summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-diffraction
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2007-09-16 00:18:08 +0000
committerKarl Berry <karl@freefriends.org>2007-09-16 00:18:08 +0000
commit14c7fd46eb994879e14d10b636bcd97a0a3237e8 (patch)
treec17867bf2b11377b69c1930324fe573baa0d7f37 /Master/texmf-dist/doc/generic/pst-diffraction
parentb4f513643e9222ff96f871b92cbd9d94c8ec1096 (diff)
new pstricks pst-diffraction (13sep07)
git-svn-id: svn://tug.org/texlive/trunk@4950 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-diffraction')
-rwxr-xr-xMaster/texmf-dist/doc/generic/pst-diffraction/Changes6
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/README50
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib100
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdfbin0 -> 5483781 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex323
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdfbin0 -> 5480641 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex317
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdfbin0 -> 5464023 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex299
9 files changed, 1095 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/Changes b/Master/texmf-dist/doc/generic/pst-diffraction/Changes
new file mode 100755
index 00000000000..94384ed2e46
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/Changes
@@ -0,0 +1,6 @@
+pst-diffraction.tex --------
+2.01 2007-09-13 first CTAN version
+
+
+pst-diffraction.sty --------
+0.01 2007-09-13 first CTAN version \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/README b/Master/texmf-dist/doc/generic/pst-diffraction/README
new file mode 100644
index 00000000000..707444a3f9e
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/README
@@ -0,0 +1,50 @@
+%% Package `pst-diffraction.tex'
+%%
+%% Manuel Luque (ml _at_ pstricks.de) (France)
+%% Herbert Voss (hv _at_ pstricks.de) (Germany)
+%%
+%% 2007-09-04
+%%
+
+PSTricks offers excellent macros to insert more or less complex
+graphics into a document. pstricks.tex itself is the base for several
+other additional packages, which are mostly named pst-xxxx,
+like pst-diffraction.
+Diffraction refers to various phenomena associated with wave propagation,
+such as the bending, spreading and interference of waves passing by an object
+or aperture that disrupts the wave, like rectangle, circular, or tringle
+slits.
+
+Save the files
+
+pst-diffraction.sty
+pst-diffraction.tex
+pst-diffraction.pro
+
+in any place, where latex or any other TeX program will find it.
+The pro file should go into $TEXMF$/dvips/pstricks/.
+
+pst-diffraction uses the extended version of the keyval package. So
+be sure that you
+- have installed xkeyval with the special pst-xkey
+ (CTAN: tex-archive/macros/latex/contrib/xkeyval/)
+- do not load another package after pst-diffraction, which loads
+ the old keyval.sty or pst-key.tex
+
+
+If you like to get the documentation file in another format run
+
+latex pst-diffraction-docE.tex
+bibtex pst-diffraction-docE
+latex pst-diffraction-docE.tex
+dvips pst-diffraction-docE.dvi
+
+to get a PostScript file. But pay attention, that the pst-diffraction
+files are saved in the above mentioned way, before you run
+latex on the documentation file.
+
+The intermediate DVI file works only with viewers which can
+interprete the embedded PostScript code.
+
+For another PDF output read the introduction from
+the documentation.
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib
new file mode 100644
index 00000000000..69cdd1245a2
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.bib
@@ -0,0 +1,100 @@
+@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} }
+
+@Book{PostScript,
+ Author = {Kollock, Nikolai G.},
+ Title = {PostScript richtig eingesetzt: vom Konzept zum
+ praktischen Einsatz},
+ Publisher = {IWT},
+ Address = {Vaterstetten},
+ year = 1989,
+}
+
+@Manual{pstricks,
+ Title = {PSTricks - {\PS} macros for Generic TeX},
+ Author = {Timothy Van Zandt},
+ Organization = {},
+ Address = {\url{http://www.tug.org/application/PSTricks}},
+ Note = {},
+ year = 1993,
+}
+
+
+@Manual{pdftricks,
+ Title = {PSTricks Support for pdf},
+ Author = {Herbert Voss},
+ Organization = {},
+ Address = {\url{http://PSTricks.de/pdf/pdfoutput.phtml}},
+ Note = {},
+ year = 2002,
+}
+
+@Manual{miwi,
+ Title = {References for \TeX{} and Friends},
+ Author = {Michael Wiedmann and Peter Karp},
+ Organization = {},
+ Address = {\url{http://www.miwie.org/tex-refs/}},
+ Note = {},
+ year = 2003,
+}
+
+
+@Article{dtk02.1:voss:mathematischen,
+ author = {Herbert Vo{\ss}},
+ title = {Die mathematischen {F}unktionen von {P}ostscript},
+ journal = dtk,
+ year = 2002,
+ volume = {1/02},
+ altvolume = 1,
+ altnumber = 14,
+ month = mar,
+ pages = {40-47},
+ annote = bretter,
