diff options
author | Karl Berry <karl@freefriends.org> | 2006-01-09 00:56:57 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2006-01-09 00:56:57 +0000 |
commit | f07bb53970ee2ecc53f81a206a3d3a67ef665e4a (patch) | |
tree | 6f57a1d62971db79e5ff023bdfd83b22cb971dc9 /Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | |
parent | 007f67a693e4d031fd3d792df8e4d5f43e2cb2e7 (diff) |
doc 6
git-svn-id: svn://tug.org/texlive/trunk@85 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex new file mode 100644 index 00000000000..70fd42cc000 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex @@ -0,0 +1,367 @@ +\documentclass[a4paper,12pt]{article} +\usepackage[T1]{fontenc} +\usepackage[latin1]{inputenc} +\usepackage{geometry} +\usepackage{url} +\usepackage{amsmath} +\usepackage{tabularx} +\usepackage{longtable} +\usepackage{pstricks} +\usepackage{pst-func} +\let\pstFuncFV\fileversion +\usepackage{pstricks-add} +\usepackage{pst-example} +% +\usepackage{xspace} +\def\PS{PostScript\xspace} +% +\psset{xyLabel=\footnotesize} +\usepackage[colorlinks,linktocpage]{hyperref} +% +\begin{document} +\title{\texttt{pst-func}\\plotting special mathematical functions\thanks{% + This document was written with \texttt{Kile: 1.6a (Qt: 3.1.1; KDE: 3.1.1;} + \protect\url{http://sourceforge.net/projects/kile/}) and the PDF output + was build with VTeX/Free (\protect\url{http://www.micropress-inc.com/linux})}\\ + \small v.\pstFuncFV} +\author{Herbert Voß\thanks{% +%%JF +%Thanks to: Attila Gati and to John Frampton. +Thanks to: Attila Gati, John Frampton and Lars Kotthoff. +}} +\date{\today} + +\maketitle + +\tableofcontents + +\clearpage + +\section{\texttt{psPolynomial}} +The polynomial function is defined as +\begin{align} +f(x) &= a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots +a_{n-1}x^{n-1} + a_nx^n\\ +f^{\prime}(x) &= a_1 + 2a_2x + 3a_3x^2 + \ldots +(n-1)a_{n-1}x^{n-2} + na_nx^{n-1}\\ +f^{\prime\prime}(x) &= 2a_2 + 6a_3x + \ldots +(n-1)(n-2)a_{n-1}x^{n-3} + n(n-1)a_nx^{n-2} +\end{align} + +\noindent so \verb+pst-func+ needs only the coefficients of the +polynomial to calculate the function. The syntax is +\begin{verbatim} +\psPolynomial[<options>]{xStart}{xEnd} +\end{verbatim} + +There are the following new options: + +\noindent\medskip +\begin{tabularx}{\linewidth}{>{\ttfamily}l|>{\ttfamily}l>{\ttfamily}lX@{}} +\textrm{Name} & \textrm{Value} & \textrm{Default}\\\hline +coeff & a0 a1 a2 ... & 0 0 1 & The coefficients must have the order $a_0\ a_1\ a_2 \ldots$ and +be separated by \textbf{spaces}. The number of coefficients +is limited only by the memory of the computer ... The default +value of the parameter \verb+coeff+ is \verb+0 0 1+, which gives +the parabola $y=a_0+a_1x+a_2x^2=x^2$.\\ +Derivation & <number> & 0 & the default is the function itself\\ +markZeros & false|true & false & dotstyle can be changed\\ +epsZero & <value> & 0.1 & The distance between two zeros, important for + the iteration function to test, if the zero value still + exists\\ +dZero & <value> & 0.1 & When searching for all zero values, the function is scanned + with this step\\ +zeroLineTo & <number> & false & plots a line from the zero point to the value of the + zeroLineTo's Derivation of the polynomial function\\ +zeroLineStyle & <line style> & dashed & the style is one of the for PSTricks valid styles.