syntax]
-\psVolume[<options>](xMin,xMax){<steps>}{<function f(x)>}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psVolume}\OptArgs\Largr{xMin,xMax}\Largb{steps}\Largb{function $f(x)$}
+\end{BDef}
-$f(x)$ has to be described as usual for the macro psplot.
+$f(x)$ has to be described as usual for the macro \Lcs{psplot}.
\makebox[\linewidth]{%
\begin{pspicture}(-0.5,-2)(5,2.5)
@@ -1533,9 +1529,9 @@ $f(x)$ has to be described as usual for the macro psplot.
\section{\Lcs{psPrintValue}}\label{sec:printValue}
This new macro allows to \Index{print} single values of a math function. It has the syntax
-\begin{lstlisting}[style=syntax]
-\psPrintValue[<options>]{<PostScript code>}
-\end{lstlisting}
+\begin{BDef}
+\Lcs{psPrintValue}\OptArgs\Largb{PostScript code}
+\end{BDef}
Important is the fact, that \Lcs{psPrintValue} works on \PS\ side. For \TeX\ it is only a box of
zero dimension. This is the reason why you have to put it into a box, which reserves horizontal
@@ -1544,13 +1540,14 @@ space.
There are the following new options:
\noindent\medskip
-\begin{tabularx}{\linewidth}{>{\ttfamily}l|>{\ttfamily}l>{\ttfamily}lX@{}}
-\textrm{Name} & \textrm{Value} & \textrm{Default}\\\hline
-PSfont & PS font name & Times & only valid \PS font names are possible, e.g. \texttt{Times-Roman}, \texttt{Helvetica}, \texttt{Courier}, \texttt{AvantGard}, \texttt{Bookman}\\
-fontscale & <number> & 10 & the font scale in pt\\
-valuewidth & <number> & 10 & the width of the string for the converted
+\begin{tabularx}{\linewidth}{@{}l|>{\ttfamily}l>{\ttfamily}lX@{}}
+\textrm{name} & \textrm{value} & \textrm{default}\\\hline
+\Lkeyword{PSfont} & PS font name & Times & only valid \PS font names are possible, e.g.
+ \Lps{Times-Roman}, \Lps{Helvetica}, \Lps{Courier}, \Lps{AvantGard}, \Lps{Bookman}\\
+\Lkeyword{fontscale} & <number> & 10 & the font scale in pt\\
+\Lkeyword{valuewidth} & <number> & 10 & the width of the string for the converted
real number; if it is too small, no value is printed\\
-decimals & <number> & -1 & the number of printed decimals, a negative value
+\Lkeyword{decimals} & <number> & -1 & the number of printed decimals, a negative value
prints all possible digits.\\
\end{tabularx}
@@ -1602,11 +1599,7 @@ decimals & <number> & -1 & the number of printed decimals, a negative v
\xkvview{family=pst-func,columns={key,type,default}}
-\section{Credits}
-Rafal Bartczuk | Gerry Coombes | Denis Girou | Christophe Jorssen | Manuel Luque | Timothy Van Zandt
-and \url{http://mathworld.wolfram.com}
-\printindex
\bgroup
\raggedright
@@ -1614,6 +1607,11 @@ and \url{http://mathworld.wolfram.com}
\bibliographystyle{plain}
\bibliography{pst-func-doc}
\egroup
+
+\printindex
+
+
+
\end{document}