+ keywords = {},
+ abstract = { \PS, faktisch genauso alt wie {\TeX}, ist im
+ Verh{\"a}ltnis dazu allgemein noch weniger bekannt, wenn es
+ darum geht zu beurteilen, was es denn nun im eigentlichen
+ Sinne ist. Au{\ss}erdem wird h{\"a}ufig vergessen, dass
+ sich mit den \PS-Funktionen viele Dinge erledigen lassen,
+ bei denen sonst auf externe Programme zur{\"u}ckgegriffen
+ wird. Dies wird im Folgenden f{\"u}r die mathematischen
+ Funktionen im Zusammenhang mit dem Paket \texttt{pst-plot}
+ gezeigt. }
+}
+
+@Book{companion,
+ author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Denis Roegel and Herbert Vo{\ss}},
+ title = {The {\LaTeX} {G}raphics {C}ompanion},
+ publisher = {{Addison-Wesley Publishing Company}},
+ edition = 2,
+ year = {2007},
+ address = {Reading, Mass.}
+}
+
+@Book{PSTricks2,
+ author = {Herbert Vo\ss},
+ title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX},
+ edition = {4.},
+ publisher = {DANTE -- Lehmanns},
+ year = {2007},
+ address = {Heidelberg/Hamburg}
+}
+
+@Book{LaTeXRef,
+ author = {Herbert Vo\ss},
+ title = {\LaTeX\ Referenz},
+ edition = {1.},
+ publisher = {DANTE -- Lehmanns},
+ year = {2007},
+ address = {Heidelberg/Hamburg}
+}
+
+@Book{diffraction,
+ author = {Bouasse, H. and Carrière, Z.},
+ title = {Diffraction},
+ publisher={Delagrave},
+ year ={1923},
+ address = {Paris},
+ pages = 480
+}
+
+
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf
new file mode 100644
index 00000000000..31ba9b23925
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex
new file mode 100644
index 00000000000..15e73c2bc07
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex
@@ -0,0 +1,323 @@
+\documentclass[dvips,ngerman,a4paper]{article}
+\usepackage[T1]{fontenc}
+\usepackage[utf8]{inputenc}
+\usepackage[bmargin=2cm,tmargin=2cm]{geometry}
+%
+\usepackage{pstricks,pst-node,pst-grad,url}
+\usepackage{pst-diffraction}
+\let\PSTfileversion\fileversion
+\let\PSTfiledate\filedate
+%
+\usepackage{ccfonts}
+\usepackage[euler-digits]{eulervm}
+\usepackage[scaled=0.85]{luximono}
+\def\UrlFont{\small\ttfamily}
+\makeatletter
+\def\verbatim@font{\small\normalfont\ttfamily}
+\makeatother
+\usepackage{prettyref}
+\usepackage{fancyhdr}
+\usepackage{babel}
+\usepackage[colorlinks,linktocpage]{hyperref}
+
+\pagestyle{fancy}
+\def\Lcs#1{{\ttfamily\textbackslash #1}}
+\lfoot{\small\ttfamily\jobname.tex}
+\cfoot{Documentation}
+\rfoot{\thepage}
+\lhead{PSTricks}
+\renewcommand{\headrulewidth}{0pt}
+\renewcommand{\footrulewidth}{0pt}
+\newcommand{\PS}{PostScript}
+\newcommand\CMD[1]{\texttt{\textbackslash#1}}
+\makeatother
+\usepackage{framed}
+\definecolor{shadecolor}{cmyk}{0.2,0,0,0}
+\SpecialCoor
+
+\title{\texttt{pst-diffraction}\\[6pt]
+\mbox{}\\[1cm]
+Beugungsmuster für Beugung an kreisförmigen, rechteckigen und dreieckigen
+Öffnungen
+---\\[10pt]
+{\normalsize v. \PSTfileversion (\PSTfiledate)}}
+\author{%
+ \tabular[t]{c}Manuel Luque\\[3pt]
+ \url{ml@PSTricks.de}
+ \endtabular \and
+ \tabular[t]{c}Herbert Vo\ss\\[3pt]
+ \url{hv@PSTricks.de}\endtabular%
+}
+\date{\today}
+\begin{document}
+\maketitle
+\vfill
+Dank an Doris Wagner für die Übersetzung der Dokumentation.\\
+Beiträge und Anmerkungen lieferten: Julien Cubizolles.
+
+\clearpage
+\tableofcontents
+\clearpage
+
+
+\section{Versuchsaufbau}
+
+\begin{center}
+\begin{pspicture}(0,-3)(12,3)
+\pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2}
+\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P}
+% lentille L'
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+ \code{0.5 0.83333 scale}
+ \psarc(4,0){4.176}{-16.699}{16.699}
+ \psarc(12,0){4.176}{163.30}{196.699}}
+% lentille L
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+ \code{1 1.5 scale}
+ \psarc(4.5,0){4.176}{-16.699}{16.699}
+ \psarc(12.5,0){4.176}{163.30}{196.699}}
+\pspolygon[linestyle=none,fillstyle=vlines,
+ hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2)
+\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$}
+\psdot(S)\uput[180](S){S}
+\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5)
+\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2)
+\uput[0](P){P}
+\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P)
+%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}}
+\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O}
+\end{pspicture}
+\end{center}
+
+Das von der punktförmigen Lichtquelle S ausgehende monochromatische Licht verlässt die
+Sammellinse L' achsenparallel und trifft auf die Blende E mit der Öffnung T.
+Das Licht wird an der Öffnung gebeugt:
+Jeder Punkt in der Öffnung wirkt als punktförmige Lichtquelle (Huygens'sches Prinzip) und es entsteht ein
+Interferenzmuster (Beugungsmuster), welches auf einem Schirm beobachtet werden kann. Ist der Schirm von der
+Blende hinreichend weit entfernt, so spricht man von Fraunhofer'scher Beugung.