\\ +zeroLineColor & <color> & black & any valid xolor is possible\\ +zeroLineWidth & <width> & 0.5\textbackslash pslinewidth & \\ +\end{tabularx} + + + + +\bigskip +The above parameter are only +valid for the \verb+\psPolynomial+ +macro, but can also be set in the usual way with \verb+\psset+. + + + + +\begin{Beispiel} +{\psset{yunit=0.5cm,xunit=1cm} +\begin{pspicture*}(-3,-5)(5,10) + \psaxes[Dy=2]{->}(0,0)(-3,-5)(5,10) + \psset{linewidth=1.5pt} + \psPolynomial[coeff=6 3 -1,linecolor=red]{-3}{5} + \psPolynomial[coeff=2 -1 -1 .5 -.1 .025,linecolor=blue]{-2}{4} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta]{-2}{4} + \rput[lb](4,4){\textcolor{red}{$f(x)$}} + \rput[lb](4,8){\textcolor{blue}{$g(x)$}} + \rput[lb](2,4){\textcolor{magenta}{$h(x)$}} +\end{pspicture*} +} +\end{Beispiel} + +The plot is easily clipped using the star version of the +\verb+pspicture+ environment, so that points whose coordinates +are outside of the desired range are not plotted. +The plotted polynomials are: +\begin{align} +f(x) & = 6 + 3x -x^2 \\ +g(x) & = 2 -x -x^2 +0.5x^3 -0.1x^4 +0.025x^5\\ +h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6 +\end{align} + + + +\bigskip +\begin{Beispiel} +\psset{yunit=0.5cm,xunit=2cm} +\begin{pspicture*}(-3,-5)(3,10) + \psaxes[Dy=2]{->}(0,0)(-3,-5)(3,10) + \psset{linewidth=1.5pt} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta]{-2}{4} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=red,% + linestyle=dashed,Derivation=1]{-2}{4} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=blue,% + linestyle=dotted,Derivation=2]{-2}{4} + \rput[lb](2,4){\textcolor{magenta}{$h(x)$}} + \rput[lb](1,1){\textcolor{red}{$h^{\prime}(x)$}} + \rput[lb](-1,6){\textcolor{blue}{$h^{\prime\prime}(x)$}} +\end{pspicture*} +\end{Beispiel} + + +\begin{Beispiel} +\psset{yunit=0.5cm,xunit=2cm} +\begin{pspicture*}(-3,-5)(3,10) + \psaxes[Dy=2]{->}(0,0)(-3,-5)(3,10) + \psset{linewidth=1.5pt} + \psPolynomial[coeff=0 0 0 1,linecolor=blue]{-2}{4} + \psPolynomial[coeff=0 0 0 1,linecolor=red,% + linestyle=dashed,Derivation=2]{-2}{4} + \psPolynomial[coeff=0 0 0 1,linecolor=cyan,% + linestyle=dotted,Derivation=3]{-2}{4} + \rput[lb](1.8,4){\textcolor{blue}{$f(x)=x^3$}} + \rput[lb](0.2,8){\textcolor{red}{$f^{\prime}(x)=6x$}} + \rput[lb](-2,5.5){\textcolor{magenta}{$f^{\prime\prime}(x)=6$}} +\end{pspicture*} +\end{Beispiel} + + +\begin{Beispiel} +\begin{pspicture*}(-5,-5)(5,5) + \psaxes{->}(0,0)(-5,-5)(5,5)% + \psset{dotscale=2} + \psPolynomial[markZeros,linecolor=red,linewidth=2pt,coeff=-1 1 -1 0 0.15]{-4}{3}% + \psPolynomial[markZeros,linecolor=blue,linewidth=1pt,linestyle=dashed,% + coeff=-1 1 -1 0 0.15,Derivation=1,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=1]{-4}{3}% +\end{pspicture*} +\end{Beispiel} + +\begin{Beispiel} +\psset{xunit=1.5} +\begin{pspicture*}(-5,-5)(5,5) + \psaxes{->}(0,0)(-5,-5)(5,5)% + \psset{dotscale=2,dotstyle=x,zeroLineStyle=dotted,zeroLineWidth=1pt} + \psPolynomial[markZeros,linecolor=red,linewidth=2pt,coeff=-1 