diff options
author | Karl Berry <karl@freefriends.org> | 2017-03-12 21:54:21 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2017-03-12 21:54:21 +0000 |
commit | 07604bb1d61b7ba4d6d79bfd1f68c95e29a34741 (patch) | |
tree | 894d3b55135d1befbf37958f4c161e404728d2ed /Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | |
parent | e639dabce744b5b7fc1a73bbb2af500dbfc76a16 (diff) |
pst-func (12mar17)
git-svn-id: svn://tug.org/texlive/trunk@43479 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | 31 |
1 files changed, 19 insertions, 12 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex index c6f152ad565..2c508068253 100644 --- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex @@ -20,6 +20,10 @@ \psGauss[sigma=1, linecolor=blue, linewidth=2pt]{-1.75}{1.75} \end{pspicture}} +\usepackage[style=dtk]{biblatex} +\addbibresource{pst-func-doc.bib} + + \lstset{language=PSTricks, morekeywords={psGammaDist,psChiIIDist,psTDist,psFDist,psBetaDist,psPlotImpl},basicstyle=\footnotesize\ttfamily} % @@ -1036,15 +1040,14 @@ and is predefined with 5. \subsection{Binomial distribution}\label{sec:bindistri} -These five macros plot binomial probability mass function \Lcs{psBinomial} and \Lcs{psBinomialC} in curve style, the normalized one is \Lcs{psBinomialN}. The cumulative distribution function $F$ \Lcs{psBinomialF} and the complement of the cumulative distribution function to one ($1-F$) \Lcs{psBinomialFS} -It is always done in the $y$-Intervall $[0;1]$. -Rescaling to another one can be done by setting the \Lkeyword{yunit} option +\begin{sloppypar} +The following five macros plot binomial probability mass function \Lcs{psBinomial} and \Lcs{psBinomialC} in curve style, the normalized one is \Lcs{psBinomialN}. The cumulative distribution function $F$ \Lcs{psBinomialF} and the complement of the cumulative distribution function ($1-F$) \Lcs{psBinomialFS} +The vertical range for the plots is the $y$-Intervall $[0;1]$. +Rescaling other values can be done by setting the \Lkeyword{yunit} option to any other value. +\end{sloppypar} -The binomial distribution \Lcs{psBinomial} gives the discrete probability distribution $P_p(n|N)$ of obtaining -exactly $n$ successes out of $N$ Bernoulli trials (where the result of each -Bernoulli trial is true with probability $p$ and false with probability -$q=1-p$. The binomial distribution is therefore given by +The binomial distribution \Lcs{psBinomial} gives the discrete probability distribution $P_p(n|N)$ $n$ successes out of $N$ Bernoulli trials (where the result of each Bernoulli trial is true with probability $p$ and false with probability $q=1-p$). The binomial distribution is therefore given by \begin{align} P_p(n|N) &= \binom{N}{n}p^nq^{N-n} \\ @@ -1053,7 +1056,7 @@ P_p(n|N) &= \binom{N}{n}p^nq^{N-n} \\ where $(N; n)$ is a binomial coefficient and $P$ the probability. -The syntax is quite easy: +The syntax is: \begin{BDef} \Lcs{psBinomial}\OptArgs\Largb{N}\Largb{probability p}\\ @@ -1248,6 +1251,10 @@ valid for \Lcs{psBinomialN}. The option \Lkeyword{showpoints} is valid if \Lkeyv + + + + \clearpage \subsection{Poisson distribution} Given a Poisson process\footnote{\url{http://mathworld.wolfram.com/PoissonProcess.html}}, @@ -1834,7 +1841,7 @@ The original Weierstraß function can be used with the optional argument: \clearpage \section{\nxLcs{psplotImp} -- plotting implicit defined functions} For a given area, the macro calculates in a first step row by row for every pixel (1pt) -the function $f(x,y)$ and checks for avchanging of the value from $f(x,y)<0$ to $f(x,y)>0$ +the function $f(x,y)$ and checks for a changing of the value from $f(x,y)<0$ to $f(x,y)>0$ or vice versa. If this happens, then the pixel must be part of the curve of the function $f(x,y)=0$. In a second step the same is done column by column. This may take some time because an area of $400\times 300$ pixel needs 120 thousand calculations @@ -2169,10 +2176,10 @@ $f(x)$ has to be described as usual for the macro \Lcs{psplot}. \xkvview{family=pst-func,columns={key,type,default}} \bgroup -\raggedright +\RaggedRight \nocite{*} -\bibliographystyle{plain} -\bibliography{pst-func-doc} +%\bibliographystyle{plain} +\printbibliography{pst-func-doc} \egroup \printindex |