+In diesem Fall kann man annehmen, da"s alle Lichtstrahlen, die von der Öffnung her kommen und
+denselben Punkt P auf dem Schirm treffen, parallel verlaufen.\\
+In der Praxis will man den Abstand zwischen Schirm und Blende klein halten. Deshalb
+wird zwischen die Blende und den Schirm eine Sammellinse L montiert und der
+Schirm (in der Zeichnung enthält er die Punkte P und O) in die Brennebene dieser Linse gestellt.
+Links von der Linse parallel verlaufende Lichtstrahlen werden dann im Punkt P in der Brennebene
+fokussiert.
+
+Die folgenden PSTricks-Befehle ermöglichen es, Beugungsmuster für
+verschiedene Formen von Blendenöffnungen zu erstellen. Dabei wird die Verwendung von monochromatischem
+Licht vorausgesetzt. Die Blenden können eine rechteckige, kreisförmige oder
+dreieckige Öffnung haben.
+
+Als mögliche Optionen für die Befehle hat man die Abmessungen, die sich aus dem jeweiligen
+Versuchsaufbau ergeben, etwa
+den Radius bei Verwendung einer Lochblende. Au"serdem kann man die Wellenlänge des verwendeten Lichts
+angeben (die zugehörige Farbe wird vom Paket dann automatisch zugeordnet).
+
+Es gibt drei Befehle, jeweils einen für rechteckige, kreisförmige und
+dreieckige Öffnungen:
+
+
+\begin{verbatim}
+\psdiffractionRectangle[<Optionen>]
+\psdiffractionCircular[<Optionen>]
+\psdiffractionTriangle[<Optionen>]
+\end{verbatim}
+
+
+\section{Die Farbe}
+Die gewünschte Lichtfarbe wird über die Angabe der zugehörigen Wellenlänge
+$\lambda$ (in Nanometern) definiert. Für die Farbe rot beispielsweise gibt man als
+Option \texttt{[lambda=632]} an wegen $\lambda_{\textrm{rot}}=632\,\textrm{nm}$.
+
+Die Umrechnung der Wellenlänge in den entsprechenden Wert des
+\texttt{RGB}-Farbschemas wird von PostScript durchgeführt. Der zugrunde liegende
+Code lehnt sich an an ein Fortran-Programm, welches man auf folgender Seite
+findet:
+\url{http://www.midnightkite.com/color.html}.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Beugung an einer rechteckigen Blendenöffnung}
+
+\begin{center}
+\begin{pspicture}(-2,-1)(2,1.5)
+\psframe(-0.5,-1)(0.5,1)
+\pcline{<->}(-0.5,1.1)(0.5,1.1)
+\Aput{$a$}
+\pcline{<->}(0.6,1)(0.6,-1)
+\Aput{$h=k\times a$}
+\end{pspicture}
+\end{center}
+
+Die Breite des Rechtecks mit der Fläche $h=k\times a$ wird
+über den Buchstaben \texttt{[a]} definiert, die Höhe
+über den Buchstaben \texttt{[k]}.
+Die Brennweite der Linse gibt man durch \texttt{[f]} an, die Auflösung kann man mit der
+Option [pixel] verändern.
+Mit der Option \texttt{[contrast]} kann man erreichen, da"s die Nebenmaxima des
+Beugungsmusters deutlicher werden.\\
+Ein Schwarzweissbild erhält man, wenn man die Option \texttt{[colorMode=0]}
+verwendet, \texttt{[colorMode=1]} liefert das zugehörige Negativ. Die Optionen
+\texttt{[colorMode=2]} bzw. \texttt{[colorMode=3]} liefern Farbbilder im
+CMYK-Farbmodell bzw. RGB-Farbmodell.
+
+Defaultmä"sig sind folgende Werte voreingestellt:
+\begin{itemize}
+ \item \texttt{[a=0.2e-3]} in m ;
+ \item \texttt{[k=1]} ;
+ \item \texttt{[f=5]} in m ;
+ \item \texttt{[lambda=650]} in nm ;
+ \item \texttt{[pixel=0.5]} ;
+ \item \texttt{[contrast=38]}, Maximalwert ;
+ \item \texttt{[colorMode=3]}.
+\end{itemize}
+
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psdiffractionRectangle[f=2.5]
+\uput[270](0,-3.5){$\backslash$\texttt{psdiffractionRectangle[f=2.5]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-2,-4.5)(2,4.5)
+\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
+\uput[270](0,-4.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,colorMode=0]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-2.5)(4,3)
+\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
+\uput[270](0,-2){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
+\uput[270](0,-0.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=20,f=10,lambda=450]}}
+\end{pspicture}
+\end{center}
+
+
+
+\section{Beugung an zwei rechteckigen Blendenöffnungen}
+
+%\begin{shaded}
+%Diese Simulation wurde von Julien
+%\textsc{Cubizolles} erstellt.
+%\end{shaded}
+Man kann auch das Beugungsmuster zweier kongruenter Rechtecke (so nebeneinander
+angeordnet, da"s ihre Grundlinie auf der $x$-Achse liegt) erstellen,
+indem man zusätzlich
+zu den Angaben für den Fall nur eines Rechtecks die Option \texttt{[twoSlit]} angibt.
