summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2006-09-05 22:37:02 +0000
committerKarl Berry <karl@freefriends.org>2006-09-05 22:37:02 +0000
commit2662cb2866615a0dca6251d3b51ade8f800f7b72 (patch)
treeba0d55339b684dce935b0f6664e26cee84a0165c /Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
parentdf3d34383f9394122dbe42b06a13646e71f925a9 (diff)
pst-func (6sep06)
git-svn-id: svn://tug.org/texlive/trunk@2085 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex88
1 files changed, 79 insertions, 9 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
index 4e3ed6c7a00..3abf4f87a86 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
@@ -1,4 +1,4 @@
-\documentclass[a4paper,12pt]{article}
+\documentclass[a4paper,11pt]{article}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage{pamathx}
@@ -19,8 +19,8 @@
\def\CMD#1{{\ttfamily\textbackslash #1}}
\def\dt{\ensuremath{\,\mathrm{d}t}}
%
-\def\pshlabel{\footnotesize}
-\def\psvlabel{\footnotesize}
+\def\pshlabel#1{\footnotesize#1}
+\def\psvlabel#1{\footnotesize#1}
\usepackage[colorlinks,linktocpage]{hyperref}
%
\begin{document}
@@ -361,10 +361,11 @@ way, at the cost of some reduction in graphics resolution.
\clearpage
\section{\CMD{psGauss} and \CMD{psGaussI}}
The Gauss function is defined as
+%
\begin{align}
f(x) &= \dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{\left(x-\mu\right)^2}{2\sigma{}^2}}
\end{align}
-
+%
\noindent The syntax of the macros is
\begin{verbatim}
\psGauss[options]{xStart}{xEnd}
@@ -403,7 +404,7 @@ and is predefined with 5.
\egroup
-\begin{lstlisting}[xrightmargin=-1cm]
+\begin{lstlisting}[xrightmargin=-2cm]
\psset{yunit=4cm,xunit=3}
\begin{pspicture}(-2,-0.5)(2,1.25)
% \psgrid[griddots=10,gridlabels=0pt, subgriddiv=0]
@@ -506,8 +507,8 @@ step). The precision and the smoothness of the plot depend strongly on these two
\begin{LTXexample}
%\usepackage{pst-math}
\psset{xunit=0.5cm,yunit=2cm}
-\begin{pspicture}[linewidth=1pt](-10,-.5)(10,2)
- \psaxes[dx=1cm,Dx=2]{->}(0,0)(-10,0)(10,2)
+\begin{pspicture}[linewidth=1pt](-10,-.5)(10,1.5)
+ \psaxes[dx=1cm,Dx=2]{->}(0,0)(-10,0)(10,1.5)
\psCumIntegral[plotpoints=200,Simpson=10]{-10}{10}{0 1 GAUSS}
\psIntegral[plotpoints=200,Simpson=10,linecolor=red]{-10}{10}(-4,6){1 GAUSS}
\psIntegral[plotpoints=200,Simpson=100,linecolor=green]{.1}{10}(-3,3){0 exch GAUSS}
@@ -521,8 +522,8 @@ variance is varying from .1 to 10.
\begin{LTXexample}
\psset{xunit=1cm,yunit=4cm}
-\begin{pspicture}[linewidth=1pt](-5,-.2)(5,1.1)
- \psaxes[dx=1cm,Dx=1,Dy=0.5]{->}(0,0)(-5,0)(5,1.1)
+\begin{pspicture}[linewidth=1pt](-5,-.2)(5,0.75)
+ \psaxes[dx=1cm,Dx=1,Dy=0.5]{->}(0,0)(-5,0)(5,0.75)
\psplot[linecolor=blue,plotpoints=200]{-5}{5}{x abs 2 le {0.25}{0} ifelse}
\psplot[linecolor=green,plotpoints=200]{-5}{5}{x abs 1 le {.5}{0} ifelse}
\psConv[plotpoints=100,Simpson=1000,linecolor=red]{-5}{5}(-10,10)%
@@ -569,6 +570,7 @@ for the macro \verb+\psPrintValue+ are valid, too. The only special option is \v
which is a factor (no dimension) and set by default to 1. This option is only valid for
the macro \CMD{psBinomial} and not for the normalized one!