1 -1 0 0.15]{-4}{3}% + \psPolynomial[markZeros,linecolor=blue,linewidth=1pt,linestyle=dashed,% + coeff=-1 1 -1 0 0.15,Derivation=1,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=1]{-4}{3}% +\end{pspicture*} +\end{Beispiel} + + + +\section{\texttt{psFourier}} + +A Fourier sum has the form: +\begin{align} +s(x) = \frac{a_0}{2} & + a_1\cos{\omega x} + a_2\cos{2\omega x} + + a_3\cos{3\omega x} + + \ldots + a_n\cos{n\omega x}\\ + & + b_1\sin{\omega x} + b_2\sin{2\omega x} + b_3\sin{3\omega x} + + \ldots + b_m\sin{m\omega x} +\end{align} + +\noindent The macro \verb+psFourier+ plots Fourier sums. The +syntax is similiar to \verb+psPolynomial+, except that there are +two kinds of coefficients: +\begin{verbatim} +\psPolynomial[cosCoeff=a0 a1 a2 ..., sinCoeff=b1 b2 ...]{xStart}{xEnd} +\end{verbatim} +The coefficients must have the orders $a_0\ a_1\ a_2\ \ldots$ +and $b_1\ b_2\ b_3\ \ldots$ and be separated by +\textbf{spaces}. The default is \verb+cosCoeff=0,sinCoeff=1+, +which gives the standard \verb+sin+ function. Note that +%%JF, I think it is better without the angle brackets, but +%%you know the conventions used better than I do, so you +%%may disagree. +%the constant value can only be set with \verb+cosCoeff=<a0>+. +the constant value can only be set with \verb+cosCoeff=a0+. + +\begin{Beispiel} +\begin{pspicture}(-5,-3)(5,5.5) +\psaxes{->}(0,0)(-5,-2)(5,4.5) +\psset{plotpoints=500,linewidth=1pt} +\psFourier[cosCoeff=2, linecolor=green]{-4.5}{4.5} +\psFourier[cosCoeff=0 0 2, linecolor=magenta]{-4.5}{4.5} +\psFourier[cosCoeff=2 0 2, linecolor=red]{-4.5}{4.5} +\end{pspicture} +\end{Beispiel} + +\begin{Beispiel} +\psset{yunit=0.75} +\begin{pspicture}(-5,-6)(5,7) +\psaxes{->}(0,0)(-5,-6)(5,7) +\psset{plotpoints=500} +\psFourier[linecolor=red,linewidth=1pt]{-4.5}{4.5} +\psFourier[sinCoeff= -1 1 -1 1 -1 1 -1 1,% + linecolor=blue,linewidth=1.5pt]{-4.5}{4.5} +\end{pspicture} +\end{Beispiel} + +\begin{Beispiel} +\begin{pspicture}(-5,-5)(5,5.5) +\psaxes{->}(0,0)(-5,-5)(5,5) +\psset{plotpoints=500,linewidth=1.5pt} +\psFourier[sinCoeff=-.5 1 1 1 1 ,sinCoeff=-.5 1 1 1 1 1,% + linecolor=blue]{-4.5}{4.5} +\end{pspicture} +\end{Beispiel} + +\section{\texttt{psBessel}} +The Bessel function of order $n$ is defined as
+\begin{align} +J_n(x) &=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\mathrm{d}t\\ + &=\sum_{k=0}^{\infty}\frac{(-1)^k \left(\frac{x}{2}\right)^{n+2k}}{k!\Gamma(n+k+1)} +\end{align} + +\noindent The syntax of the macro is +\begin{verbatim} +\psBessel[options]{order}{xStart}{xEnd}