+Defaultmä"sig ist \texttt{[twoSlit]} deaktiviert. Den Abstand zwischen den beiden
+Rechtecken kann man über die Option $s$ einstellen. Sie wird, wenn nichts anderes angegeben
+wird, mit dem Wert
+$\texttt{12e-3}\,\mathrm{m}$ belegt.
+\begin{center}
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
+\uput[270](0,-0.5){$\backslash
+$\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]}}
+\end{pspicture}
+\end{center}
+\clearpage
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Beugung an einer kreisförmigen Blendenöffnung}
+Der Lochradius wird über den Buchstaben \texttt{r} angesprochen, beispielsweise
+\texttt{[r=1e-3]}. Der Default ist $r=1$ mm. Im ersten Quadranten wird der Graph der
+Intensitätsverteilung abgebildet (das Maximum in der Mitte wird abgeschnitten,
+falls es über den oberen Rand der \texttt{pspicture}-Umgebung hinausgeht).
+
+\begin{center}
+\begin{pspicture}(-5,-5)(5,5)
+\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
+\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,lambda=520]}}
+\end{pspicture}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Beugung an zwei kreisförmigen Blendenöffnungen}
+Es ist nur der Fall gleich gro"ser Radien vorgesehen, diesen gemeinsamen Radius
+spezifiziert man wie vorher über \texttt{[r=\dots]}. Au"serdem muss man den
+halben Abstand der beiden Kreismitten festlegen vermöge \texttt{[d=\dots]},
+beispielsweise \texttt{[d=3e-3]}. Zusätzlich muss man die Option
+\texttt{[twoHole]} verwenden.\\
+Der Bildaufbau kann in diesem Fall etwas länger dauern\dots
+
+\begin{center}
+\begin{pspicture}(-5,-5)(5,4)
+\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
+\uput[270](0,-4){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-6,-6)(6,6)
+\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
+\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]}}
+\end{pspicture}
+\end{center}
+
+Nicht in jedem Fall ergibt sich im mittleren Kreis ein Streifenmuster. Die Anzahl $N$ der Streifen
+im Inneren ist gegeben durch $N=2,44\frac{d}{r}$. Man kann diesen Effekt also erst für
+$N\geq2$ bzw. ab $d=\frac{2r}{1,22}$ beobachten (siehe
+\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}).
+\begin{center}
+\begin{pspicture}(-5,-6)(5,5)
+\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
+\uput[270](0,-5){$\backslash$
+\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]}}
+\end{pspicture}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Brechung an einer dreieckigen Blendenöffnung}
+Es ist nur der Fall eines gleichseitigen Dreiecks vorgesehen. Als Option gibt man dessen Höhe
+\texttt{[h]} an, welche sich bekanntlich über $h=\frac{\sqrt{3}}{2}s$ aus der Seitenlänge $s$
+des Dreiecks berechnet. Ein Schwarzweissbild erhält man mit \texttt{[colorMode=0]}.
+
+\begin{center}
+\begin{pspicture}(-1,-1)(1,1)
+\pspolygon*(0,0)(1;150)(1;210)
+\pcline{|-|}(-0.732,-1)(0,-1)
+\Aput{$h$}
+\end{pspicture}
+
+\vspace{1cm}
+$\backslash$\texttt{psdiffractionTriangle[f=10,h=1e-3,contrast=38,colorMode=]}
+
+\makebox[\linewidth]{%
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
+\uput[270](0,-2.5){default color mode (>1)}
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
+\uput[270](0,-2.5){\texttt{colorMode=1}}
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
+\uput[270](0,-2.5){\texttt{colorMode=0}}
+\end{pspicture}}
+
+\end{center}
+
+
+
+
+%\section{Credits}
+
+
+\bgroup
+\nocite{*}
+\raggedright
+\bibliographystyle{plain}
+\bibliography{pst-diffraction-doc}
+\egroup
+
+
+
+\end{document}
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf
new file mode 100644
index 00000000000..30c9587ce01
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex
new file mode 100644
index 00000000000..6ff5cacf745
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex
@@ -0,0 +1,317 @@
+\documentclass[dvips,english,a4paper]{article}
+\usepackage[latin9]{inputenc}%
+\usepackage[T1]{fontenc}
+\usepackage[bmargin=2cm,tmargin=2cm]{geometry}
+%
+\usepackage{pstricks,pst-node,pst-grad,url}
+\usepackage{pst-diffraction}
+\let\PSTfileversion\fileversion
+\let\PSTfiledate\filedate
+%
+\usepackage{ccfonts}
+\usepackage[euler-digits]{eulervm}
+\usepackage[scaled=0.85]{luximono}
+\def\UrlFont{\small\ttfamily}
+\makeatletter
+\def\verbatim@font{\small\normalfont\ttfamily}
+\makeatother
+\usepackage{prettyref}
+\usepackage{fancyhdr}
+\usepackage{babel}
+\usepackage[colorlinks,linktocpage]{hyperref}
+
+\pagestyle{fancy}
+\def\Lcs#1{{\ttfamily\textbackslash #1}}
+\lfoot{\small\ttfamily\jobname.tex}
+\cfoot{Documentation}
+\rfoot{\thepage}
+\lhead{PSTricks}
+\renewcommand{\headrulewidth}{0pt}
+\renewcommand{\footrulewidth}{0pt}
+\newcommand{\PS}{PostScript}
+\newcommand\CMD[1]{\texttt{\textbackslash#1}}
+\makeatother
+\usepackage{framed}
+\definecolor{shadecolor}{cmyk}{0.2,0,0,0}
+\SpecialCoor
+
+\title{\texttt{pst-diffraction}\\[6pt]
+Diffraction patterns for diffraction from circular, rectangular and triangular
+apertures
+\\[1cm]
+---\\[10pt]
+{\normalsize v. \PSTfileversion (\PSTfiledate)}}
+\author{%
+ \tabular[t]{c}Manuel Luque\\[3pt]
+ \url{ml@PSTricks.de}
+ \endtabular \and
+ \tabular[t]{c}Herbert Vo\ss\\[3pt]
+ \url{hv@PSTricks.de}\endtabular%
+}
+\date{\today}
+\begin{document}
+\maketitle
+\vfill\noindent
+Thanks to Doris Wagner for help with the documentation.\\
+Also thanks to: Julien Cubizolles.