+\psset[pst-func]{barwidth=1}
\begin{LTXexample}[pos=t,preset=\centering]
\psset{xunit=1cm,yunit=5cm}%
\begin{pspicture}(-1,-0.15)(7,0.55)%
@@ -670,8 +672,76 @@ valid vor \CMD{psBinomialN}. The option \verb+showpoints+ is valid if \verb+curv
\end{pspicture*}
\end{LTXexample}
+\clearpage
+
+
+\section{\CMD{psLame} -- Lam\`e\ Curve, a superellipse}
+A superellipse is a curve with Cartesian equation
+%
+\begin{align}
+\left|\frac{x}{a}\right|^r + \left|\frac{y}{b}\right|^r & =1
+\end{align}
+%
+first discussed in 1818 by Gabriel Lamé (1795--1870)%
+\footnote{Lamé worked on a wide variety of different topics.
+His work on differential geometry and contributions to Fermat's Last Theorem
+are important. He proved the theorem for $n = 7$ in 1839.}.
+A superellipse may be described parametrically by
+%
+\begin{align}
+x = a\cdot\cos^{\frac{2}{r}} t\\
+y = b\cdot\sin^{\frac{2}{r}} t
+\end{align}
+%
+Superellipses with $a=b$ are also known as Lamé curves or Lamé ovals and
+the restriction to $r>2$ is sometimes also made. The following
+table summarizes a few special cases. Piet Hein used $\frac{5}{2}$ with a number of different
+$\frac{a}{b}$ ratios for various of his projects. For example, he used $\frac{a}{b}=\frac{6}{5}$
+for Sergels Torg
+(Sergel's Square) in Stockholm, and $\frac{a}{b}=\frac{3}{2}$ for his table.
+
+\begin{center}
+\begin{tabular}{@{}llm{1.5cm}@{}}
+r & curve type & example\\\hline
+$\frac{2}{3}$ & (squashed) astroid
+ & \pspicture(-.5,-.5)(.5,.5)\psLame[radiusA=.5,radiusB=.5]{0.6667}\endpspicture\\
+1 & (squashed) diamond
+ & \pspicture(-.5,-.5)(.5,.5)\psLame[radiusA=.5,radiusB=.5]{1}\endpspicture\\
+2 & ellipse
+ & \pspicture(-.5,-.5)(.5,.5)\psLame[radiusA=.5,radiusB=.5]{2}\endpspicture\\
+$\frac{5}{2}$ & Piet Hein's ,,superellipse``
+ & \pspicture(-.5,-.5)(.5,.5)\psLame[radiusA=.5,radiusB=.5]{2.5}\endpspicture
+\end{tabular}
+\end{center}
+
+If is a rational, then a superellipse is algebraic. However, for irrational,
+it is transcendental. For even integers, the curve becomes closer to a
+rectangle as increases. The syntax of the \verb+\psLame+ macro is:
+
+\begin{verbatim}
+\psLame[settings]{r}
+\end{verbatim}
+
+It is internally ploted as a parametric plot with $0\le\alpha\le360$. Available keywords
+are \verb+radiusA+ and \verb+radiusB+, both are preset to 1, but can have any valid value
+and unit.
+
+\bgroup
+\begin{LTXexample}[pos=t,preset=\centering]
+\definecolorseries{col}{rgb}{last}{red}{blue}
+\resetcolorseries[41]{col}
+\psset{unit=.5}
+\pspicture(-9,-9)(9,9)
+ \psaxes[Dx=2,Dy=2,tickstyle=bottom,ticksize=2pt]{->}(0,0)(-9,-9)(9,9)
+ \multido{\rA=0.2+0.1,\iA=0+1}{40}{%
+ \psLame[radiusA=8,radiusB=7,linecolor={col!![\iA]},linewidth=.5pt]{\rA}}
+\endpspicture
+\end{LTXexample}
+\egroup
\clearpage
+
+
\section{\CMD{psplotImp} -- plotting implicit defined functions}
This macro is still experimental! For a given area, the macro calculates in a
first step row by row for every pixel (1pt) the function $f(x,y)$ and checks for an