+\end{verbatim} + +There are two special parameters for the Bessel function, and also the +settings of many \verb+pst-plot+ or \verb+pstricks+ parameters +affect the plot. + +\begin{verbatim} +\def\psset@constI#1{\edef\psk@constI{#1}} +\def\psset@constII#1{\edef\psk@constII{#1}} +\psset{constI=1,constII=0} +\end{verbatim} + +These two "'constants"` have the following meaning: +\[ +f(t) = constI \cdot J_n + constII +\] + +\noindent +where $constI$ and $constII$ must be real PostScript expressions, e.g.: +\begin{verbatim} +\psset{constI=2.3,constII=t k sin 1.2 mul 0.37 add} +\end{verbatim} + +The Bessel function is plotted with the parametricplot macro, this is the +reason why the variable is named \verb+t+. The internal procedure \verb+k+ +converts the value t from radian into degrees. The above setting is +the same as +\[ +f(t) = 2.3 \cdot J_n + 1.2\cdot \sin t + 0.37 +\] + + +In particular, note that the default for +\verb+plotpoints+ is $500$. If the plotting computations are too +time consuming at this setting, it can be decreased in the usual +way, at the cost of some reduction in graphics resolution. + +\begin{Beispiel} +{ +\psset{xunit=0.25,yunit=5} +\begin{pspicture}(-13,-.85)(13,1.25) +\rput(13,0.8){% + $\displaystyle J_n(x)=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\mathrm{d}t$% +} +\psaxes[Dy=0.2,Dx=4,xyLabel=\footnotesize]{->}(0,0)(-30,-.8)(30,1.2) +\psset{linewidth=1pt} +\psBessel[linecolor=red]{0}{-28}{28}% +\psBessel[linecolor=blue]{1}{-28}{28}% +\psBessel[linecolor=green]{2}{-28}{28}% +\psBessel[linecolor=magenta]{3}{-28}{28}% +\end{pspicture} +} +\end{Beispiel} + + +\begin{Beispiel} +{ +\psset{xunit=0.25,yunit=2.5} +\begin{pspicture}(-13,-.85)(13,2) +\rput(13,0.8){% + $\displaystyle f(t) = 2.3 \cdot J_0 + 1.2\cdot \sin t + 0.37$% +} +\psaxes[Dy=0.2,Dx=4,xyLabel=\footnotesize]{->}(0,0)(-30,-.8)(30,1.2) +\psset{linewidth=1pt} +\psBessel[linecolor=red,constI=2.3,constII={t k sin 1.2 mul 0.37 add}]{0}{-28}{28}% +\end{pspicture} +} +\end{Beispiel} + + +\section{\texttt{psGauss}} +The Gauss function is defined as +\begin{align} +f(x) &= \dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{x^2}{2\sigma{}^2}} +\end{align} + +\noindent The syntax of the macro is +\begin{verbatim} +\psGauss[options]{xStart}{xEnd} +\end{verbatim} + +%%JF +%% comment, the angle brackets below, around "value", make sense +%% as a convention, so I left them in +% +%\noindent where the only new parameter is \verb+sigma=<value>+, with +%the default of \verb+0.5+ and can also be set in the usual way with +%\verb+\psset+. It is only valid for the \verb+psGauss+-macro. +\noindent where the only new parameter is \verb+sigma=<value>+, +which can also be set in the usual way with \verb+\psset+. It is +significant only for the \verb+psGauss+-macro. The default is +\verb+0.5+. + +\begin{Beispiel} +\psset{yunit=4cm,xunit=3} +\begin{pspicture}(-2,0)(2,1) +% \psgrid[griddots=10,gridlabels=0pt, subgriddiv=0] + \psaxes[xyLabel=\footnotesize,Dy=0.25]{->}(0,0)(-2,0)(2,1) + \uput[-90](6,0){x}\uput[0](0,1){y} + \rput[lb](1,0.75){\textcolor{red}{$\sigma =0.5$}} + \rput[lb](1,0.5){\textcolor{blue}{$\sigma =1$}} + \rput[lb](-2,0.5){$f(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{x^2}{2\sigma{}^2}}$} + \psGauss[linecolor=red, linewidth=2pt]{-1.75}{1.75}% + \psGauss[sigma=1, linecolor=blue, linewidth=2pt]{-1.75}{1.75} +\end{pspicture} +\end{Beispiel} + + +\section{Credits} +Denis Girou | Manuel Luque | Timothy Van Zandt + + +\nocite{*} +\bibliographystyle{plain} +\bibliography{pstricks} + +\end{document} + + |