+
+
+\clearpage
+\tableofcontents
+
+\clearpage
+
+\section{Optical setup}
+
+\begin{center}
+\begin{pspicture}(0,-3)(12,3)
+\pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2}
+\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P}
+% lentille L'
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+ \code{0.5 0.83333 scale}
+ \psarc(4,0){4.176}{-16.699}{16.699}
+ \psarc(12,0){4.176}{163.30}{196.699}}
+% lentille L
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+ \code{1 1.5 scale}
+ \psarc(4.5,0){4.176}{-16.699}{16.699}
+ \psarc(12.5,0){4.176}{163.30}{196.699}}
+\pspolygon[linestyle=none,fillstyle=vlines,
+ hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2)
+\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$}
+\psdot(S)\uput[180](S){S}
+\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5)
+\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2)
+\uput[0](P){P}
+\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P)
+%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}}
+\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O}
+\end{pspicture}
+\end{center}
+
+Monochromatic light rays diverging from the focal point S of a positive lens L' emerge parallel to
+the axis and strike the aperture stop E with the aperture T.
+The light bends behind the aperture, this bending is called diffraction:
+Every point in the opening acts as if it was a point source (Huygens's principle) and the
+light waves of all those points overlap and produce an interference pattern (diffraction
+pattern) on a screen. When the screen is very far away, the observed patterns are called
+Fraunhofer diffraction patterns. In this case one can assume that the rays from the aperture
+striking the same point P on the screen are parallel.\\
+In practice one wants to realize a short distance between the aperture stop and the screen.
+Hence one sets up a converging lens L after the opening and installs the screen
+into the focal plane (containing the points P and O) of this lens. Parallel rays incident on
+the lens are then focused at a point P in the focal plane.
+
+With the following PSTricks-commands we can draw the diffraction patterns for different
+geometric forms
+of apertures. It is understood that only monochromatic light is used. The aperture stops can
+have rectangular, circular or triangular openings.
+
+The options available are the dimensions of the aperture under consideration and of the particular optical
+setting, e.g. the radius in case of an circular opening. Moreover one can choose the wavelength
+of the light (the associated color will be given automatically by the package).
+
+There are three commands, for rectangular, circular and triangular openings respectively:
+
+\begin{verbatim}
+\psdiffractionRectangle[<Optionen>]
+\psdiffractionCircular[<Optionen>]
+\psdiffractionTriangle[<Optionen>]
+\end{verbatim}
+
+
+\section{The color}
+The desired color is defined by specifying the associated wavelength $\lambda$ (in nanometers).
+Red for instance one gets by the option \texttt{[lambda=632]} because
+red light has the wavelength $\lambda_{\textrm{rot}}=632\,\textrm{nm}$.
+
+The conversion of the wavelength into the associated \texttt{RGB}-value is done by PostScript.
+The code is similar to the code of a FORTRAN program which can be found here: \\
+\url{http://www.midnightkite.com/color.html}
+
+\clearpage
+
+\section{Diffraction from a rectangular aperture}
+
+\begin{center}
+\begin{pspicture}(-2,-1)(2,1.5)
+\psframe(-0.5,-1)(0.5,1)
+\pcline{<->}(-0.5,1.1)(0.5,1.1)
+\Aput{$a$}
+\pcline{<->}(0.6,1)(0.6,-1)
+\Aput{$h=k\times a$}
+\end{pspicture}
+\end{center}
+
+The width of the rectangle with the area $h=k\times a$ is defined by the letter \texttt{[a]},
+the height by \texttt{[k]}.
+The focal length is specified by \texttt{[f]}, the desired resolution in pixels [pixel].
+With the option \texttt{[contrast]} one can improve the visibility of the minor secondary
+maxima more.\\
+We get a black and white picture if we use the option \texttt{[colorMode=0]},
+the option \texttt{[colorMode=1]} provides the associated negative pattern. The options
+\texttt{[colorMode=2]} and \texttt{[colorMode=3]} render color pictures in the
+CMYK and RGB color model respectively.
+
+By default the settings are as follows:
+\begin{itemize}
+ \item \texttt{[a=0.2e-3]} in m ;
+ \item \texttt{[k=1]} ;
+ \item \texttt{[f=5]} in m ;
+ \item \texttt{[lambda=650]} in nm ;
+ \item \texttt{[pixel=0.5]} ;
+ \item \texttt{[contrast=38]}, maximal value ;
+ \item \texttt{[colorMode=3]}.
+\end{itemize}
+
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psdiffractionRectangle[f=2.5]
+\uput[270](0,-3.5){$\backslash$\texttt{psdiffractionRectangle[f=2.5]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-2,-4.5)(2,4.5)
+\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
+\uput[270](0,-4.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,colorMode=0]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-2.5)(4,3)
+\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
+\uput[270](0,-2){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
+\uput[270](0,-0.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=20,f=10,lambda=450]}}
+\end{pspicture}
+\end{center}
+
+\section{Diffraction from two rectangular apertures}
+
+%\begin{shaded}
+%This simulation was provided by Julien
+%\textsc{Cubizolles}.
+%\end{shaded}
+It is also possible to render the diffraction pattern of two congruent rectangles
+(placed parallel such that their base is located on the $x$-axis)
+by using the option \texttt{[twoSlit]}.
+By default this option is deactivated.
+The distance of the two rectangles is specified by the option $s$.
+The default for $s$ is $\texttt{12e-3}\,\mathrm{m}$.
+\begin{center}
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
+\uput[270](0,-0.5){$\backslash
+$\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]}}
+\end{pspicture}
+\end{center}
+\clearpage
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Diffraction from a circular aperture}
+The radius of the circular opening can be chosen via the letter \texttt{r}, e.g.
+\texttt{[r=1e-3]}. The default is $r=1$ mm. In the first quadrant
+PSTricks displays the graph of the intensity distribution (the maximum in the center will be
+cropped if its height exceeds the margin of the \texttt{pspicture}-environment).
+
+\begin{center}
+\begin{pspicture}(-5,-5)(5,5)
+\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
+\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,lambda=520]}}
+\end{pspicture}
+\end{center}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Diffraction from two circular apertures}
+Only the case of equal radii is provided, this common radius can be defined like in the
+previous section via \texttt{[r=\dots]}.
+Furthermore one has to give the half distance of the circles measured from their centers by
+\texttt{[d=\dots]}, e.g. \texttt{[d=3e-3]}. Also the option
+\texttt{[twoHole]} has to be used.\\
+The rendering process could take some time in this case\dots
+
+\begin{center}
+\begin{pspicture}(-5,-5)(5,4)
+\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
+\uput[270](0,-4){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-6,-6)(6,6)
+\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
+\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]}}
+\end{pspicture}
+\end{center}
+
+Not in every case bands occur in the central circle. The number $N$ of those inner
+bands is given by $N=2.44\frac{d}{r}$. Thus this effect is not observable until $N\geq2$
+or $d=\frac{2r}{1.22}$ (see \url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}).
+
+\begin{center}
+\begin{pspicture}(-5,-6)(5,5)
+\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
+\uput[270](0,-5){$\backslash$
+\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]}}
+\end{pspicture}
+\end{center}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Diffraction from a triangular aperture}
+
+Only the case of an equilateral triangle is provided, whose height \texttt{[h]} has to be
+defined as an option. As is generally known, $h$ can be computed from the length $s$ of
+its side by $h=\frac{\sqrt{3}}{2}s$. A black and white picture can be obtained by using the
+option \texttt{[colorMode=0]}.
+
+
+\begin{center}
+\begin{pspicture}(-1,-1)(1,1)
+\pspolygon*(0,0)(1;150)(1;210)
+\pcline{|-|}(-0.732,-1)(0,-1)
+\Aput{$h$}
+\end{pspicture}
+
+\vspace{1cm}
+$\backslash$\texttt{psdiffractionTriangle[f=10,h=1e-3,contrast=38,colorMode=]}
+
+\makebox[\linewidth]{%
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
+\uput[270](0,-2.5){default color mode (>1)}
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
+\uput[270](0,-2.5){\texttt{colorMode=1}}
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
+\uput[270](0,-2.5){\texttt{colorMode=0}}
+\end{pspicture}}
+
+\end{center}
+
+
+
+
+
+%\section{Credits}
+
+
+\bgroup
+\nocite{*}
+\raggedright
+\bibliographystyle{plain}
+\bibliography{pst-diffraction-doc}
+\egroup
+
+
+\end{document}
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf
new file mode 100644
index 00000000000..17c89328f41
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex
new file mode 100644
index 00000000000..f7203cd4c19
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex
@@ -0,0 +1,299 @@
+\documentclass[dvips,a4paper]{article}
+\usepackage[latin9]{inputenc}%
+\usepackage[T1]{fontenc}
+\usepackage[bmargin=2cm,tmargin=2cm]{geometry}
+%
+\usepackage{pstricks,pst-node,pst-grad,url}
+\usepackage{pst-diffraction}
+\let\PSTfileversion\fileversion
+\let\PSTfiledate\filedate
+%
+\usepackage{ccfonts}
+\usepackage[euler-digits]{eulervm}
+\usepackage[scaled=0.85]{luximono}
+\def\UrlFont{\small\ttfamily}
+\makeatletter
+\def\verbatim@font{\small\normalfont\ttfamily}
+\makeatother
+\usepackage{prettyref}
+\usepackage{fancyhdr}
+
+\pagestyle{fancy}
+\def\Lcs#1{{\ttfamily\textbackslash #1}}
+\lfoot{\small\ttfamily\jobname.tex}
+\cfoot{Documentation}
+\rfoot{\thepage}
+\lhead{PSTricks}
+\renewcommand{\headrulewidth}{0pt}
+\renewcommand{\footrulewidth}{0pt}
+\newcommand{\PS}{PostScript}
+\newcommand\CMD[1]{\texttt{\textbackslash#1}}
+\makeatother
+\usepackage{framed}
+\definecolor{shadecolor}{cmyk}{0.2,0,0,0}
+\SpecialCoor
+
+\title{\texttt{pst-diffraction}\\[6pt]
+Diffraction \`a l'infini
+par un trou rectangulaire,
+un trou circulaire, deux trous circulaires,
+un trou triangulaire.\\[1cm]
+---\\[10pt]
+{\normalsize v. \PSTfileversion (\PSTfiledate)}}
+\author{%
+ \tabular[t]{c}Manuel Luque\\[3pt]
+ \url{ml@PSTricks.de}
+ \endtabular \and
+ \tabular[t]{c}Herbert Vo\ss\thanks{%
+ Thanks to Julien Cubizolles}%
+ \\[3pt]
+ \url{hv@PSTricks.de}\endtabular%
+}
+\date{\today}
+\begin{document}
+\maketitle
+
+\tableofcontents
+
+\clearpage
+\section{Présentation et Montage}
+\begin{center}
+\begin{pspicture}(0,-3)(12,3)
+\pnode(0,0){S} \pnode(4,1){L'1} \pnode(4,-1){L'2} \pnode(6,1){E'1} \pnode(6,-1){E'2}
+\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P}
+% lentille L'
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+ \code{0.5 0.83333 scale}
+ \psarc(4,0){4.176}{-16.699}{16.699}
+ \psarc(12,0){4.176}{163.30}{196.699}}
+% lentille L
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+ \code{1 1.5 scale}
+ \psarc(4.5,0){4.176}{-16.699}{16.699}
+ \psarc(12.5,0){4.176}{163.30}{196.699}}
+\pspolygon[linestyle=none,fillstyle=vlines,
+ hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2)
+\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$}
+\psdot(S)\uput[180](S){S}
+\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5)
+\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2)
+\uput[0](P){P}
+\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P)
+\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}}
+\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O}
+\end{pspicture}
+\end{center}
+Ceci est la reproduction de montage
+proposé par Henri \textsc{Bouasse} dans son livre sur la
+diffraction, page 25, publié aux éditions Delagrave en 1\,925. Les commentaires dont il accompagne ce
+schéma sont les suivants :\newline
+\begin{shaded}
+« Une source ponctuelle unique S, très éloignée ou placée dans le plan focal
+principal de la lentille collimatrice $L'$, fournit un faisceau cylindrique
+unique de rayons. On le reçoit sur le plan~E, percé d'un trou~T dont la
+forme caractérise le phénomène étudié.
+Au-delà de l'écran~E la lumière est diffractée \textit{une infinité de
+directions}, ou si l'on veut suivant une infinité de faisceaux
+cylindriques.
+Les rayons diffractés dans chaque direction sont concentrés aux divers points
+du plan focal image d'une lunette accommodée sur l'infini, où ils forment la
+\textit{figure de diffraction} : d'où le nom de \textit{phénomène à
+l'infini}. De chaque faisceau cylindrique diffracté, l'objectif~L de la
+lunette donne une image au point~P de son plan focal principal.
+[\ldots]Au point P correspond un faisceau cylindrique antérieur à l'objectif
+qui fait avec l'axe optique l'angle $\theta$ tel que :
+$\overline{OP}=f\tan\theta\approx\theta$
+\end{shaded}
+
+Ces quelques commandes réalisées avec \texttt{PSTricks} permettent d'obtenir
+les figures de diffraction \textit{à l'infini}, en lumière monochromatique,
+d'un trou rectangulaire, d'un trou circulaire, de deux trous circulaires et
+d'un trou triangulaire.
+
+Les dimensions des ouvertures sont bien sûr paramétrables, ainsi que le
+choix de la longueur d'onde : la couleur s'adapte automatiquement, et des
+divers paramètres du montage.
+
+Il y a trois commandes, l'une pour les ouvertures rectangulaires, l'autre
+pour les ouvertures circulaires et la dernière pour une ouverture
+triangulaire.
+\begin{verbatim}
+\psdiffractionRectangle[<liste de paramètres>]
+\psdiffractionCircular[<liste de paramètres>]
+\psdiffractionTriangle[<liste de paramètres>]
+\end{verbatim}
+Nous allons passer en revue ces différentes commandes et leurs paramètres.
+\section{La couleur de la radiation}
+La longueur d'onde est définie par le paramètres \texttt{[lambda=632]} (si
+l'on veut du rouge de longueur d'onde~:~ $\lambda=632$~nm), cette valeur est donc en~nm. La
+conversion de la longueur d'onde dans le système \texttt{rgb} est une adaptation en
+postscript de celle qu'on trouve sur~:
+\url{http://www.physics.sfasu.edu/astro/color.html}.
+
+
+
+\section{Diffraction par une ouverture rectangulaire}
+
+\begin{center}
+\begin{pspicture}(-2,-1)(2,1.5)
+\psframe(-0.5,-1)(0.5,1)
+\pcline{<->}(-0.5,1.1)(0.5,1.1)
+\Aput{$a$}
+\pcline{<->}(0.6,1)(0.6,-1)
+\Aput{$h=k\times a$}
+\end{pspicture}
+\end{center}
+On donnera la largeur de la fente \texttt{[a]} et le paramètre \texttt{[k]}
+qui déterminera la hauteur de la fente $h=k\times a$. On choisira aussi la
+distance focale de la lentille \texttt{[a]}, la résolution du tracé par la dimension du
+\texttt{[pixel]}. On pourra jouer sur le contraste pour rendre les franges
+éloignées un peu plus visibles avec \texttt{[contrast]}et éventuellement, obtenir un tracé en niveaux de
+gris en négatif inverse avec \texttt{[colorMode=0]} ou
+negativ avec \texttt{[colorMode=1]} ou cmyk couleur avec \texttt{[colorMode=2]} ou
+rgb avec \texttt{[colorMode=3]}.
+
+Par défaut les paramètres ont les valeurs suivantes :
+\begin{itemize}
+ \item \texttt{[a=0.2e-3]} en m ;
+ \item \texttt{[k=1]} ;
+ \item \texttt{[f=5]} en m ;
+ \item \texttt{[lambda=650]} en nm ;
+ \item \texttt{[pixel=0.5]} ;
+ \item \texttt{[contrast=38]}, valeur maximale ;
+ \item \texttt{[colorMode=3]}.
+\end{itemize}
+
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psdiffractionRectangle[f=2.5]
+\uput[270](0,-3.5){$\backslash$\texttt{psdiffractionRectangle[f=2.5]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-2,-4.5)(2,4.5)
+\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
+\uput[270](0,-4.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,colorMode=0]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-2.5)(4,3)
+\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
+\uput[270](0,-2){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
+\uput[270](0,-0.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=20,f=10,lambda=450]}}
+\end{pspicture}
+\end{center}
+
+
+\section{Diffraction par deux ouverture rectangulaire}
+
+%\begin{shaded}
+%This simulation was provided by Julien
+%\textsc{Cubizolles}.
+%\end{shaded}
+\begin{center}
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
+\uput[270](0,-0.5){$\backslash
+$\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]}}
+\end{pspicture}
+\end{center}
+
+
+
+\section{Diffraction par une ouverture circulaire}
+On donnera le rayon du trou : \texttt{[r=1e-3]}, $r=1$ mm par défaut. Les
+variations de l'intensité sont superposées à la figure de diffraction dans
+le premier quadrant (le maximum au centre a été écrêté).
+\begin{center}
+\begin{pspicture}(-5,-5)(5,5)
+\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
+\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,lambda=520]}}
+\end{pspicture}
+\end{center}
+
+
+\section{Diffraction par deux trous circulaires}
+Les deux trous sont identiques, outre le rayon commun des trous on fixera la
+demi-distance entre les centres des deux trous avec : \texttt{[d]} et pour
+ce cas de figure on activera l'option \texttt{[twoHole]}. On notera que
+les temps de calculs d'allongent\ldots
+\begin{center}
+\begin{pspicture}(-5,-5)(5,4)
+\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
+\uput[270](0,-4){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]}}
+\end{pspicture}
+\end{center}
+\begin{center}
+\begin{pspicture}(-6,-6)(6,6)
+\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
+\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]}}
+\end{pspicture}
+\end{center}
+Le cas limite d'obtention de franges se vérifie avec $\displaystyle d
+=\frac{a}{1.22}$. Voir~:
+
+\url{http://www.unice.fr\DeptPhys\optique\optique.html}.
+\begin{center}
+\begin{pspicture}(-5,-6)(5,5)
+\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
+\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]}}
+\end{pspicture}
+\end{center}
+
+\section{Diffraction par un trou triangulaire équilatéral}
+Le triangle équilatéral est défini par sa hauteur \texttt{[h]} en m. Pour le
+triangle, on peut obtenir la figure en niveaux de gris avec l'option
+\texttt{[colorMode=0]}. L'étude théorique de cette diffraction a été faite par
+\textsc{Airy}, on la trouve dans le livre d'Henri \textsc{Bouasse} sur la
+diffraction, pages 114 et 115.
+
+\begin{center}
+\begin{pspicture}(-1,-1)(1,1)
+\pspolygon*(0,0)(1;150)(1;210)
+\pcline{|-|}(-0.732,-1)(0,-1)
+\Aput{$h$}
+\end{pspicture}
+
+\vspace{1cm}
+$\backslash$\texttt{psdiffractionTriangle[f=10,h=1e-3,contrast=38,colorMode=]}
+
+\makebox[\linewidth]{%
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
+\uput[270](0,-2.5){default color mode (>1)}
+\end{pspicture}
+%
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
+\uput[270](0,-2.5){\texttt{colorMode=1}}
+\end{pspicture}
+%
+\begin{pspicture}(-3,-3)(3,3)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
+\uput[270](0,-2.5){\texttt{colorMode=0}}
+\end{pspicture}}
+
+\end{center}
+
+
+
+
+
+%\section{Credits}
+
+
+\bgroup
+\nocite{*}
+\raggedright
+\bibliographystyle{plain}
+\bibliography{pst-diffraction-doc}
+\egroup
+
+
+\end{document}